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Abstract

Recently, pre-trained language models (PLMs)
have achieved great success on various NLP
tasks and have shown a trend of exponen-
tial growth in model size. To alleviate
the unaffordable computational costs brought
by the size growth, model compression has
been widely explored. Existing efforts have
achieved promising results in compressing
medium-sized models for specific tasks, while
task-agnostic compression for big models with
over billions of parameters is rarely studied.
Task-agnostic compression can provide an effi-
cient and versatile big model for both prompt-
ing and delta tuning, leading to a more gen-
eral impact than task-specific compression.
Hence, we introduce a task-agnostic compres-
sion toolkit BMCook for big models. In
BMCook, we implement four representative
compression methods, including quantization,
pruning, distillation, and MoEfication. Devel-
opers can easily combine these methods to-
wards better efficiency. To evaluate BMCook,
we apply it to compress T5-3B (a PLM with 3
billion parameters). We achieve nearly 12x ef-
ficiency improvement while maintaining over
97% of the original T5-3B performance on
three typical NLP benchmarks. Moreover, the
final compressed model also significantly out-
performs T5-base (a PLM with 220 million pa-
rameters), which has a similar computational
cost. BMCook is publicly available at https:
//github.com/OpenBMB/BMCook.

1 Introduction

As the sizes of pre-trained language models (PLMs)
increase, especially after reaching 10 billion pa-
rameters (Brown et al., 2021; Rae et al., 2021;
Zhang et al., 2021a, 2022a; Chowdhery et al., 2022;
Black et al., 2022), powerful intelligence capa-
bilities emerge in these big models, supporting
PLMs to accomplish tasks that previous smaller
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TensorFlow (Abadi et al., 2016) X X
PyTorch (Paszke et al., 2019) X X
TextPruner (Yang et al., 2022) X
TextBrewer (Yang et al., 2020) X X
BMCook (this work) X X X X

Table 1: Comparisons between different compression
toolkits. “Q”, “P”, “D”, and “M” denote quantiza-
tion, pruning, distillation, and MoEfication, respec-
tively. Our BMCook is the first compression toolkit
to support all four compression techniques.

models could not do, such as quantitative reason-
ing (Lewkowycz et al., 2022) and long-form ques-
tion answering (Nakano et al., 2021). Despite the
success of big models, their exponentially growing
sizes impose unaffordable computational costs for
real-world applications.

To improve the efficiency of PLMs, model com-
pression is an essential solution. There are several
compression techniques, including model distilla-
tion (Hinton et al., 2015), model quantization (Bai
et al., 2021), and model pruning (Liang et al.,
2021). Based on these techniques, practitioners
can conduct task-specific compression during fine-
tuning (Sun et al., 2019) and task-agnostic com-
pression during pre-training (Sanh et al., 2019).
Previous studies mainly focus on applying task-
specific compression for medium-sized PLMs with
around one-hundred million parameters, such as
BERTBASE (Zafrir et al., 2019; Jiao et al., 2020;
Hou et al., 2020; Xia et al., 2022), while com-
pressing large-scale PLMs with over billions of
parameters is rarely studied.

In this work, we focus on the task-agnostic com-
pression of big models because it enables devel-
opers to utilize the powerful intelligence of big
models with fewer computation resources for both
prompting (Brown et al., 2021) and delta tuning
(aka parameter-efficient tuning) (Houlsby et al.,
2019; Ding et al., 2022). Both prompting and delta
tuning are the current core approaches to drive big
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models. There exist two challenges for the task-
agnostic compression of big models. First, big
models require high compression rates to achieve
affordable costs while existing compression toolk-
its only support one or two techniques as shown in
Table 1, which cannot provide enough compression
rates. Second, existing compression implementa-
tion ignores the memory challenge brought by big
models. They are usually based on HuggingFace
Transformers (Wolf et al., 2020), which cannot well
support the training of large-scale PLMs.

In this work, we introduce BMCook, a task-
agnostic compression toolkit for big models. BM-
Cook has three main characteristics: (1) Zero-
redundancy training. BMCook is developed on an
efficient training toolkit, BMTrain1, which supports
the zero-redundancy optimizer with offloading (Ra-
jbhandari et al., 2020; Ren et al., 2021a) to handle
the memory challenge. (2) Flexible combination.
To achieve better efficiency, we make BMCook
flexible to support arbitrary combinations of dif-
ferent compression techniques. To this end, we
implement four popular compression techniques
and distribute each technique to different parts of
one unified training life-cycle. (3) Runtime model
modification. Since some compression techniques
require to access the inner hidden states of PLMs,
developers have to modify the code of model im-
plementation provided by a third-party package. To
make the compression easier to operate, BMCook
implements runtime modification by monkey patch
to get rid of modifying the source code of PLMs.

We evaluate the effectiveness of BMCook on T5-
3B (Raffel et al., 2020), a T5 model with 3 billion
parameters. Experimental results show that BM-
Cook achieves nearly 12x compression efficiency
by combining all four techniques while maintain-
ing over 97% original performance on three typ-
ical NLP benchmarks, including SST-2 (Socher
et al., 2013), MNLI (Williams et al., 2018), and
SQuAD (Rajpurkar et al., 2016). Besides, the com-
pressed model significantly outperforms T5-base,
which has similar computation costs.

BMCook is supported by Open Lab for Big
Model Base (OpenBMB)2. We hope BMCook can
help researchers explore better compression meth-
ods for large-scale PLMs in the future and help
practitioners to improve their model efficiency in
real-world applications.

1https://github.com/OpenBMB/BMTrain
2https://www.openbmb.org/en/home

2 Design and Implementation

As mentioned in the introduction, we imple-
ment three main characteristics in BMCook, zero-
redundancy training, flexible combination, and run-
time model modification. In this section, we will
introduce the design and the implementation details
of these three characteristics.

2.1 Zero-redundancy Training

Due to the outrageous model size, big models re-
quire large memory to store their parameters and
optimizer states, which cannot be maintained in
one GPU. Recently, zero-redundancy optimizer has
been proposed to solve this problem (Rajbhandari
et al., 2020), which distributes the parameters and
the optimizer states to multiple GPUs instead of
storing all of them in one GPU repetitively. If more
GPUs are used, each GPU requires less memory,
which can alleviate the memory challenge brought
by big models. Since BMCook targets the compres-
sion of big models, the training of big models is an
important part. Therefore, we implement BMCook
based on an efficient training toolkit — BMTrain,
which supports zero-redundancy optimizer with
parameter checkpointing (Chen et al., 2016) and
offloading (Ren et al., 2021b).

2.2 Flexible Combination

Previous work on model compression usually ex-
plores one or two specific techniques. Due to the
huge model size, we have to combine different tech-
niques to achieve extreme compression. Hence,
BMCook explores to build a unified compression
framework that can support different techniques.
Specifically, BMCook supports model distillation,
model pruning, model quantization, and model
MoEfication. By better utilizing these techniques,
we distribute them into different parts of one unified
life-cycle as shown in Figure 1. With this scope, we
decouple these techniques in the implementation
and support arbitrary combinations. Next, we will
show more details about these techniques.

Model quantization aims to represent parame-
ters by low-bit fixed-precision values and reduce
both the memory and computational costs. For
example, the computation of an 8-bit quantized
model is 4 times faster than that of a 32-bit model.
There are two main ways to quantize the param-
eters, post-training quantization and quantization-
aware training. Current deep learning frameworks,
such as PyTorch (Paszke et al., 2019) and Tensor-
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Figure 1: Life-cycle of the training process, including output computation, loss computation, parameter update, and
post-processing. Each computation technique is bundled into a specific step. Specifically, quantization influences
the output computation, distillation influences the loss computation, pruning influences the parameter update, and
MoEfication influences the post-processing.

Flow (Abadi et al., 2016), have already supported
post-training quantization. Post-training quantiza-
tion directly quantizes the parameters of a PLM,
which may bring a significant performance degra-
dation. To alleviate the degradation caused by quan-
tization, Stock et al. (2021) propose quantization-
aware training (QAT). It simulates the quantization
during the training, i.e., the parameters are quan-
tized during the forward propagation, making the
parameters adapted to low-bit fixed-precision com-
putation.

Towards better performance, BMCook supports
QAT. Specifically, we replace all linear layers in
PLMs with quantized linear layers. In quantized
linear layers, we simulate the quantized matrix
multiplication. Since the linear layers account
for more than 90% of the computation in the
Transformer (Han et al., 2022), model quantiza-
tion brings significant efficiency improvement.

Model distillation aims to guide the training
of a compressed model by a larger teacher model.
Traditional distillation adds the KL divergence be-
tween the outputs of teacher models and student
models as an extra training objective (Hinton et al.,
2015). For PLMs, Sun et al. (2019); Jiao et al.
(2020); Liu et al. (2022); Park et al. (2021) find
that it is also effective to make the inner compu-
tation results of student models close to those of
their teachers. For example, they add the MSE loss
between the hidden states of student models and
teacher models.

Note that the model distillation module in BM-
Cook is only to provide additional training loss
instead of reducing the size of the model. Any
compression technique requiring further training
can be combined with model distillation to improve
the performance of compressed models.

Model pruning aims to prune the redundant pa-
rameters of a model. There are two typical ap-
proaches, structured pruning and unstructured prun-
ing. Structured pruning removes complete mod-
ules (e.g., layers) from the model (Fan et al., 2020;
Wang et al., 2020; Zhang et al., 2021b; Xia et al.,
2022). Instead, unstructured pruning removes in-
dividual parameters from the model (Han et al.,
2015; Chen et al., 2020; Xu et al., 2021). Both
of them change the forward and backward process
of the model according to their pruned parame-
ters. To decouple pruning and quantization, we
distribute the pruning operations to the optimiza-
tion step, where we set the pruned parameters to
zero after parameter update. Due to this, we keep
redundant parameters pruned during the forward
and backward processes without directly affecting
these processes.

Note that unstructured pruning cannot guaran-
tee efficiency improvement in most cases because
parallel processing devices, such as GPUs, usually
do not provide optimized sparse computation op-
erations (Zheng et al., 2022). Hence, BMCook
implements unstructured pruning with 2:4 spar-
sity, which is well supported by Sparse Tensor
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1 def _forward(module_self , x):
2 x = module_self.forward_old(x)
3 bmt.inspect.record_tensor(x, "

hidden_states")
4 return x
5

6 module.forward_old = module.forward
7 module.forward = types.MethodType(

_forward , module)

Figure 2: Example of monkey patch. Add a tensor
recording step to a forward function.

Core (Zhou et al., 2021). 2:4 sparsity means that ev-
ery four continuous parameters have two zeros. In
this way, the sparse computation is guaranteed to be
twice as fast as the dense computation. Besides, for
structured pruning, we implement CoFi (Xia et al.,
2022) in BMCook, which adds L0-regularization
to the parameters of the model to learn an optimal
sparse mask.

MoEfication aims to transform the feedfor-
ward networks (FFNs) in Transformers to the
equivalent mixture-of-expert (MoE) version (Fe-
dus et al., 2021), which significantly reduces the
computational costs of FFNs (Zhang et al., 2022b).
Since Transformers (Vaswani et al., 2017) adopt
ReLU (Nair and Hinton, 2010) as the activation
function of FFNs and there exists an obvious sparse
activation phenomenon, we can only involve part
of FFNs for a specific input without affecting the
model performance. The transformation process
does not change the number and the values of
model parameters. Therefore, we treat MoEfication
as a post-processing technique. It can be applied to
any compressed model to achieve better efficiency.

To train routers for expert selection, MoEfication
requires the hidden states to simulate the compu-
tation process of FFNs. The training of routers is
localized to specific FFNs and is dealt with by an
external MoEfication package.

In summary, BMCook is the first to contain a
series of compression techniques. And, benefiting
from the decoupled implementation of compression
techniques, practitioners can design their own com-
pression strategies with arbitrary combinations.

2.3 Runtime Model Modification

All of the compression techniques mentioned in
the last subsection require modifying the life-cycle
of the training process, i.e., the implementation
code of PLMs. Taking distillation as an example,
to compute the mean squared error between the
hidden states of the teacher model and the student

1 config = ConfigParser(args.config)
2 # for distillation
3 Trainer.forward = BMDistill.set_forward(

model , teacher , Trainer.forward ,
config)

4 # for pruning
5 BMPrune.compute_mask(model , config)
6 BMPrune.set_optim_for_pruning(optimizer)
7 # for quantization
8 BMQuant.quantize(model , config)
9 # for moefication

10 Trainer.forward = BMMoE.get_hidden(model
, config , Trainer.forward)

Figure 3: Based on the configuration file, practitioners
can turn on a specific compression module with one or
two lines of code.

model, we have to modify the forward functions to
make the hidden states become return values. Ex-
isting compression toolkits usually ask developers
to modify the codes (Yang et al., 2020, 2022). For
example, in the case of distillation, after developers
modify the forward functions, the toolkit provides
the implementation of the loss calculation.

However, the model implementation is usually
provided by a third-party package, such as Hug-
gingFace Transformers, making the manual modi-
fication inconvenient. Besides, the modification is
simple and similar across different PLMs. Hence,
BMCook explores to implement runtime modifica-
tion in a general way to keep the source code clean
and make it easy to compress different PLMs.

Specifically, we utilize the characteristic of mon-
key patch in Python. Monkey patch is to modify the
behavior of an object at runtime. As shown in Fig-
ure 2, we first rename the original forward function
of the module as forward_old, and then define
a new forward function containing forward_old
and a tensor recording step. Finally, we assign the
new forward function to the module. The inspect
function for recording is to store the tensor in a
global dictionary. After the whole forward process
is finished, we can access the tensor by its name.

Both knowledge distillation and MoEfication re-
quire accessing the hidden states of PLMs. Consid-
ering that different modules have different foward
functions, e.g., attention modules take hidden states
and attention masks as input, we choose to ac-
cess the hidden states of layer normalization mod-
ules and provide a general interface to add tensor
recording to their forward functions. The inputs of
layer normalization modules are only hidden states
and are widely used before or after other modules.
Hence, based on layer normalization modules, we
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1 {
2 "distillation": {
3 "ce_scale": 0,
4 "mse_hidn_scale": 1,
5 "mse_hidn_module": ["[post]encoder.output_layernorm :[post]encoder.

output_layernorm", "[post]decoder.output_layernorm :[post]decoder.
output_layernorm"],

6 "mse_hidn_proj": false
7 },
8 "pruning": {
9 "is_pruning": true , "pruning_mask_path": "prune_mask.bin",

10 "pruned_module": ["ffn.ffn.w_in.w.weight", "ffn.ffn.w_out.weight", "
input_embedding"],

11 "mask_method": "m4n2_1d"
12 },
13 "quantization": { "is_quant": true},
14 "MoEfication": {
15 "is_moefy": false ,
16 "first_FFN_module": ["ffn.layernorm_before_ffn"]
17 }
18 }

Figure 4: Example of the configuration file.

can access nearly all hidden states of PLMs.
Similarly, we also modify the linear layers and

optimizer by monkey patching for quantization and
pruning. For quantization, we replace the matrix
multiplication in the forward functions of linear
layers with a quantized one. For pruning, we mod-
ify the behavior of the optimizer’s step function.
We keep the original operation and add a pruning
step after the parameter update.

In summary, BMCook utilizes runtime modifi-
cation to keep the source code clean and provides
general interfaces to compress different PLMs.

2.4 Usage and Configuration
Since different compression modules are decoupled
in BMCook, we implement each module indepen-
dently, where each module is usually a Python file
and provides one or two general interfaces. Bene-
fiting from the general interfaces, BMCook can be
applied to a PLM with only a few lines of code as
shown in Figure 3. The details of compression are
mainly determined by a configuration file, which
will be used by different compression modules. In
practice, users can easily reuse the code of pre-
training for compression by adding a few lines of
code to import compression modules and then set-
ting the configuration file. Note that BMCook sup-
ports the PLMs implemented based on BMTrain
and ModelCneter3 has provided BMTrain-based
implementations of almost all mainstream PLMs.

As shown in Figure 4, the configuration file is a
3https://github.com/OpenBMB/ModelCenter

JSON file. The keys are the names of the compres-
sion modules. The values are the configurations of
the compression modules. Note that the module
names used in the configuration file are correspond-
ing to the names provided by PyTorch. Therefore,
BMCook can access the modules by their names.

The key of knowledge distillation is
distillation. Currently, BMCook sup-
ports two kinds of distillation objectives, KL
divergence between output distributions (turn
on when ce_scale>0) and mean squared error
(MSE) between hidden states (turn on when
mse_hidn_scale>0). Practitioners need to
specify the hidden states used for MSE by
mse_hidn_module. Meanwhile, the dimensions
of the hidden states may be different between
teacher and student models. Therefore, the hidden
states of the teacher model need to be projected
to the same dimension as those of the student
model. Practitioners can turn on mse_hidn_proj
for simple linear projection.

The key of model pruning is pruning. Practi-
tioners can turn on pruning by is_pruning. The
pruning mask is stored in pruning_mask_path.
The pruned modules are specified by
pruned_module. To simplify the list, practi-
tioners can only provide the suffix of the modules.
The mask method mask_method is to choose the
algorithm for the computation of the pruning mask.

The key of quantization is quantization. Prac-
titioners can turn on quantization by is_quant,
which will replace all linear layers with quantized
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Model Activated Model Size SST-2 MNLI-m SQuAD 1.0
Acc Acc EM F1

Original Model
T5-Base 0.34GB 0.9278 0.8626 0.8076 0.8890
T5-Large 0.60GB 0.9461 0.8938 0.8474 0.9193
T5-3B 2.42GB 0.9621 0.9087 0.8754 0.9379

Single Module

Structured Pruning 1.21GB 0.9014 0.8472 0.8072 0.8877
Unstructured Pruning 1.21GB 0.9576 0.8946 0.8592 0.9262
Quantization 0.60GB 0.9598 0.9075 0.8746 0.9374
MoEfication 1.61GB 0.9529 0.8961 0.8502 0.9260

Combination Quant + Pruning 0.30GB 0.9518 0.8902 0.8628 0.9289
Quant + Pruning + MoE 0.20GB 0.9518 0.8819 0.8316 0.9110

Table 2: Evaluation of original models and compressed models. In the combination experiments, we use unstruc-
tured pruning due to its superior performance in the single module experiments. The size of adapters keeps the
same for all PLMs. Activated model size is used to measure the compression rate because the computational cost,
i.e., FLOPS, is linear to the model size.

linear layers. BMCook provides the simulation of
8-bit quantization.

The key of MoEfication is MoEfication. Practi-
tioners can turn on MoEfication by is_moefy. The
hidden states used for router training are specified
by first_FFN_module, which is the nearest layer
normalization module before each FFN. Providing
the suffix of the modules is also sufficient.

3 Evaluation

To validate the effectiveness of BMCook, we study
task-agnostic compression on T5-3B (Raffel et al.,
2020), which has 3 billion parameters. Since
task-agnostic compression would benefit various
downstream tasks, we evaluate the performance of
adapter tuning (Houlsby et al., 2019) of T5-3B and
its compressed variants. We also study T5-Base
and T5-Large, which have 220 million and 770
million parameters, respectively.

Training and evaluation data. We use the Pile
dataset (Gao et al., 2020) for task-agnostic com-
pression training, which is a large-scale corpus for
pre-training language models. The training objec-
tive is masked language modeling used by T5. Note
that we turn on distillation during the compression
training in all experiments because we find knowl-
edge distillation with MSE loss can improve model
performance in our pilot experiments. Besides, we
choose three downstream datasets for evaluation:
SST-2 (Socher et al., 2013), a representative single-
sentence classification dataset, MNLI (Williams
et al., 2018), a representative sentence-pair clas-
sification dataset, SQuAD v1.1 (Rajpurkar et al.,
2016), a representative question-answer dataset.
For the first two datasets, we use accuracy as the
evaluation metric. For the third dataset, we use both

exact match and F1 score as the evaluation metrics.
We evaluate model performance on their develop-
ment sets. We adopt the same task templates and
label words of the original T5 paper (Raffel et al.,
2020).

Hyper-parameters. The learning rate of task-
agnostic compression training is 1e-4 while that
of adapter tuning ranges from 1e-6 to 1e-5. The
batch size of task-agnostic compression training
and adapter tuning is 32. We use 4 NVIDIA A100
GPUs in the experiments. The training step of task-
agnostic compression training ranges from 10K to
50K according to the compression methods. The
training epoch of adapter tuning ranges from 3 to
5.

To fairly compare the efficiency of T5-3B and its
variants, we define a new metric, named activated
model size, because Brown et al. (2021) mentioned
that the computation of Transformer is linear in the
model size, which excludes the embedding layer.
Hence, we consider the parameters of self-attention
networks and FFNs. For the original model, the
activated model size is equal to its original model
size. Although it is intuitive to directly compare the
speedup of compressed models, there is no infer-
ence toolkit supporting all the compressed methods.
Hence, we focus on the theoretical computational
cost in this work.

In the evaluation, we set the pruning sparsity to
50%, i.e., we prune 50% of the parameters and re-
duce half of the activated model size. Besides, we
quantize the parameters to 8 bits, which reduces
three-fourths of the activated model size compared
to the floating-point version. For MoEfication, we
dynamically involve 50% of parameters in FFNs
for specific input. Therefore, the activated model
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size of the modified FFNs is about half of the origi-
nal FFNs. Note that Transformer consists of both
attention layers and FFNs and the model size of
FFNs are about 70%. The final activated model size
of the modified Transformer is about 66% of the
original one. If we combine all three techniques,
we can achieve a compressed model with about
one-twelfth of the original activated size.

We report the evaluation results in Table 2. From
this table, we have three observations: (1) In the ex-
periment of single modules, quantization achieves
the best efficiency and performance. Unstructured
pruning achieves the second-best efficiency and per-
formance, and significantly outperforms structured
pruning. It suggests that directly removing layers
may bring significant performance degradation. Be-
sides, as a post-processing method, which does not
require further pre-training, MoEfication maintains
over 98% original performance while reducing 33%
of the activation model size. (2) Different compres-
sion techniques can be combined to archive better
efficiency while maintaining most of performance.
For example, combining quantization, unstructured
pruning, and MoEfication achieves a compressed
model with about one-twelfth of the original acti-
vated size and maintains over 97% original perfor-
mance. (3) Compressing big models can get better
small models. For example, Quant+Pruning+MoE
is smaller than T5-base while this model signifi-
cantly outperforms T5-base.

4 Conclusion and Future Work

In this paper, we introduce a task-agnostic com-
pression toolkit for big models, named BMCook.
This toolkit contains four popular techniques and
is designed to be flexible to support arbitrary com-
binations. Users can easily compress a PLM by
adding several lines to its pre-training code and
specifying the strategy in a configuration file.

In the future, there are three directions to further
improve BMCook. First, we will enrich the op-
tions of existing compression techniques, such as
knowledge distillation on attention matrices (Jiao
et al., 2020) and extreme low-bit quantization (Bai
et al., 2021). Second, there are some other com-
pression techniques that are not covered by BM-
Cook, such as weight sharing (Lan et al., 2020)
and low-rank decomposition (Chen et al., 2021).
Third, we will explore the automatic search for bet-
ter compression strategies or configurations. Given
a specific computation budget, we want to find the

compression strategy that achieves the best model
performance, which is similar to neural architecture
search (Elsken et al., 2019).

Meanwhile, we will also plan to enrich the in-
ference toolkits to support different compression
techniques. Although compression techniques have
been fast developed, the inference toolkits are still
lagging behind. Recently, there are some efforts to
support compressed models in inference, such as
BMInf (Han et al., 2022) and DeepSpeed-MoE (Ra-
jbhandari et al., 2022), while they are still limited
to specific compression techniques.
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