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Abstract

Recent research has shown that large lan-
guage models pretrained using unsupervised
approaches can achieve significant perfor-
mance improvement on many downstream
tasks. Typically when adapting these language
models to downstream tasks, like a classifi-
cation or regression task, we employ a fine-
tuning paradigm in which the sentence repre-
sentation from the language model is input to a
task-specific head; the model is then fine-tuned
end-to-end. However, with the emergence of
models like GPT-3, prompt-based fine-tuning
has been proven to be a successful approach
for few-shot tasks. Inspired by this work, we
study discrete prompt technologies in practice.
There are two issues that arise with the stan-
dard prompt approach. First, it can overfit on
the prompt template. Second, it requires man-
ual effort to formulate the downstream task as
a language model problem. In this paper, we
propose an improvement to prompt-based fine-
tuning that addresses these two issues. We re-
fer to our approach as DynaMaR – Dynamic
Prompt with Mask Token Representation. Re-
sults show that DynaMaR can achieve an aver-
age improvement of 10% in few-shot settings
and improvement of 3.7% in data-rich settings
over the standard fine-tuning approach on four
e-commerce applications.

1 Introduction

Unsupervised pre-trained Language Models (LMs)
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) have achieved state-of-the-art
performance on many natural language understand-
ing tasks. In general, these models are fine-tuned
for different tasks through the addition of a task-
specific head on top of the [CLS] token representa-
tion (Scao and Rush, 2021).

An alternative method to applying LMs on down-
stream tasks is through discrete prompts. A discrete
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prompt is an additional text phrase inserted along
with the original input text that encapsulates the
task of interest. By adding the prompt, we con-
vert the downstream task into a masked language
(MLM) problem. For example, to classify the sen-
timent of a movie review, “I hate this movie.”, we
can append a prompt to the input to get “I hate this
movie. It was [MASK]”. The pre-trained language
model is thus prompted to identify the sentiment of
the input statement and classify the [MASK] token
as “terrible” instead of “great” (Liu et al., 2021). In
this paper, we call a function that includes a prompt
and its position information a prompt template.

Prompt-based approaches have shown success in
low-data regimes (Petroni et al., 2019; Schick and
Schütze, 2021; Jiang et al., 2020; Gao et al., 2021;
Lester et al., 2021). Prompt-based fine-tuning is
beneficial in few-shot learning, because it provides
extra task information to the model through the
prompt text (Schick and Schütze, 2021). However,
when we explore this technique in practice, two
issues have arisen. First, the trained model can
overfit on words or phrases within the prompt and
on the position of the [MASK] token in the prompt
(Zhong et al., 2021). For example, in movie review
sentiment analysis, when we append the prompt,
“Does the user like the movie? [MASK]”, to a neg-
ative review, “This is a bad movie.”, the trained
model is inclined to predict the positive class, be-
cause the word “like” frequently appears in positive
reviews and the masked language model has greater
attention on the words/phrases that are closer to the
mask token as shown in Figure 1. We call this issue
prompt-related overfitting in this work.

We tackle prompt-related overfitting by introduc-
ing a dynamic prompt approach. In this approach,
we create a prompt pool consisting of multiple
prompt templates. To construct this pool, we gener-
ate a set of prompt candidates and filter by a simi-
larity score we propose, called the pairwise prompt
dissimilarity score (detailed in Section 3). We then
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Figure 1: BERT Attention Distribution. The figure
shows that the MLM model puts greater attention on
the prompt than the original input.

introduce the dynamic component of the algorithm
by randomly selecting a prompt template from the
pool and applying to the input for each training step.
For example, in the movie review sentiment analy-
sis task, the trained model will randomly see either
“does the user like the movie? [MASK]” or “does
the user dislike the movie? [MASK]” appended
to the original input. This prevents the model to
overfit on spurious correlations between words in
the prompt and the class label.

In addition, as previously mentioned, the stan-
dard prompt-based fine-tuning setup can be inef-
ficient. It requires significant input and answer
engineering to reformulate the downstream tasks
as MLM problems (Liu et al., 2021). This process
is time-consuming especially for tasks with large
numbers of classes. Besides, another disadvantage
of the standard setup is that it cannot be directly
applied to regression problems, as they cannot be
easily converted to MLM problems. To simplify
this process, we fine-tune the model by feeding
the mask token representation into a task-specific
classifier/predictor head instead of the pre-trained
MLM head to avoid the answer engineering pro-
cess, as shown in Figure 2. We refer to our prompt-
based approach with these two improvements as
Dynamic Prompt with Mask Token Representation
(DynaMaR). We apply DynaMaR to both few-shot
and data-rich settings and, for the first time, show
improvement gains across four tasks not only in
few-shot settings but also in data-rich settings.

Our contributions include: (1) proposing Dyna-
MaR, which can be applied without reformulating
downstream tasks into language problems and is

robust to prompt-related overfitting, (2) showing
DynaMaR can achieve improvements in both few-
shot and data-rich settings, (3) proposing a prompt
dissimilarity score to evaluate the degree of dis-
similarity between two prompt templates and to
help construct a diverse dynamic prompt pool, (4)
demonstrating that a larger dynamic prompt pool
achieves better performance on downstream tasks.

2 Related Work

Our work can be divided into three components:
language model fine-tuning, prompt generation,
and the design of the prompt template.

Language Model Fine-tuning is the main fo-
cus of our work. Recently, a large amount of re-
search has focused on improved language model
finetuning methods (Howard and Ruder, 2018;
Dodge et al., 2020; Lee et al., 2020; Zhang et al.,
2021). These works mainly focus on optimiza-
tion and regularization techniques to stabilize fine-
tuning. In contrast to these works, Gao et al. (2021)
describe the concept of prompt-based fine-tuning
for language models. We adapt and simplify the
core ideas from this work to create a simple yet
efficient prompt-based fine-tuning approach.

Prompt Generation is a key process in prompt-
based fine-tuning. The choice of prompt signifi-
cantly influences performance. The most natural
way to generate prompts is through manual design.
Petroni et al. (2019) employ manually generated
prompts with ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) models. They evaluate on the
LAMA (LAnguage Model Analysis) benchmark
(Bordes et al., 2013; Nickel et al., 2016) without
fine-tuning and conclude that the model is able
to recall knowledge learned from the pre-training
tasks. While manually crafting prompts is intuitive,
creating effective prompts through manual effort re-
quires time, experience, and expertise. To address
this issue, a number of automatic prompt searching
methods have been proposed. For example, Jiang
et al. (2020) propose a data mining-based method
that searches for a prompt based on the shortest
path between the original inputs and answers. They
also propose paraphrasing-based methods that take
a seed prompt and paraphrase it into several seman-
tically similar expressions. Gao et al. (2021) treat
prompt generation as a text generation task and uti-
lize T5, a sequence-to-sequence pretrained model,
in the template search process. They generate tem-
plates by specifying the position to insert a prompt
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Figure 2: Fine-tuning approach demonstration.

template and then inputting samples into T5 to de-
code the templates. These automatic approaches
achieve comparable performance to manually de-
signed prompts. Besides, Logan IV et al. (2021)
propose the null prompt method. Instead of gener-
ating prompts, they concatenate a [MASK] token
with original inputs and it performs competitively
to manually designed prompts. In our experiments,
we utilize the prompt generation methods to create
candidates for the dynamic prompt pool, while also
including the null prompt approach as one of the
baselines.

Prompt Template Design Factors are the fac-
tors that we take into consideration to create a met-
ric that informs how prompts are selected for the
dynamic prompt pool. Numerous previous works
analyze prompt template design factors and the im-
pact of prompt design on performance. Liu et al.
(2021) summarize the factors that influence the
application of prompt-related technologies in lan-
guage models. Logan IV et al. (2021) note that the
order in which the original input and the [MASK]
token are concatenated is an important consider-
ation. Zhong et al. (2021) propose to unify the
prompts into a question-answering format. These
previous works indicate that prompt construction
impacts performance. To this end, we hypothe-
size that diversity in the set of prompt templates
is an important factor in the performance of the
model and propose a prompt dissimilarity score for
measuring diversity.

3 Our Method: DynaMaR

In this section, we describe details of our approach,
DynaMaR. Before explaining the training process,
we define two concepts: the dynamic prompt pool
and the inference prompt.

Dynamic Prompt Pool is a pool of prompt tem-
plates from which a prompt template will be ran-
domly selected and applied to the input during train-
ing.

Inference Prompt is the prompt template used
during inference. It is selected from the set of tem-
plates in the dynamic prompt pool. In general, it is
the prompt template among those in the dynamic
prompt pool that can achieve the highest perfor-
mance in a fixed prompt setting.

We generate the candidates for the dynamic
prompt pool and inference prompt through man-
ual generation and paraphrasing-based methods
proposed by Jiang et al. (2020). However, we do
not include all candidates in the dynamic prompt
pool. We want to ensure the prompts within a pool
are sufficiently diverse so that the model will not
overfit on any of them. Therefore, we introduce
a prompt dissimilarity score to measure the level
of dissimilarity between these candidates. We con-
sider three factors in developing this metric: (1)
prompt position, or whether to append or prepend
the prompt to the input or even insert into the mid-
dle of pairwise inputs, (2) prompt wording or the
prompt word selection, and (3) prompt format, or
whether to create prompts in statement format or in
the question-answering format proposed by Zhong
et al. (2021). To define the prompt dissimilarity
score, we first introduce the normalized Hamming
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distance and the normalized Levenshtein distance.
Normalized Hamming Distance is equal to the

number of different bits between two binary repre-
sentations divided by the length of the binary rep-
resentations (Norouzi et al., 2012). Let HD(bi, bj)
be the Hamming distance between binary represen-
tations bi and bj with equal length K. The equation
of normalized Hamming distance NHD(bi, bj)
then follows:

HD(bi, bj) =

K∑
k=1

|bik − bjk|, (1)

NHD(bi, bj) = HD(bi, bj)/K. (2)

Normalized Levenshtein Distance is equal to
the minimum number of operations (substitution,
insertion and deletion) required to transform a
given string into another string divided by the
length of the longer string and is calculated in
a recursive fashion (Yujian and Bo, 2007). Let
LD(si, sj) be the Levenshtein distance between
string si and sj . Let |si| and |sj | be the length of
prompt string si and sj , respectively. Let t(x) be
a function that keeps a string of all but the first
character of x. The equation of the normalized
Levenshtein distance NLD(si, sj) follows:

LD(si, sj) =



|si|, if |si| = 0;

|sj |, if |sj | = 0;

LD(t(si), t(sj)), if |si| = |sj |;
1+

min

(
LD(t(si),sj),

LD(si,t(sj)),

LD(t(si),t(sj))

)
, otherwise.

(3)

NLD(si, sj) =

{
LD(si,sj)

|si|
, if |sj | ≤ |si|,

LD(si,sj)

|sj |
, if |si| < |sj |.

(4)

Suppose we generate N prompt templates. Let
pi and pj be two prompt templates with si, sj
as prompt strings, respectively, where i 6= j and
i, j ∈ {1, 2, . . . , N}. We treat the prompt position
and format information as categorical variables and
convert them into binary representations, bi, bj . Let
PDS(pi, pj) denote the prompt dissimilarity score
between prompt templates pi and pj . The prompt
dissimilarity score equation can be found below:

PDS(pi, pj) = NHD(bi, bj) +NLD(si, sj).
(5)

In our experiment, we use 0.5 as the pairwise
prompt dissimilarity score threshold. We add the
prompt templates that have prompt dissimilarity

score larger than the threshold to others to a dy-
namic prompt pool. During the training process,
we randomly pick one prompt template from the
pool for each training step and apply it to the origi-
nal input. We treat the mask token representation
from the modified input as the sentence embedding
and train the model by directly feeding it into a
task-specific predictor head.

4 Experiment

4.1 Data

In this experiment, we use four e-commerce pro-
prietary datasets: (1) Variation Elimination (VE),
(2) Music Match (MM), (3) Music Genre (MG),
and (4) Price Prediction (PP). VE is a binary clas-
sification problem with pairwise-document inputs
where the label identifies whether two items are
the variations of the same product or not. For ex-
ample, similar shirts (from the same producer and
brand) in different sizes or colors are considered to
be variations. MM is a binary classification prob-
lem with pairwise-document inputs that identifies
whether two music tracks from different sources
are the same or not. MG is a 303-way classification
problem with single-document inputs that classifies
music tracks to genres. PP is a regression problem
with single-document inputs that aims to estimate
the sales price based on the product information. It
should be noted that the percentage of inputs with
number of tokens larger than 512 in VE, MM, MG,
PP are 90%, 75%, 82%, 1%, respectively.

For each task, we split the dataset into three parts:
(1) train, (2) validation, and (3) test. We use the full
training dataset for the data-rich settings. We also
sample multiple few-shot training datasets for few-
shot learning settings. In few-shot learning, each
classification dataset contains roughly 20 samples
for each class. For the regression task (i.e., PP), we
randomly sample 1% of the full training dataset as
a few-shot training dataset.

4.2 Model and Tokenizer Setup

For training the tokenizer, we collect an English
product catalog dataset with text features includ-
ing title, description, and detail bullet points. We
train a 32K BPE vocabulary on this dataset using
the SentencePiece library (Kudo and Richardson,
2018).

We create a 500M parameter transformer
encoder-only model, with 38 hidden layers, 1024
embedding size, 16 attention heads, and maximum
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sequence length of 512. We train the model using
the LANS optimizer (Zheng et al., 2020) with a
batch size of 8192 and a learning rate of 10−4 on
the product catalog dataset.

4.3 Prompt Generation and Selection
To create the dynamic prompt pool for our tasks,
we first generate 20 prompt templates for each task
and select 5 out of them using the prompt dissim-
ilarity score. Specifically, for each task, we first
manually design 10 prompt templates. By treating
prompt template generation as paraphrase gener-
ation task (Jiang et al., 2020), we use these 10
prompt templates as seeds to generate another 10
templates per task by leveraging the public T5 para-
phrase generation model from Hugging Face1. Af-
terwards, we use the prompt dissimilarity score to
select 5 prompt templates out of the 20 based on
the method discussed at the end of Section 3. The
selected prompt templates are used as each task’s
dynamic prompt pool. For inference, we evaluate
each template in the dynamic prompt pool through
the evaluation process discussed in Section 4.5, and
select the prompt template that produces the best
performance on each task. Table 5 shows the dy-
namic prompt templates as well as the inference
prompt selected for each task.

4.4 Fine-tuning (Ft) Methods
We compare DynaMaR with the following ap-
proaches:

• Promptless Fine-tuning - CLS (PFt-CLS)
is our baseline approach where we fine-tune
the model by feeding the [CLS] token repre-
sentation into a predictor head.

• Promptless Fine-tuning - Average Pooling
(PFt-Avg) fine-tunes the model by using the
average of sequence output for prediction.

• Null Prompt - Prefix (NP-Prefix) prepends
the [MASK] token to the original inputs and
fine-tunes the model by feeding the [MASK]
token representation into a predictor head.
This approach avoids the issue where the
model overfits the prompt template since it
does not require a template.

• Null Prompt - Suffix (NP-Suffix) is the same
as the above approach except that the [MASK]

1https://huggingface.co/Vamsi/T5_Paraphrase_
Paws

Ft Method VE MM MG PP Avg
PFt-CLS 0 0 0 0 0
PFt-Avg -1.5% +7.2% -3.7% -8.8% -1.7%
NP-Prefix -1.0% +4.1% -2.0% +2.6% +0.9%
NP-Suffix -2.6% +0.2% -1.6% +6.7% +0.7%
FiTeR -0.7% +13.9% -1.1% +7.3% +4.9%
DPMR +0.8% +15.8% -0.5% +23.8% +10.0%

Table 1: Few-shot Learning Performance Comparison.

token is appended to the inputs instead of be-
ing prepended.

• Fixed Prompt with Mask Token Repre-
sentation (FiTeR) utilizes a static prompt
template in both the training and inference
stages and fine-tunes the model by feeding the
[MASK] token representation into a predictor
head.

Note that we use a task-specific predictor head in
combination with all above approaches including
the prompt-based fine-tuning methods, which typi-
cally use the pre-trained MLM head for prediction.
The reason is that we have a regression task as one
of our evaluation datasets, and as already discussed
in Section 1, it is not straight forward to convert
regression tasks into MLM tasks.

4.5 Model Training and Evaluation Setup
As mentioned in Section 1, we measure the per-
formance in both few-shot and data-rich settings.
For both VE and MM, we use Area Under the
Precision-Recall Curve (PRAUC) as the evaluation
metric. For MG, we use classification accuracy as
the evaluation metric. For PP, we use Root Mean
Square Error (RMSE) as the evaluation metric. We
validate the performance every 2 training steps in
the few-shot settings and every 100 steps in the
data-rich settings. We use early stopping with a pa-
tience of 3 validation steps to select the best model
for each task. We then evaluate the best models on
the test datasets. For few-shot learning, we report
the average performance across multiple few-shot
datasets per task to reduce the variation in perfor-
mance. In Table 1 and Table 2, we calculate and
report the improvement percentage, which is the
ratio of positive change as compared to PFt perfor-
mance.

4.6 Results
Table 1 and 2 show the performance results for
both few-shot and data-rich settings. In both set-
tings, PFt-Avg shows degradation in average of

https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
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Ft Method VE MM MG PP Avg
PFt-CLS 0 0 0 0 0
PFt-Avg -0.1% +1.2% -1.0% -11.0% -2.7%
NP-Prefix -0.1% +1.0% -0.4% 0 +0.1%
NP-Suffix -0.3% +1.7% -0.7% +2.2% +0.7%
FiTeR 0 +1.5% -0.2% +3.3% +1.2%
DPMR 0 +2.9% -0.3% +12.1% +3.7%

Table 2: Data-rich Performance Comparison.

performance compared to PFt-CLS. This shows
that average pooling generates worse sentence rep-
resentations than does taking the [CLS] token rep-
resentation.

In contrast, both null prompt approaches show
improvement in average performance compared to
PFt-CLS in both few-shot and data-rich settings.
The improvement could be a result of aligning the
format of the downstream tasks and that of the pre-
training task. By changing the input format to be
similar to that of the MLM task, we reduce the
amount of data that are required to coach the model
to learn the new task.

Also, there is a difference in the performance of
NP-suffix and NP-prefix. This is likely due to the
positional differences of the [MASK] token in the
two methods. For example, suppose we want to per-
form sentiment analysis on a sentence like “I love
the movie”. Prepending or appending the [MASK]
token would result in different distances between
[MASK] and the word “love”, which holds the key
information for classification. Such positional dif-
ferences could lead to different performance even
though the two methods are very similar in spirit.

Another observation is that FiTer shows higher
improvement in average of performance compared
to null prompt approaches. Recall that FiTer in-
troduces task information through the prompt tem-
plates, while the null prompt approaches do not,
which supposedly addresses the issue where the
model overfits the prompt templates. Hence, the re-
sults show that the benefits of adding the extra task
information outweigh the possible performance
loss caused by the prompt-related overfitting issue.

Finally, DynaMar outperforms FiTer on all tasks
in both setting, with the only exception being MG
in the data-rich setting. This indicates that increas-
ing the diversity of prompt templates used during
training will improve model generalization. We
also observe that DynaMar does not show signifi-
cant improvement over PFt-CLS on both MG and
VE. This is because both tasks contain a large num-

ber of documents with length longer than 512, as
mentioned in Section 4.1. As a result of this, we
need to truncate more of the original inputs for
these tasks in order to insert prompts, which can
lead to information loss. Thus, DynaMar is less
efficient in problems with long documents.

4.7 Analysis

Larger dynamic prompt pool, better perfor-
mance. The size of the dynamic prompt pool influ-
ences the performance. We compare the average
improvement percentage across four tasks with the
size of dynamic prompt pool = 1, 3, 5 (prompt
information can be found in Appendix A). From
Figure 3, we can see that performance improves as
the dynamic prompt pool is made larger.

Figure 3: Pool Size vs Improvement Percentage.

4.8 Limitations and Future Directions

As mentioned in Section 4.6, our method does not
show substantial improvement on tasks involving
long documents. Besides, the threshold of prompt
disimilarity score can be treated as a parameter.
This work lack of a study on the effect of this thresh-
old. In addition, we focus on e-commerce related
English classification/regression tasks in this work,
the performance of our method in other nature lan-
guage processing use cases remains unexplored.
As a next step, we will conduct additional studies
on these three topics.

5 Conclusion

In this work, we discuss methods for generating
prompts and propose a way to select prompt tem-
plates to include in the dynamic prompt pool. Also,
we show that using the mask representation of a
prompt either equals or improves upon the perfor-
mance of standard fine-tuning on four e-commerce
applications in both few-shot and data-rich settings.
In addition, we find DynaMaR outperforms the
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fixed prompt approach in both settings. Further-
more, we show that a larger dynamic prompt pool
leads to improved model performance when em-
ploying DynaMaR.
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Task Inference Prompt Dynamic Prompt Pool
VE f(x1, x2) = x1 and x2 are [MASK] product f(x1, x2) = x1 and x2 are [MASK] product

MM f(x1, x2) = x1 and x2 are [MASK] music f(x1, x2) = x1 and x2 are [MASK] music

MG f(x) = Genre: [MASK] x f(x) = Genre: [MASK] x

PP f(x) = x The price is [MASK] f(x) = x The price is [MASK]

Table 3: Dynamic Prompt Pool Size = 1.

Task Inference Prompt Dynamic Prompt Pool

VE f(x1, x2) = x1 and x2 are [MASK] product
(1) f(x1, x2) = x1 x2. Are they the same product? [MASK]

(2) f(x1, x2) = x1 and x2 are [MASK] product
(3) f(x1, x2) = x1 x2. They are [MASK]

MM f(x1, x2) = x1 and x2 are [MASK] music
(1) f(x1, x2) = x1 x2. Are they the same song? [MASK]

(2) f(x1, x2) = x1 and x2 are [MASK] music
(3) f(x1, x2) = x1 is as [MASK] as x2

MG f(x) = Genre: [MASK] x
(1) f(x) = Genre: [MASK] x

(2) f(x) = Music Genre: [MASK] x
(3) f(x) = x what is genre of the music? [MASK]

PP f(x) = x The price is [MASK]
(1) f(x) = Price: [MASK] x

(2) f(x) = x it cost [MASK] dollars
(3) f(x) = x what is price of the product? [MASK]

Table 4: Dynamic Prompt Pool Size = 3.

Task Inference Prompt Dynamic Prompt Pool

VE f(x1, x2) = x1 and x2 are [MASK] product

(1) f(x1, x2) = x1 x2. Are they the same product? [MASK]
(2) f(x1, x2) = x1 and x2 are [MASK] product

(3) f(x1, x2) = x1 x2. They are [MASK]
(4) f(x1, x2) = Are x1 and x2 the same product? [MASK]

(5) f(x1, x2) = x1 is as [MASK] as x2

MM f(x1, x2) = x1 and x2 are [MASK] music

(1) f(x1, x2) = x1 x2. Are they the same song? [MASK]
(2) f(x1, x2) = x1 and x2 are [MASK] music

(3) f(x1, x2) = x1 x2. They are [MASK] music
(4) f(x1, x2) = Are x1 and x2 the same music? [MASK]

(5) f(x1, x2) = x1 is as [MASK] as x2

MG f(x) = Genre: [MASK] x

(1) f(x) = Genre: [MASK] x
(2) f(x) = Music Genre: [MASK] x
(3) f(x) = x This is a [MASK] music

(4) f(x) = Type: [MASK] x
(5) f(x) = x what is genre of the music? [MASK]

PP f(x) = x The price is [MASK]

(1) f(x) = Price: [MASK] x
(2) f(x) = x Price: [MASK]

(3) f(x) = x it cost [MASK] dollars
(4) f(x) = x The price is [MASK]

(5) f(x) = x what is price of the product? [MASK]

Table 5: Dynamic Prompt Pool Size = 5.


