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Abstract
We present a system that allows users to
train their own state-of-the-art paraphrastic
sentence representations in a variety of lan-
guages. We release trained models for English,
Arabic, German, Spanish, French, Russian,
Turkish, and Chinese. We train these mod-
els on large amounts of data, achieving signif-
icantly improved performance from our orig-
inal papers on a suite of monolingual seman-
tic similarity, cross-lingual semantic similarity,
and bitext mining tasks. Moreover, the result-
ing models surpass all prior work on efficient
unsupervised semantic textual similarity, even
significantly outperforming supervised BERT-
based models like Sentence-BERT (Reimers
and Gurevych, 2019). Most importantly, our
models are orders of magnitude faster than
other strong similarity models and can be used
on CPU with little difference in inference
speed (even improved speed over GPU when
using more CPU cores), making these models
an attractive choice for users without access
to GPUs or for use on embedded devices. Fi-
nally, we add significantly increased function-
ality to the code bases for training paraphras-
tic sentence models, easing their use for both
inference and for training them for any desired
language with parallel data. We also include
code to automatically download and prepro-
cess training data.1

1 Introduction

Measuring sentence similarity (Agirre et al., 2012)
is an important task in natural language pro-
cessing, and has found many uses including
paraphrase detection (Dolan et al., 2004), bitext
mining (Schwenk and Douze, 2017), language
modelling (Khandelwal et al., 2019), question-
answering (Lewis et al., 2021), and as reward func-
tions or evaluation metrics for language generation

1Code, including an easy to install PyPi package, re-
leased models including Hugging Face implementations,
demo, and data are available at https://github.com/jwieting/
paraphrastic-representations-at-scale.

tasks (Wieting et al., 2019a). Within this context,
fast and light-weight methods are particularly use-
ful as they make it easy to compute similarity over
the ever-increasing volumes of web text available.
For instance, we may want to mine a hundred mil-
lion parallel sentences (Schwenk et al., 2021) or
use a semantic similarity reward when fine-tuning
language generation models on tens of millions
of training examples. These tasks are much more
feasible when using approaches that are fast, can
be run on CPU, and use little RAM, allowing for
increased batch size.

This need for fast inference is one motivation for
using sentence embeddings. Sentence embeddings
allow the search for similar sentences to be linear in
the number of sentences, or even sub-linear when
using highly optimized tools like Faiss (Johnson
et al., 2017) that allow for efficient nearest neigh-
bor search. This is contrast to models, like cross-
attention models, which are quadratic during infer-
ence as they require both of the texts being com-
pared as inputs. As we show in this paper, our sim-
ple and interpretable word-averaging sentence em-
bedding models (Wieting et al., 2016b; Wieting and
Gimpel, 2018; Wieting et al., 2019b), are orders
of magnitude faster to compute than prior embed-
ding approaches while simultaneously possessing
significantly stronger performance on monolingual
and cross-lingual semantic similarity tasks. Since
we are simply averaging embeddings and have no
neural architecture, any models based on neural
architectures, especially large pretrained neural ar-
chitectures which are increasingly used, will not be
as fast as the models described in this paper. Lastly,
we also show that this approach is competitive with
LASER (Artetxe and Schwenk, 2019), a state-of-
the-art multilingual model, on mining bitext and
has stronger performance on cross-lingual seman-
tic similarity, while having inference speeds that
are twice as fast on GPU and orders of magnitude
faster on CPU.
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We make several contributions in this paper that
go beyond our prior work. Firstly, we reformat the
code to support training models on tens of millions
of sentence pairs efficiently and with low RAM us-
age. Secondly, we train an English model on 25.85
million paraphrase pairs from ParaNMT (Wieting
and Gimpel, 2018), a paraphrase corpus we previ-
ously constructed automatically from bitext. We
then train models directly on X-English bitext for
Arabic, German, Spanish, French, Russian, Turk-
ish, and Chinese, producing models that are able to
distinguish both paraphrases in English and their
respective languages as well as cross-lingual X-
English paraphrases. Even though all models are
able to model semantic similarity in English, we
find that training on ParaNMT specifically leads to
stronger models as it is easier to filter the data to
remove noise and sentence pairs with little to no di-
versity. We refer to our models as PARAGRAM-SP,
abbreviated as P-SP,2 referring to how the models
are based on averaging subword units generated
by sentencepiece (Kudo and Richardson, 2018).
We make all of these models available to the com-
munity for use on downstream tasks.

We also add functionality to our implementa-
tion. Besides the support for efficient, low-memory
training on tens of million of sentence pairs de-
scribed above, we add code to support (1) reading
in a list of sentences and producing a saved numpy
array of the sentence embeddings; (2) reading in a
list of sentence pairs and producing cosine similar-
ity scores; and (3) downloading and preprocessing
evaluation data, bitext, and paraphrase data. For
bitext and paraphrase data, we provide support for
training using either text files or HDF5 files.

Lastly, this paper contains new experiments
showcasing the limits of these scaled-up models
and detailed comparisons with prior work on a
suite of semantic similarity tasks in a variety of
languages. We release our code and models to
the community in the hope that they will be found
useful for research and applications, as well as us-
ing them as a base to build stronger, faster models
covering more of the languages of the world.

2Our English model is P-SP, and the cross-lingual models
are P-SP-AR, P-SP-DE, P-SP-ES, P-SP-FR, P-SP-RU, P-SP-
TR, and P-SP-ZH.

2 Related Work

2.1 English Semantic Similarity

Our learning and evaluation setting is the same as
that of our earlier work that seeks to learn para-
phrastic sentence embeddings that can be used for
downstream tasks (Wieting et al., 2016b,a; Wieting
and Gimpel, 2017; Wieting et al., 2017; Wieting
and Gimpel, 2018). We trained models on noisy
paraphrase pairs and evaluated them primarily on
semantic textual similarity (STS) tasks. More re-
cently, we made use of parallel bitext for training
paraphrastic representations for other languages
as well that are also able to model cross-lingual
semantic similarity (Wieting et al., 2019a, 2020).
Prior work in learning general sentence embed-
dings has used autoencoders (Socher et al., 2011;
Hill et al., 2016), encoder-decoder architectures
(Kiros et al., 2015; Gan et al., 2017), and other
sources of supervision and learning frameworks
(Le and Mikolov, 2014; Pham et al., 2015; Arora
et al., 2017; Pagliardini et al., 2017).

For English semantic similarity, we compare to
well known sentence embedding models such as
InferSent (Conneau et al., 2017), GenSen (Subra-
manian et al., 2018), the Universal Sentence En-
coder (USE) (Cer et al., 2018), as well as BERT
(Devlin et al., 2019).3 We use the pretrained BERT
model in two ways to create a sentence embedding.
The first way is to concatenate the hidden states
for the CLS token in the last four layers. The sec-
ond way is to concatenate the hidden states of all
word tokens in the last four layers and mean pool
these representations. Both methods result in a
4096 dimension embedding. We also compare to
a more recently released model called Sentence-
BERT (Reimers and Gurevych, 2019). This model
is similar to InferSent in that it is trained on natu-
ral language inference data (SNLI; Bowman et al.,
2015). However, instead of using pretrained word
embeddings, they fine-tune BERT in a way to in-
duce sentence embeddings. Lastly, we also com-
pare to the unsupervised version of SimCSE (Gao
et al., 2021), which fine-tunes a pretrained encoder
on contrastive pairs, where positive pairs are ob-
tained by using dropout on a single input sentence.

3Note that in all experiments using BERT, including
Sentence-BERT, the large, uncased version is used.
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2.2 Cross-Lingual Semantic Similarity and
Semantic Similarity in Non-English
Languages

Most previous work for cross-lingual representa-
tions has focused on models based on encoders
from neural machine translation (Espana-Bonet
et al., 2017; Schwenk and Douze, 2017; Schwenk,
2018) or deep architectures using contrastive losses
(Grégoire and Langlais, 2018; Guo et al., 2018;
Chidambaram et al., 2019). Recently, other ap-
proaches using large Transformer (Vaswani et al.,
2017) have been proposed, trained on vast quanti-
ties of text (Conneau et al., 2020; Liu et al., 2020;
Tran et al., 2020). We primarily focus our com-
parison for these settings on LASER (Artetxe and
Schwenk, 2019), a model trained for semantic sim-
ilarity across more than 100 languages. Their
model uses an LSTM encoder-decoder trained on
hundreds of millions of parallel sentences. They
achieve state-of-the-art performance on a variety of
multilingual sentence embeddings tasks including
bitext mining. We also compare to LaBSE (Feng
et al., 2022), a contrastive model trained on six bil-
lion parallel pairs across languages and was also
trained on monolingual text using a masked lan-
guage modelling objective.

3 Methods

We first describe our objective function and then
describe our encoder.

Training. The training data consists of a se-
quence of parallel sentence pairs (si, ti) in source
and target languages respectively. Note that for
training our English model, the source and target
languages are both English as we are able to make
use of an existing paraphrase corpus. For each sen-
tence pair, we randomly choose a negative target
sentence t′i during training that is not a translation
or paraphrase of si. Our objective is to have source
and target sentences be more similar than source
and negative target examples by a margin δ:

min
θsrc,θtgt

∑

i

[
δ−fθ(si, ti) + fθ(si, t

′
i))
]
+

(1)

where the similarity function is defined as:

fθ(s, t) = cos
(
g(s; θsrc), g(t; θtgt)

)
(2)

where g is the sentence encoder with parameters
for each language θ = (θsrc, θtgt). To select t′i

we choose the most similar sentence in some set
according to the current model parameters, i.e., the
one with the highest cosine similarity. We found we
could achieve the strongest performance by tying
all parameters together for each language, more
precisely, θsrc and θtgt are the same.

Negative Sampling. Negative examples are se-
lected from the sentences in the batch from the op-
posing language when training with bitext and from
any sentence in the batch when using paraphrase
data. In all cases, we choose the negative exam-
ple with the highest cosine similarity to the given
sentence s, ensuring that the negative is not in fact
paired with s in the batch. To select even more diffi-
cult negative examples that aid training, we use the
mega-batching procedure of Wieting and Gimpel
(2018), which aggregates M mini-batches to create
one “mega-batch” and selects negative examples
from this mega-batch. Once each pair in the mega-
batch has a negative example, the mega-batch is
split back up into M mini-batches for training. Ad-
ditionally, we anneal the mega-batch size by slowly
increasing it during training. This yields improved
performance by a significant margin.

Encoder. Our sentence encoder g simply aver-
ages the embeddings of subword units generated
by sentencepiece (Kudo and Richardson, 2018);
we refer to our model as PARAGRAM-SP, abbrevi-
ated as P-SP. This means that the sentence piece
embeddings themselves are the only learned param-
eters of this model.

4 Code and Usage

We added a number of features to the code base
to improve performance and make it easier to use.
First, we added code to support easier inference.
Examples of using the code programmatically to
embed sentences and score sentence pairs (using
cosine similarity) are shown in Figure 1.

Our code base also supports functionality that
allows one to read in a list of sentences and produce
a saved numpy array of the sentence embeddings.
We also included functionality that allows one to
read in a list of sentence pairs and produce the
sentence pairs along with their cosine similarity
scores in an output file. These scripts allow our
models to be used without any programming for the
two most common use cases: embedding sentences
and scoring sentence pairs. Examples of their usage
with a trained model are shown in Figure 2.
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1 from models import load_model
2

3 text1 = ’This is a test.’
4 text2 = ’This is another test.’
5

6 # Load English paraphrase model
7 model_name = ’paraphrase -at-scale/model.

para.lc.100.pt’
8 sp_model = ’paraphrase -at-scale/paranmt.

model’
9

10 model , _ = load_model(model_name=
model_name , sp_model=sp_model)

11

12 # Obtain sentence embedding
13 embeddings = model.embed_raw_text ([text1

, text2]) # 2D numpy array of
sentence embeddings

14 cosine_scores = model.score_raw_text ([(
text1 , text2)]) # list of cosine
scores

Figure 1: Usage example of programmatically loading
one of our pretrained models and obtaining sentence
embeddings and scores for two sentences.

1 python -u embed_sentences.py --sentence -
file paraphrase -at-scale/example -
sentences.txt --load -file paraphrase
-at -scale/model.para.lc.100.pt --
output -file sentence_embeds.np

2

3 python score_sentence_pairs.py --
sentence -pair -file paraphrase -at-
scale/example -sentences -pairs.txt --
load -file paraphrase -at-scale/model.
para.lc.100.pt

Figure 2: Usage examples to embed sentences and
score sentence pairs. The first command is a usage
example of scoring a list of sentence pairs. The file
example-sentences-pairs.txt contains a list of sen-
tences, one per line. The output of the script is a saved
numpy array of sentence embeddings in the same order
of the input sentences. The second command is a us-
age example of scoring a list of sentence pairs. The
file example-sentences-pairs.txt contains pairs of
tab-separated sentences, one per line. The output of
the script is a text file containing the tab separated list
of sentences along with their cosine scores in the same
order of the input sentences.

Secondly, we added a training mode using HDF54

format, allowing training data to remain on disk
during training. This leads to a significant reduc-
tion in RAM usage during training, which is espe-
cially true when using more than 10 million train-
ing examples. Efficient training can now be done
on CPU only using only a few gigabytes of RAM.

Lastly, we also added code for preprocessing

4https://docs.h5py.org/en/stable/

1 cd preprocess/bilingual && bash do_all.
sh fr-es-de

2 cd ../..
3 cd preprocess/paranmt && bash do_all.sh

0.4 1.0 0.7

Figure 3: Usage examples to download and preprocess
bilingual and ParaNMT data. The first command down-
loads and preprocesses (filters, trains sentencepiece
models, tokenizes if language is zh, converts files to
hdf5 format) en-X bilingual data. The third command
downloads and preprocesses ParaNMT data. The ar-
guments are used to filter the data (semantic similarity
scores between 0.4 and 1.0 and trigram overlap below
0.7, which have been used in prior papers when gen-
erating training data for paraphrase generation (Iyyer
et al., 2018; Krishna et al., 2020)).

en ar de es fr ru tr zh

25.85M 8.23M 6.47M 6.75M 6.46M 9.09M 5.12M 4.18M

Table 1: The number of sentence pairs used to train
our models. For English, the data is ParaNMT, and for
the other languages, the data is a collection of bitext
detailed in Section 5.1.

data, including scripts to download and evaluate
on the STS data (English, non-English, and cross-
lingual), as well as code to download and pro-
cess bitext and ParaNMT automatically. For bi-
text, our scripts download the data, filter the data
by length,5 lowercase, remove duplicates, train a
sentencepiece model, encode the data with the
sentencepiece model, shuffle the data, and pro-
cess the data into HDF5 format for efficient use.
For ParaNMT, our scripts download the data, use
a language classifier to filter out non-English sen-
tences6 (Joulin et al., 2017), filter the data by para-
phrase score, trigram overlap, and length,7 train a
sentencepiece model, encode the data with the
sentencepiece model, and process the data into
HDF5 format. Examples are shown in Figure 3.

5 Experiments

5.1 Experimental Setup
Data. For our English model, we train on se-
lected sentence pairs from ParaNMT (Wieting and
Gimpel, 2018). We filter the corpus by only includ-
ing sentence pairs where the paraphrase score for
the two sentences is≥ 0.4. We additionally filtered

5We remove sentences with the number of tokens (untok-
enized) smaller than 3 or greater than 100.

6https://fasttext.cc
7We remove sentences with the number of tokens (untok-

enized) smaller than 5 or greater than 40.
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Model Semantic Textual Similarity (STS)
2012 2013 2014 2015 2016 Avg.

BERT (CLS) 33.2 29.6 34.3 45.1 48.4 38.1
BERT (Mean) 48.8 46.5 54.0 59.2 63.4 54.4
InferSent 61.1 51.4 68.1 70.9 70.7 64.4
GenSen 60.7 50.8 64.1 73.3 66.0 63.0
USE 61.4 59.0 70.6 74.3 73.9 67.8
Sentence-BERT 66.9 63.2 74.2 77.3 72.8 70.9
LASER 63.1 47.0 67.7 74.9 71.9 64.9
P-SP 68.7 64.7 78.1 81.4 80.0 74.6

Sentence-BERT 71.0 76.5 73.2 79.1 74.3 74.8
P-SP 71.2 76.5 74.6 83.0 79.1 76.9

Table 2: Results of our models and models from prior work on English STS. In the first part of the table, we
show results, measured in Pearson’s r × 100, for each year of the STS tasks 2012-2016 as well as the average
performance across all years. In the second part, we evaluate based on the Spearman’s ρ×100 of the concatenation
of the datasets of each year with the 2013 SMT dataset removed following (Reimers and Gurevych, 2019).

Model Dim. ar-ar ar-en es-es es-en tr-en

LASER 1024 69.3\68.8 65.5\66.5 79.7\79.7 59.7\58.0 72.0\72.1
LaBSE 768 68.6\69.1 72.2\74.5 79.5\80.8 65.5\65.7 72.9\72.1
Espana-Bonet et al. (2017) 2048 59 44 78 49 76
Chidambaram et al. (2019) 512 - - 64.2 58.7 -

2017 STS 1st Place - 75.4 74.9 85.6 83.0 77.1
2017 STS 2nd Place - 75.4 71.3 85.0 81.3 74.2
2017 STS 3rd Place - 74.6 70.0 84.9 79.1 73.6

P-SP 1024 76.2\76.7 78.3\78.4 85.8\85.6 78.4\77.8 79.2\79.5

Table 3: Comparison of our models with those in the literature on non-English and cross-lingual STS. We also
include the top 3 systems for each dataset from the SemEval 2017 STS shared task. Performance is measured in
Pearson’s r ×100. We also include results in Spearmans’s ρ ×100 after a slash for LASER, LaBSE, and P-SP.

sentence pairs by their trigram overlap (Wieting
et al., 2017), which is calculated by counting tri-
grams in the two sentences, and then dividing the
number of shared trigrams by the total number in
the sentence with fewer tokens. We only include
sentence pairs where the trigram overlap score is
≤ 0.7. The paraphrase score is calculated by aver-
aging PARAGRAM-PHRASE embeddings (Wieting
et al., 2016b) for the two sentences in each pair and
then computing their cosine similarity. The purpose
of the lower threshold is to remove noise while the
higher threshold is meant to remove paraphrases
that are too similar.

Our training data is a mixture of Open Subtitles
20188 (Lison and Tiedemann, 2016), Tanzil cor-
pus9 (Tiedemann, 2012), Europarl10 for Spanish,
Global Voices11 (Tiedemann, 2012), and the Mul-
tiUN corpus.12 We follow the same distribution
for our languages of interest across data sources as
Artetxe and Schwenk (2019) for a fair comparison.

8http://opus.nlpl.eu/OpenSubtitles.php
9http://opus.nlpl.eu/Tanzil.php

10http://opus.nlpl.eu/Europarl.php
11https://opus.nlpl.eu/GlobalVoices.php
12http://opus.nlpl.eu/MultiUN.php

One exception, though, is we do not include train-
ing data from Tatoeba13 (Tiedemann, 2012) as they
do, since this domain is also in the bitext mining
evaluation set. The amount of data used to train
each of our models is shown in Table 1.

Hyperparameters. For all models, we fix the
batch size to 128, margin δ to 0.4, and the an-
nealing rate to 150.14 We set the size of the
sentencepiece vocabulary to 50,000, using a
shared vocabulary for the models trained on bitext.
If a word is not in vocabulary, we simply exclude it,
unless the text only consists of unknown words in
which case we use a single unknown-word token.
We optimize our models using Adam (Kingma and
Ba, 2014) with a learning rate of 0.001 and train
models for 25 epochs.

For training on the bilingual corpora, we tune
each model on the 250 example 2017 English STS
task (Cer et al., 2017). We vary dropout on the
embeddings over {0, 0.1, 0.3} and the mega-batch
size M over {60, 100, 140}.

13https://opus.nlpl.eu/Tatoeba.php
14Annealing rate is the number of minibatches that are

processed before the megabatch size is increased by 1.
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For training on ParaNMT, we fix the hyperpa-
rameters in our model due to the increased data size
making tuning more expensive. We use a mega-
batch size M of 100 and set the dropout on the
embeddings to 0.0.

5.2 Evaluation

We evaluate sentence embeddings using the Sem-
Eval semantic textual similarity (STS) tasks from
2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016) as was done initially for sentence embed-
dings in (Wieting et al., 2016b). Given two sen-
tences, the aim of the STS tasks is to predict their
similarity on a 0-5 scale, where 0 indicates the sen-
tences are on different topics and 5 means they are
completely equivalent. As our test set, we report
the average Pearson’s r over each year of the STS
tasks from 2012-2016 as is convention.

Most work evaluating accuracy on STS tasks
has averaged the Pearson’s r over each individ-
ual dataset for each year of the STS competition.
However, Reimers and Gurevych (2019) computed
Spearman’s ρ over concatenated datasets for each
year of the STS competition. To be consistent
with previous work, we re-ran their model and
calculated results using the standard method, and
thus our results are not the same as those reported
Reimers and Gurevych (2019). However, we also
include results using their approach for complete-
ness. One other difference between these two ways
of calculating the results is the inclusion of the
SMT dataset of the 2013 task, which we also ex-
clude when replicating the approach in Reimers
and Gurevych (2019).

For cross-lingual semantic similarity and seman-
tic similarity in non-English languages, we eval-
uate on the STS tasks from SemEval 2017. This
evaluation contains Arabic-Arabic, Arabic-English,
Spanish-Spanish, Spanish-English, and Turkish-
English datasets. The datasets were created by
translating one or both pairs of an English STS
pair into Arabic (ar), Spanish (es), or Turkish (tr).
Following convention, we report results with Pear-
son’s r for all systems, but also include results in
Spearman’s ρ for LASER, LaBSE, and P-SP.

We also evaluate on the Tatoeba bitext mining
task introduced by Artetxe and Schwenk (2019).
The dataset consists of up to 1,000 English-aligned
sentence pairs for over 100 languages. The aim
of the task is to find the nearest neighbor for each
sentence in the other language according to cosine

Language LASER XLM-R mBART CRISS LaBSE P-SP

ar 7.8 52.5 61.0 22.0 9.1 8.8
de 1.0 11.1 13.2 2.0 0.7 1.5
es 2.1 24.3 39.6 3.7 1.6 2.4
fr 4.3 26.3 39.6 7.3 4.0 5.4
ru 5.9 25.9 31.6 9.7 4.7 5.6
tr 2.6 34.3 48.8 7.1 1.6 1.4

Avg. 4.0 29.1 39.0 8.6 3.6 4.2

Table 4: Results on the Tatoeba bitext mining task
(Artetxe and Schwenk, 2019). Results are measured
in error rate ×100.

similarity. Performance is measured by computing
the error rate.

6 Results

English Semantic Similarity. The results for
our English semantic similarity evaluation are
shown in Table 2. Our P-SP model has the best
performance across each year of the task, signif-
icantly outperforming all prior work. We outper-
form methods that use large pre-trained models
including Sentence-BERT which is supervised, as
it is trained on NLI data (Bowman et al., 2015).

We also include results from SimCSE (Gao et al.,
2021). We compare to the unsupervised version,
since our model is also unsupervised. We evaluate
using the Spearman’s ρ of the concatenation of the
datasets for each year, and find our average perfor-
mance over the 2012-2016 datasets to be 76.9, com-
pared to 77.4 and 77.9 for the RoBERTa-base (Liu
et al., 2019) and RoBERTa-large versions of Sim-
CSE. While our performance is slightly lower, we
note that they tune their model on the dev set of
the STS Benchmark (Cer et al., 2017), which con-
tains a subset of the data from STS tasks which we
use for evaluation. Therefore, they are tuning on a
subset of the evaluation data, and it is unclear how
tuning on this test data affects model performance.

Cross-Lingual Semantic Similarity. The re-
sults for the non-English and cross-lingual seman-
tic similarity evaluation are shown in Table 3. From
the results, our model again outperforms all prior
work using sentence embeddings. The only sys-
tems that have better performance are the top (non-
embedding based) systems from SemEval 2017 for
Spanish-English.15

15The top systems for this task used supervision and relied
on state-of-the-art translation models to first translate the non-
English sentences to English.
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Bitext Mining. The results on the Tatoeba bitext
mining task from Artetxe and Schwenk (2019) are
shown in Table 4. The results show that our em-
beddings are competitive, but have slightly higher
error rates than LASER. The models are so close
that the difference in error rate for the two models
across the 6 evaluations is 0.2, corresponding to a
difference of about 2 mismatched sentence pairs
per dataset. LaBSE performs a bit better, but was
trained on much more data then both LASER and
our method. We also compare to mBART, XLM-R,
and CRISS.16

This bitext mining result is in contrast to the re-
sults on cross-lingual semantic similarity, suggest-
ing that our embeddings account for a less literal
semantic similarity, making them more adept at
detecting paraphrases but slightly weaker at iden-
tifying translations. It is also worth noting that
LASER was trained on Tatoeba data outside the
test sets, which could also account for some of the
slight improvement over our model.

7 Speed Analysis

Model GPU CPU

P-SP 13,863 12,776
LASER 6,033 26
Sentence-Bert 288 2
InferSent 4,445 16

Table 5: Speed as measured in sentences/second on
both GPU (Nvidia 1080 TI) and CPU (single core).

We analyze the speed of our models as well as se-
lected popular sentence embedding models from
prior work. To evaluate inference speed, we mea-
sure the time required to embed 120,000 sentences
from the Toronto Book Corpus (Zhu et al., 2015).
Preprocessing of sentences is not factored into the
timing, and each method sorts the sentences by
length prior to computing the embeddings to re-
duce padding and extra computation. We use a
batch size of 64 for each model. The number of
sentences embedded per second is shown in Ta-
ble 5.

From the results, we see that our model is eas-
ily the fastest on GPU, sometimes by an order of
magnitude. Interestingly, using a single core of
CPU, we achieve similar speeds to inference on
GPU, which is not the case for any other model.
Moreover, we repeated the experiment, this time

16Results are copied from (Tran et al., 2020).

using 32 cores and achieved a speed of 15,316 sen-
tences/second. This is even faster than when using
a GPU and indicates that our model can effectively
be used at scale when GPUs are not available. It
also suggests our model would be appropriate for
use on embedded devices.

8 Conclusion

In this paper, we present a system for the learning
and inference of paraphrastic sentence embeddings
in any language for which there is paraphrase or
bilingual parallel data. Additionally, we release our
trained sentence embedding models in English, as
well as Arabic, German, Spanish, French, Russian,
Turkish, and Chinese. These models are trained
on tens of million of sentence pairs resulting in
models that achieve state-of-the-art performance
on unsupervised English semantic similarity and
are state-of-the-art or competitive on non-English
semantic similarity, cross-lingual semantic similar-
ity, and bitext mining.

Moreover, our models are significantly faster
than prior work owing to their simple architecture.
They can also be run on CPU with little to no loss
in speed from running them on GPU—-something
that no strong models from prior work are able to
do. Lastly, we release our code that has been mod-
ified to make training and inference easier, with
support for training on large corpora, preprocess-
ing paraphrase and bilingual corpora and evaluation
data, as well as scripts for easy inference that can
generate embeddings or semantic similarity scores
for sentences supplied in a text file.
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