Towards Need-Based Spoken Language Understanding Model Updates:

What Have We Learned?
Quynh Do* Judith Gaspers* Daniil Sorokin* Patrick Lehnen
Amazon Alexa Al Amazon Alexa Al Amazon Alexa Al Amazon Alexa Al

doguynh@amazon.de gaspers@amazon.de

Abstract

In productionized machine learning systems,
online model performance is known to deteri-
orate over time when there is a distributional
drift between offline training and online ap-
plication data. As a remedy, models are typ-
ically retrained at fixed time intervals, imply-
ing high computational and manual costs. This
work aims at decreasing such costs in produc-
tionized, large-scale Spoken Language Under-
standing systems. In particular, we develop a
need-based re-training strategy guided by an
efficient drift detector and discuss the arising
challenges including system complexity, over-
lapping model releases, observation limitation
and the absence of annotated resources at run-
time. We present empirical results on histori-
cal data and confirm the utility of our design
decisions via an online A/B experiment.

1 Introduction

Traditionally, a Spoken Language Understanding
(SLU) system like Google Assistant, Siri or Alexa,
is a cascade of an Automatic Speech Recogni-
tion (ASR) component converting speech into text
followed by a Natural Language Understanding
(NLU) component that interprets the meaning of
the text through domain classification (DC), intent
classification (IC) and slot filling (SF). Once de-
ployed to customers, the machine learning (ML)
models implemented for DC, IC and SF may expe-
rience distributional drifts between offline training
and online application data over time which leads to
serious performance degrades. This is known as a
model drift phenomenon. In most real-world cases,
model drift can be avoided by retraining the ML
models with regular cadence. However, this strat-
egy often entails a significant amount of human,
computational and environmental costs in each re-
lease cycle, especially for large systems. Hence,
it should be optimized with an intelligent decision

*These authors contributed equally to this work

dsorokin@amazon.de plehnen@amazon.de

making mechanism that is able to automatically
predict if a particular model needs to be updated or
can be left in place as is for another release cycle.

Given a deployed ML model, drift detection is
a task to identify model drifts when the model is
applied on a new data set, and therefore can be used
to guide decisions on when to retrain the model.
However, academic work in this field often makes
simplifying assumptions that render the problem
more manageable but do not hold in the industrial
practice, e.g., that there is exactly one model that
needs to be kept or updated, and that it is possible
to create non-overlapping detection and reference
data windows, which are aligned with a model
release cycle. This makes productionizing drift
detection nontrivial.

This paper describes our effort to develop a drift
detector to produce decisions whether to update
the NLU models in the next release cycle for a
productionized SLU system. First, we generally
discuss the challenges that may arise when apply-
ing drift detection on a large-scale SLU production
system: i) the complexity when the SLU system
is supporting multiple domains with several ML
models and architectures; ii) the possible overlap-
ping model releases in production; iii) the limited
number of observations for each individual ML
model; iv) the absence of annotated SLU data at
runtime. Moreover, for each challenge, we con-
sider the necessary system design decisions and
possible solutions that are needed to apply drift de-
tection in practice. Finally, we describe our offline
and online experiments on real-world SLU data to
confirm the utility of our design decisions.

2 Background on drift detection

Lu et al. (2018) classifies automatic drift detection
methods into three categories: i) methods which
rely on labeled data to monitor error rates, ii) meth-
ods which use distance measures to estimate the
similarity between distributions of previous and

December 9-11, 2020. ©2022 Association for Computational Linguistics

131

Proceedings of EMNLP 2022 Industry Track, pages 131-137



current (unlabeled) data, and iii) methods that make
use of multiple hypothesis tests to detect concept
change. While the first category requires manually
labeled data representing the current data distribu-
tion, the last two categories require at least two
data windows: a reference window containing the
instances that belong to the same distribution that
was used to train the most recent model, and a de-
tection window which represents the current data
distribution. The detection window can consist of
unlabeled data only (Gemagque et al., 2020). Thus,
the methods of the second and the third categories
can be both classified as unsupervised drift detec-
tion methods (Elsahar and Gallé, 2019; Qin et al.,
2021). For example, Koh (2016) compare the ref-
erence and detection data windows by Hoeffding
bound. The difference in terms of sample means
between both the windows is compared to a value
e defined by the Hoeffding bound. Then, a drift is
signaled when this difference is greater than €. An
obvious advantage of unsupervised methods is that
they do not require labeled data. However, it can
be difficult to interpret the drift signal due to the
lack of an indication on how much the performance
drop is.

While drift detection is considered as one of
the stages in modern Al workflows, corresponding
work in NLP and SLU has been limited. Recently,
Do et al. (2021) have proposed a regression model
to detect temporal performance drop in SLU. The
authors evaluated their approach via small-scale
simulated release cycles for a joint IC+SF model
in isolation, thus abstracting away from the com-
plexity of a production SLU system. They built
one regression model per domain, assuming the
availability of a large number of previous model
releases for training the regression model, which is
unrealistic for many real-world scenarios.

3 NLU drift detection definition

In this work, we consider multi-domain NLU as
one part of a more complex production SLU sys-
tem, leaving out ASR and other components. The
main NLU tasks include DC, IC and SF, and there
are different ways to approach them. Usually,
pipelined systems are constructed with DC being
applied as the first step to determine the domain for
a given utterance. Subsequently, the utterance is
fed into the corresponding domain-specific IC+SF
model that jointly detects the intent and extracts
semantic slots from the utterance. For instance, an

ASR transcribed utterance “play Hello by Adele”
can be parsed into {domain: Music, intent: “play”,
song name (slot): “Hello”, artist (slot): “Adele”}.

To simplify the problem, we focus on building
a drift detector to decide on IC+SF model updates.
In our experiments, we make an assumption that
DC models also face distributional drifts when their
corresponding IC+SF models do, since their data
ages are usually similar.

Given a trained IC+SF model M, a data ref-
erence window, Wiy, containing the testing in-
stances considered belonging to the data distribu-
tion at the time M was developed offline, and a de-
tection window, Wgeiecr, Which contains the testing
utterances representing the data distribution when
the model update decision needs to be made. Then,
we define that M has suffered a drift if the error
rate on the detection window exceeds the error rate
on the reference window by a certain threshold:

Ap = E(M> Wdetect) - E(M, Wref) >a (1)

where « is a drift threshold, and E is a pre-defined
function to compute an error rate. In this work, E
is a semantic error rate and defined as follows:

SemER — # (slot+intent errors)

2
##slots in reference + 1 2)
A drift detector should be able to identify auto-
matically whether M has suffered a drift or not.

4 NLU system and challenges

In this section, we describe the considered NLU
system, and discuss the potential challenges arising
when applying drift detection on such a system.

4.1 NLU architecture and Challenge 1 -
system complexity

In this work, we consider a real-world SLU sys-
tem with multiple domains and each of them has
a single IC+SF model. Each IC+SF model is a
combination of a pre-trained encoder and two sepa-
rate decoders for the target tasks. Depending on its
domain, the IC+SF model may receive gazetteers
as an additional token-level input in parallel to the
BERT-encoder embeddings, resulting in two vari-
ants of IC+SF model architectures. In the rest of
this paper, we refer the gazetteer-based and non-
gazetteer architectures as Gaz and Non-Gaz, re-
spectively.

Traditionally, academic work on drift detection
often assumes that there is exactly one model that

132



needs to be kept or updated to make the problem
more manageable. Unfortunately, it does not hold
in industrial practice. As in our case, a real-world
SLU system is often multi-domain. Each domain
IC+SF model can be updated individually and there
is no requirement for these models to have the same
architecture. Thus, we face the first challenge: A
separate drift detector should be developed per do-
main and architecture or a single detector needs to
cover all supported domains.

4.2 NLU lifecycle and Challenge 2 -
overlapping model releases

Figure 1 presents a simplified SLU model produc-
tion lifecycle, where each release has three main
phases: Build, Deploy and Production. Let us ap-
ply the drift detection definition (Sec. 3) to the
lifecycle of a single IC+SF domain model. For
IC+SF model MZ%, that was released for a domain
D during a release cycle N, the task is to predict
if there is a drift after M% was deployed (that is
if Ag > «) using the data window W, collected
during the model build and the window Wgeiect
collected after the deployment. Consequently, the
drift detection decision indicates if Mjl\j, needs to
be updated during the release cycle NV 4 1. Thus,
the detection window W+ must be available
before the build phase of release IV + 1, but after
the deployment of V.

However, in practice, the build, deploy and pro-
duction phases of subsequent releases may overlap
significantly which make defining disjoint W,. ¢
and Wgeeer for releases N and N + 1 our second
challenge. For a complex and large-scale produc-
tion system, the required time for each phase is con-
siderable and the human and computational cost of
each phase are usually distributed between teams.
Once the model development team is finished with
the latest model build, it is handed over for deploy-
ment and the team can start the work on the next
release. Therefore, overlaps tend to occur between
the cycles of two consecutive releases. In Figure 1,
the Build phase of release IV + 1 starts before the
model of release IV goes to production. In this case,
the data from the detection window for the current
release after its deployment is not yet available at
the start of the build phase for the next release.
Thus, Wgetect 18 not available for application of a
drift detector.

To overcome this challenge, we take that the
online data collected after the development of a

Relilase > Build >Deplog> Production >
Release i i
N1 > Build >Deplo;> Production >

Figure 1: A simplified NLU lifecycle with three phases
per release: Build, Deploy and Production. The phases
overlap for subsequent releases and the development
for the next release IV 4+ 1 may start as soon as the
previous release is deployed.

model for a release N during its build phase is
indicative of the drift that might occur after the
model go to the deployment stage.

Since the build phase of a model is sufficiently
long so that new data can be collected that didn’t
go into the model development, we will use this
data for Wyeiect- We adjust the definitions for the
reference and detection windows as follows:

* Reference window: De-identified online data
that was manually transcribed and labeled
with domain, intent and slots and that was
collected before the build phase of a release.
This data is used for testing during the build
phase. We use the annotated domain labels to
split that data between IC+SF domain models.
The gold domain labels are used to decide the
data flow for each domain’s IC+SF model.

* Detection window: De-identified online data
that was automatically transcribed and auto-
matically classified into domains with the cur-
rent release DC model and that was collected
after the Build phase of N has started, but
before the Build phase of N + 1. We use the
automatically generated domain labels to filter
the data for a specific domain.

These definitions result in a time gap between
the defined detection window and the real online
window, during which the IC+SF model will be
deployed. We evaluate this decision in an online
experiment in Section 7.

4.3 Challenge 3 - limited observations

The drift detection problem is domain dependent
and different domains may experience different
drift patterns. For example, the Video domain
should observe large drifts more often than the
Calendar domain. That would call for learning a
separate drift detection function for each domain in
production. To learn a drift detector, we need to col-
lect historical data of model releases and reference
and detection windows. And to learn a domain

133



specific drift detector the same data needs to be col-
lected per domain, leading to the third challenge:

For areal-world SLU system, only a very limited
amount of available historical data points may be
available for training per domain. The availability
of historical data for learning a drift detector is
restricted by the age of the production system and
privacy guidelines for data and model storage. This
implies that a per-domain drift detector needs to be
learned on a handful of data points, which is often
infeasible.

To avoid this issue, we build a single drift detec-
tor for all IC+SF domain models of the same type
(Gaz or Non-Gaz). We evaluate a single unified
drift detection function for multiple domains in the
next sections in offline experiments.

4.4 Challenge 4 - the absence of annotated
data at runtime

The amount of unlabeled live data flowing into a
production SLU system may be on the order of a
million of utterances per day. However, due to the
associated costs, only a comparatively small subset
gets manually transcribed and annotated, leading
to the forth challenge: Manually labeled data for
any given period in time may be limited, with po-
tentially only few — or in rare cases even none
— manually labeled utterances being available for
low-frequency domains in certain time periods. In
addition, since manually transcribing and annotat-
ing data takes time, this data may not be available
at runtime to construct the detection window. As
mentioned in the previous section, we use the ASR
and DC components to obtain textual per-domain
data. The amount of data instances per window can
be huge in production, which makes data process-
ing a challenge and may slow down the process. As
drift detection should enable quick decisions, we
downsample the data amounts to a reasonable size.
Since we cannot rely on manually annotated data
to extract the features for the detection window, we
focus on methods that require only unlabeled data
at runtime.

5 Supervised drift detection from
unsupervised signals

5.1 Learning problem definition

Motivated by recent work, which successfully pre-
dicts a performance drop using unsupervised sig-
nals (Elsahar and Gallé, 2019; Do et al., 2021),
we aim to learn a function to map from a set of

measures estimating the similarity between the ref-
erence and detection data windows to a binary label
indicating whether a significant performance drop
occurs or not. By predicting directly if a model
drift and performance drop occurred instead of es-
timating a magnitude of the drift, we simplify the
learning problem, so that it can be approached with
only a limited amount of training data points avail-
able. At the same time, the drift detector predic-
tions remain clearly interpretable for the user.

More formally, we learn a function predicting
if there is a performance drop when the test data
window for model M trained on W,4ir is moved
from Wier t0 Wietect:

F(fi(2), fa(x),...) = {Drop,No-Drop} (3)

where f1, fa, ... are features, x is a data instance
containing the information about M, Wiqin,
Whrer and Weetect. The No-Drop label indicates
that Agermpr < a while the Drop label indicates
that Asemper > .

5.2 Features and learning algorithms

For f1, f2,... in Equation 3, we explore 17 fea-
tures representing the differences between W,.. ¢
and Wgetecr as follows:

Discriminative classifier: Disriminative classi-
fiers have been used for drift detection (Elsahar
and Gall€, 2019; Do et al., 2021). When W,y and
Wetect are separable by a discriminative classifier,
it is likely that there is a drift. In this work, we
apply a Logistic Regression classifier trained on
the pre-trained BERT sentence representations as
the discriminative classifier, and its 5-fold cross-
validation accuracy on each of the unions of W, ,
Wdetect)s (Wrefs Wtrain)s and (Wdetect’ thm) is
used as the drift signal.

Distributional distance: For each of the win-
dow PairS (Wref, Wdetect), (Wref’ Wtrain), and
aetects Werain), we compute Euclidean and Co-
sine distances between two mean pre-trained BERT
sentence representations.

Prediction confidence differences: Confidence
scores have been proven to be effective in detecting
drifts (Do et al., 2021). We use the SF and IC
prediction confidence scores separately. For each
case, we compute the difference between the mean
confidence scores that model M obtains on the
two data windows. We also compute the average,
minimum and maximum difference between the
per tag mean IC confidence scores on the two data
windows W..r and Wetect-

134



Kullback-Leibler (KL) divergence at token
level: KL divergence measures the difference be-
tween two probability distributions and is also
known as the relative entropy. It has been used as
an effective measure in drift detection (Lindstrom
et al., 2011). We consider each data window as a
large text and compute the KL divergence between
the token distributions of the two texts represent-
ing each of the data window pairs among W;..r,
Wdetect and Wirain -

Targeting fast drift detection, to learn F' we ap-
ply classical binary classification algorithms like
multinomial logistic regression, k-nearest neigh-
bors, or decision tree. In some cases, it may be
desired to reduce the amount of features, e.g., when
we have a limited amount of training data points.
Therefore, we include feature selection methods
into our experiments.

6 Offline experiment

We evaluate the proposed feature set and the se-
lected learning algorithms for Gaz and Non-Gaz
architectures using historic data.

6.1 Experimental set-up

In offline experiments, we build two drift detection
models for two different IC+SF architectures: 1)
Gaz: Including domains which use gazetteers as
an extra input. ii) Non-Gaz: Including domains
which do not use gazetteers. Following previous
work (Do et al., 2021), we define the baseline and
metrics as follows. Given N NLU models and
historic performance data, a subset S C N are the
models that have no drift (that is, on historic data
windows Agempr < «) and thus belong to the
class No-Drop. Using the learned drift detector F',
P C N models are predicted as low-risk of being
drifted, i.e. predicted as No-Drop. To evaluate

= |S|;]|D| and recall:

F', we compute precision: P

R= ‘S&P‘ for the No-Drop class.

We consider precision for the class No-Drop as
the most important metric in a user-facing setting.
This class includes the models that can be left in
place for the next release, thus having the poten-
tial to negatively impact customer satisfaction. If a
drifted model is left in place, then there is the risk
of increased friction for the customers. Recall does
not have an impact on customer satisfaction, but
on training costs, which we consider less important
than customer satisfaction. We aim to reduce train-
ing costs without negatively impacting customers.

[« [ B, [Model [Feat. | R[] P |

MLR | ALL | 556 | 5638
Knn | ALL | 467 | 553
DT | ALL | 57.8 | 56.5
00 1450 1 yir | SUB | 556 | 75.8
Knn | SUB | 689 | 705
DT | SUB | 57.8 | 684
MLR | ALL | 565 | 61.0
Knn | ALL | 435 | 54.1
DT | ALL | 60.9 | 56.0
0.002 1 46.0 | \yirr | SUB | 587 | 75.0
Knn | SUB | 565 | 59.1
DT | SUB | 587 | 614
MLR | ALL | 729 | 754
Knn ALL | 66.1 70.9
DT | ALL | 66.1 | 722
0011590 1 viir | suB | 847 | 73.5
Knn | SUB | 72.9 | 72.9
DT | SUB | 83.1 | 75.4

Table 1: Evaluation results for non-Gaz drift detection
model on class No-Drop. B,, R, P are the precision
baseline, Recall and Precision, respectively.

Therefore, our goal is to build a drift detector which
reaches a high precision and an acceptable recall
for the drift class No-Drop. We compare our mod-
els against a baseline (B)) obtained by selecting
instances for the No-Drop class randomly.

We collected past NLU model release data points
resulting in 134 instances for Gaz and 100 instances
for Non-Gaz model architectures. For each release
model instance, the utterances representing W, ¢
and Wgeeer Wwindows are sampled. All data used
in our experiments was de-identified.

We compare the performance of three binary
classifiers to learn F': multinomial logistic regres-
sion (MLR), k-nearest neighbors (Knn) and deci-
sion tree (DT). The classifiers are built using all
features (ALL) defined in Section 5.1 or a selected
subset of features (SUB) obtained with correlation-
based feature selection (Hall, 1999). For training
classifiers and feature selection, we use scikit-learn
(Pedregosa et al., 2011). We report 10-fold cross-
validation performance for the No-Drop class with
three different drift thresholds «, used to assign the
gold labels based on the historic data: 0.0, 0.02,
and 0.1.

6.2 Results

Table 1 and Table 2 show the offline evaluation
results for the two model architecture types. In
most cases, drift detection models outperform the
precision baseline. MLR reaches the best precision
of 75.8% to select models to be left in place for the
next release on non-gazetteer data instances (o =

135



[« [ B, [ Model [ Feat. | R P

MLR | ALL | 508 | 532
Knn | ALL | 38.1 | 453
DT | ALL | 683 | 597
00 14701 1 vir | suB | 492 | 721
Knn | SUB | 50.8 | 593
DT | SUB | 69.8 | 657
MLR | ALL | 632 | 58.1
Knn | ALL | 42.6 | 492
DT | ALL | 50.0 | 654
0.002°) 50.75 | yiR | SUB | 76.5 | 64.2
Knn | SUB | 603 | 64.1
DT | SUB | 61.8 | 646
MLR | ALL | 78.0 | 610
Knn | ALL | 48.8 | 58.0
DT | ALL | 854 | 714
001 1 6119 1 viir | SUB | 939 | 6538
Knn | SUB | 59.8 | 68.1
DT | SUB | 80.5 | 72.5

Table 2: Evaluation results for Gaz drift detection
model on class No-Drop. B,, R, P are the precision
baseline, Recall and Precision, respectively.

0.0) compared to the random baseline precision of
45.0%. There seems be no benefit to use a higher
threshold to create the gold Drop/No-Drop labels
to train a drift detector, so we set a to 0.0 in the
online experiment.

Feature selection is often useful in boosting the
drift detection performance. From 17 features, de-
pending on the dataset, 1 to 4 features were nor-
mally selected. The following features were se-
lected at least once: The Euclidean distance be-
tween the mean pre-trained BERT sentence rep-
resentations, the difference between two mean
SF confidence scores, the difference between two
mean IC confidence scores, and discriminative clas-
sification score. Among these feature, the differ-
ence between the two mean SF confidence scores
seems to be the most important feature, as it is
selected in all cases.

7 Online A/B experiment

We conducted an online A/B experiment to eval-
uate our drift detection approach in the context
of a complex large-scale production SLU system
(i.e., including several components in addition to
NLU, such as ASR). We picked a point in time
in which all domain NLU models were scheduled
for re-training and re-deployment. The production
system with all models updated served as the A
model. Our B system comprises exactly the same
components, except that we re-trained only a sub-
set of the domain NLU models, according to the
decision of our drift detector. We acknowledge that

it would be desirable to include another baseline
model with none of the domain models updated
into the comparison. Yet, simply leaving all do-
main models in place as they are increases the risk
of model drift, thus potentially increasing friction
for the customers being exposed to such a system.

We generated the features for each domain
IC+SF model and applied our MLR drift detection
model with feature selection and drift threshold
a = 0.0 (see Section 6). A low threshold for the
SemER drop also reduces the risk of negatively
impacting customers. If the predicted class was No-
Drop, the IC+SF model for the domain was left in
place, otherwise it was retrained on current traffic.
Roughly half of the domain models were re-trained
vs left in place. In this work, we assumed that a
DC model faces model drift simultaneously with
its corresponding IC+SF model as their data ages
were usually similar. Therefore, the DC model
also followed the same retraining decision as its
corresponding IC+SF unless there was a special
circumstance like the appearance of a new domain
in the next release. Both, the A and the B systems
were deployed, and we ran our experiment over 10
days.

By applying a need-based approach to domain
model re-training in the B system, our main goal is
to decrease costs for model re-training compared
to the A system (in which all domain models are
re-trained), while keeping model performance the
same. To measure the impact on performance, we
have monitored online friction metrics that reflect
the overall end-to-end system performance (as op-
posed to the NLU only component in the offline
experiments). Unlike in the offline experiments, all
metrics were computed automatically and concern
overall system performance rather than NLU in iso-
lation. We compared the A and B system’s perfor-
mances using the selected online metrics, indicat-
ing that there was no significant increase recorded
in any of the error metrics for the B system com-
pared to the A system. Thus, we conclude that even
though we left around half of the domain models
in place according to the decision of our drift detec-
tor, there was no negative effect on overall system
performance. Due to re-training fewer models, we
observed a decrease in costs for expensive GPU
instances of 46.4% for training IC+SF models (no
GPUs were used for detector building).

136



8 Conclusions

We presented an efficient drift detection approach
to guide IC+SF model retraining decisions, which
requires only unlabeled data during the application
phase in a multi-domain large-scale SLU system.
We discussed the challenges that we faced while
developing the approach and the corresponding
design decisions to address them. We presented
experimental results using historical data and we
evaluated our approach via both offline and online
experiments with a large-scale SLU system, con-
firming the utility of our design decisions.

Acknowledgements

We would like to thank Yannick Versley, Caglar
Tirkaz, Tobias Falke and Debjit Paul for valuable
feedback on this work.

References

Quynh Do, Judith Gaspers, Daniil Sorokin, and Patrick
Lehnen. 2021. Predicting temporal performance
drop of deployed production spoken language under-
standing models. In Proc. Interspeech.

Hady Elsahar and Matthias Gallé. 2019. To annotate
or not? predicting performance drop under domain
shift. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2163-2173, Hong Kong, China. Association for
Computational Linguistics.

Rosana Noronha Gemaque, Albert Franca Josua Costa,
Rafael Giusti, and Eulanda Miranda dos Santos.
2020. An overview of unsupervised drift detection
methods. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 10.

Mark A. Hall. 1999. Correlation-based Feature Selec-
tion for Machine Learning. Ph.D. thesis.

Yun Sing Koh. 2016. Cd-tds: Change detection in
transactional data streams for frequent pattern min-
ing. 2016 International Joint Conference on Neural
Networks (IJCNN), pages 1554-1561.

Patrick Lindstrom, Brian Mac Namee, and Sarah Jane
Delany. 2011. Drift detection using uncertainty
distribution divergence. In 2011 IEEE 11th Inter-
national Conference on Data Mining Workshops,
pages 604—608.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and
Guangquan Zhang. 2018. Learning under concept
drift: A review. IEEE Transactions on Knowledge
and Data Engineering, page 1-1.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Libo Qin, Tianbao Xie, Wanxiang Che, and Ting Liu.
2021. A survey on spoken language understanding:
Recent advances and new frontiers.

137


https://doi.org/10.18653/v1/D19-1222
https://doi.org/10.18653/v1/D19-1222
https://doi.org/10.18653/v1/D19-1222
https://doi.org/10.1109/ICDMW.2011.70
https://doi.org/10.1109/ICDMW.2011.70
https://doi.org/10.1109/tkde.2018.2876857
https://doi.org/10.1109/tkde.2018.2876857
http://arxiv.org/abs/2103.03095
http://arxiv.org/abs/2103.03095

