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Abstract

Imbalanced data distribution is a practical and
common challenge in building machine learn-
ing (ML) models in industry, where data usu-
ally exhibits long-tail distributions. For in-
stance, in virtual AI Assistants, such as Google
Assistant, Amazon Alexa and Apple Siri, the
play music or set timer utterance is exposed to
an order of magnitude more traffic than other
skills. This can easily cause trained models
to overfit to the majority classes, categories or
intents, leading to model miscalibration. The
uncalibrated models output unreliable (mostly
overconfident) predictions, which are at high
risk of affecting downstream decision-making
systems. In this work, we study the calibra-
tion of models in the practical application of
predicting product return reason codes in cus-
tomer service conversations of an online retail
store; The returns reasons also exhibit class
imbalance. To alleviate the resulting miscali-
bration in the trained ML model, we stream-
line the model development and deployment
using focal loss (Lin et al., 2017). We empir-
ically show the effectiveness of model train-
ing with focal loss in learning better calibrated
models, as compared to standard cross-entropy
loss. Better calibration, in turn, enables better
control of the precision-recall trade-off for the
trained models.

1 Introduction

Building and developing ML models in industry
has many practical challenges. Imbalanced data
distributions (He and Garcia, 2009), particularly
long-tail distributions (Wang et al., 2021a), make
models overfit to majority data classes and lead to
miscalibration (Guo et al., 2017; Mukhoti et al.,
2020), i.e. the model-predicted probability fails to
estimate the likelihood of true correctness and pro-
vides over- or under-confident predictions. To ad-
dress imbalanced data, some mainstream strategies
are rebalancing the dataset through upsampling
minority and/or downsampling majority classes.
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Figure 1: Our procedure to calibrate the ML model that
trained with an imbalanced dataset D. With focal loss,
model M is learned to be a better calibrated model Mc.
In a follow-up stage, a dataset Dg is sampled from ac-
tual conversations (the inference distribution) and man-
ually annotated as a golden dataset. It is used to further
calibrate models and tune precision-recall threshold to
achieve specific precision or recall to serve customer
requests.

See SMOTE (Chawla et al., 2002) for an example.
However, miscalibration caused by imbalanced
data cannot be easily handled by these methods.
Guo et al. (Guo et al., 2017) recently found that
negative log likelihood (NLL) trained deep neural
networks (DNNs) tend to be poorly calibrated as
compared to traditional ML methods (Niculescu-
Mizil and Caruana, 2005a).

Calibrating models that have been trained with
imbalanced data plays an important role in industry.
In applications such as medical diagnosis (Caruana
et al., 2015), decisions do not only depend on a
predicted class, but also on the predicted proba-
bilities, e.g. to quantify patients’ risks (Caruana
et al., 2015) in order to determine appropriate treat-
ments. Therefore, it is of particular importance that
models are well calibrated in high-risk domains
such as medicine, financial management (Fischer
and Krauss, 2018), self-driving cars (Bojarski et al.,
2016), etc., to assure that the predicted probabilities
reflect the true values.

In this work, we empirically study the effective-
ness of focal loss (Lin et al., 2017) in building reli-
able ML models for a practical text classification
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task – return reason code prediction in customer
service chatbots. Formally, focal loss is:

Lf = −
N∑
i=1

(1− pi,yi)γ log pi,yi (1)

where pi,yi is predicted probability of the i-th sam-
ple and γ is a hyper-parameter that is usually set to
γ = 1.

1.1 Practical Considerations

(1) Theoretical Effectiveness. Focal loss was origi-
nally proposed to handle the issue of imbalanced
data distribution which is frequently observed in
industrial data (Kilkki, 2007). In learning models,
the majority class samples dominate the optimiza-
tion and gradient descent to update weights in the
direction where models become more confident in
predicting the majority class. Focal loss can be
interpreted as a trade-off between minimizing Kull-
back–Leibler (KL) divergence and maximizing the
entropy, depending on γ (Mukhoti et al., 2020)1:

Lf ≥ KL(q ‖ p) + H(q)︸︷︷︸
constant

−γH(p) (2)

The rationale behind the equation is that we learn a
probability p to have a high value (confident) due to
the KL term, but not too high (overconfident) due
to the entropy regularization term (Pereyra et al.,
2017).

(2) Computational and Algorithmic Complex-
ity. Out of many popular calibration methods
such as temperature scaling (Platt et al., 1999),
Bayesian methods (Maddox et al., 2019), label
smoothing (Müller et al., 2019) and kernel-based
methods (Kumar et al., 2018), focal loss neither
increases computational overhead nor requires ar-
chitectural modifications. For example, the widely
used temperature scaling (Platt et al., 1999) re-
quires additional post-training calibration while
focal loss offers in-training implicit calibration (by
using eq. (2)).

In section 4, we will empirically show the in-
triguing properties of focal loss in calibrating the
trained ML models. Our contributions are summa-
rized as follows:

• We empirically examine the effectiveness of
using focal loss in handling model miscalibra-
tion in a practical application setting.

1More theoretical findings can be found in the paper

• We show that good calibration is important
to achieve a desired precision or recall target
by tuning the classification thresholds. The
standard cross-entropy loss is incapable of
achieving this goal due to a skewed predicted
probability distribution.

• We demonstrate the performance of calibrated
models through a chatbot that serves cus-
tomers’ requests across three conversational
bot use-cases.

2 Background and Preliminaries

2.1 Background

We consider the task of automatic classification
of return reason codes in an online retail store, to
showcase the development and deployment of ML
models. Whenever a customer requests to return
a purchased item, a reason code is determined to
select the most appropriate resolution and process
a return.

For instance, if a customer is not satisfied with
the item (its size, color or material, for example)
this would map to the return reason Customer Pref-
erence. In such a case, the appropriate resolution is
to process a return and issue a refund, while replace-
ment with the same item is not appropriate (as the
customer would face the same issue). In our case
study, we consider two use cases: binary reason
code prediction and multi-class reason code predic-
tion, where we consider 5 different categories.

2.2 Preliminaries

In this work, we consider the calibration of su-
pervised binary and multi-class classifiers that are
trained with imbalanced datasets.

2.2.1 Model Calibration

Calibration (Guo et al., 2017) measures and ver-
ifies how the predicted probability estimates the
true likelihood of correctness. Assume a model
m trained with dataset {x, y},x ∈ X , y ∈ Y . p̂
is the predicted softmax probability. If m makes
100 independent predictions, each with confidence
p = argmax(p̂) = 0.9, ideally, a calibrated m
approximately gives 90 correct predictions. For-
mally, accuracy(m(D)) = confidence(m(D)) if
m is perfectly calibrated on datasetD. It is difficult
to achieve perfect calibration in practice.
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2.2.2 Reliability Diagrams
Reliability Diagrams (DeGroot and Fienberg, 1983;
Niculescu-Mizil and Caruana, 2005b) visualize
whether a model is over- or under-confident by
grouping predictions into bins according to their
prediction probability. Predictions are grouped into
N interval bins (each of width 1/N ) and the accu-
racy of samples yi wrt. to the ground truth label ŷi
in each bin bn is computed as:

acc(bn) =
1

In

In∑
i

1(ŷi = yi) (3)

where In = |bn| i.e. the number of elements in
bn. Let p̂i be the probability for sample yi, then
average confidence is defined as

conf(bn) =
1

In

In∑
i

p̂i. (4)

A model is perfectly calibrated if acc(bn) =
conf(bn), ∀n and in a diagram the bins would fol-
low the identity function. Any deviation from this
represents a miscalibration.

2.2.3 Expected Calibration Error (ECE)
ECE (Naeini et al., 2015) is a scalar summary
statistic of calibration. It computes the differ-
ence between model accuracy and confidence as a
weighted average across bins,

ECE =
1

I

N∑
n=1

In|acc(bn)− conf(bn)|, (5)

where I is the total number of samples.

2.2.4 Maximum Calibration Error (MCE)
MCE (Naeini et al., 2015) measures the worst-case
deviation between accuracy and confidence,

MCE = max
n∈{1,...,N}

|acc(bn)− conf(bn)|. (6)

and is particularly important in high-risk applica-
tions where reliable confidence measures are abso-
lutely necessary. For a perfectly calibrated classi-
fier, both ECE and MCE are equal to 0.

3 Datasets and Implementation Details

We use historical logged data on return reasons for
past human-customer service interactions (which
is sometimes noisy), and use human annotated reli-
able data for model calibration before deployment.
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Figure 2: The distribution of randomly sampled
datasets for experiments, clearly, we can see the imbal-
anced label distribution.

Concretely, we prepared 1013 human annotated
samples as a golden dataset for the binary reason
code model, and a set of 1839 annotated samples
for the multi-reason code model. The numbers re-
ported in the tables in Section 4 are based on the
annotated dataset.

Figure 2 gives the statistics of randomly sam-
pled datasets from historical logs. We consid-
ered 4 widely used return reasons in online re-
tail stores (for details see link below2), subse-
quently referred as “item is defective or
does not work" (LABEL 0), “missing parts
or accessories" (LABEL 1), “performance
or quality not adequate" (LABEL 2), and
“customer preference" (LABEL 3). In the bi-
nary case, we aim to detect one particular return
type LABEL 0, and discriminate it from any other
return reason (referred as OTHERS (LABEL 1)).
Similarly in the multi-class case, we consider the
four broad return categories (LABELS 0 .. 3) and
gloss all other return types under OTHERS (LABEL
4). In both settings OTHERS is the most frequent
class. As we can see the label distribution in both
use-cases is imbalanced. For a full dataset D, we
split it into {Dtrain, Dval, Dtest} with 8:1:1 into
train/val/test splits. We train models with standard
cross-entropy (CE) and focal loss with different γ
values (FLγ).

We implemented our models with Py-
Torch (Paszke et al., 2019), each model consists of
2 bidirectional LSTM layers and 2 dense layers.
The embedding dimension is 1024. The hidden
layer dimension is set to 128 and 512 for the
binary and multi-reason code models respectively.
We apply dropout with rates of 0.1 and 0.2 to the
embedding and dense layers respectively. The
models are trained with Adam (Kingma and Ba,

2https://www.amazon.de/-/en/gp/help/customer/
display.html?nodeId=G6E3B2E8QPHQ88KF

https://www.amazon.de/-/en/gp/help/customer/display.html?nodeId=G6E3B2E8QPHQ88KF
https://www.amazon.de/-/en/gp/help/customer/display.html?nodeId=G6E3B2E8QPHQ88KF
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2014) as the optimization algorithm

4 Model Selection and Calibration

This section describes how we build a model which
is well calibrated while retaining its original predic-
tive performance, e.g., 85% precision or 90% recall.
We adapt the focal loss (Lin et al., 2017) and empiri-
cally evaluate its calibration effectiveness (Mukhoti
et al., 2020) in both binary and multi-class text clas-
sification tasks in a practical setting.

We observed the two types of trade-offs
which are crucial for using models in practice:
(1) discrimination-calibration trade-off and (2)
precision-recall trade-off. We also found that the
value of γ in focal loss plays an important role in
learning better calibrated models. We denote the
models trained with cross-entropy as CE and with
focal loss, for a given value of γ, as FLγ .

4.1 Discrimination-Calibration Trade-Off

A calibration method should be predictive (discrim-
inative in our case) performance preserving (Zhang
et al., 2020).

4.1.1 Binary Reason Code Prediction

Table 1 presents the results of models with differ-
ent loss functions. Note that the CE based model
achieves the best predictive performance while FL-
based models give slightly lower scores. However,
FL performs significantly better than CE in terms
of calibration related metrics (i.e., NLL, ECE and
MCE). We can also observe that the higher the γ
value the better calibration performance on human
annotated samples.

Figure 3 presents the predicted softmax prob-
ability distribution (top) as well as the reliability
diagram (bottom). From (a)-(e), we can clearly see
that probabilities change from a spiking distribu-
tion (overconfident: p is close to either 1 or 0) to
a flatter distribution, for instance, p = {0.6, 0.4}.
Figure 3 (f)-(j) show that a miscalibrated model
exhibits high ECE and MCE scores. We can also
observe this miscalibration through the gaps be-
tween confidence and true likelihood of correct-
ness. In this binary imbalance classification case,
we find that calibration slightly hurts predictive per-
formance but it is modest. The best model can be
obtained by selecting the candidate that achieves
the best discrimination-calibration trade-off. Here
it should be FL5 according to Table 1.

4.1.2 Multi-Reason Code Prediction
We further conducted multi-reason code prediction
experiments covering 5 reason codes. Table 2 and
Figure 4 demonstrate the effectiveness of focal loss
in learning well calibrated models. It is important
to note that preparing a small set of human labeled
samples as a golden dataset is crucial to measure
whether a model is calibrated or not. The golden
dataset reflects the online data distribution which
our model will predict after deployment. The dif-
ference in calibration effects can be observed by
comparing Figure 4 (top row, (a)-(c)).

4.2 Precision-Recall Tradeoff
The trade-off between model precision and re-
call (Buckland and Gey, 1994) is an important as-
pect in deploying trained models. For instance, if
a certain prediction task requires high model pre-
cision (recall), it means recall (precision) needs to
be sacrificed to some extent. The trade-off can be
achieved through classification threshold tuning. In
this subsection, we empirically demonstrate that a
better calibrated model can help to accomplish this
goal.

Figure 5 presents the precision-recall curves for
binary reason code models. The corresponding soft-
max probability distribution is shown in Figure 3
(top). For CE model, Figure 5 (a) and Figure 3 (a),
we found that it gives more polarized probability,
i.e., the predicted probability is more spiky. Given
this skewed distribution, it is difficult to tune a pre-
cision based on a given recall, or a certain recall
based on an expected precision, e.g., 85%. On the
other hand, FL models in Figure 5 (b-d) learn a
flattened probability distribution, which is better
distributed across the [0, 1] interval and is there-
fore more amenable to thresholding for a particular
precision (or recall) target. This behavior can be
also observed in Figure 6 when we compare the
computed thresholds in CE and FL models.

5 Experimental Results

To serve customers’ requests, we use the binary
reason code model for three conversational use-
cases3. The model detects whether a product return

3This empirical study was conducted using the model
trained with focal loss, γ = 1 (FL1 in Table 1) ). Thus it
was not the best model variant according to our findings. Note
that to minimize risk and maintain customer experience, we
don’t deploy and compare multiple models online, at same
time. However, the superiority of FL-based model as com-
pared to CE-based model is clearly observed from offline
results in previous sections.
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(d) FL5
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Figure 3: The reliability diagram plots for binary-reason code models with 10 bins. The diagonal dash line presents
perfect calibration (on a specific bin, confidence is equal to accuracy.)

Metric CE FL1 FL3 FL5 FL10

Accuracy 0.836 0.824 0.831 0.834 0.816
Precision 0.838 0.822 0.830 0.834 0.807
Recall 0.823 0.814 0.821 0.823 0.805
F1 0.828 0.817 0.824 0.827 0.806
NLL 2.159 1.438 0.608 0.258 0.178
ECE 0.168 0.166 0.139 0.080 0.078
MCE 0.720 0.730 0.236 0.134 0.143

Table 1: The performance of binary reason code models with CE and Focal loss (with different γ values) on 1013
human annotated samples. For predictive performance (top rows e.g., accuracy) the differences across models are
negligible. However, on the calibration related metrics (bottom rows), FL-based models show significantly better
performance. The best scores are marked bold and the second best scores are underlined, same as Table 2

Metric CE FL1 FL5

Accuracy 0.751 0.760 0.751
Precision 0.814 0.807 0.814
Recall 0.757 0.755 0.757
F1 0.764 0.760 0.764
NLL 0.599 0.429 0.309
ECE 0.037 0.023 0.037
MCE 0.296 0.197 0.299

Table 2: The performance of multi-reason code models
with CE and focal losses (with different γ values).

is a special case LABEL 0 according customers’
free-text input. We analyze the performance of the
model through both intrinsic evaluation of model’s
accuracy of predicted reason code and extrinsic
evaluation on a downstream conversational chat-
bot system. Before deployment, we tuned model
to achieve expected 85% precision with thresh-

old=0.512 for LABEL 0.

5.1 Intrinsic Evaluation

We conduct a human evaluation of the model’s
prediction on a sample of contacts from actual con-
versations that the model has served. First, we
randomly sample 485 contacts where the reason
code model predicted the LABEL 0 code. By manu-
ally annotating those contacts, we found 384/485
to be correctly predicted, i.e. the model achieves a
precision of 83.8% after deployment. This aligns
well with the precision (81.4%) computed on the
offline test set.

Although we are primarily interested in the preci-
sion metric, we also analyze the negative predictive
value of the model for opportunity analysis of fu-
ture improvements. We randomly sampled 200
contacts where the model did not predict the LABEL
0 code. Out of 200 contacts, we find 194 predic-
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(f) FL5 (f1=76.4%)

Figure 4: The reliability diagram plots for multi-reason
code models with 10 bins. The diagonal dash line
presents perfect calibration (on a specific bin, confi-
dence is equal to accuracy.)

tions are true, i.e. the model demonstrates a high
precision of 194/200 = 97% for OTHERS .

5.2 Extrinsic Evaluation

To evaluate the impact of our model in a down-
stream application, we run an online A/B experi-
ment, with and without the presented model, for a
conversational bot in three use-cases: (1) control
branch: conversational bot with customer selected
reason code; (2) treatment branch: conversational
bot with additional check for return reason code
(LABEL 0) in customer free text input.

To evaluate a conversational bot, we measure the
following three key metrics: (1) Automation Rate
(AR): The % of contacts that were resolved by the
conversational bot without requiring any human in-
volvement; (2) Positive Response Rate (PRR): The
rate measures the % of times customers responded
positively to the resolution provided by chatbot; (3)
Repeat Rate (24RR): The rate of customer contact
us again for the same issue in 24 hours.

Table 3 presents the results on these key metrics
over a period of two weeks. As can be observed
from the results, the reason code model improves
the performance of the conversational system on
both automation rate and customer experience re-
lated metrics. This is achieved through enabling
the bot to provide appropriate solutions based on
the specific customer situations.

Applications Metrics C(%) T (%)

use-case A
AR – + 2.13
PRR – + 3.18
24RR – - 0.65

use-case B
AR – + 2.10
PRR – + 0.97
24RR – - 0.68

use-case C
AR – + 3.98
PRR – +12.85
24RR – - 1.02

Table 3: Online evaluation of our model for three appli-
cations (top, middle, bottom). The relative numbers are
reported. AR and PPR, the higher the better. 24RR, the
lower the better. We only report performance relative
numbers due to confidential issues. C: Control branch;
T: Treatment branch.

6 Related Work

Guo et al. (Guo et al., 2017) and Mukhoti et al.
(Mukhoti et al., 2020) showed that the miscali-
bration of larger, modern networks is related to
the over-fitting on the likelihood of the training
dataset. Conventional NNs are trained to mini-
mize the negative log likelihood (NLL) which can
be positive even if the accuracy is already perfect.
Modern networks continue to minimize NLL dur-
ing training after accuracy is optimal, overfitting
to the training dataset and becoming increasingly
confident in incorrect predictions as a result. To
tackle this, researchers propose a variety of regular-
izers for model predicted probability including the
focal loss (Lin et al., 2017), acting as a maximum
entropy regularizer (Mukhoti et al., 2020), and
temperature scaling (Guo et al., 2017). Muller et
al. (Müller et al., 2019) suggest using label smooth-
ing to regularize network outputs. Besides, some
recent methods, such as Bayesian method (Maddox
et al., 2019), meta-learning (Bohdal et al., 2021),
Gumbel-softmax Trick (Jang et al., 2017; Wang
et al., 2021b) and kernel-based method (Kumar
et al., 2018) are proposed to learn better calibrated
model directly from training.

7 Discussion

When calibrating models in practical scenarios, the
complexity of calibration is an issue to consider.
Focal loss (Lin et al., 2017; Mukhoti et al., 2020)
offers in-training calibration via entropy regulariza-
tion (Pereyra et al., 2017). In this work we have
shown analytically (Section 4) that it provides a
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(c) FL3 (f1= 82.4%)
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(d) FL5 (f1= 82.7%)
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Figure 5: The precision-recall curves for binary reason code models. (a) CE model gives more polarized probability
and makes it difficult to tune a precision based on a given recall or vice versa. (b-d) FL learns to give better
distributed probability, precision or recall can be tuned more easily.
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(b) FL1 (nll=1.438)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Recall
Precision

(c) FL3 (nll= 0.608)
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Figure 6: The curves of precision and recall against threshold in binary reason code models.

simple and effective way to calibrate a trained ML
model. On the other hand, in some cases we need
to tune γ value for datasets. Experimentally, we
found that setting a high γ value would not signifi-
cantly hurt predictive performance while providing
good calibration performance.

8 Conclusion

In this paper, we empirically showed the effective-
ness of using focal loss in learning better calibrated
models and finding the precision-recall trade-off in
practical application of deep neural network mod-
els. We conducted an in-depth analysis of miscali-
bration caused by imbalanced data distribution and
the existing issues of using cross-entropy trained
models in practical settings. We also showed that
the hyperparameter γ, which theoretically controls
the entropy regularization term, is important to
model calibration. We studied the deployment of
an ML model in practical use cases and demon-
strated that better calibration helps to control the
precision-recall trade-off through posterior thresh-
olding and improves post-deployment metrics (in
an online A/B test).

Ethical Considerations

Development and Experiments. We used
anonymized text dialogue snippets to train the mod-

els. The particular model described in this work
has no way to reveal customer information. We do
not release the datasets used in the experiments.
Failure Modes. Regarding risks related to sys-
tem errors, incorrect predictions of the models de-
scribed in this work may result in wrong return
reason assignment. However, the practical risk re-
lated to such misclassification is limited, because
the customers interacting with the chatbot have an
option to talk to a human associate if they consider
the system doesn’t work as expected.
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