
Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 298 - 310
December 7-11, 2022 c©2022 Association for Computational Linguistics

Azimuth: Systematic Error Analysis for Text Classification

Gabrielle Gauthier-Melançon, Orlando Marquez Ayala, Lindsay Brin, Chris Tyler,
Frédéric Branchaud-Charron, Joseph Marinier, Karine Grande, Di Le

ServiceNow
{gabrielle.gm,orlando.marquez,lindsay.brin}@servicenow.com

Abstract

We present Azimuth, an open-source and easy-
to-use tool to perform error analysis for text
classification. Compared to other stages of the
ML development cycle, such as model train-
ing and hyper-parameter tuning, the process
and tooling for the error analysis stage are
less mature. However, this stage is critical
for the development of reliable and trustwor-
thy AI systems. To make error analysis more
systematic, we propose an approach compris-
ing dataset analysis and model quality assess-
ment, which Azimuth facilitates. We aim to
help AI practitioners discover and address ar-
eas where the model does not generalize by
leveraging and integrating a range of ML tech-
niques, such as saliency maps, similarity, uncer-
tainty, and behavioral analyses, all in one tool.
Our code and documentation are available at
github.com/servicenow/azimuth.

1 Introduction

As academic and research labs push the boundaries
of artificial intelligence, more and more enterprises
are including NLP models1 in their real-world sys-
tems. This is exciting yet risky due to the com-
plexity of current deep learning models and their
increasing social impact. Whereas in traditional
software development, engineers have methods to
trace errors to code, it is challenging to isolate
sources of error in AI systems.

NLP models can suffer from poor linguistic ca-
pabilities (Ribeiro et al., 2020), hallucinations (Ji
et al., 2022), learning spurious correlations via an-
notation artifacts (Gururangan et al., 2018), or am-
plifying social biases (Chang et al., 2019; Stanczak
and Augenstein, 2021). In addition to the adverse
effects that these problems can cause to both indi-
viduals and society, deploying problematic mod-
els can lead to legal and financial penalties (Burt,

1While models are part of pipelines that can include pre-
and post-processors, we use the term models for simplicity.

Figure 1: The exploration space of Azimuth allows users
to explore dataset and pipeline quality across different
data subpopulations.

2021). Even when poorly functioning models have
no adverse social effects, they can still degrade
trust, leading to problems with user adoption (Ko-
cielnik et al., 2019; McKendrick, 2021).

While it may be unreasonable to expect a per-
fect model, AI practitioners should communicate
existing limitations so that stakeholders can make
informed decisions about deployment, risk miti-
gation, and allocation of resources for further im-
provements (Arnold et al., 2019; Mitchell et al.,
2019). However, the current common error anal-
ysis practices may not be sufficiently thorough to
provide this visibility, limiting our capacity to build
safe, trustworthy AI systems.

As part of the ML development cycle, practition-
ers choose appropriate metrics based on business
requirements. These metrics should assess whether
NLP models have acquired the linguistic skills to
perform the specified task. While metrics are use-
ful to rapidly compare different models, they are
only the beginning of quality assessment as they do
not expose failure modes, i.e., types of input where
the model fails, and do not readily indicate what
can be improved. Furthermore, relying on metrics
alone can be harmful, as they can overestimate qual-
ity and robustness while hiding unintended biases
(Ribeiro et al., 2020; Bowman and Dahl, 2021).

To discover and address these limitations, er-

298

github.com/servicenow/azimuth


ror analysis is crucial. Unfortunately, compared
to other stages of the ML development cycle, the
error analysis stage is less mature. While various
tools are commonly used to train and tune neural
networks2, there is less convergence and adoption
of both standards and tools to analyze errors. Anal-
ysis is typically conducted using custom scripts,
spreadsheets, and Jupyter notebooks, guided by a
practitioner’s intuition, which may help uncover
some problems while missing others. Large evalu-
ation sets make per-example analysis of incorrect
predictions time-consuming and tedious. Because
this error analysis process is often informal, ad hoc,
and cumbersome, practitioners often skip or rush
this stage, focusing solely on high-level metrics.
This hinders traceability and accountability, and
introduces risks, especially for models deployed in
production.

To alleviate these issues, we contribute the fol-
lowing:

• A systematic and intuitive error analysis pro-
cess that practitioners can follow to improve
their ML applications.

• Azimuth, an open-source and easy-to-use tool
that facilitates this process, making thorough
error analysis of text classification models eas-
ier and more accessible.

2 Systematic Error Analysis

The goal of error analysis is to understand where
and why a model succeeds or fails, to better in-
form both model improvement and deployment
decisions. We propose a process grouped into two
categories: (1) dataset analysis and (2) model qual-
ity assessment, as illustrated in Fig. 2. Dataset
analysis involves assessing and improving the data
used to train and evaluate the model, while qual-
ity assessment focuses on model behavior. This
process should be iterative, as analyzing model pre-
dictions can help identify and fix dataset problems,
and dataset findings can help explain and reduce
model errors. A limitation of our approach is that it
does not currently assess whether models are learn-
ing a task ethically. While some of the techniques
we refer to below can be used for this purpose,
building ethical NLP systems is outside the scope
of this paper.

2Hugging Face Transformers, Ray Tune, etc.

2.1 Dataset Analysis

Dataset analysis is indispensable to validate that
the available data is appropriate for the given ML
task and to suggest possible approaches to solve it.
It should be conducted both before and throughout
the ML development cycle, as it can guide model
improvements. This analysis should encompass
all data splits, although held-out evaluation sets re-
quire special care to avoid overfitting. High-quality
data is essential as it impacts both model quality
and the choice of models that will be deployed
(Northcutt et al., 2021).

We identify four common types of dataset prob-
lems: data shift, class imbalance, class definition,
and problematic examples. While these may not
apply to all tasks, they illustrate common data prob-
lems. The first three can be detected by analyzing
data at the dataset level, while problematic exam-
ples require example-level analysis.

Data Shift. The training and validation splits
must be compared to identify significant data
shift caused by inadequate sampling or poor la-
beling practices (e.g., duplicated examples, miss-
ing classes). Taking into consideration the chal-
lenges in creating high-quality datasets (Bowman
and Dahl, 2021), one must guard against signifi-
cant differences in data distributions across splits
as they may cause quality problems or lead to poor
choices in model selection and training.

Class Imbalance. In classification tasks, class
imbalance occurs when there are differences in the
proportion or number of examples in each class
relative to each other. This is problematic because
models often overpredict classes that are overrep-
resented in the training data, whereas class imbal-
ance in the evaluation data may cause performance
metrics to be misleading. If unwanted class imbal-
ance is present, practitioners may choose to resolve
the issue through data augmentation for specific
classes, or by upsampling or downsampling.

Class Definition. The classes used in the ML
task affect what the model will learn. Practitioners
may need the assistance of domain experts to deter-
mine whether the classes are defined appropriately.
For instance, class overlap is a symptom of poor
class definition that can be seen when groups of
examples in multiple classes overlap semantically,
resulting in classes that are not easily separable.
Some semantic overlap may be acceptable and not
cause model confusion, whereas other overlap may
indicate low data quality or poor dataset construc-

299



Figure 2: Proposed approach for systematic error analysis.

tion, leading to poor model performance. Improv-
ing class definition can include relabeling misla-
beled examples, better defining classes by merging
or splitting them, and augmenting data for specific
classes.

Problematic Examples. Multiple kinds of chal-
lenges can arise at the example level. This in-
cludes examples outside the expected domain, “dif-
ficult” examples with exceptional characteristics
(e.g., words from other languages, long sentences)
but for which model performance is desired, ex-
amples for which humans would disagree on the
label, and accidental mislabeling issues. These
problems can confuse class boundaries and cause
model errors. Resolution options include relabel-
ing examples, removing examples from datasets,
and targeted data augmentation.

2.2 Model Quality Assessment
Once datasets are deemed sufficient in quality, prac-
titioners train and tune models aiming to find the
best candidates. Quality assessment consists of ex-
amining how well the selected models perform on
a specified evaluation set as well as their ability to
generalize beyond the evaluation set. The objective
is to understand where and why the model fails.
Issues exposed in model quality assessment can
also inspire further dataset improvements.

Assessing quality by examining metrics is the
aspect of error analysis that is typically performed,
as it is relatively fast to conduct (Church and Hes-
tness, 2019). This quantitative assessment allows
for quick comparison across models or model ver-
sions using known scores such as precision, re-
call, or F1. This can include metrics to measure
model calibration, such as expected calibration er-
ror (ECE), as well as metrics that quantify business
value, safety, and bias.

As practitioners already tend to analyze high-
level metrics to have a basic notion of model qual-
ity, we focus here on other approaches to evaluate
generalization. To help discover and correct failure
modes before models are deployed, we propose

four types of evaluation: (1) assess model quality
according to data subpopulations, (2) discover an-
notation artifacts, (3) perform behavioral testing,
and (4) conduct uncertainty-based analysis.

Data Subpopulations are subsets of datasets
with shared characteristics such as examples with
long text, entities, keywords, same label, etc. Mod-
els may behave differently on these subpopulations,
but high-level metrics can hide these failure modes.
Guided by domain knowledge, this analysis can
help ensure that the model generalizes well under
various input characteristics. Often, performance
on problematic subpopulations can be improved by
targeted data augmentation.

Annotation Artifacts are patterns in the labeled
data that can be exploited by models to learn simple
heuristics instead of learning to perform the task,
and yet achieve high metric scores (Gururangan
et al., 2018). The result is a model that relies un-
desirably on specific features, such as words that
tend to correlate with the label only in the available
datasets. Annotation artifacts can be discovered
by leveraging feature-based explainability meth-
ods, such as saliency maps, to approximately de-
termine the importance of every token when the
model makes a prediction. Once such artifacts are
found, practitioners can refine the datasets to help
models decrease their reliance on them.

Behavioral Testing assesses model robustness
by validating model behavior based on input and
output (Ribeiro et al., 2020). Perturbing a dataset
and observing the corresponding predictions can
help identify important errors, biases, or other po-
tentially harmful aspects of the model that may not
be otherwise obvious. For production models, this
type of testing is critical, as the range of user input
is infinite, while the evaluation datasets are finite.
Models that change predictions or their confidence
values when the input is slightly altered without
changing its semantics can have unintended conse-
quences and may lose the user’s trust.

Uncertainty-based Analysis includes assessing
examples that are more difficult for the model to

300



learn. Examination of lower-confidence predictions
can help indicate regions of the data distribution
where the model may fail in the future, similar to
Data Maps (Swayamdipta et al., 2020). A more so-
phisticated approach is to find predictions with high
epistemic uncertainty, computed with techniques
such as Bayesian deep ensembles (Wilson and Iz-
mailov, 2020). Augmenting the training dataset
with more representative examples from these data
regions can improve model quality.

Systematic error analysis will help practitioners
obtain the following:

• Datasets deemed sufficient in quality that can
be used for training and evaluation.

• Identified failure modes: known situations
where the model fails to generalize.

To help practitioners achieve these outcomes, we
contribute Azimuth to the NLP community.

3 Azimuth, an Open-Source Tool

Azimuth was developed as an internal tool at Ser-
viceNow and open sourced in April 2022. It facil-
itates our proposed approach to systematize error
analysis of ML systems. While it is currently tai-
lored for text classification, it could be extended
to support other use cases. The tool was built by
a cross-collaborative team of scientists, engineers,
and designers, with a human-centered approach
that focuses on the AI practitioner’s needs.

Before launching Azimuth, the user defines in
a configuration file the dataset splits and pipelines
to load and analyze. In Azimuth, pipelines refer
to the ML model as well as any pre-processing
and post-processing steps. The tool is built on top
of the Hugging Face (HF) datasets library (Lhoest
et al., 2021) and easily interfaces with HF pipelines
(Wolf et al., 2020). For flexibility, any Python
function can be defined as a pipeline. If pipelines
are unavailable, Azimuth can still be used, although
with limited features, by reading predictions from
a file. The tool can also be used for dataset analysis
without a pipeline.

3.1 User Workflow
Azimuth leads users through two main screens: the
dashboard and the exploration space. At startup,
users are brought to the dashboard, which presents
a summary of the different capabilities and flags
potential dataset and pipeline problems (Fig. 6).
The dashboard is linked to the exploration space

through pre-selected filters that allow a more de-
tailed investigation of issues raised on the dash-
board. For example, as shown in Fig. 3, pipeline
quality is indicated by metrics on different data sub-
populations, such as label, prediction, and smart
tag (defined below). By clicking on a row, the user
is brought to the exploration space filtered on the
corresponding subpopulation.

Figure 3: On the dashboard, pipeline quality is broken
down by different data subpopulations.

The exploration space allows the user to ex-
plore the dataset and pipeline quality by filtering on
different data subpopulations, model confidence,
and/or the presence of certain text. Data can be
shown for predictions both before and after post-
processing (e.g., thresholding). Changing the fil-
ters will update all available visualizations and ta-
bles split over three tabs. The first tab displays
several quality metrics, a histogram of confidence
scores for correct and incorrect predictions, and
word clouds indicating word importance (Fig. 1).
The second tab displays the confusion matrix (Fig.
7). The last tab shows the details of the raw data and
predictions, allowing users to inspect individual ex-
amples and their smart tags, and propose actions
for those that are problematic (Fig. 4). Clicking on
a particular example takes users to its details page,
which provides additional information such as the
prediction at each post-processing step, behavioral
test results, and semantically similar examples from
each dataset split (Fig. 12).

Figure 4: The exploration space displays examples
along with their predictions and smart tags. The user
can propose actions to improve the dataset.

3.2 Smart Tags

An integral feature of Azimuth is the concept of
smart tags, which are tags assigned to dataset ex-
amples based on predefined rules. Smart tags al-

301



low users to explore the dataset and model predic-
tions through various data subpopulations, helping
to detect failure modes and to identify problem-
atic examples. Some smart tags are straightfor-
ward (examples with few tokens), while others are
more complex (examples with high epistemic un-
certainty). They are grouped in families, based on
their associated capabilities, which may require ac-
cess to only the dataset or to both the dataset and
the pipeline.

To assist the process of improving the dataset,
Azimuth has a “proposed action” field with options
to indicate further actions that should be taken on
specific examples. There are natural correspon-
dences between certain smart tags and proposed
actions. Users can filter examples in the exploration
space by a certain smart tag to focus specifically on
an aspect of dataset analysis. For instance, the high
epistemic uncertainty smart tag can detect hard-to-
predict examples that may require actions such as
relabeling, removing examples, or augmenting the
training set with similar examples. In the same
vein, smart tags from the similarity analysis may
highlight examples that suggest the need to add
new classes or merge existing ones. There is also a
generic proposed action investigate to signal that
further troubleshooting is required as no concrete
action is clear yet.

3.3 Capabilities

Azimuth provides a variety of capabilities for both
dataset analysis and model quality assessment. Fig.
5 depicts how the different capabilities map to the
approach proposed in section 2. Our documen-
tation includes a detailed list of each feature and
smart tag that are part of Azimuth’s capabilities.

Class Size Analysis. Azimuth surfaces classes
having too few examples, which may indicate class
imbalance within a split. The tool also detects a
form of dataset shift by raising warnings when the
number of examples across classes is not similarly
distributed across splits.

Syntax Analysis. The Spacy library (Honnibal
et al., 2020) is used to inspect the syntax of exam-
ples. Besides detecting significant differences in
sentence length between dataset splits, we use de-
pendency trees and part-of-speech tags to explore
model behavior when examples are missing a sub-
ject, verb, or object. Syntactic smart tags can help
identify problematic examples and explore model
performance on atypical syntax.

Similarity Analysis. Azimuth leverages the
SentenceTransformers framework (Reimers and
Gurevych, 2019) to compute sentence embeddings.
We use these embeddings to calculate the similarity
of all pairs of examples in all dataset splits, and per-
form similarity search using faiss (Johnson et al.,
2019). Smart tags and nearest neighbors based
on similarity values allow for surfacing potential
dataset shift, class overlap, or problematic exam-
ples. For example, some smart tags surface exam-
ples that are distant from their nearest neighbors,
while others identify examples where the neighbors
belong to a different class.

Prediction Analysis. Visualizations and metrics,
such as the confusion matrix and the expected cali-
bration error, help assess model quality. This type
of analysis also includes threshold comparison as
well as smart tags that compare prediction results
across different pipelines.

Explainability. We generate saliency maps (Kin-
dermans et al., 2019) to reveal why a particular
prediction was made in terms of the relevance of
each input token to the prediction (Bastings and
Filippova, 2020; Atanasova et al., 2020). We use
a gradient-based technique as it is fast to compute
and available for all token-based models.

In the exploration space, saliency maps are
shown for each example in the filtered subpopu-
lation. Additionally, word clouds allow inspection
of the most salient words for correct (green) and
incorrect (red) predictions, which can help identify
words present in examples that the model strug-
gles to classify. Differences between word clouds
for a specific data subpopulation, such as class la-
bel, can hint at spurious correlations or a model’s
over-reliance on specific words, as exemplified in
section B.3.2. Lastly, on the example details page,
the user can compare the example’s most salient
words to those of similar training examples, which
may help explain misclassification.

Behavioral Analysis. Azimuth uses behavioral
testing to help assess the general linguistic capabil-
ities of NLP models. As an initial implementation,
we use NLPAug (Ma, 2019) and custom functions
to create Robustness Invariance tests: input pertur-
bations that should not change the model predic-
tions (Ribeiro et al., 2020). Predictions obtained
with and without perturbations are compared to re-
veal areas where the model lacks robustness. Smart
tags highlight examples whose predictions have
changed unexpectedly, helping to identify specific

302



Figure 5: The steps of our proposed approach are pictured in gray boxes while the corresponding Azimuth
capabilities are in black boxes. "All smart tags" means that all capabilities and their smart tags can be useful for this
step.

problems. In addition, users can define new func-
tions to test other linguistic capabilities, such as
those proposed in CHECKLIST.

Uncertainty-based Analysis. Users can explore
examples based on model confidence and visualize
their confidence distribution in a histogram. Some
smart tags highlight predictions that are almost
correct, based on model confidence. Filtering out
these predictions can help focus on examples that
are more problematic for the model, which often
hint at mislabeling or larger dataset issues, such as
poorly defined labels. In contrast, focusing on the
almost correct predictions can help identify class
overlap or issues that may be addressed by targeted
data augmentation. For models with dropout, we
additionally use Baal (Atighehchian et al., 2019) to
compute a smart tag that surfaces examples with
high epistemic uncertainty, which have a greater
chance of being problematic.

3.4 Design

UX design and research are essential to create valu-
able and usable ML systems. Our design priorities
for Azimuth were focused on supporting the error
analysis process by increasing efficiency, balancing
guidance with flexibility and user control, and fos-
tering user delight. Through collaborative design
sessions, workshops, and user interviews with AI
practitioners, we improved Azimuth quickly and
iteratively. In particular, user interviews uncov-
ered several challenges that we addressed with de-
sign modifications, including disentangling differ-
ent levels of analysis and preventing choice paraly-
sis (details in A.1).

As a result, Azimuth’s design approach gen-
erally follows a paradigm of guided exploration,
which shaped the creation of features such as the
dashboard and the control panel on the exploration
space. Additionally, the navigation and progressive
disclosure lead users to discover important features
and take action quickly by separating, but linking,
high-level warnings and detailed investigation. We
make the process enjoyable and efficient by includ-

ing visualizations and the ability to search, filter,
hide and show information as needed. The content
and communications provide context and guidance
without being obstructive. For example, Azimuth
prioritizes contextual information icons or subtle
explanations, and our color system helps to assign
priority and call attention to warnings and errors.
See Appendix A for details.

3.5 Extensibility
To customize the error analysis experience, users
can easily change a variety of settings in Azimuth’s
configuration file. For instance, users can change
the encoder used for the similarity analysis, or the
thresholds that determine class imbalance.

Azimuth capabilities are implemented via
Modules, which use a dataset, a configuration,
and optionally a model to perform the desired anal-
yses with distributed computing and caching. Our
repository contains details on how to add a new
Module3.

For more complex modifications, we encourage
the community to submit issues on our GitHub
page. As the process of error analysis continues to
be refined, we hope that Azimuth will grow along
with the community.

3.6 Case Study
We verified the utility of our methodology and
Azimuth by applying them to a DistilBert model
trained on CLINC-OOS (Larson et al., 2019). This
large intent classification dataset has 150 “in-scope”
classes spanning several domains and one Out-of-
Scope (OOS) class. Our goal is to demonstrate how
Azimuth’s features can efficiently direct users to
specific, resolvable problems, even with CLINC-
OOS’s large size and wide topic range. Below
we summarize the most salient findings while Ap-
pendix B includes more details.

• no_close tags (26 examples) revealed classes
with discordant semantic spaces across dataset

3https://github.com/ServiceNow/
azimuth/tree/main/azimuth/modules

303

https://github.com/ServiceNow/azimuth/tree/main/azimuth/modules
https://github.com/ServiceNow/azimuth/tree/main/azimuth/modules


splits.
• conflicting_neighbors smart tags surfaced

overlapping class pairs. For some examples,
multiple labels were applicable, possibly war-
ranting a multi-label classification model.

• Despite the relatively clean nature of the
dataset, conflicting_neighbors smart tags sur-
faced 25 mislabeled examples in the training
set and 18 in the validation set.

• Accuracy was worse than average on several
data subpopulations, including short sentences
(∼8% worse than long sentences), examples
lacking a verb (∼10% worse than average),
and examples failing the punctuation robust-
ness test (∼20% worse than average).

• Word clouds revealed possible annotation arti-
facts such as model dependence on a specific
verb or the plural form of a particular noun.

• Behavioral testing showed a high failure rate
for typos (∼25%), surfacing classes for which
the model depended on specific tokens.

• The model is underconfident, warranting tem-
perature scaling or a lower threshold.

Overall, our analysis revealed multiple issues
that could be addressed through data cleaning and
augmentation. Moreover, the high overall valida-
tion accuracy (94%) hides a lack of robustness.

4 Related Work

There exist other tools that can help practitioners
evaluate their NLP systems beyond observing met-
rics. Broadly speaking, these solutions are imple-
mented as component libraries, standalone applica-
tions, or some combination thereof.

Small components have a lower investment of
effort to get started but may require more technical
expertise to use. While they can produce results
quickly, they fail to address the problem of ad-hoc
processes and may lead to a "paradox of choice"
(Goel et al., 2021). Examples include the CHECK-
LIST Python package (Ribeiro et al., 2020) that can
be used for behavioral testing and the AllenNLP In-
terpret toolkit (Wallace et al., 2019) that computes
gradient-based saliency maps.

On the other hand, standalone applications may
require more effort to set up and it may not be obvi-
ous how to integrate them into the ML development
process. Their benefits are that, once setup, less
technical practitioners can use them and their us-
age can be standardized. CrossCheck (Arendt et al.,

2021) and Robustness Gym (Goel et al., 2021) are
used as Jupyter widgets, while Errudite (Wu et al.,
2019) and Language Interpretability Tool (LIT)
(Tenney et al., 2020) exist both as standalone appli-
cations and as widgets in Jupyter notebooks.

Currently, Azimuth is a standalone application
that requires low setup effort and can be integrated
into the ML development cycle as proposed in sec-
tion 2. At the same time, we provide the benefits of
existing third-party component libraries, added as
features in an easy-to-use interface. We built Az-
imuth to assist in performing comprehensive error
analysis using a single tool by including functional-
ity found elsewhere: filtering and analysis of behav-
ior on subpopulations (CrossCheck, Errudite, LIT,
Robustness Gym), input variations such as counter-
factual error analysis, robustness testing (Errudite,
LIT, Robustness Gym), model comparison (Cross-
Check, LIT), and explainability techniques (LIT,
AllenNLP Interpret).

5 Conclusion

We propose a systematic approach to error analysis
as an iterative workflow between dataset analysis
and model quality assessment. We contribute Az-
imuth to the NLP community in order to facilitate
this approach. Future work includes expanding our
capabilities, exposing potential ethical concerns in
the data or ML models, and extending Azimuth
to cover other tasks and domains. We welcome
open-source contributions.

Ethical Considerations

We believe our proposed approach to systematize
the error analysis stage of the ML development cy-
cle should help decrease the adverse social effects
that error-prone models can create as well as in-
crease user adoption and trust. An important gap in
our approach is that it does not explicitly suggest
techniques that can detect whether models behave
ethically or whether datasets used to train these
models contain harmful biases.

Acknowledgements

We thank ServiceNow for sponsoring the devel-
opment of Azimuth, especially our colleagues in-
volved in building and publicizing it. We also thank
ServiceNow teams and users in the NLP commu-
nity for their useful feedback.

304



References
Dustin Arendt, Zhuanyi Shaw, Prasha Shrestha, Ellyn

Ayton, Maria Glenski, and Svitlana Volkova. 2021.
CrossCheck: Rapid, reproducible, and interpretable
model evaluation. In Proceedings of the Second
Workshop on Data Science with Human in the Loop:
Language Advances, pages 79–85, Online. Associa-
tion for Computational Linguistics.

Matthew Arnold, Rachel KE Bellamy, Michael Hind,
Stephanie Houde, Sameep Mehta, Aleksandra Mo-
jsilović, Ravi Nair, K Natesan Ramamurthy, Alexan-
dra Olteanu, David Piorkowski, et al. 2019. Fact-
sheets: Increasing trust in ai services through sup-
plier’s declarations of conformity. IBM Journal of
Research and Development, 63(4/5):6–1.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256–3274, Online. Association for
Computational Linguistics.

Parmida Atighehchian, Frederic Branchaud-Charron,
Jan Freyberg, Rafael Pardinas, and Lorne Schell.
2019. Baal, a bayesian active learning library.
https://github.com/ElementAI/baal/.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 149–155, Online. Association for Com-
putational Linguistics.

Samuel R. Bowman and George Dahl. 2021. What will
it take to fix benchmarking in natural language under-
standing? In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4843–4855, Online. Association for
Computational Linguistics.

Andrew Burt. 2021. New AI regulations are coming. Is
your organization ready? Harvard Business Review.

Kai-Wei Chang, Vinodkumar Prabhakaran, and Vicente
Ordonez. 2019. Bias and fairness in natural language
processing. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
Tutorial Abstracts, Hong Kong, China. Association
for Computational Linguistics.

Kenneth Ward Church and Joel Hestness. 2019. A sur-
vey of 25 years of evaluation. Natural Language
Engineering, 25(6):753–767.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary
Taschdjian, Mohit Bansal, and Christopher Ré. 2021.

Robustness gym: Unifying the NLP evaluation land-
scape. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Demonstrations, pages 42–55, Online. As-
sociation for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2022. Survey of halluci-
nation in natural language generation.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo,
Maximilian Alber, Kristof T Schütt, Sven Dähne,
Dumitru Erhan, and Been Kim. 2019. The (un) relia-
bility of saliency methods. In Explainable AI: Inter-
preting, Explaining and Visualizing Deep Learning,
pages 267–280. Springer.

Rafal Kocielnik, Saleema Amershi, and Paul N Bennett.
2019. Will you accept an imperfect ai? exploring
designs for adjusting end-user expectations of ai sys-
tems. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pages 1–14.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language

305

https://doi.org/10.18653/v1/2021.dash-1.13
https://doi.org/10.18653/v1/2021.dash-1.13
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://github.com/ElementAI/baal/
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready
https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready
https://aclanthology.org/D19-2004
https://aclanthology.org/D19-2004
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.48550/ARXIV.2202.03629
https://doi.org/10.48550/ARXIV.2202.03629
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://doi.org/10.18653/v1/2021.emnlp-demo.21


processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Edward Ma. 2019. Nlp augmentation. https://
github.com/makcedward/nlpaug.

Joe McKendrick. 2021. Artificial intelligence’s biggest
stumbling block: Trust. Forbes.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

Curtis Northcutt, Anish Athalye, and Jonas Mueller.
2021. Pervasive label errors in test sets destabilize
machine learning benchmarks. In Proceedings of
the Neural Information Processing Systems Track on
Datasets and Benchmarks.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Karolina Stanczak and Isabelle Augenstein. 2021. A
survey on gender bias in natural language processing.
CoRR, abs/2112.14168.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Computa-
tional Linguistics.

Andrew G Wilson and Pavel Izmailov. 2020. Bayesian
deep learning and a probabilistic perspective of gener-
alization. Advances in neural information processing
systems, 33:4697–4708.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Perric
Cistac, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. pages 38–45. Association for
Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel Weld. 2019. Errudite: Scalable, reproducible,
and testable error analysis. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 747–763, Florence, Italy.
Association for Computational Linguistics.

306

https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug
https://www.forbes.com/sites/joemckendrick/2021/08/30/artificial-intelligences-biggest-stumbling-block-trust/?sh=5cc359b67cb3
https://www.forbes.com/sites/joemckendrick/2021/08/30/artificial-intelligences-biggest-stumbling-block-trust/?sh=5cc359b67cb3
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/f2217062e9a397a1dca429e7d70bc6ca-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/f2217062e9a397a1dca429e7d70bc6ca-Paper-round1.pdf
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2112.14168
http://arxiv.org/abs/2112.14168
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073


A Azimuth Design

The Azimuth team employed human-centered de-
sign methods to create interfaces that propose a
workflow to AI practitioners while taking into ac-
count the exploratory nature of their work.

A.1 Design Challenges
User interviews surfaced functional challenges that
we were able to address with design modifications.
We present several examples below.

First, early design iterations centered the user ex-
perience around the exploration space, allowing for
unstructured analysis and exploration of individ-
ual examples. However, this space did not provide
enough high-level insights nor sufficient guidance
to inform a user’s next actions. We created the
dashboard (Fig. 6) to summarize these insights and
guide the user’s exploration of the dataset.

Figure 6: The dashboard was added to address the need
to separate but link different levels of analysis.

Second, the notion of data subpopulations was
included very early on in the form of filtering via
individual dropdown menus. This did not show
all possible filtering options nor their distributions
across the dataset. As Fig. 10 illustrates, the con-
trol panel that replaced the dropdown menus now
shows users how filters can be combined as well
as the filters that result in the largest number of
model errors. For example, filtering the dataset by
prediction oil_change_how will result in a data sub-
population where the model performed very well
(the line is almost entirely green).

Third, we grappled with the trade-off between
providing users with all possible avenues of explo-
ration versus presenting a limited set of options
that are relevant in the context of the user’s activity.
We ended up replacing the initial option for users
to select data subsets by individual confidence his-
togram bins, which led to choice paralysis or hap-

hazardness, with the option to select data subsets
by picking a confidence threshold. For example,
users can now view all examples where the model
assigned a confidence less than 80%.

A.2 Guidance

Colors. A consistent color scheme is used to draw
attention to warnings, as shown in the confusion
matrix in Fig. 7.

Figure 7: Example of Azimuth color system.

Documentation. To help guide our users, each
section element has direct links to our detailed
product documentation, as shown in Fig. 8.

Figure 8: Links to product documentation are embedded
throughout the application.

Tooltips. Tooltips are also available on essential
elements to identify and define key concepts, show
calculation methods, define terms, and provide
information on how to use certain functionality, as
shown in Fig. 9.

A.3 Flexibility

Filtering. A control panel, illustrated in Fig. 10,
allows users to filter the dataset and predictions
across diverse criteria, such as containing a particu-
lar word or having a certain confidence score. The

307



Figure 9: Tooltips help give context to users.

user can also filter by label, predicted class, and all
available smart tags. Predictions can also be shown
with and without post-processing, which can help
distinguish model errors from errors related to the
post-processing steps.

Figure 10: Control panel provides sophisticated filter-
ing.

Sorting and Column Customization. As shown
in Fig. 11, many of our tables allow users to
show/hide columns as they see fit, in addition to
sorting the table information based on the content
in the columns.

Figure 11: Users can sort by column and customize
what they see.

B Case Study Details

B.1 Dataset and Model Details
We chose a DistilBert model (Sanh et al., 2019)
from among the best ranking models on Paper-
sWithCode4. The CLINC-OOS dataset and the
DistilBert model were both downloaded from the
Hugging Face Hub. We configured Azimuth to
use a threshold of 0.5. When the model score was
below this value, examples were classified as the
rejection class, also known as Out-of-Scope (OOS).
Azimuth provides the option to conduct analyses
before or after post-processing (in this case, thresh-
olding to OOS); we took advantage of this option
for some analyses below. We used the Imbalanced
training split and the validation split as the evalua-
tion set.

B.2 Dataset Analysis
B.2.1 Dataset Shift
We examined data shift by inspecting misclassi-
fied examples from the evaluation set using the
no_close_train smart tag, which identifies those
having no training examples that are similar to
them. This approach identified 26 examples that
were candidates for targeted data augmentation.
Data augmentation could be guided by looking at
the example’s most salient tokens and its most sim-
ilar examples in the training set.

For instance, as shown in Fig. 12, an example
mentioning "travel time" was labeled “distance”,
but predicted as “travel alert” with low confidence
(41%). According to the saliency map, the model
focuses on the words “travel” and “time”. Most
similar examples in the training data were labeled
as "distance" but did not contain the word “travel”.
In addition, the examples in the training data con-
taining the word “travel” were predominantly la-
beled “travel alert,” followed by “travel notifica-
tion” and “vaccines”. Augmenting the class “dis-
tance” in the training data with examples contain-
ing words related to "travel time" could be a way
to address this data shift issue.

B.2.2 Class Imbalance
Azimuth detects class imbalance in the training
set, which is normal given the split that we chose.
Another observation is that the OOS class is over-
represented in the evaluation set, compared to other
classes.

4https://paperswithcode.com/sota/
text-classification-on-clinc-oos

308

https://paperswithcode.com/sota/text-classification-on-clinc-oos
https://paperswithcode.com/sota/text-classification-on-clinc-oos


Figure 12: Example of possible dataset shift on the example details page.

B.2.3 Class Definition
The dataset covers a large variety of topics with
its 150 intents, not all of which are at the same
hierarchical level of semantic meaning. This can
cause the model to have difficulty differentiating
between intents. The conflicting_neighbors smart
tags surfaced many examples for which it was not
easy to determine the correct label, or where mul-
tiple labels could apply. This helped direct us to
overlapping class pairs, including those that are
effectively supersets of other intents. For example:

• There is some ambiguity between the intents
“restaurant suggestion” and “travel sugges-
tion”. When the example refers to a restau-
rant in a particular city, the ground-truth label
is "travel suggestion" rather than "restaurant
suggestion", but the model did not learn this
distinction.

• Some intents cover large semantic spaces,
such as “translate” and “define”, making them
difficult to predict correctly. For example,
“how do I ask about the weather in chinese”
is predicted as “weather” instead of "trans-
late" because the text can be interpreted as a
weather-related question.

B.2.4 Problematic Examples
Using similarity smart tags (conflicting_neighbors
and no_close), we were able to detect 18 misla-
beled examples in the evaluation set and 25 in the
training set. Notably, we also found a mislabeling

pattern where four examples were labeled “change
accent” instead of “change account”. This dataset
is relatively clean and, for better or worse, does not
reflect the messiness and ambiguity of real-world
data. Although these examples make up a small
proportion of the dataset, it is notable that we were
able to surface them relatively easily. Fig. 13 shows
a subset of the mislabeled examples.

Figure 13: Subset of problematic examples.

B.3 Model Quality Assessment

The model is 99.2% accurate on the training set
and 93.9% accurate on the evaluation set without
post-processing. The errors in the evaluation set
are either misclassifications (5.8%) or rejections to

309



OOS (0.3%). When adding a threshold of 0.5, the
accuracy decreases to 90.7%. On the other hand,
misclassification errors decrease to 1.6% and OOS
gets predicted more often instead of predicting the
wrong in-scope class (7.7%).

B.3.1 Data Subpopulations
We examined misclassification rates for different
data subpopulations, such as label and a variety of
smart tags. Several interesting issues were quickly
revealed:

• The model has lower accuracy on a few in-
tents when evaluated on the training set, es-
pecially when examples contain the word
"name", which can be found in intents such as
"what is your name" and "change user name"
(respectively ∼75% and ∼82% accuracy on
the training set). These observations on the
training data already tell us that some intents
are more difficult to learn than others.

• Compared to average evaluation set accuracy,
the model performs better (+3%) on long sen-
tences (more than 15 tokens) and worse (-5%)
on short sentences (less than three tokens).
Short sentences are more often predicted as
OOS. The model also performs worse on
examples having no verbs (often short sen-
tences), with a drop of ∼12% in accuracy
compared to the average.

• As expected, the model has lower accuracy on
examples with conflicting or few similar ex-
amples. Compared to average, we see a drop
in accuracy of ∼25% on examples tagged
with the conflicting_neighbors smart tag and
a drop of ∼10% on examples tagged with the
no_close smart tags.

• The accuracy is lower than average (∼20%)
on examples that fail any punctuation ro-
bustness tests (failed_punctuation smart tag).
These tests are considered to fail if the predic-
tion changes when the punctuation is altered.

B.3.2 Annotation Artifacts Discovery
Exploration with Azimuth revealed the following
cases where model predictions depended on spe-
cific words or word forms, as well as other cases
described below in “Behavioral testing”. As shown
in Fig. 14, predicting "accept reservations" intent
is highly dependent on the word “reservations”.
When examples in the evaluation set contain the
singular form "reservation", the model makes mis-
takes.

Figure 14: Important words are shown for correct and
incorrect predictions for the "accept reservations" intent.

B.3.3 Behavioral Testing
Azimuth flagged the high failure rate of behavioral
tests on both the training and evaluation sets, due
largely to the high failure rate when introducing
typos (approximately 22-25% failure across several
tests for both dataset splits). Additionally, model
predictions changed for some examples when alter-
ing the punctuation, especially when introducing
a comma or a period. Although the overall failure
rate for this test was low (∼2%), users may con-
sider this type of failure unacceptable. Together,
these tests suggest a robustness issue that should be
addressed through dataset augmentation or pipeline
design.

Further exploration of individual examples, via
saliency maps and smart tags for behavioral tests,
revealed several intents that were highly dependent
on single tokens, indicating potential annotation
artifacts. For instance, the model fails when “lug-
gage” is misspelled in examples labeled as “lost
luggage”. Similarly, it fails when “rewards” is mis-
spelled in examples labeled as “redeem rewards”.

B.3.4 Uncertainty-based Analysis
The model is generally underconfident, having a
maximum confidence of 90% and an expected cal-
ibration error (ECE) of 0.21 on the evaluation set.
This could be addressed via temperature scaling.
The model is particularly underconfident on spe-
cific intents, such as "what is your name" and "pto
used", with top confidence scores around 60% to
70%.

The high_epistemic_uncertainty smart tag sur-
faced 48 examples, most of them labeled as OOS.
The model only has an accuracy of ∼30% on these
examples, demonstrating how difficult they are to
classify. Some examples include "idk", labeled
as "maybe", and "what’s today’s high and low",
labeled as "weather".

310


