
Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 12 - 21
December 7-11, 2022 c©2022 Association for Computational Linguistics

LM-Debugger: An Interactive Tool for
Inspection and Intervention in Transformer-Based Language Models

Mor Geva1 Avi Caciularu2,∗ Guy Dar3 Paul Roit2 Shoval Sadde1

Micah Shlain1 Bar Tamir4 Yoav Goldberg1,2

1Allen Institute for AI 2Bar-Ilan University
3Tel Aviv University 4The Hebrew University of Jerusalem

morp@allenai.org

Abstract

The opaque nature and unexplained behavior
of transformer-based language models (LMs)
have spurred a wide interest in interpreting
their predictions. However, current interpre-
tation methods mostly focus on probing mod-
els from outside, executing behavioral tests,
and analyzing salience input features, while
the internal prediction construction process is
largely not understood. In this work, we in-
troduce LM-Debugger, an interactive debug-
ger tool for transformer-based LMs, which
provides a fine-grained interpretation of the
model’s internal prediction process, as well as
a powerful framework for intervening in LM
behavior. For its backbone, LM-Debugger re-
lies on a recent method that interprets the inner
token representations and their updates by the
feed-forward layers in the vocabulary space.
We demonstrate the utility of LM-Debugger for
single-prediction debugging, by inspecting the
internal disambiguation process done by GPT2.
Moreover, we show how easily LM-Debugger
allows to shift model behavior in a direction
of the user’s choice, by identifying a few vec-
tors in the network and inducing effective in-
terventions to the prediction process. We re-
lease LM-Debugger as an open-source tool and
a demo over GPT2 models.

1 Introduction

Transformer-based language models (LMs) are the
backbone of modern NLP models (Bommasani
et al., 2021), but their internal prediction construc-
tion process is opaque. This is problematic to end-
users that do not understand why the model makes
specific predictions, as well as for developers who
wish to debug or fix model behaviour.

Recent work (Elhage et al., 2021; Geva et al.,
2022) suggested that the construction process of
LM predictions can be viewed as a sequence of
updates to the token representation. Specifically,

∗Work done during an internship at AI2.

She is working as a

DJ

kindergarten,
school, kids,
elementary,

teacher,
classroom

lawyer
nurse
dentist
nanny

DJ
singer
lawyer
rapper

FFN

FFN

FFN

album, DJ,
rapper, funk,
music, song,
vocals, punk,
disco, rock, …

inspection
intervention
projections

Figure 1: Illustration of the main capabilities of
LM-Debugger. Our tool interprets dominant changes
in the output distribution induced by the feed-forward
layers across the network (self-attention layers are not
shown), and enables configuring interventions for shift-
ing the prediction in directions of the user’s choice.

Geva et al. (2022) showed that updates by the feed-
forward network (FFN) layers, one of the building
blocks of transformers (Vaswani et al., 2017), can
be decomposed into weighted collections of sub-
updates, each induced by a FFN parameter vector,
that can be interpreted in the vocabulary space.

In this work, we make a step towards LM trans-
parency by employing this interpretation approach
to create LM-Debugger, a powerful tool for inspec-
tion and intervention in transformer LM predic-
tions. LM-Debugger provides three main capabil-
ities for single-prediction debugging and model
analysis (illustrated in Figure 1). First, for a given
input (e.g. “My wife is working as a”), it interprets
the model’s prediction at each layer in the network,
and the major changes applied to it by FFN layers.
This is done by projecting the token representa-

12

tion before and after the FFN update as well as the
major FFN sub-updates at any layer to the output
vocabulary. Second, it allows intervening in the
prediction by changing the weights of specific sub-
updates, e.g. increasing (decreasing) a sub-update
that promotes music-related (teaching-related) con-
cepts, which results in a modified output. Last, for
a given LM, LM-Debugger interprets all the FFN
parameter vectors across the network and creates a
search index over the tokens they promote. This al-
lows an input-independent analysis of the concepts
encoded by the model’s FFN layers, and enables
configuring general and effective interventions.

We demonstrate the utility of LM-Debugger for
two general use-cases. In the context of predic-
tion debugging, we use the fine-grained tracing of
LM-Debugger to inspect the internal disambigua-
tion process performed by the model. Furthermore,
we demonstrate how our tool can be used to con-
figure a few powerful interventions that effectively
control different aspects in text generation.

We release LM-Debugger as an open-source tool
at https://github.com/mega002/lm-debugger
and host a demo of GPT2 (Brown et al., 2020)
at https://lm-debugger.apps.allenai.org.1

This to increase the transparency of transformer
LMs and facilitate research in analyzing and con-
trolling NLP models.

2 Underlying Interpretation Method

LM-Debugger establishes a framework for inter-
preting a token’s representation and updates ap-
plied to it at each layer in the network. This frame-
work builds upon recent findings by Geva et al.
(2022), who viewed the token representation as a
changing distribution over the output vocabulary,
and the output from each FFN layer as a collec-
tion of weighted sub-updates to that distribution,
which are often interpretable to humans. We next
elaborate on the findings we rely on at this work.

Consider a transformer LM with L layers and an
embedding matrix E ∈ Rd×|V| of hidden dimen-
sion d, over a vocabulary V . Let w = w1, ..., wt

s.t. ∀i = 1, ..., t : wi ∈ V be an input sequence
of tokens, then at each layer ℓ = 1, ..., L, the hid-
den representation xℓ

i of the i-th token is being
processed and updated by a FFN layer through a
residual connection (He et al., 2016):2

x̃ℓ
i = xℓ

i + FFNℓ(xℓ
i),

1See a video at https://youtu.be/5D_GiJv7O-M
2Layer normalization is omitted (Geva et al., 2022).

where xℓ
i is the output from the preceding multi-

head self-attention layer, and x̃ℓ
i is the updated to-

ken representation (Vaswani et al., 2017). Geva
et al. (2022) proposed an interpretation method for
these updates in terms of the vocabulary, which
we employ as the backbone of LM-Debugger and
describe in detail next.

Token Representation as a Distribution Over
the Output Vocabulary. The token representa-
tion before (xℓ

i) and after (x̃ℓ
i) the FFN update at

any layer ℓ is interpreted by projecting it to the vo-
cabulary space and converting it to a distribution:

pℓ
i = softmax(Exℓ

i) ; p̃ℓ
i = softmax(Ex̃ℓ

i)

The final model output is defined by y = p̃L
i .

The FFN Output as a Weighted Collection of
Sub-Updates. Each FFN layer is defined with
two parameter matrices Kℓ, V ℓ ∈ Rdm×d, where
dm is the intermediate hidden dimension, and a
non-linearity function f (bias terms are omitted):

FFNℓ(xℓ) = f
(
Kℓxℓ

)
V ℓ (1)

Geva et al. (2022) interpreted the FFN output by (a)
decomposing it into sub-updates, each induced by
a single FFN parameter vector, and (b) projecting
each sub-update to the vocabulary space. Formally,
Eq. 1 can be decomposed as:

FFNℓ(xℓ) =

dm∑

i=1

f(xℓ · kℓ
i)v

ℓ
i =

dm∑

i=1

mℓ
iv

ℓ
i .

where kℓ
i is the i-th row of Kℓ, vℓ

i is the i-th col-
umn of V ℓ, and mℓ

i := f(xℓ · kℓ
i) is the activation

coefficient of vℓ
i for the given input. Each term in

this sum is interpreted as a sub-update to the output
distribution, by inspecting the top-scoring tokens
in its projection to the vocabulary, i.e. Evℓ

i .
In the rest of the paper, we follow Geva et al.

(2022) and refer to columns of V ℓ as “value vec-
tors” and to their weighted input-dependent form
as “sub-updates”. Importantly, value vectors are
static parameter vectors that are independent on the
input sequence, while sub-updates are dynamic as
they are weighted by input-dependent coefficients.
For a model with L layers and a hidden dimension
dm, there are L ∗ dm static value vectors, which
induce L ∗ dm corresponding sub-updates when
running an input through the model.

13

https://github.com/mega002/lm-debugger
https://lm-debugger.apps.allenai.org
https://youtu.be/5D_GiJv7O-M

Figure 2: The prediction view of LM-Debugger, showing the prediction trace for a given input (main panel), allowing
to configure interventions (lower panel) and interpret sub-updates to the output distribution (right panel).

3 LM-Debugger

LM-Debugger leverages both static and dynamic
analysis of transformer FFN layers and the updates
they induce to the output distribution for debugging
and intervention in LM predictions. These capa-
bilities are provided in two main views, which we
describe next.

3.1 Prediction View
This view, shown in Figure 2, is designed for
per-example debugging. It allows running inputs
through the model to generate text in an auto-
regressive manner, while tracing the dominant sub-
updates in every layer and applying interventions.

Prediction Trace (Figure 2, main panel). The
user enters an input for the model, for which a de-
tailed trace of the prediction across the network is
provided. For each layer, it shows the top-tokens in
the output distribution, before and after the FFN up-
date, and the 10 most dominant FFN sub-updates.
For every sub-update miv

ℓ
i we show an identifier

L[ℓ]D[i] of its corresponding value vector and the
coefficient for the given input (e.g. L17D4005 and
9.79).3 The top distribution tokens and sub-updates
are sorted by the token probability/sub-update co-
efficient from left (highest) to right (lowest). A
small arrow next to each sub-update allows setting
an intervention on its corresponding value vector.

3The layer and dimension in the identifier use zero-index.

Interventions (Figure 2, lower panel). Beyond
tracing the output distribution, LM-Debugger also
allows intervening in the prediction process by set-
ting the coefficients of any vector values in the
network, thus, inducing sub-updates of the user’s
choice. To set an intervention for a specific value
vector, the user should enter its identifier to the
panel and choose whether to “turn it on or off”,
that is, setting its coefficient to the value of the
coefficient of the most dominant sub-update in that
layer, or to zero, respectively. When running an
input example, all interventions in the panel will
be effective, for the entire generation process.

Value Vector Information (Figure 2, right
panel). A natural question that arises is how to
choose meaningful interventions. LM-Debugger
provides two complementary approaches for this.
A bottom-up approach is to observe the dominant
sub-updates for specific examples, and apply inter-
ventions on them. A sub-update can be interpreted
by inspecting the top-tokens in the projection of
its corresponding value vector to the vocabulary
(Geva et al., 2022). For convenience, we let the
user assign names to value vectors. Another way to
find meaningful interventions is by a top-down ap-
proach of searching for value vectors that express
concepts of the user’s interest. We provide this
capability in the exploration view of LM-Debugger,
which is described next.

14

3.2 Exploration View
This view allows static exploration of value vec-
tors, primarily for analyzing which concepts are
encoded in the FFN layers, how concepts are spread
over different layers, and identifying groups of re-
lated value vectors.

Keyword Search (Figure 3). Value vectors are
interpreted by the top tokens they promote. By
considering these sets of tokens as textual docu-
ments, LM-Debugger allows searching for concepts
encoded in value vectors across the layers. This is
enabled by a search index that LM-Debugger holds
in the background, which stores the projections
of all value vectors to the vocabulary, and allows
executing simple queries against them using the
BM25 (Robertson et al., 1995) algorithm.

Cluster Visualization (Figure 4). Assuming the
user is interested in locating a specific concept in
the network and that she has found a relevant value
vector, either from debugging an example in the
prediction view or by the keyword search. A nat-
ural next step is to find similar value vectors that
promote related tokens. To this end, LM-Debugger
provides a clustering of all value vectors in the
network, which allows mapping any value vector
to a cluster of similar vectors in the hidden space
(Geva et al., 2022). The interface displays a ran-
dom sample of vectors from the cluster, as well as
an aggregation of their top tokens as a word cloud,
showing the concepts promoted by the cluster.

4 Debugging LM Predictions by Tracing
FFN Updates

In this section, we demonstrate the utility of
LM-Debugger for interpreting model behaviour
upon a given example. As an instructive example,
we will consider the case of sense disambiguation.

When generating text, LMs often need to per-
form sense disambiguation and decide on one plau-
sible continuation. For example, the word “for”
in the input “The book is for” has two plausible
senses of purpose (e.g. “reading”) and person
(e.g. “him”) (Karidi et al., 2021). We will now in-
spect the prediction by GPT2 (Brown et al., 2020)
and track the internal sense disambiguation pro-
cess for this example. To this end, we enter the
input in the prediction view and click Trace, which
provides a full trace of the prediction across layers.

Table 1 displays a part of this trace from selected
layers, showing a gradual transition from purpose

Layer: 4 Sense: purpose
Before: example, the, instance, purposes
After: example, the, instance, all

Layer: 10 Sense: purpose
Before: the, sale, example, a
After: the, sale, a, example

Layer: 15 Sense: purpose/person
Before: sale, the, anyone, use
After: sale, anyone, the, ages

Layer: 20 Sense: person
Before: beginners, anyone, adults, sale
After: anyone, beginners, adults, readers

Table 1: Partial prediction trace of GPT2 for the input
“This book is for”, showing the internal disambiguation
process from purpose to person sense across layers.

to person sense. Until layer 11 (out of 24), the top-
tokens in the output distribution are mostly related
to sale/example purposes. Starting from layer 12,
the prediction slowly shifts to revolve about the
audience of the book, e.g. anyone and ages, until
layer 18 where sale is eliminated from the top
position. In the last layers, tokens become more
specific, e.g. beginners and adults.

To examine the major updates through which
the prediction has formed, we can click on spe-
cific sub-updates in the trace to inspect the top-
scoring tokens in their projections. We observe
that in early layers, tokens are often related to
purpose sense (e.g. instance in L2D1855 and
buyers in L12D659), in intermediate layers tokens
are a mix of both senses (readers in L16D3026
and preschool in L17D2454, and sale/free in
L16D1662), and mostly person sense in the last lay-
ers (users in L18D685, people in L20D3643, and
those in L21D2007).

5 Configuring Effective Interventions for
Controlled Text Generation

Beyond interpretability, LM-Debugger enables to
intervene in LM predictions. We show this by find-
ing value vectors that promote specific concepts
and applying simple and effective interventions.

Controlling Occupation Prediction. Consider
the input “My wife is working as a”. When run-
ning it through GPT2, the final prediction from
the last layer has the top tokens nurse, teacher,
waitress. We would like to intervene in the pre-
diction in order to change its focus to occupations
related to software engineering, which in general
are less associated with women (De-Arteaga et al.,
2019). To this end, we will use the exploration

15

Figure 3: Keyword search in the exploration view of LM-Debugger, which matches user queries against the tokens
promoted by value vectors of the model.

Figure 4: Cluster visualization in the exploration view of LM-Debugger, which maps a given value vector to its
cluster of similar value vectors in the network.

view of LM-Debugger to search for value vectors
promoting software-related concepts.

Searching the keywords “software”, “devel-
oper”, and “engineer” brings up two value vectors
with coherent concepts: L10D3141 and L17D115
(Figure 3). Now, we will add these value vectors
to the intervention panel in the prediction view,
and run the example again. Our intervention, that
only involved two (0.002%) vectors in the network,
dramatically changed the prediction to software,
programmer, consultant, developer, effec-
tively shifting it in the direction we wanted. This
demonstrates the power of LM-Debugger to change
model behaviour and fix undesirable predictions.

Controlling the Sentiment of Generated Text.
The previous example focused on next-token pre-
diction. We now take this one step further and
configure powerful and general interventions that

influence various texts generated by the model. For
our experimental setting, we will attempt to control
the sentiment in generated reviews by GPT2, for
inputs taken from the Yelp dataset (Asghar, 2016).

We choose our interventions independently of
the inputs, with two easy steps. First, we use the
keyword search (Figure 3) to identify “seed” value
vectors that promote positive and negative adjec-
tives/adverbs, using the queries “terrible, mediocre,
boring” and “spacious, superb, delicious”. Then,
we take one value vector for each polarity and, us-
ing the cluster visualization (Figure 4), expand it
to a diverse set of vectors from its corresponding
cluster, that promote similar concepts. Overall, we
select 5-6 value vectors for each polarity (details in
Appendix A.1), to which we apply interventions.

Table 2 presents the texts generated by GPT2
(each limited to 10 tokens) for multiple inputs, with
and without applying interventions. Clearly, across

16

Input Interven. Continuation

“Service in this place is”
- a bit of a mess. I’m not sure
↑ Positive a good place to make the right efforts to make
↑ Negative a waste of a bunch of crap that is too

“I have been to this
restaurant twice and”

- both times I was disappointed. The first time I
↑ Positive have been served excellent food and good service. The
↑ Negative have been disappointed. The food is over processed and

“We went on a weeknight.
Place was”

- packed. We had to wait for the bus
↑ Positive good, good food, good staff, good people
↑ Negative too far for us to get lost. We were

“Went for breakfast on
6/16/14. We”

- had a great time. We had a great time
↑ Positive have a good team of people who are able to
↑ Negative were too heavy for the wrong type of food that

Table 2: Continuations (limited to 10 tokens) generated by GPT2 for different inputs from the Yelp dataset, with
and without interventions for “turning on” sub-updates for positive and negative sentiment.

all the examples, our intervention in the prediction
successfully leads to the desired effect, turning the
sentiment of the generated text to be positive or
negative, according to the configured sub-updates.

6 Implementation Details

The prediction view is implemented as a React web
application with a backend Flask server that runs an
API for executing models from the Transformers
library by HuggingFace (Wolf et al., 2020). The
exploration view is a Streamlit web application,
which (a) sends user search queries to an Elas-
ticsearch index with the top tokens of all vector
value projections, and (b) visualize clusters of value
vectors created with the scikit-learn package (Pe-
dregosa et al., 2011). Our current implementation
supports any GPT2 model from HuggingFace, and
other auto-regressive models can be plugged-in
with only a few local modifications (e.g. translat-
ing the relevant layer names). More details and in-
structions for how to deploy and run LM-Debugger
are provided at https://github.com/mega002/
lm-debugger.

7 Related Work

Interpreting single-predictions and the general be-
havior of LMs is a growing research area that at-
tracted immense attention in recent years (Belinkov
et al., 2020; Choudhary et al., 2022). LM-Debugger
is a the first tool to interpret and intervene in the pre-
diction construction process of transformer-based
LMs based on FFN updates.

Existing interpretation and analysis frameworks
mostly rely on methods for behavioral analysis
(Ribeiro et al., 2020) by probing models with ad-
versarial (Wallace et al., 2019b) or counterfactual

examples (Tenney et al., 2020), input saliency meth-
ods that assign importance scores to input features
(Wallace et al., 2019b; Tenney et al., 2020), and
analysis of the attention layers (Hoover et al., 2020;
Vig and Belinkov, 2019).

More related to LM-Debugger, other tools ana-
lyze patterns in neuron activations (Rethmeier et al.,
2020; Dalvi et al., 2019; Alammar, 2021). Unlike
these methods, we focus on interpreting the model
parameters and on intervening in their contribution
to the model’s prediction.

The functionality of LM-Debugger is mostly re-
lated to tools that trace hidden representations
across layers. Similarly to LM-Debugger, Alammar
(2021); Nostalgebraist (2020) interpret the token
representation in terms of the output vocabulary.
We take this one step further and interpret the FFN
updates to the representation, allowing to observe
not only the evolution of the representation but also
the factors that induce changes in it.

Our intervention in FFN sub-updates relates to
recent methods for locating and editing knowledge
in the FFN layers of LMs (Meng et al., 2022;
Dai et al., 2022). Different from these methods,
LM-Debugger aims to provide a comprehensive
and fine-grained interpretation of the prediction
construction process across the layers.

8 Conclusion

We introduce LM-Debugger, a debugger tool for
transformer-based LMs, and the first tool to analyze
the FFN updates to the token representations across
layers. LM-Debugger provides a fine-grained inter-
pretation of single-predictions, as well as a power-
ful framework for intervention in LM predictions.

17

https://github.com/mega002/lm-debugger
https://github.com/mega002/lm-debugger

Ethical Statement

Our work aims to increase the transparency of
transformer-based LMs. It is well known that such
models often produce offensive, harmful language
(Bender et al., 2021; McGuffie and Newhouse,
2020; Gehman et al., 2020; Wallace et al., 2019a),
which might originate in toxic concepts encoded in
their parameters (Geva et al., 2022). LM-Debugger,
which traces and interprets LM predictions, could
expose such toxic concepts and therefore should be
used with caution.
LM-Debugger also provides a framework for

modifying LM behavior in particular directions.
While our intention is to provide developers tools
for fixing model errors, mitigating biases, and build-
ing trustworthy models, this capability also has the
potential for abuse. In this context, it should be
made clear that LM-Debugger does not modify the
information encoded in LMs, but only changes
the intensity in which this information is exposed
in the model’s predictions. At the same time,
LM-Debugger lets the user observe the intensity of
updates to the prediction, which could be used to
identify suspicious interventions. Nonetheless, be-
cause of these concerns, we stress that LMs should
not be integrated into critical systems without cau-
tion and monitoring.

Acknowledgements

We thank the REVIZ team at the Allen Institute for
AI, particularly Sam Skjonsberg and Sam Stuesser.
This project has received funding from the Com-
puter Science Scholarship granted by the Séphora
Berrebi Foundation, the PBC fellowship for out-
standing PhD candidates in Data Science, and the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme, grant agreement No. 802774
(iEXTRACT).

References
J Alammar. 2021. Ecco: An open source library for the

explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 249–257,
Online. Association for Computational Linguistics.

Nabiha Asghar. 2016. Yelp dataset challenge: Review
rating prediction. arXiv preprint arXiv:1605.05362.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie
Pavlick. 2020. Interpretability and analysis in neural
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 1–5, Online. Association for
Computational Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the ACM Confer-
ence on Fairness, Accountability, and Transparency
(FAccT).

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S.
Chen, Kathleen Creel, Jared Davis, Dora Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E.
Gillespie, Karan Goel, Noah D. Goodman, Shelby
Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong,
Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain,
Dan Jurafsky, Pratyusha Kalluri, Siddharth Karam-
cheti, Geoff Keeling, Fereshte Khani, O. Khattab,
Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Ro-
hith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xi-
ang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir P. Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Benjamin Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Robert Re-
ich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani,
Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy
Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr,
Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Ya-
sunaga, Jiaxuan You, Matei A. Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang,
Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021.
On the opportunities and risks of foundation models.
ArXiv, abs/2108.07258.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In

18

https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://doi.org/10.18653/v1/2020.acl-tutorials.1

Proceedings of Neural Information Processing Sys-
tems (NeurIPS).

Shivani Choudhary, Niladri Chatterjee, and Subir Ku-
mar Saha. 2022. Interpretation of black box nlp mod-
els: A survey. arXiv preprint arXiv:2203.17081.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Fahim Dalvi, Avery Nortonsmith, Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, and
James Glass. 2019. NeuroX: A toolkit for analyzing
individual neurons in neural networks. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):9851–9852.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, FAT* ’19,
page 120–128, New York, NY, USA. Association for
Computing Machinery.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of the conference on computer
vision and pattern recognition (CVPR).

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer

Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Taelin Karidi, Yichu Zhou, Nathan Schneider, Omri
Abend, and Vivek Srikumar. 2021. Putting words
in BERT’s mouth: Navigating contextualized vector
spaces with pseudowords. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10300–10313, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Kris McGuffie and Alex Newhouse. 2020. The radical-
ization risks of gpt-3 and advanced neural language
models. arXiv preprint arXiv:2009.06807.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual knowl-
edge in gpt. arXiv preprint arXiv:2202.05262.

Nostalgebraist. 2020. interpreting GPT: the logit lens.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Nils Rethmeier, Vageesh Kumar Saxena, and Isabelle
Augenstein. 2020. Tx-ray: Quantifying and explain-
ing model-knowledge transfer in (un-)supervised nlp.
In Proceedings of the 36th Conference on Uncer-
tainty in Artificial Intelligence (UAI), volume 124 of
Proceedings of Machine Learning Research, pages
440–449. PMLR.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, and Mike Gatford.
1995. et almbox. 1995. okapi at trec-3. Nist Special
Publication Sp, 109:109.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

19

https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://doi.org/10.1609/aaai.v33i01.33019851
https://doi.org/10.1609/aaai.v33i01.33019851
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.mlr.press/v124/rethmeier20a.html
https://proceedings.mlr.press/v124/rethmeier20a.html
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15

you need. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5998–6008.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019a. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019b.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

A Appendix

A.1 Details on Interventions to Control
Generated Text Sentiment

Table 3 lists all the value vectors selected for our
interventions described in §5, and examples for
top-scoring tokens in their projections. These
vectors were found with the exploration view of
LM-Debugger (§3.2), using both keyword search
and clustering visualisation. All the interventions
were configured to “turn on” these vectors, namely,
setting their coefficients to be maximal for the cor-
responding layer. This is following the observation
by Geva et al. (2022) that FFN updates operate in
a token promotion mechanism (rather than elimina-
tion).

20

https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Sentiment Value Vector Example Top-scoring Tokens

Positive

L13D1763 properly, appropriately, adequate, truthful, humane,
fulfil, inclusive, timely, patiently, sustainable

L13D2011 clean, Proper, secure, flawless, safest, graceful, smooth,
calmly

L14D944 peacefully, graceful, respectful, careful, generous,
patiently, calm, tolerant, fair

L15D74 Excellence, superb, trustworthy, marvelous, terrific,
awesome, Amazing

L20D988 successful, optimal, perfect, satisfactory, welcome,
helpful, fulfilling, healthy

Negative

L11D4 outdated, inadequate, stale, lousy, dull, mediocre, boring,
wasteful

L14D2653 trivial, dismiss, rigid, unsupported, only, prejud, obfusc,
pretend, dispar, slander

L16D974 inappropriately, poorly, disrespect, unreliable,
unhealthy, insecure, improperly, arrogance

L17D3790 inappropriate, improper, wrong, bad, harmful,
unreasonable, defective, disturbance, errors

L18D91 confused, bizarre, unfairly, horrible, reckless, neglect,
misplaced, strange, nasty, mistakenly

L18D3981 wrong, incorrect, insufficient, misleading, premature,
improperly, unrealistic, outdated, unfair

Table 3: Value vectors used for controlling sentiment in generated text, that promote positive and negative
adjectives/adverbs. For each vector, we show example top-scoring tokens from its projection to the vocabulary, as
presented in the exploration view of LM-Debugger.

21

