
ECNLP 2022

The 5th Workshop on e-Commerce and NLP

Proceedings of the Workshop

May 26, 2022

c©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-35-3

i

Introduction

It is our great pleasure to welcome you to the Fifth Workshop on e-Commerce and NLP (ECNLP).

This workshop focuses on intersection of Natural Language Processing (NLP) and e-Commerce. NLP
and information retrieval (IR) have been powering e-Commerce applications since the early days of the
fields. Today, NLP and IR already play a significant role in e-Commerce tasks, including product sear-
ch, recommender systems, product question answering, machine translation, sentiment analysis, product
description and review summarization, and customer review processing. With the exploding popularity
of chatbots and shopping assistants -– both text- and voice-based -– NLP, IR, question answering, and
dialogue systems research is poised to transform e-Commerce once again.

The ECNLP workshop series was designed to provide a venue for the dissemination of late-breaking
research results and ideas related to e-commerce and online shopping, as well as a forum where new
and unfinished ideas could be discussed. After four successful editions since 2019, we are happy to host
ECNLP 5 at ACL 2022 and once again bring together researchers from both academia and industry.

We have received a larger number of submissions than we could accept for presentation. ECNLP 5 re-
ceived 52 submissions of long and short research papers. In total, ECNLP 5 featured 29 accepted papers
(56% acceptance rate). The selection process was competitive and we believe it resulted in a balanced
and varied program that is appealing to audiences from the various sub-areas of e-Commerce.

We would like to thank everyone who submitted a paper to the workshop. We would also like to express
our gratitude to the members of the Program Committee for their timely reviews, and for supporting the
tight schedule by providing reviews at short notice.

We hope that you enjoy the workshop!

The ECNLP Organizers May 2022

ii

Organizing Committee

Organizing Committee

Shervin Malmasi, Amazon, USA
Surya Kallumadi, Lowe’s Companies, Inc, USA
Nicola Ueffing, eBay, Germany
Eugene Agichtein, Emory University, USA
Oleg Rokhlenko, Amazon, USA
Ido Guy, Meta AI, Israel

iii

Program Committee

Program Committee

Ahsaas Bajaj
Adrian Benton, Google
Giuseppe Castellucci, Amazon
Dumitru Clementin Cercel, University Politehnica of Bucharest
Lei Chen, Rakuten Institute of Technology, The University of Tokyo
Young-joo Chung
Marcus D. Collins, Amazon
Leonard Dahlmann
Li Dong, Amazon
Besnik Fetahu, Amazon
Ciro Greco
Jongseok Han
Ohnmar Htun
Fei Hu, Microsoft
Manoj Balaji J
Ajinkya Kale
Sudipta Kar, Amazon
Shahram Khadivi, eBay Research
Tracy Holloway King, Adobe Systems
Vinayshekhar Bannihatti Kumar, Amazon
Saar Kuzi, Amazon
Gal Lavee
Jeong Min Lee, Facebook AI
Amita Misra, Amazon
Sudipto Mukherjee, Microsoft
Varun Nagaraj Rao, University of Southern California
Indraneil Paul, Amazon
Arushi Prakash
Alexandre Salle, VTEX
Salim Sazzed
Venkat Srinivasan
Daniel Stein
Sandesh Swamy, Amazon
Jacopo Tagliabue, Coveo
Liling Tan, Amazon
Chen Zhang
Jie Zhao

iv

Table of Contents

DEFTri: A Few-Shot Label Fused Contextual Representation Learning For Product Defect Triage in
e-Commerce

Ipsita Mohanty . 1

Interactive Latent Knowledge Selection for E-Commerce Product Copywriting Generation
Zeming Wang, Yanyan Zou, Yuejian Fang, Hongshen Chen, Mian Ma, Zhuoye Ding and Bo Long

8

Leveraging Seq2seq Language Generation for Multi-level Product Issue Identification
Yang Liu, Varnith Chordia, Hua Li, Siavash Fazeli Dehkordy, Yifei Sun, Vincent Gao and Na

Zhang . 20

Data Quality Estimation Framework for Faster Tax Code Classification
Ravi Kondadadi, Allen Mathew Williams and Nicolas Nicolov . 29

CML: A Contrastive Meta Learning Method to Estimate Human Label Confidence Scores and Reduce
Data Collection Cost

Bo Dong, Yiyi Wang, Hanbo Sun, Yunji Wang, Alireza Hashemi and Zheng Du 35

Improving Relevance Quality in Product Search using High-Precision Query-Product Semantic Simila-
rity

Alireza Bagheri Garakani, Fan Yang, Wen-Yu Hua, Yetian Chen, Michinari Momma, Jingyuan
Deng, Yan Gao and Yi Sun . 44

Comparative Snippet Generation
Saurabh Jain, Yisong Miao and Min-Yen Kan . 49

Textual Content Moderation in C2C Marketplace
Yusuke Shido, Hsien-Chi Toby Liu and Keisuke Umezawa . 58

Spelling Correction using Phonetics in E-commerce Search
Fan Yang, Alireza Bagheri Garakani, Yifei Teng, Yan Gao, Jia Liu, Jingyuan Deng and Yi Sun63

Logical Reasoning for Task Oriented Dialogue Systems
Sajjad Beygi, Maryam Fazel-Zarandi, Alessandra Cervone, Prakash Krishnan and Siddhartha

Jonnalagadda . 68

CoVA: Context-aware Visual Attention for Webpage Information Extraction
Anurendra Kumar, Keval Morabia, William Wang, Kevin Chang and Alex Schwing 80

Product Titles-to-Attributes As a Text-to-Text Task
Gilad Fuchs and Yoni Acriche . 91

Product Answer Generation from Heterogeneous Sources: A New Benchmark and Best Practices
Xiaoyu Shen, Gianni Barlacchi, Marco Del Tredici, Weiwei Cheng, Bill Byrne and Adrià de

Gispert . 99

semiPQA: A Study on Product Question Answering over Semi-structured Data
Xiaoyu Shen, Gianni Barlacchi, Marco Del Tredici, Weiwei Cheng and Adrià de Gispert 111

Improving Specificity in Review Response Generation with Data-Driven Data Filtering
Tannon Kew and Martin Volk . 121

v

Extreme Multi-Label Classification with Label Masking for Product Attribute Value Extraction
Wei-Te Chen, Yandi Xia and Keiji Shinzato . 134

Enhanced Representation with Contrastive Loss for Long-Tail Query Classification in e-commerce
Lvxing Zhu, Hao Chen, Chao Wei and Weiru Zhang . 141

Domain-specific knowledge distillation yields smaller and better models for conversational commerce
Kristen Howell, Jian Wang, Akshay Hazare, Joseph Bradley, Chris Brew, Xi Chen, Matthew T.

Dunn, Beth Ann Hockey, Andrew Maurer and Dominic Widdows . 151

OpenBrand: Open Brand Value Extraction from Product Descriptions
Kassem Sabeh, Mouna Kacimi and Johann Gamper . 161

Robust Product Classification with Instance-Dependent Noise
Huy V. Nguyen and Devashish Khatwani . 171

Structured Extraction of Terms and Conditions from German and English Online Shops
Tobias Michael Schamel, Daniel Braun and Florian Matthes . 181

“Does it come in black?” CLIP-like models are zero-shot recommenders
Patrick John Chia, Jacopo Tagliabue, Federico Bianchi, Ciro Greco and Diogo Goncalves . . . 191

Clause Topic Classification in German and English Standard Form Contracts
Daniel Braun and Florian Matthes . 199

Investigating the Generative Approach for Question Answering in E-Commerce
Kalyani Roy, Vineeth Kumar Balapanuru, Tapas Nayak and Pawan Goyal 210

Utilizing Cross-Modal Contrastive Learning to Improve Item Categorization BERT Model
Lei Chen and Hou Wei Chou . 217

Towards Generalizeable Semantic Product Search by Text Similarity Pre-training on Search Click Logs
Zheng Liu, Wei Zhang, Yan Chen, Weiyi Sun, Tianchuan Du and Benjamin Schroeder 224

Can Pretrained Language Models Generate Persuasive, Faithful, and Informative Ad Text for Product
Descriptions?

Fajri Koto, Jey Han Lau and Timothy Baldwin . 234

A Simple Baseline for Domain Adaptation in End to End ASR Systems Using Synthetic Data
Raviraj Bhuminand Joshi and Anupam Singh . 244

Lot or Not: Identifying Multi-Quantity Offerings in E-Commerce
Gal Lavee and Ido Guy . 250

vi

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 1 - 7
May 26, 2022 c©2022 Association for Computational Linguistics

DEFTri: A Few-Shot Label Fused Contextual Representation Learning For
Product Defect Triage in e-Commerce

Ipsita Mohanty
Walmart Global Tech

Sunnyvale, California, USA
ipsita.mohanty@walmart.com

Abstract

Defect Triage is a time-sensitive and critical
process in a large-scale agile software devel-
opment lifecycle for e-commerce. Inefficien-
cies arising from human and process depen-
dencies in this domain have motivated research
in automated approaches using machine learn-
ing to accurately assign defects to qualified
teams. This work proposes a novel framework
for automated defect triage (DEFTri) using fine-
tuned state-of-the-art pre-trained BERT on la-
bels fused text embeddings to improve con-
textual representations from human-generated
product defects. For our multi-label text clas-
sification defect triage task, we also introduce
a Walmart proprietary dataset of product de-
fects using weak supervision and adversarial
learning, in a few-shot setting.

1 Introduction

In large e-commerce organizations, there are many
defects generated periodically with a massive pool
of software teams and developers spread across
geographies to pick from, each with unique do-
main specialization. Most organizations have a
large pool of human triaging agents responsible for
routing these product defects across various teams
within the organization. However, large-scale soft-
ware releases are time-sensitive, and effective de-
fect assignments are a critical component in the
process that is prone to bottlenecks. Determining
the most suitable team to own a defect may require
several attempts; thus, wasting time to diagnose a
defect not in the team’s domain of specialty and,
overall, negatively impacting the defect resolution
throughput.

Prior industry research work on automated de-
fect triage has primarily focused on using the tra-
ditional machine learning approaches. However,
with the recent surge of state-of-the-art pre-trained
language models, one under-explored field of appli-
cation is operations in agile software development.

In the defect triage, handling scenarios require Nat-
ural Language Understanding to utilize the con-
text of the defects logged by human testers, to pre-
dict all the teams associated with resolution. The
current defect triage process is primarily human-
agents driven. This work integrates an automated
defect triage framework, DEFTri using product de-
fect’s contextual features to achieve operational
excellence within Walmart’s software development
lifecycle.

We propose a novel framework, DEFTri to per-
form an automated defect triage using contextual
representations of human-generated defect texts.
We use Walmart’s proprietary data of product de-
fects curated by product managers, program man-
agers, and beta-testers to train our models. We
use domain-specific lexicons to generate labeled
training data using weak supervision in a few shot
settings. We further use adversarial learning to in-
crease our training sample size while increasing the
robustness of our models. We propose our model
architecture for fine-tuning pre-trained BERT (De-
vlin et al., 2018) for our multi-label classification
task. Finally, we consolidate our experiments, ana-
lyze the results and discuss future research work.

2 Related Work

Prior research work on defect triage (Choquette-
Choo et al., 2019; Mani et al., 2018;
Soleimani Neysiani et al., 2020) mostly fo-
cuses on using traditional machine learning and
RNNs on word vector representations of text
using BOW, Word2Vec, Tfidf, etc. Another recent
research relies on graph representation learning for
defect triage (Wu et al., 2021). This paper proposes
a graph recurrent convolution network with a
joint random walk mechanism-based architecture.
Also, several recent research on label embedding
(Xiong et al., 2021; Liu et al., 2021; Si et al.,
2020) has shown promising results for learning
the text and label representation in the same latent

1

space. We further the research by proposing a
novel architecture to derive superior contextual
text representations using state-of-the-art language
model BERT for multi-label defect triage.

Most of these published research benchmarks
are on open-source defect report datasets - Eclipse
and Mozilla (Lamkanfi et al., 2013). However,
these datasets are focused on technical errors gen-
erated during system failures and do not mimic
our use case. Our product defects are comprehen-
sive user testing reviews consisting of natural lan-
guage, technical and domain-specific text. In the
real world, gathering labeled data is hard and expen-
sive. Hence, we propose a methodology to generate
a robust proprietary multi-label training dataset us-
ing weak supervision and adversarial learning.

3 Data

Our primary dataset is a proprietary in-house
dataset consisting of actual defect reviews gener-
ated by beta testers for one of our major software
releases. We rely on defect title and description
fields to create the text corpus and text labels to
identify the teams uniquely. Each defect could
have multiple associated teams and vice versa. For
our research, we have 3485 samples as a train set
and 85 samples as the test set with 15 unique team
labels for our multi-label dataset. Refer Table 1.
We have 4-5 human-expert annotated defects cor-
responding to each team label in our low-resource
setting. Our data preparation pipeline follows the
below steps,

3.1 Generate Labeled Data Using Weak
Supervision

Despite the success of fine-tuning pre-trained lan-
guage models, one bottleneck is the requirement of
labeled data. These labeled training data were ex-
pensive and time-consuming to create. It required
human annotators with domain expertise to read
through each defect review and assign team labels
accordingly. Every change in labeling guidelines,
team orientation, or use case changes necessitated
re-labeling. Hence, we used Snorkel label model
(Ratner et al., 2017) to generate weak labels for our
training data. We apply 25 labeling functions (LFs)
to unlabelled training data using a snorkel pipeline.
Refer Table 2.

3.2 Generate Synthetic Data Using
Adversarial Learning

Machine learning algorithms are often vulnerable
to adversarial examples that have imperceptible al-
terations from the original counterparts but can fool
the state-of-the-art models (Jin et al., 2019; Dong
et al., 2021).To increase the robustness, model train-
ing can be done using adversarial examples (Good-
fellow et al., 2014; Gowal et al., 2021). We use
Textattack framework (Morris et al., 2020) on 30%
of our data, chosen at random to generate synthetic
data for training our models and append these syn-
thetic examples to our train set. We use embedding
recipe of the framework that augments text by re-
placing words with neighbors in the counter-fitted
embedding space, with a constraint to ensure their
cosine similarity is at least 0.8. For every sampled
defect, we produce 2 augmented defect texts by al-
tering 10% of original text words, while preserving
the team labels . Refer Table 3

3.3 Fix Data Imbalances

We found that the final training data created us-
ing the above techniques were imbalanced. This
issue was because the product defects were likely
skewed towards a specific defect associated with
a more significant and frequently tested domain
vs. a rarely occurring one. We also noticed that
defect reviews for features related to new team la-
bels are getting introduced into the environment
on an ongoing basis. To resolve the skewness, we
used Multilabel Synthetic Minority Over-sampling
Technique (MLSMOTE) (Charte et al., 2015) w.r.t
the team labels with minimal data representation.

4 Model

The multi-team-labels defect classification task in
this research can be summarized with S as the tuple
set. di and ti represents the ith defect denoted
as D and its corresponding team-labels denoted
as T. N, n and m are the total number of defects,
the length of the ith defect text and the number of
teams-labels of the ith document, respectively.

S = {(di, ti)}Ni=1, D = {di|di = {d1, d2, , dn}},
T = {ti|ti = {t1, t2, , tm}}

Our framework, DEFTri aims at assigning team-
labels to its corresponding defects based on the
conditional probability P(ti|di).

2

Defect Text Corpus (Anonymized Excerpts)
...For a store only query like XXX i am seeing available for
scheduled pickup as the stack title on FE when i don’t have a
slot booked.This stack title should just reflect the XXX query
like ios and web..Incorrect XXX mapping (number mapped to XXX..
...I cant add XXX to my cart from order details from my previous
canceled order. There is no actionable CTA.There is an add to cart
CTA for the XXX. See attached video. Using ios XXX...

Table 1: Samples of Defect Text Corpus.

Figure 1: DEFTri Data Generation Methodology

Rule corpus->labels (Anonymized)
Keyword ’android’ or ’ios’ -> [Team-LabelA]
Pattern ’*search*’ -> [Team-LabelB, Team-LabelC]

Table 2: Example LFs For Snorkel pipeline

4.1 Pre-Trained Model

For our fine-tuning, we use BERT pre-trained trans-
former embedding from Hugging Face’s Trans-
formers library (Wolf et al., 2020).BERT base
uncased embeddings are case insensitive and are
pre-trained on the English language self-supervised
using two objectives - masked language model-
ing (MLM) and Next Sentence Prediction (NSP).
These embeddings were introduced in the original
BERT (Devlin et al., 2018) paper and serve as
baseline embeddings for our models.

4.2 Approach

For our DEFTri framework, we propose 2 novel
implementations to derive superior contextual rep-
resentations from product defect text, that help in
improved multi-label defect classification task. We
denote the defect corpus(title and description) to-
kens as Di and their corresponding token embed-
dings as EDi, where K is the total number of words
in the input defect and DK represents the last to-
ken. Similarly, let Lj be the team label text of the
jth team of the overall 15 teams, corresponding to

the defect corpus. Finally, we derive the positional
embedding using BERT and apply classification
layer with activation to the last layer of the hidden
state at the [CLS] token.

4.2.1 Label Fused Model with [SEP]

We utilize the sentence pair configuration of BERT
for text input. We concatenate the team labels text
as Sentence A and concatenate the Defect title and
description text as Sentence B, both separated by a
[SEP] token. Refer Figure 2

Figure 2: DEFTri LabelFuse Model with [SEP]

4.2.2 Label Fused Model without [SEP]

For our second implementation, we concatenate
the team labels text along with Defect title and
description text as a single Sentence A, without
any [SEP] token as input. Refer Figure 3

3

Defect Text (Anonymized) Adversarial Defect Text (Anonymized)
Price showing inconsistently Price displaying inconsistently
Final cost by weight not showing on search tiles Final prices by weight not showing on search tiles
Spacing on Nutrition Label is too large Spacing on Nourishment Label is too large

Table 3: Sample cases of Defect text vs Adversarial Defect Text.

Model Macro-F1 Accuracy
BERT+Linear 0.8123 0.8134
BERT+BiLSTM 0.8206 0.8216
BERT+LabelFuse w/o [SEP]+Linear 0.8144 0.8153
BERT+LabelFuse w/o [SEP]+BiLSTM 0.8236 0.8245
BERT+LabelFuse w [SEP]+Linear 0.8137 0.8150
BERT+LabelFuse w [SEP]+BiLSTM 0.8229 0.8241

Table 4: DEFTri Experiments Results For Contextual Multi-TeamLabel Classification on Real Product Defects

Figure 3: DEFTri LabelFuse Model w/o [SEP]

4.3 Classification Head

We experimented with two different dense layers
for the classification head - Linear and BiLSTM.
Refer Table 5

Classification Heads Dense Layer Linear Layer
Type Activation In Out In Out

Linear Tanh 768 768 768 15
BiLSTM ReLU 768 256 512 15

Table 5: DEFTri Classification Head Configurations

4.4 Loss Function and Optimizer

For model training we use PyTorch implementation
of BCEWithLogitsLoss as our loss function and
AdamOptimizer as our optimizer. BCEWithLog-
itsLoss combines a Sigmoid layer and the Binary
Cross Entropy Loss in one single class. In case of
multi-label classification the loss can be described
as,

lt(x, y) = Lt = {l1,t, ..., lN,t}T ,
ln,t = −wn,t[ptyn,t · logσ(xn,t) + (1 + yn,t) ·
logσ(xn,t)]

where t=15 and represents the number of team-
labels , n is number of sample in the batch and pt is
the weight of the positive answer for team-label t.

4.5 Hyper-Parameters

We use a set of hyper-parameters for our experi-
ments. We used manual search for hyper-parameter
search and the best model was chosen based on the
best top-1 accuracy yielded in the validation data.
Refer Table 6

HParams Values
Dropout 0.1

Max Sequence Length 512
Batch-Size 16

Learning Rate 1e-5
Weight Decay 0.01
Adam epsilon 1e-6

Epochs 10

Table 6: DEFTri Hyper-Parameters

5 Experiments

As baseline and our proposed architecture, we use
the pre-trained bert-base-uncased model (Wolf
et al., 2020; Vaswani et al., 2017). We perform
a total of 6 experiments for our models under 3 dif-
ferent settings (1) baseline fine-tuned BERT model
with no fused labels (2) fine-tuned BERT with
fused labels without [SEP] token and (3) fine-tuned
BERT with fused labels with [SEP] token, using
2 classification heads combinations e.g Linear and
BiLSTM. Refer Table 4 and Appendix A.1

For data preprocessing step, the corpus is con-
verted to lowercase and tokenzied with one-hot-
encoded labels.Our deep learning model is then

4

trained to predict multiple team-labels for each
test sample. At inference time, the model takes
in an input of text corpus of defect and predicts
a vector of probabilities for each of the 15 team-
labels. We used a confidence threshold of 0.55 for
our probability vector to obtain a binary vector for
comparison with ground-truth.

Measuring accuracy on exact binary vector
matching for multi-label classification is too
penalizing because of the low tolerance for partial
errors. Therefore, we divide our predictions by
classes. For each of the team-labels in our dataset,
we calculate the number of false positives (FP),
false negatives (FN), true positives (TP), true
negatives (TN). Finally, to obtain our Accuracy,
we sum up the values across each team-labels as
below,

Accuracy =
∑

TPt+
∑

TNt∑
FPt+

∑
FNt+

∑
TPt+

∑
TNt

where T=15 and represents the number of
team-labels in our dataset and TPt, TNt, FPt ,
FNt represents values of TP, TN, FP, FN for tth

team-label. Similarly, we used macro-F1 (F1)
scores based on averaged value of precision and
recall calculated over all team-labels as below,

Precisiont =
TPt

FPt+TPt

Recallt =
TPt

FNt+TPt

F1 = 2×
1
T

∑
Precisiont× 1

T

∑
Recallt

1
T

∑
Precisiont+

1
T

∑
Recallt

6 Analysis

Based on our experiments, we observed that label-
fused contextual learning-based fine-tuned BERT
models significantly outperformed the base model
using only the context of the defect text. The per-
formance boost over the base BERT pre-trained
fine-tuned model is because of the context in the
label embeddings used in addition to the defect text
in the label-fused models, which optimizes on the
alignment of features, which makes it possible to
classify better. Our team labels were short mean-
ingful English words vs abbreviations which made
fused embeddings better for classification when
paired as a sentence with the defect texts as inputs.
We observed that label-fused model without [SEP]
token performed better that with [SEP] token which
could have been because of the unnatural formation

of Sentence A, where a bunch of team labels are
concatenated together.

Also, with the addition of synthetically gener-
ated data using adversarial examples for model
training, we achieved an average accuracy improve-
ment of 2.69% across our models vs. using the
original data only. However, during our experi-
ments we observed that the performance was sen-
sitive towards the choice of text corpus sequence
length and perturbation percentage for data aug-
mentation made, during model training. A higher
percentage of perturbations combined with a lower
sequence length of text corpus negatively impacted
performance.

7 Future Work

Fine-tuning language models with weak supervi-
sion definitely solves the challenge of low labeled
data availability. However, the models perfor-
mance definitely suffers from error-propagation of
pseudo-labels generated during the process. Re-
cent research in contrastive self-regularized self-
training approach (Yu et al., 2020) and GAN-BERT
in adversarial setting (Croce et al., 2020) have
shown promising results for fine-tuning BERT-
based language models with weak supervision.
Also, Contrastive learning and Adversarial Learn-
ing approaches applied to various NLP tasks have
demonstrated improvement over fine-tuning on
BERT-based models (Mohanty et al., 2021; Pan
et al., 2021). To further our research, we would
improve upon these approaches.

8 Conclusion

In this work, we proposed a novel framework,
DEFTri for automated defect triage using contex-
tual representations of human-generated defect re-
views at Walmart. We discussed our methodology
of generating a new proprietary labeled dataset by
using weak supervision and adversarial learning, in
a few shot setting. We presented two label-fused
model approaches for fine-tuning pre-trained BERT.
As hypothesized, the experimental results show that
our approach improves the multi-label text classifi-
cation task for defect triage. We also proposed our
future work of implementing contrastive learning
for fine-tuning using weak supervision.

Acknowledgments

The author would like to thank colleagues in the
Omni Customer Experience org. at Walmart Global

5

Tech for all their support and encouragement.

References
Francisco Charte, Antonio J. Rivera, María J. del Je-

sus, and Francisco Herrera. 2015. Mlsmote: Ap-
proaching imbalanced multilabel learning through
synthetic instance generation. Knowledge-Based Sys-
tems, 89:385–397.

Christopher A. Choquette-Choo, David Sheldon, Jonny
Proppe, John Alphonso-Gibbs, and Harsha Gupta.
2019. A multi-label, dual-output deep neural network
for automated bug triaging. CoRR, abs/1910.05835.

Danilo Croce, Giuseppe Castellucci, and Roberto Basili.
2020. GAN-BERT: Generative adversarial learning
for robust text classification with a bunch of labeled
examples. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2114–2119, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Xinshuai Dong, Luu Anh Tuan, Min Lin, Shuicheng
Yan, and Hanwang Zhang. 2021. How should pre-
trained language models be fine-tuned towards adver-
sarial robustness? CoRR, abs/2112.11668.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial networks.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles,
Florian Stimberg, Dan Andrei Calian, and Timothy A.
Mann. 2021. Improving robustness using generated
data. CoRR, abs/2110.09468.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? natural
language attack on text classification and entailment.
CoRR, abs/1907.11932.

Ahmed Lamkanfi, Javier Pérez, and Serge Demeyer.
2013. The eclipse and mozilla defect tracking dataset:
A genuine dataset for mining bug information. In
2013 10th Working Conference on Mining Software
Repositories (MSR), pages 203–206.

Huiting Liu, Geng Chen, Peipei Li, Peng Zhao, and
Xindong Wu. 2021. Multi-label text classification
via joint learning from label embedding and label
correlation. Neurocomputing, 460:385–398.

Senthil Mani, Anush Sankaran, and Rahul Ara-
likatte. 2018. Deeptriage: Exploring the effec-
tiveness of deep learning for bug triaging. CoRR,
abs/1801.01275.

Ipsita Mohanty, Ankit Goyal, and Alex Dotterweich.
2021. Emotions are subtle: Learning sentiment
based text representations using contrastive learning.
CoRR, abs/2112.01054.

John X. Morris, Eli Lifland, Jin Yong Yoo, and Yanjun
Qi. 2020. Textattack: A framework for adversar-
ial attacks in natural language processing. CoRR,
abs/2005.05909.

Lin Pan, Chung-Wei Hang, Avirup Sil, Saloni Pot-
dar, and Mo Yu. 2021. Improved text classifica-
tion via contrastive adversarial training. CoRR,
abs/2107.10137.

Alexander Ratner, Stephen H. Bach, Henry R. Ehren-
berg, Jason Alan Fries, Sen Wu, and Christopher Ré.
2017. Snorkel: Rapid training data creation with
weak supervision. CoRR, abs/1711.10160.

Shijing Si, Rui Wang, Jedrek Wosik, Hao Zhang, David
Dov, Guoyin Wang, Ricardo Henao, and Lawrence
Carin. 2020. Students need more attention: Bert-
based attentionmodel for small data with applica-
tion to automaticpatient message triage. CoRR,
abs/2006.11991.

Behzad Soleimani Neysiani, Seyed Morteza Babamir,
and Masayoshi Aritsugi. 2020. Efficient feature ex-
traction model for validation performance improve-
ment of duplicate bug report detection in software
bug triage systems. Information and Software Tech-
nology, 126:106344–106363.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Hongrun Wu, Yutao Ma, Zhenglong Xiang, Chen Yang,
and Keqing He. 2021. A spatial-temporal graph neu-
ral network framework for automated software bug
triaging. CoRR, abs/2101.11846.

Yijin Xiong, Yukun Feng, Hao Wu, Hidetaka Kami-
gaito, and Manabu Okumura. 2021. Fusing label
embedding into bert: An efficient improvement for
text classification. In Findings of the Association
for Computational Linguistics: ACL/IJCNLP 2021,
Online Event, August 1-6, 2021, pages 1743–1750.
Association for Computational Linguistics.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren,
Tuo Zhao, and Chao Zhang. 2020. Fine-tuning
pre-trained language model with weak supervi-
sion: A contrastive-regularized self-training ap-
proach. CoRR, abs/2010.07835.

6

A Appendix

A.1 Experiment Setting
We ran all our experiments on a Google Cloud
Platform using a n1-standard-16 machine with
NVIDIA Tesla V100 GPUs.

7

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 8 - 19
May 26, 2022 c©2022 Association for Computational Linguistics

Interactive Latent Knowledge Selection for E-commerce Product
Copywriting Generation

Zeming Wang 1∗, Yanyan Zou 2, Yuejian Fang 1, Hongshen Chen 2,
Mian Ma2, Zhuoye Ding2 and BO Long 2

1School of Software and Microelectronics, Peking University, Beijing, China
2JD.com, Beijing, China

wzm@stu.pku.edu.cn, fangyj@ss.pku.edu.cn,
{zouyanyan6,chenhongshen,mamian,dingzhuoye,bo.long}@jd.com

Abstract

As the multi-modal e-commerce is thriving,
high-quality advertising product copywriting
has gain more attentions, which plays a cru-
cial role in the e-commerce recommender, ad-
vertising and even search platforms. The ad-
vertising product copywriting is able to en-
hance the user experience by highlighting the
product’s characteristics with textual descrip-
tions and thus to improve the likelihood of
user click and purchase. Automatically gen-
erating product copywriting has attracted no-
ticeable interests from both academic and in-
dustrial communities, where existing solutions
merely make use of a product’s title and at-
tribute information to generate its correspond-
ing description. However, in addition to the
product title and attributes, we observe that
there are various auxiliary descriptions cre-
ated by the shoppers or marketers in the e-
commerce platforms (namely human knowl-
edge), which contains valuable information for
product copywriting generation, yet always ac-
companying lots of noises. In this work, we
propose a novel solution to automatically gener-
ating product copywriting that involves all the
title, attributes and denoised auxiliary knowl-
edge. To be specific, we design an end-to-end
generation framework equipped with two vari-
ational autoencoders that works interactively
to select informative human knowledge and
generate diverse copywriting. Experiments on
real-world e-commerce product copywriting
datasets demonstrate that our proposed method
outperforms various baselines with regard to
both automatic and human evaluation metrics.

1 Introduction

Traditional e-commerce platforms solely present
a list of products to customers. Nowadays, as the
multi-modal recommender systems are thriving,
the e-commerce platform ecosystem has also been
enriched with multi-modal forms, such as product

∗Work done during internship at JD.com.

Figure 1: An example of product copywriting genera-
tion from our dataset, including product title, attribute,
details as well as the product description.

advertising copywriting and product living videos.
Especially, the product advertising copywriting
plays an important role in the e-commerce recom-
mender, advertising and search platforms, which
is able to improve the customers’ shopping expe-
rience. Instead of only showing the product title,
a well-written product description can interest the
customer hugely and save their time from clicking
every product and reading the long-and-complex
product details. Hence, this work focuses on the
problem of automatic product copywriting genera-
tion, which aims to generate a textual description
for a product, highlighting the attractive properties
of the product. Such a task is always framed as a
sequence-to-sequence problem (Chen et al., 2019).

The product title and a list of product attributes
are always taken as the main model input to gen-
erate the product copywriting, exemplified by Fig-
ure 1. Recently, Chen et al. (2019) proposed to in-
volve the external knowledge (i.e., Wikipedia) into
the product title and attributes during the genera-
tion process of product copywriting. However, the

8

external knowledge and customer reviews are not
always available. For example, thousands of newly
released products are emerging in the e-commerce
platforms, where the external or the customer re-
views are not accessible while automatically gen-
erating advertising copywriting is critical for such
new products to improve the click-through rate and
the conversion rate.

In practice, we observe that each product (e.g.,
the hot and newly released items) is accompanied
with various product details in the e-commerce plat-
forms (e.g., Taobao, JD, and Amazon). The prod-
uct title and associated attributes summarize the
main information of a product, while the product
details comprise of auxiliary advertising descrip-
tions created by shoppers and marketers which con-
tain salient information that highlight the product
properties with advertising phrases (i.e., human
knowledge) and thus are beneficial to improving
the quality of the generated copywriting. Exem-
plified by Figure 1, the product title and attributes
summarize the main functions of “Xiaomi box SE”,
while the product details elaborate the product with
slogans that are attractive to customers, like “voice
control” and “switch channels and adjust the vol-
ume by voice”. Unfortunately, we also observe that
such human knowledge also contains redundant
pieces, like “I want to watch action video”, which
might harm the quality of the generated copywrit-
ing. One recent work (Zhang et al., 2021) simply
concatenated all the product details with product
title and attributes as the model input, without con-
sidering the noises contained by the product details.
In this work, we propose to select the salient knowl-
edge from the auxiliary product details before we
feed such information, associated with product title
and attributes, into the model.

To be specific, we propose an Interactive Latent
Variables model based on Transformer architec-
ture (Vaswani et al., 2017) (i.e., ILVT), which is
designed to select knowledge from noisy product
details and incorporate the selected knowledge into
the process of product copywriting generation. To
enhance the connection between the process of the
knowledge selection and copywriting generation,
we sample latent variables from prior description
and knowledge latent space separately. During gen-
eration phase, ILVT will firstly sample the descrip-
tion latent variable from the description distribu-
tion conditioned on the product title and attributes,
then sample the knowledge latent variable from

Dataset Size 220,000
Average length of product title 44.93
Average length of attribute set 7.75
Average length of product details 838.39
Average length of human knowledge 111.38
Average length of product copywriting 81.16

Table 1: Data statistics for the JDK dataset.

knowledge distribution conditioned on product de-
tails and the description latent variable. With the
interactive latent variables, ILVT can also gener-
ate copywritings with strong diversity. Without la-
tent variable modules, ILVT degenerates into trans-
former with copy mechanism, which is a traditional
method for copywriting generation in e-commerce
platform (Zhang et al., 2021). To the best of our
knowledge, this is the first work that selects knowl-
edge from product details to improve the genera-
tion quality and diversity in product copywriting
generation task.

To evaluate our proposed method, we collected
a Chinese product copywriting dataset from the
JD platform, named JDK. The dataset consists of
220,000 instances, each of which comprises of a
product’s title, attributes, details as well as the cor-
responding description. Results on such dataset
shows that our proposed method obtains the best
performance compared to all baselines, in terms of
both automatic and human evaluations.

2 Proposed Method

2.1 Dataset Construction

We collected a Chinese product copywriting gen-
eration dataset, named JDK, from the e-commerce
platform, JD1, one of the biggest Chinese e-
commerce platforms. The dataset consists of 220K
products, covering 30 categories, such as digits and
clothing. Each product instance is associated with
a product title, a set of attributes, product details
created by advertising experts, as well as the prod-
uct copywriting published by professional writers.
We randomly split the whole datasets into three
parts, 200K for training, 10K each for test and
validation. The product title and attributes summa-
rize the main characteristics of the product. On
average, the number of Chinese tokens in product
title is 44.93, and the size of the attribute set is
7.75. However, the average number of tokens be-
fore pre-processing in the product details is 838.39,
which is much larger than the average length of the

1https://www.jd.com/

9

copywriting, i.e., 81.16. The average length of the
human knowledge now is 111.38 tokens. Table 1
lists the detailed statistics about this dataset.

We observed that the product details, created by
advertising experts, contain ample and heteroge-
neous information, such as the advertising slogans
in textual form, the product size in numbers and
specification with particular usage examples. Sim-
ply feeding all product details might harm the gen-
eration performance. Thus, a heuristic method is
introduced to filter out the apparently noisy pieces
in collected product details. We split the whole
detail paragraph Ktotal into fragments KF follow-
ing the heuristic rule γ (i.e., the stop symbols) and
keep the fragments whose length is between 10 and
64 tokens to remove some useless pieces, such as
instructions for usage.

Ktotal
γ→ KF = {Kfrag1 ,Kfrag2 , ...,Kfragm}

where m is the number of fragments that varies
for different products. We adopted the Sentence-
Bert (Reimers and Gurevych, 2019) to obtain
the contextual representation for each fragment
Kfragi ∈ KF , denoted as Efragi . We feed
the contextual representations of KF into the
K-Means clustering algorithm (MacQueen et al.,
1967), where fragments with similar semantics are
clustered into the same group:

{Efrag1 , · · · , Efragm}
κ→ KP =

{
K1, · · · ,K|K|

}

where each Ki ∈ KP is a group of fragments with
similar semantics and we concatenated all frag-
ments in the same group in an alphabetical order
to obtain a single sequence, i.e. a text containing
human knowledge. For simplicity, we manually set
|K| = 6 for the number of clusters.

Likewise, we applied Sentence-Bert to obtain the
contextual representation of each knowledge text
Ki ∈ KP and the corresponding product descrip-
tion D, denoted as RKi and RD, respectively. We
calculate the cosine similarity between RKi and
RD. The cluster with the highest similarity score
will be considered as a pseudo knowledge Kpse.

Kpse = max
Ki∈KP

cos < RKi , RD >

where cos < · > means the function of cosine
similarity. Finally, for each copywriting instance,
we have a set of knowledge in the size of 6, one of
which is labeled as pseudo knowledge.

2.2 Problem Formulation
With a product title, attribute sets and its corre-
sponding commodity details, the objective of our
method is to utilize the intrinsic information firstly,
and then select an appropriate knowledge from
details. Finally, diverse and accurate product de-
scription will be generated. Given a product, the
e-commerce platforms often describes such a prod-
uct from multiple aspects, including the product
title T , a set of attributes A, and the product details
KP . The product title T describes the product in
a short text, represented as a sequence of words
T =

{
t1, t2, ..., t|t|

}
. The attribute set A consists

of |A| attributesA =
{
a1, a2..., a|A|

}
that captures

the product properties from different aspects. The
product details KP =

{
K1,K2, ...,K|KP |

}
are

essentially a human knowledge pool, composed
of advertising description created by advertising
experts. Each advertising description Ki ∈ KP
is a sequence of words Ki =

{
k1i , k

2
i , ..., k

|Ki|
i

}
.

Figure 1 demonstrates an example.
In this work, we aim to select the most salient

knowledge from the product details KP , and then
incorporate such knowledge with product title T
and attributes A to generate diverse and high-
quality product copywriting.

2.3 Framework
In order to better guide the knowledge selection pro-
cess and enhance the relationship between the tar-
get copywriting and corresponding selected knowl-
edge, we utilize an interactive variational autoen-
coder framework (Kingma and Welling, 2014) to
inject the description latent variable to the knowl-
edge latent distribution, followed by selecting the
salient knowledge and generating the description
sequentially as follows:

pθ(K,D|A, T) =
∫

zd

∑

zk

pθ(D|zd,K,A, T)

·pθ(K|zd, A, T,KP)
·pφ(zk|zd,KP) · pφ(zd|A, T)dzd

where zk and zd are latent variables for knowledge
and product copywriting, respectively. pφ(zd|A, T)
and pφ(zk|zd, A, T) are their conditional priors.
Since the knowledge selection is a discriminative
task with limited choices, zk is suitable for a cate-
gorical distribution (Jang et al., 2017), while the zd
follows an isotropic Gaussian distribution (Kingma
and Welling, 2014). From the perspective of the

10

Figure 2: The graphical representation of the propossed
ILVT model. Dotted line belongs to posterior distribu-
tion solely.

product description writing process, we assume
that the product copywriting contains pivot infor-
mation that points out what kind of information
from the product knowledge poolKP (i.e., product
details) is useful for copywriting generation. Thus,
the latent variable zd sampled from p(zd|A, T) is
based on the intrinsic product information (i.e.,
product title and attributes) and zk ∼ p(zk|zd,KP)
is dependent on zd. During the training phase, a
variational posterior qϕ(·) is used to maximize the
Evidence Lower Bound (ELBO) as follows:

LILV T =

−DKL[qϕ(zd|D,A, T,K)||pφ(zd|A, T)]
−DKL[qϕ(zk|zd,K,KP)||pφ(zk|zd,KP)]
+ Ezk∼qϕ(zk|zd,K,KP)[log pθ(K|zk, A, T,KP)]
+ Ezd∼qϕ(zd|D,A,T)[log pθ(D|zd, A, T,K)]

where θ, ϕ and φ are the parameters of the genera-
tion, posterior and prior modules. The generative
process can be described as:

• Step 1: sample the description latent variable
zd ∼ pφ(zd|A, T).

• Step 2: sample the knowledge latent variable
zk ∼ pφ(zk|zd,KP).

• Step 3: select the most salient knowledge
K ∼ pθ(K|zk, A, T,KP).

• Step 4: generate the product copywriting
D ∼ pθ(D|zd, A, T,K).

The description latent variable zd contributes to
the knowledge latent variable zk explicitly, and zk
influences zd via common target knowledge K and
back propagation implicitly. We show the graphical
model of the single-track interaction in Figure 2.

2.4 Encoding Layer

We adopt the Transformer (Vaswani et al., 2017)
encoder as the encoding layer.

Basic Product Representation For simplicity,
we concatenate the product title T and its associ-
ated attributes A =

{
a1, a2, ..., a|A|

}
(ordered in

alphabet) into a single sequence to get basic prod-
uct information as:

P = [T ; a1; a2; ...; a|A|]

where “;” stands for sequence concatenation. The
basic product embedding in the first layer E(0) is
the sum of the word embeddings WE(·) and the
positional encoding PE(·):

EP =WE(P) + PE(P)

The initial product embedding will go through
multi-layers and the output of i-th layer is:

E
(i)
P = FFN(MHA(E

(i−1)
P , ..., E

(i−1)
P))

where MHA(·, ·, ·) means multi-head self-
attention function and FFN(·) is the position-wise
fully connected feed-forward network. The final
representation of product basic information (i.e.,
product title and attributes) defined as:

HP = avgpool(E
(N)
P)

where E(N)
P is the the final representation from the

N -th encoder layer, and avgpool is the average
pooling operation (Cer et al., 2018).

Product Description Representation Following
the same procedures, we can obtain the initial and
final representations of the product description (i.e.,
copywriting), denoted as ED and HD.

Product Knowledge Representation The prod-
uct knowledge pool (i.e., the product details) is a
list of advertising descriptions created by advertis-
ing experts, KP =

{
K1, ...,K|KP |

}
. To obtain

the representation of the knowledge pool, for each
advertising descriptions Kj ∈ KP , we consider
all the word embedding, positional embedding de-
scription segment embedding:

EKj =WE(Kj) + PE(Kj) + SE(j)

where j stands for the description position in the
knowledge pool, and SE is the segment embedding

11

which can be learned during the training phase. The
representation of i-th encoder is calculated as:

E
(i)
Kj

= FFN(MHA(E
(i−1)
Kj

, · · · , E(i)
Kj

))

The final representation of the whole knowledge
pool is then defined as:

HKP = [avgpool(E
(N)
K0

), · · · , avgpool(E(N)
K|KP |

)]

It is worthy noting that there are no available
annotations of the most salient knowledge, how-
ever, which is necessary during training phrase.
Thus, we designed a simple algorithm to con-
struct the pseudo label for the knowledge selec-
tion for each product. According to the pseudo
annotations, we denote the selected knowledge as
Kpse, whose hidden representation is denoted as
HK = avgpool(E

(N)
K).

2.5 Interactive Latent Variable Layer
To build the relationship between the knowledge
selection and copywriting generation, we design
a pair of interactive latent variables, i.e., the de-
scription latent variable and the knowledge latent
variable, to influence each other.

Description Latent Variable To make the gener-
ated copywriting more diverse and guide the selec-
tion phase, we learn a Gaussian distribution with
the intrinsic product information.

For the posterior, inspired by Kim et al. (2018)
we calculate hidden representations HDattenK

and
HKattenD

for enhancing the relation between de-
scription and pseudo knowledge, as

HDattenK
= avgpool(Softmax(QDKK))

QD =WQED

KK =WKEK

where WQ,WK is parameters. HKattenD
is calcu-

lated similarly. We concatenate the hidden repre-
sentations HDattenK

, HKattenD
with HP , HD, HK

as Hdes and feed into a MLP layer to calculate
parameters µ and σ of the posterior distribution:

{
µ =MLP (Hdes)

σ = Softplus(MLP (Hdes))

Hdes = [HD, HP , HK , HDattenK
, HKattenD

]

so the posterior Gaussian distribution can be then
described as:

qϕ(zd|D,A, T,K) = Nϕ(zd|µ, σI)

For the prior distribution, we only utilize the basic
product representation HP and calculate parame-
ters µ′ and σ′ similar to the posterior processing:

pφ(zd|A, T) = Nφ(zd|µ′, σ′I)

{
µ′ =MLP (HP)

σ′ = Softplus(MLP (HP))

In the training phase, we use the reparameteri-
zation trick(Kingma and Welling, 2014) since the
stochastic sampling from the latent distribution is
non-differential. In order to approximate the dis-
tributions of the posterior and prior representation,
we introduce the KL divergence loss (Kullback and
Leibler, 1951).

Knowledge Latent Variable In order to strength
the relationship between the selected knowledge
and corresponding description, we inject the de-
scription latent variable zd to the knowledge la-
tent space and thus get the interactive VAEs model.
Since knowledge selection is a discriminate task,
we utilize the Categorical distribution (Jang et al.,
2017) for knowledge latent space.

We then calculate the hidden representation
HKPattenzd

via attention method:

HKPattenzd
= Softmax((Wdzd)H

T
KP)HKP

In the training phase, we feed HKPattenzd
and

zd with the total and pseudo knowledge represen-
tations HKP , HK together into a MLP layer to
compute the parameters π for posterior categorical
distribution. By removing the HK , we obtain the
parameters π′ for prior distribution.

π =MLP [zd, HK , HKP , HKPattenzd
]

π′ =MLP [zd, HKP , HKPattenzd
]

The posterior and prior distributions can be then
described as:

qϕ(zk|zd,K,KP) = Catϕ(π)

pφ(zk|zd,KP)) = Catφ(π
′)

We also introduce the KL divergence loss
and reparametrization trick. We use gumbel-
softmax (Jang et al., 2017; Maddison et al., 2017)
as the categorical distribution is discrete.

12

Figure 3: The architecture of the proposed ILVT model.The solid line denotes the training procedure, while the
dotted line denotes the inference process.

2.6 Knowledge Selection

Motivated by Mou et al. (2016), we adopt the
heuristic matching algorithm to select the target
salient knowledge from all the product details. Af-
ter getting the knowledge latent variable zk sam-
pling from the posterior distribution and prior dis-
tribution in training and generation stage, respec-
tively, we compute the hidden representation for
knowledge selection as:

Hsel = [HP , zk, |HP − zk|, HP ⊙ zk]

where⊙ stands for the element-wise multiplication.
The selected knowledge is denoted as KS ∈ KP ,
whose representationHKS can be obtained through
the encoder layers where only the word and posi-
tional embeddings are taken as input, similar to the
product title and attributes.

The selection embedding Hsel will be fed into
a MLP layer to predict the index IDKS of the
corresponding target knowledge KS.

2.7 Decoder Layer

We inject the basic product information (i.e., title
and attributes) E(N)

P , the generation latent variable
zd, and the selected knowledge E(N)

KS into a stacked
transformer decoder module with the copy mecha-
nism to generate the product copywriting.

We also try different ways to combining the VAE
modules with transformer decoder. Similar to Fang
et al. (2021); Li et al. (2020a), we empirically ob-
served that the best choice is to element-wisely
add the latent variable zd with the word and posi-
tional embeddings of each word, before fed into
the decoder, to generate the copywriting. The copy
mechanism is used to copy words in the selected
knowledge and the input product information (i.e.,

title and attributes). The probability of generating
token dt at t-th step is computed as:

P (dt) =λ1Pcp(dt|KS,P) + λ2Pvoc(dt|zd,KS, P)

where λ1 and λ2 are the coordination probability.
Pvoc is the output from the stacked transformer
decoder layers and Pcp represents the copy logits,
defined as:

Pcp(dt|∗) =
∑

i:ti=Dt

αt,i

where ∗ stands for either P or KS.

3 Experiments

We conducted experiments on the JDK dataset.

3.1 Baseline Models

We compare our model with several baselines:

• CONVSEQ2SEQ (Gehring et al., 2017) is a
sequence-to-sequence model with convolu-
tional neural networks for text generation.

• TRANSFORMER (Vaswani et al., 2017) is an
encoder-decoder architecture relying on self-
attention mechanism.

• KOBE (Chen et al., 2019) incorporates knowl-
edge extracted from exogenous database into
the copywriting generation model.

• PTRANS (Vaswani et al., 2017; See et al.,
2017) is a transformer-based generation
model with copy mechanism, which is the
backbone architecture of this ILVT. In other
words, ILVT without latent variable modules
is degenerated into PTRANS.

For the model CONVSEQ2SEQ, TRANSFORMER

and PTRANS, in addition to the baseline version,
13

Model BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 DIST-1 DIST-2

CONVSEQ2SEQ 12.60 29.57 12.11 5.91 3.19 39.50 62.27
Conseq+ALL 11.16 26.82 10.46 4.86 2.50 40.42 63.24

Conseq+RAND 12.41 29.32 11.72 5.62 2.99 39.85 63.36
Conseq+PSE 12.67 29.25 12.09 6.03 3.33 40.20 63.48

TRANSFORMER 12.09 28.96 11.41 5.31 2.69 37.41 59.22
Conseq+ALL 12.24 29.18 11.61 5.42 2.73 35.23 55.59

Conseq+RAND 12.14 29.09 11.47 5.32 2.69 35.63 56.31
Conseq+PSE 12.35 29.46 11.73 5.47 2.75 36.46 57.59

KOBE∗ 14.07 27.20 14.82 8.83 5.40 38.12 60.17

PTRANS 14.82 29.15 15.84 8.56 5.72 40.76 65.84
Conseq+ALL 13.65 28.41 12.13 8.54 5.52 40.50 65.27

Conseq+RAND 15.11 29.27 16.03 9.31 5.82 42.59 70.49
Conseq+PSE 15.70 30.25 16.47 10.07 6.01 42.66 70.58

ILVT 15.24 29.22 16.14 9.66 5.93 44.57 74.80

Table 2: Automatic evaluation results on the JDK dataset. ∗ represents that the model takes as input the pseudo
labelled knowledge due to the system design. The best results, including the one for PTRANS+PSE, are highlighted
with underline. The highest scores, except the ones for PTRANS+PSE, are highlighted in bold.

we also consider the following three variants that
treat the product details with different strategies:

+ALL: takes all knowledge KP as input.

+RAND: randomly picks Ki ∈ KP as input.

+PSE: takes as input the pseudo labelled knowl-
edge Kpse as input.

All variants also take as input the product title
and attributes. Specifically, in this case, KOBE also
considers the pseudo labelled knowledge as the one
from the external database.

4 Implementation Details

We implement our models on the Tesla V100 GPUs.
For the transformer-based model, the hidden units
is 512 and feed-forward hidden size is 2048. Both
the encoder and decoder has 6 layers with 12 heads.
The beam size is 5. The sentence length of title,
attributes, description and knowledge are 128, 64,
128 and 512 tokens, respectively. The dropout rate
is 0.1. We choose the Adam optimizer with β1 =
0.9 and β2 = 0.998. The warm-up step is set to
4000 and learning rate is 0.0001. The batch size is
32. To avoid the KL-vanishing problem, we choose
KL-annealing trick (Bowman et al., 2016) with
the α=0.00025 and β = 6.25 for both two VAEs.
Hyperparameters are set based on the performance
of the validation set.

4.1 Automatic Evaluation

For the automatic evaluations, we consider both
the quality and diversity of output text generated
by different systems:

BLEU (Papineni et al., 2002): To verify the
effectiveness of models in selecting useful knowl-
edge from noisy details and the ability of improving
the generation quality, we reported BLEU-1,2,3,4
and the arithmetic mean of above values as BLEU.

Distinct (Li et al., 2016): We calculated the num-
ber of distinct n-grams for Distinct-1,2 as Dist-1,2
to measure the diversity of generated copywriting.

The automatic evaluation results on the JDK
dataset are listed in Table 2. ILVT beats all base-
lines in BLEU but PTRANS+PSE that can be seen
as the model utilizing the ground truth knowl-
edge label. Compared with PTRANS+ALL and
PTRANS+RAND, ILVT improves 1.59 and 0.13
BLEU score individually, illustrating that ILVT is
able to extract effective knowledge. In terms of
KOBE that uses the pseudo labelled knowledge,
ILVT achieves notable improvement in all auto-
matic metrics, which shows that ILVT can take bet-
ter advantage of the selected knowledge for improv-
ing generation quality. Also, ILVT significantly
improves the generation diversity, beating all base-
lines in Distinct-1 and Distinct-2 , demonstrating
that the interactive latent variables contribute to the
diversity of generated product copywritings.

14

Model BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 DIST-1 DIST-2

ILVT 15.24 29.22 16.14 9.66 5.93 44.57 74.80

- Copy Mechanism 14.96 29.19 15.98 9.26 5.44 43.22 71.14
- Description Distribution 14.30 29.10 14.73 8.26 5.13 41.93 64.13
- Knowledge Distribution 14.39 29.17 14.93 8.35 5.13 42.65 70.24
- above all 12.23 29.19 11.63 5.40 2.71 35.93 56.71

Table 3: Model ablation study on JDK dataset. -Copy Mechanism: removing copy mechanism. -Description
Distribution: removing description latent variable. -Knowledge Distribution: removing knowledge latent variable.

Model Corr. Dive. Cohe.

CONVSEQ2SEQ+PSE 3.52 3.28 3.52
TRANSFORMER+PSE 3.73 3.33 3.29

PTTRANS+PSE 4.21 4.24 4.49
KOBE 4.39 3.85 4.14

ILVT 4.77 4.62 4.51

Table 4: Human evaluation results on the JDK dataset.
All baselines input pseduo selected knowledge. Corr.:
Correctness, Dive.: Diversity, and Cohe.: Coherence.

4.2 Effect of Pseudo Label

As shown in Table 2, compared the variant with-
out knowledge to the one considering all product
details (denoted by +ALL), the BLEU of CON-
VSEQ2SEQ (+ALL) and PTRANS (+ALL) drop
significantly, which demonstrates that the product
details contain harmful pieces, i.e., noises. How-
ever, simply feeding all product details into TRANS-
FORMER, the BLEU is improved. The performance
drop of PTRANS might be caused by the copy
mechanism that copies noisy words from the prod-
uct details. Reverse scenario happens to TRANS-
FORMER and PTRANS. We can attribute this to
the effect of attention mechanism that can denoise
knowledge implicitly, while the copy mechanism
may copy noise from input details. Taking all three
variants, i.e., +ALL, +RAND and +PSE, we observe
that simply picking a random knowledge text from
the product details can improve the quality and
diversity of the generated text for the most cases.
Moreover, adopting the pseudo labelled knowledge
results in the best performance. The above obser-
vations demonstrate that the product details (i.e.,
human knowledge) contain salient and informative
knowledge but also tremendous noises. Thus, it is
necessary to perform knowledge selection.

4.3 Ablation Study

We also conducted the ablation study by remov-
ing particular modules, including copy mechanism,

description latent variable and knowledge selec-
tion module with knowledge latent variable. Re-
sults are listed in Table 3. The absence of the
copy mechanism hurts both the generation qual-
ity(BLEU) and diversity(Distinct). We observe the
prominent impact in automatic evaluation metrics
without the description distribution, affirming it
is helpful to enhance selecting informative knowl-
edge from prior information and generating copy-
writing with good coherence and diversity. When
removing the knowledge latent variable from the
framework and selecting knowledge only based on
the product representation, both BLEU and Distinct
drop significantly. It demonstrates the interactive
latent variable contributes to select knowledge and
enhance generation quality.

4.4 Human Evaluation

We also consider the model preference in terms of
three criteria for human evaluations, as follows:

• Correctness: How correct the generated copy-
writing describes the product information?

• Diversity: How diverse the output is?

• Coherence: How coherent the copywriting is
to the recommended product?

We invited six native Chinese speakers as volun-
teers to judge the quality of generation results with
a score from 1 (worst) to 5 (best). The result of hu-
man writings is 5 for reference. We choose the aver-
age of all volunteers for each criteria for the same
copywriting as human evalution score. We ran-
domly selected 200 instances from test split, each
instance contains the product title, attributes, com-
modity details with labeled pseudo knowledge and
the generated result. We only evaluate baselines
with pseudo knowledge in order to compare fairly.
The average scores of human evaluation are shown
in Table 4, from where we can see that ILVT out-
performs all baselines. In the correctness criterion,
our model get an average score of 4.77, which indi-

15

cates that ILVT can extract useful information from
nosie and generate informative copywritings. In the
diversity criterion, the improvement is 0.38, com-
paring with the best baseline model PTRANS+PSE,
which proves that our model is able to generate
more diverse results with the interactive knowledge
and description latent variables. The Fleiss’s kappa
scores (Fleiss, 1971) among all volunteers is 0.529.

4.5 Case Study

The case study is performed to investigate how
IVLT utilizes the auxiliary product details (i.e., hu-
man knowledge) to generate diverse and informa-
tive product copywriting. For fair comparisons,
we only choose baselines with pseudo knowledge
for fair comparison, namely CONVSEQ2SEQ+PSE,
TRANSFORMER+PSE, KOBE and PTRANS+PSE.
As shown in Table 5 in Appendix, the baselines
tend to generate general and vague results mainly
from the title and attributes, such as “宽松(loose
and comfortable stereotype)” and “圆领(round col-
lar)”, while the product details are ignored. Rather,
ILVT generates more diverse copywriting guided
by the product details, such as “青春的活力气
息(the vitality of youth)”, “运动风(sport fashion)”
and “打破了纯色的单调性(breaks monotony of
solid color)”, which are attractive to customers.
Such a running example demonstrates that the
ILVT is able to well utilize the selected knowledge
to make the generation more diverse and informa-
tive, thanks to the interactive latent variables that
enhance the connection between knowledge selec-
tion and copywriting generation.

5 Related Work

Product Copywriting Generation. The task of
product copywriting generation has gained consid-
erable attentions with various systems proposed to
automatically generate product descriptions. Wang
et al. (2017) presented a statistical framework
and template-based method. Shao et al. (2019)
proposed a Planing-based Hierarchical Varitional
Model that decomposed the long product copy-
writing generation into several dependent sentence
generation sub-tasks. Chen et al. (2019) proposed a
transformer-based generation model which utilized
the user categories of items and the knowledge col-
lected from external database. (Li et al., 2020b)
construted a list of salient attributes and keywords
incorporated with visual information from a prod-
uct picture to generate the copywriting. Zhang et al.

(2021) simply concatenated the short advertising
phrases written by experts with the product title and
attributes to generate product copywriting. We are
different from such work by involving dominant
knowledge-selection rather than simply incorpo-
rating information from external sources, and we
make a selection in an end-to-end fashion.

Variational Autoencoders. Variational Autoen-
coders (i.e., VAEs) (Kingma and Welling, 2014)
have been widely used in a plenty of natural lan-
guage generation tasks, such as dialogue genera-
tion (Zhao et al., 2017), text summarization (Li
et al., 2017) and neural machine translation (Zhang
et al., 2016). VAEs aims at incorporating pos-
terior information to capture the high variability
during training phase and reducing the KL Diver-
gence(Kullback and Leibler, 1951) between the
prior and the posterior. Traditional VAE models
used RNNs (Zhang et al., 2016; Shao et al., 2019;
Lee et al., 2020). Lin et al. (2020); Li et al. (2020a);
Fang et al. (2021) incorporated the latent vari-
ables from VAEs with transformer. However, both
RNNs-based and transformer-based VAEs face the
problem of KL-vanishing. Bowman et al. (2016);
Fu et al. (2019); Shao et al. (2021) changed the
weight of KL-divergence to solve the KL-vanishing
problem. Shao et al. (2021) studied the balance be-
tween diversity and relevance from the generation
results with KL-vanishing in e-commerce situa-
tion. This paper adopts the VAEs to dynamically
model the input product title, attributes as well as
the human-written advertising knowledge to extract
the salient parts from the advertising descriptions
and also inject the selected knowledge into the gen-
erated product copywriting, so that the diversity
and the quality can be improved.

6 Conclusion

This work studies a novel problem on how to gen-
erate informative and diverse product copywriting
with auxiliary human-created product details. We
propose an interactive latent variables model based
on transformer architecture, ILVT, which allows to
select salient knowledge from the noisy product de-
tails. To better evaluate ILVT model, we construct
a large Chinese product copywriting dataset, JDK.
Extensive experiments demonstrate that our pro-
posed model outperforms the baselines with regard
to both automatic and human evaluation, illustrat-
ing that ILVT can select outstanding knowledge
and improve the generation quality and diversity.

16

Acknowledgements

We would like to thank the anonymous review-
ers for their thoughtful and constructive comments.
Yanyan Zou is the corresponding author.

References
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-

drew M. Dai, Rafal Józefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space.
In Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia
Yang, Jingren Zhou, and Jie Tang. 2019. Towards
knowledge-based personalized product description
generation in e-commerce. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining.

Le Fang, Tao Zeng, Chao-Chun Liu, Liefeng
Bo, Wen Dong, and Changyou Chen. 2021.
Transformer-based conditional variational autoen-
coder for controllable story generation. arXiv
preprint arXiv:2101.00828.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao,
Asli Celikyilmaz, and Lawrence Carin. 2019. Cycli-
cal annealing schedule: A simple approach to mit-
igating kl vanishing. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In International Con-
ference on Machine Learning. PMLR.

Eric Jang, Shixiang Shane Gu, and Ben Poole. 2017.
Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representa-
tions.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In Advances in
Neural Information Processing Systems.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In International
Conference on Learning Representations, volume
abs/1312.6114.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Dong Bok Lee, Seanie Lee, Woo Tae Jeong, Dongh-
wan Kim, and Sung Ju Hwang. 2020. Gener-
ating diverse and consistent qa pairs from con-
texts with information-maximizing hierarchical con-
ditional vaes. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Chunyuan Li, Xiang Gao, Yuan Li, Xiujun Li, Baolin
Peng, Yizhe Zhang, and Jianfeng Gao. 2020a. Opti-
mus: Organizing sentences via pre-trained modeling
of a latent space. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing.

Haoran Li, Peng Yuan, Song Xu, Youzheng Wu, Xi-
aodong He, and Bowen Zhou. 2020b. Aspect-aware
multimodal summarization for chinese e-commerce
products. In International Conference on Learning
Representations.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and William B. Dolan. 2016. A diversity-promoting
objective function for neural conversation models.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. 2017.
Deep recurrent generative decoder for abstractive text
summarization. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing.

Zhaojiang Lin, Genta Indra Winata, Peng Xu, Zihan
Liu, and Pascale Fung. 2020. Variational transform-
ers for diverse response generation. arXiv preprint
arXiv:2003.12738.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In International
Conference on Learning Representations.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui
Yan, and Zhi Jin. 2016. Natural language inference
by tree-based convolution and heuristic matching.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

17

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics.

Huajie Shao, Jun Wang, Haohong Lin, Xuezhou
Zhang, Aston Zhang, Heng Ji, and Tarek Abdelzaher.
2021. Controllable and diverse text generation in
e-commerce. In Proceedings of the Web Conference
2021, pages 2392–2401.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019. Long and diverse text gen-
eration with planning-based hierarchical variational
model. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Jinpeng Wang, Yutai Hou, Jing Liu, Yunbo Cao, and
Chin-Yew Lin. 2017. A statistical framework for
product description generation. In Proceedings of
the Eighth International Joint Conference on Natural
Language Processing.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing.

Xueying Zhang, Yanyan Zou, Hainan Zhang, Jing Zhou,
Shiliang Diao, Jiajia Chen, Zhuoye Ding, Zhen He,
Xueqi He, Yun Xiao, et al. 2021. Automatic prod-
uct copywriting for e-commerce. arXiv preprint
arXiv:2112.11915.

Tiancheng Zhao, Ran Zhao, and Maxine Eskénazi. 2017.
Learning discourse-level diversity for neural dialog
models using conditional variational autoencoders.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics.

A Case Study

18

Product Title 中国风
:::::::::
圆领印花时尚

:::::::::
宽松大码T恤女款夏季新款

:::::
显瘦短袖黑色印花预

售t恤
Chinese style,

:::::
round

:::::
neck

::::::::
printing

:::::::
fashion,

:::::
loose T-shirt, for women in new

summer fashions,
:::::::
looking

::::
slim with short sleeves and black printing, pre-sale

T-shirt

Attribute Set 服饰内衣；T恤；风虎；
::::
圆领；

:::::
印花；时尚；

::::
宽松；大码；女；夏季；

新款；短袖
Clothing underwear; T-shirt; recluserecluse;

::::::
Round

:::::
neck

::::
colla; Printing; Fash-

ion;
:::::
Loose; Large size; Women; Summer; New Fashion; Short sleeves

Product Details

柔软爽滑的面料，妙意由心。轻松穿搭出洒脱情懒的气质
Soft and smooth fabric, wonderful intention. Wear out of a free and lazy
temperament easily
大而松的肥袖口与紧致的小圆领，非常宽松的直腰身的线条
Large loose fat cuffs and tight colla, a very loose straight line of the wasit
不限体型,有奇特的减龄效果
No restriction on figures, with a peculiar age-defying effect
本款中国风与运动风结合的时尚宽松大恤将青春潮流注入中国风

加人灵动的运动风潮

The Chinese and sporty loose fashion shirt infuses the youth trend into
Chinese style, adding spirited sport fashion
搭配棒球帽运动鞋,个性又潮流
Matching with baseball cap and sneakers, cool and fashionable
不对称的斜印花犹如猛虎
Asymmetrical printing looks like an fierce tiger

CONVSEQ2SEQ+PSE
::::
宽松版型遮肉

:::::
显瘦，这款T恤采用

:::::
宽松的版型设计，对身材的包容度很

高，微胖身材也能轻松驾驭。经典的
:::::
圆领设计，贴合颈部线条，穿着舒

适自在。

:::::
Loose design hiding obesity and

:::::::
showing

::::
slim, the T-shirt adopts

:::::
loose

::::::
design,

unconstrained on figures, slightly chubby body can also handled it easily. The
classic

:::::
round

:::::
neck design fits the neckline, comfortable for wearing.

TRANSFORMER+PSE
:::::::::::::
圆领印花宽松版型

::::
圆领的设计，穿着舒适自在，同时也能修饰颈部线

条，凸显修长的脖颈线条。
:::::
宽松的版型，不挑身材，遮肉

::::
显瘦，适合多

种身材。

::::::
Round

::::
neck

::::::::
printing

:::::
loose

::::::
design. Round neck design, comfortable for wearing,

embellish and highlight the slender neck line.
:::::
Loose

::::::
design, unconstrained on

figures, hiding obesity and
:::::::
showing

::::
slim, suitable for a variety of figures.

KOBE 纯棉面料透气舒适，采用纯棉面料制作而成，触感柔软细腻，具有良好
的透气性，穿着舒适不闷热。

::::
宽松的版型设计，包容性强，适合多种身

材穿着。
Breathable and comfortable cotton fabrics, made of pure cotton fabric, gives
a soft and delicate touch. It is comfortable to wear, feeling no hot with good
breathability.

:::::
Loos

::::::
design, inclusive and suitable for a variety of figures.

PTRANS+PSE 中国风
::::
印花，这款T恤采用了中国风的

::::
印花设计，将中国风的元素融入

其中，带来了不一样的视觉美感。
::::
宽松的版型设计，遮肉

::::
显瘦，轻松打

造慵懒随性的时尚风。
Chinese style printing, the T-shirt has a Chinese style printing design, incorpo-
rates Chinese elements, providing a different visual aesthetic.

::::::
Loose

::::::
design,

hiding obesity and
:::::::
showing

::::
slim, building a lazy and casual style easily.

ILVT
::::
印花图案更显趣味，衣身点缀大面积的印花图案，打破了纯色的单
调性，增添了整体的趣味性，彰显出了青春的活力气息，穿着上身更
显运动风。
The printing pattern is more interesting, large area embellished with printing
pattern in the clothes breaks monotony of solid color, gives bluethe whole
piece a more interesting touch, highlights the vitality of youth, showing greater
sport fashion .

Table 5: Case study of ILVT and baselines on JDK dataset. All baselines take as input the product title, attributes
and the pseudo labelled knowledge. We highlight the pseudo labelled knowledge in yellow. Words generated from
product title and attribute set are highlighted in breaking line and from product details are in double underline.
Diverse words generated from selected knowledge in ILVT is highlighted in red color.

19

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 20 - 28
May 26, 2022 c©2022 Association for Computational Linguistics

Leveraging Seq2seq Language Generation for Multi-level Product Issue
Identification

Yang Liu, Varnith Uttam Chordia, Hua Li, Siavash Fazeli,
Yifei Sun, Vincent Gao, Na Zhang

Amazon, Inc.
{yngliun, vchordia, realname, saivash, sunyifei, vincegao, naazhang}@amazon.com

Abstract

In a leading e-commerce business, we receive
hundreds of millions of customer feedback
from different text communication channels
such as product reviews. The feedback can
contain rich information regarding customers’
dissatisfaction in the quality of goods and ser-
vices. To harness such information to better
serve customers, in this paper, we created a
machine learning approach to automatically
identify product issues and uncover root causes
from the customer feedback text. We iden-
tify issues at two levels: coarse grained (L-
Coarse) and fine grained (L-Granular). We for-
mulate this multi-level product issue identifica-
tion problem as a seq2seq language generation
problem. Specifically, we utilize transformer-
based seq2seq models due to their versatility
and strong transfer-learning capability. We
demonstrate that our approach is label effi-
cient and outperforms the traditional approach
such as multi-class multi-label classification
formulation. Based on human evaluation, our
fine-tuned model achieves 82.1% and 95.4%
human-level performance for L-Coarse and L-
Granular issue identification, respectively. Fur-
thermore, our experiments illustrate that the
model can generalize to identify unseen L-
Granular issues.

1 Introduction

Customer feedback plays a crucial role in contin-
uously improving service quality for e-commerce
companies. One important piece of information
in customer feedback are the product issues that
customers encounter during their order experience,
such as product-quality defects and undesired prod-
uct features. Although negative product experience
occurs rarely in mature e-commerce stores, iden-
tifying the product issues presented in customer
feedback significantly helps sellers understand cus-
tomers’ concerns and facilitates them to further
improve customer order experience. As the vol-
ume of customer feedback grows rapidly, an au-

tomatic and intelligent issue identification system
is needed to support the fast-growing e-commerce
business. In this paper, we introduce a machine
learning solution for multi-level issue discovery by
taking advantage of advanced deep language mod-
eling techniques. We show that our approach not
only accurately identifies product issues from cus-
tomer feedback, but also meets the requirements
for our use case, which, we believe, is also common
to other e-commerce store business.

Identifying product issues from customer feed-
back has its own unique characteristics as com-
pared to common NLP tasks such as text classifi-
cation, document summarization, entity extraction,
and sentiment analysis. First, we target to extract
diverse and dynamic product issues, instead of cat-
egorizing them into a fixed set of labels. This is
mainly due to three varying factors: the product
itself, the customer and the context. Different cat-
egories of products naturally have different kinds
of issues. Different customers may find different
flaws of the same product, depending on their per-
sonal taste and preferences; the way they describe
issues could vary greatly from one customer to an-
other. In addition, issues are dynamic as different
issues emerge and disappear from time to time. For
example, a bad local weather can lead to a surge in
shipment damage and delivery failure complaints
in a short period of time.

Second, to effectively improve customer experi-
ence, multi-level issues with different granularity
are needed. Higher-level, concise, and consistent is-
sues can be shared with sellers to help them identify
trends and hotspots for the flaws in their products;
more detailed lower-level issues are needed by busi-
ness investigators to study root causes of product
defects and design treatment accordingly.

The third requirement for product issue identifi-
cation is about supervised information extraction.
Customer feedback often contains contents that
are unrelated to product issue. Furthermore, multi-

20

ple product issues can be tangled or be embedded
within one phrase or sentence. Therefore, uncon-
trolled excerpts from customer feedback can be
confusing and overwhelming to downstream users.
So our system should focus on product issues and
disentangle them to best serve downstream users.

Traditional language processing approaches can
not meet all the three requirements discussed above.
To start with, traditional classification methods can
only produce results from a pre-defined, limited
set of labels, and therefore cannot satisfy the first
requirement. Unsupervised methods such as topic
modeling and clustering, on the other hand, are able
to identify diverse patterns varying from a dataset
to another and discover new trends. However, it
is hard to steer the algorithms to exercise the con-
trol over the patterns or type of information they
extract from the data. Based on our experience, it
is challenging to generate meaningful and highly
coherent ‘topics’ using topic modeling or cluster-
ing algorithm based on text embedding techniques.
Finally, it is not straightforward to adapt these meth-
ods for multi-level issue identification unless we
develop multiple models to handle each level in-
dividually. For operation efficiency, we prefer to
have a single model to complete the whole task so
as to minimize model deployment and maintenance
cost.

In this paper, we propose an innovative solution
by formulating our problem as seq2seq language
generation tasks and leveraging deep learning mod-
els with multi-task capability to meet all our re-
quirements. In particular, we choose transformer-
based seq2seq models as backbone and fine tune
them on our data. A single model is trained to
generate both the low-level and high-level product
issues. Even though the model is trained in a super-
vised manner with human-annotated data to have
better content generation control, as a large-scale
language model, the model shows generalization
power to discover fine-grained issues from cus-
tomer feedback that were not seen during training
time. To the best of our knowledge, so far it is
the most flexible and effective approach for extract-
ing multi-level product issues from e-commerce
customer feedback.

2 Related Work

There are various approaches to extract key topics
and identify issues from customer feedback. Prior
work in this area can be categorized into four ma-

jor groups: (1) document classification, (2) topic
modeling, (3) clustering, and (4) text summariza-
tion. Document classification is one of the most
well studied NLP tasks, and many deep learning
methods (Kim, 2014; Devlin et al., 2018a) have
been introduced and excelled at it in recent years.
Tong et al. (2018) developed a convolutional neu-
ral network to extract reason codes from customer
complaints. More recently, Liu et al. (2021a) lever-
aged BERT-based model to classify different types
of fraud elements from Internet fraud complaints.
Instead of assigning labels to the entire texts, they
map the labels to each paragraph. These methods
are not very applicable in the current context since
they require a fixed and pre-defined taxonomy.

For topic modeling, latent Dirichlet allocation
(LDA) (Blei et al., 2003) is a widely used statisti-
cal method for analyzing information in customer
reviews and feedback (Mou et al., 2019; Debortoli
et al., 2016; Jeong et al., 2019). Zhai et al. (2011)
added pre-existing constraints to LDA in order to
improve product feature extraction from customer
reviews. Bagheri et al. (2014) proposed a Twofold-
LDA model to produce topics focused on desired
aspects. Srivastava and Sutton (2017) proposed
autoencoded variational inference for topic model
(AVITM) which yielded much more interpretable
topics than LDA. While most traditional topic mod-
eling methods use simple document representations
such as the bag-of-words, an alternative approach
is to cluster similar documents using document em-
beddings followed by extracting common topics
within each cluster. Du et al. (2016) used GloVe
embeddings and K-means clustering for analyz-
ing different aspects in electronics and restaurants
reviews. Grootendorst (2020) used BERT embed-
dings and DBSCAN to create interpretable topics.
Although topic modeling and clustering are not
constrained to a fixed label set, the results can be
inconsistent and incoherent due to unsupervised
topic extraction.

One can also pose this problem as a text sum-
marization problem, where a model can generate a
summary to present the key information from the
input text. Liu et al. (2021b) improved abstractive
summarization models for generating summaries
about product issues from customer feedback. For
our use case, however, it’s not clear how to use text
summarization to produce multi-level issues and
how to disentangle different issues mixed within a
summary.

21

Customer Feedback L-Granular Issue L-Coarse Issue
When I received the product, there was no power
cable included. The box has been opened previously
and the item looks used.

no power cable included,
box has been opened, item
looks used

missing parts issue, opened
box, used condition

Instructions were hard to read, some of it was written
in another language. The product also looks different
from the picture.

instructions hard to read,
written in another language,
looks different from picture

instruction issue, not as
pictured

Table 1: Example customer feedback texts and L-Coarse & L-Granular issues.

Figure 1: Illustration of multi-level issue generations enabled by multi-tasking models.

3 Proposed Approach

3.1 Multi-level Issue Identification

We aim to have comprehensive issue representa-
tions due to the large variety of intents and issues
customers can express through customer feedback.
One solution is to build a hierarchical architecture.
According to the abstraction levels, more detailed
and trivial issues will sit on the leaves whereas
more general and conclusive issue categories will
sit on the branches and major chunks. In this work,
we decide to approach the problem starting with
a two-level issue representation: L-Coarse and L-
Granular.

An L-Granular issue is a faithful representation
of the original customer communication and it cap-
tures concrete and fine-grain issues in a free form
text. We deliberately leave L-Granular issues unag-
gregated to preserve original customer expression
so that they will serve as a solid foundation for sub-
sequent bottom-up aggregation. Each L-Coarse is-
sue is an aggregation of multiple L-Granular issues,
which describes an abstract issue shared across mul-
tiple customer communications. To fully capture
customer concerns and differentiate the nuances
among issues, we allow multiple issues, at both
L-Coarse and L-Granular levels, for each customer
feedback. Table 1 provides three examples of cus-
tomer feedback together with their corresponding
L-Coarse and L-Granular issues1.

1Due to confidentiality, all customer feedback examples
in this paper are composed by the authors and are used for
demonstration only.

3.2 Seq2seq Learning for Issue Identification

We tackle the issue identification problem using a
seq2seq learning approach. In this approach, we
format our problem as text-to-text tasks, where the
input text is customer feedback and the output text
is the literal text representing the identified issues.
We fine tune a seq2seq model to capture issues that
are relevant to product defects. This approach is
illustrated in Figure 1.

Leveraging the versatility of the text-to-text for-
mat, Raffel et al. (2019a) and Aribandi et al. (2021)
demonstrated the capability and advantage of han-
dling multiple tasks within a single model. They
inspired us to take the advantage of these multi-
task learning techniques to train a single model
to generate both L-Coarse and L-Granular issues
simultaneously. As illustrated in Figure 1, we ap-
pend different customized prefixes to the same in-
put text to distinguish different tasks and pair the
prefixed sample with the corresponding target text
(L-Coarse or L-Granular issues). The model is
trained to produce different levels of issues accord-
ing to the prefixes in the input. In particular, the
prefixes we use are "identify high-level issues:" and
"identify fine-grain issues:" for L-Coarse- and L-
Granular-issue generations, respectively. For the
target text, we use comma to separate multiple is-
sues for both L-Coarse and L-Granular issues. In
our training, we use the natural mix (1:1) of the
two task data.

22

4 Experiments

4.1 Dataset

We collected 9200 samples of negative customer
feedback across different post-order communica-
tion channels from online e-commerce stores. We
asked subject matter experts 2 to identify L-Coarse
and L-Granular issues for each customer feedback
text with emphasis on extracting the information re-
lated to product issues. The annotated dataset con-
tains 70 unique L-Coarse issues and 6906 unique
L-Granular issues. The large difference in the num-
bers of unique issues shows the different charac-
teristics of L-Coarse and L-Granular issues: L-
Coarse issues are organized and abstract whereas
L-Granular issues are detailed, diverse, and are of-
ten in free form. As illustrated in Figure 2, for
the distribution of the top 50 L-Coarse issues, it is
highly skewed and long tailed. In our experiments,
we used human-annotated issues as the target text
during model training. The train/test split ratio is
80:20.

Figure 2: Distribution of anonymized L-Coarse issues.

4.2 Models & Training Settings

We compare three transformer-based seq2seq mod-
els: BART (Lewis et al., 2019a), T5 (Raffel et al.,
2019a), and Pegasus (Zhang et al., 2020). We adopt
the pretrained models from the HuggingFace3 im-
plementation and fine tune the models on our train-
ing dataset.The details regarding the training pa-
rameters we used can be found in the appendix
C. We implement several training techniques to
improve model performance and help the models
better adapt to our application:

Auxiliary Tasks Recent studies have shown that
multi-tasking helps improve model performance

2All annotators followed the confidentiality policy when
conducting the labeling jobs.

3https://huggingface.co/

(Raffel et al., 2019a; Aribandi et al., 2021). In our
case, in addition to L-Coarse and L-Granular is-
sue generations, we include other NLP tasks into
model training. The auxiliary tasks include summa-
rization, token infilling, and classification. Details
about the auxiliary tasks can be found in Appendix
A.

Sentence & Issue Shuffling A unique charac-
teristic of issue identification is that the order of
individual issues does not matter, as long as all
relevant issues are correctly identified from cus-
tomer feedback. This is contrary to conventional
language generation tasks, such as summarization
and translation, where the order of generated words
must follow natural language syntax. Hence, we
shuffle both input sentences and target issues dur-
ing model training to induce the model to learn to
ignore the ordering information and achieves better
performance.

4.3 Evaluation Metrics

Similarity Measure To evaluate our models’ per-
formance, we first measure the similarity between
model-generated and human-annotated issues. We
employ two sets of metrics to measure both lexical
and semantic similarity.

• Lexical Metrics: We compute the ROUGE-1
& ROUGE-2 (Lin, 2004) metrics between the
model-generated text and human-annotated is-
sues. They measure the overlapping unigrams
and bigrams between the texts.

• Semantic Metrics: We define two new met-
rics - SimCSE Precision & SimCSE Recall -
which evaluate the precision and recall at the
customer feedback level, based on the pair-
wise similarity of the sentence embeddings for
model-generated and human-annotated issues.
Let the model-generated issues be represented
by X1, X2, .. , XI and the human-annotated
issues by Y1, Y2, .. , YJ . We measure the pair-
wise similarity between each issue pair Xi

and Yj (0 ≤ i ≤ I and 0 ≤ j ≤ J) as the co-
sine similarity of their corresponding SimCSE
embeddings (Gao et al., 2021). A similarity
higher than a given threshold is considered
a match between a pair of issues as seen in
equation 1. Based on the number of matches,
we are able to compute precision and recall.
The threshold (0.7) is chosen based on our

23

Model
L-Coarse L-Granular

ROUGE SimCSE ROUGE SimCSE
R-1 R-2 P R R-1 R-2 P R

MCML-BERT -24.1% -41.8% -27.5% -35.7% - - - -
BART +1.6% +0.3% -3.4% +4.9% -2.9% -4.0% -7.4% 0.0%

Pegasus +1.2% +1.0% +0.5% -0.7% -3.9% -5.9% -1.8% -9.3%

Table 2: Performance comparison. The performance numbers are shown as the difference from the T5 performance.
Here R-1 & R-2 refers to ROUGE-1 and ROUGE-2 scores respectively, whereas P refers to precision and R refers

to recall.

empirical study on the inter-label similarity
distribution.

match(Xi, Yj) =

{
1, if sim(Xi,Yj) > 0.7
0, otherwise

(1)

where sim(Xi,Yj) is the similarity score be-
tween a model generated issue and human-
annotated issue. More details with examples
on the calculation of this metric can be found
in the Appendix B.

Human Evaluation Both ROUGE and SimCSE
evaluations have their limitations, i.e. ROUGE
score fails to capture semantic similarity while Sim-
CSE evaluation relies on the embedding quality.
Both methods are influenced by annotation noise.
Thus, we also conduct human evaluation to assess
the quality of the model- and human-generated is-
sues. To have an unbiased evaluation, we adopt a
double blind approach, where we first shuffle the
model outputs and human annotations and then ask
human auditors to adjudicate the issues (shuffled)
according to the following criteria:

• Rating 1: All the issues are correctly identi-
fied.

• Rating 2: At least one issue is missing.

• Rating 3: At least one issue is incorrectly as-
signed.

5 Results

In this section, we report the results and analy-
sis from our study. To our knowledge there are
no publicly-available datasets in e-commerce or
performance benchmarks for the problem of multi-
level product issue identification. Thus, we con-
duct the study using our private customer-feedback
dataset. Due to confidentiality, we can not report
absolute model performance numbers but only rel-
ative ones compared to the baseline models.

5.1 Model Performance

First, we compare the performance of differ-
ent transformer-based seq2seq models, including
BART (Lewis et al., 2019b), T5 (Raffel et al.,
2019b), and Pegasus (Zhang et al., 2019). We at-
tempted to provide a quantitative comparison be-
tween our seq2seq approach and other approaches
such as topic modeling and clustering. However,
the outputs from these alternative approaches are
not directly comparable to ours. Instead, we train
a multi-class multi-label classification model for
L-Coarse issues using BERT (Devlin et al., 2018b)
(MCML-BERT) as a baseline for comparison. We
do not apply the classification modeling approach
to the L-Granular-issue prediction task due to the
large number of L-Granular issues.

Results on the test dataset are provided in Table
2, where we choose T5 as the base model. We ob-
serve that for L-Coarse issues, MCML-BERT sig-
nificantly underperforms in comparison to all the
seq2seq models. Among the seq2seq models, for
L-Coarse-issue identification, BART and Pegasus
perform marginally better than T5. For L-Granular-
issue identification, however, T5 shows consistent
better performance. Due to the best overall per-
formance of T5, in the following sections, we will
focus on the results produced by T5.

5.2 Zero- and Few-shot Learning

As we aim to identify diverse and dynamic issues,
it’s important for the model to be able to discover
novel issues with zero or only few training samples.
Here, we examine the zero-shot and few-shot learn-
ing capability by varying the amount of samples
containing specific issues in the training dataset.
Specifically, we select two frequent issues from L-
Coarse and L-Granular respectively. We fine-tune
T5 using the training dateset containing a fraction
of samples with those selected issues, then evaluate
the model on the same test dataset.

Table 3 shows the relative model performance
(F1-scores) as a function of the fractions of samples

24

Level - Selected Issue 100% samples 75% samples 50% samples 25% samples 0% samples
L-Coarse - X1 100.0% 98.5% 98.3% 92.2% 0%
L-Coarse - X2 100.0% 77.2% 69.9% 56.1% 0%
L-Granular - X3 100.0% 97.1% 96.0% 90.7% 75.8%
L-Granular - X4 100.0% 95.3% 92.7% 81.5% 68.6%

Table 3: Relative SimCSE F1-score performance with different proportions of training examples containing the
selected issues (anonymized).

exposed during model training. In this table, we
take the model performance when 100% samples
with the selected issues are included in training as
baseline. In general, the performance decreases
as fewer training samples are included. For L-
Granular issues, even when there is no sample of
selected issues present during model training, the
model is still able to identify the correct issues with
a high F1-scores (75.8% and 68.6%). It indicates
that the model generalizes well on identifying un-
seen fine-grained issues from customer feedback.
On the other hand, though the model fails to rec-
ognize unseen L-Coarse issue (no exposure dur-
ing training), its detection performance improves
quickly: with 25% samples, model’s F1-scores rise
to 92.2% and 56.1%. This shows that our approach,
fine-tuning a pre-trained seq2seq model such as T5,
is label efficient.

5.3 Human Evaluation

Human evaluation is performed on 850 records
randomly sampled from the test dataset. We ask au-
ditors to evaluate both model-generated and human-
annotated issues following double blind auditing
procedures (see Section 4.3 for details). We obtain
the ratings assigned by auditors for all the samples.
We then compute the performance metric that is
defined as the (percentage of Rating-1 samples +
0.5 ∗ percentage of Rating-2 samples). Table 4
shows the model performance relative to human
annotator. As can be observed from this table, our
model achieves 82.1% and 95.4% of human-level
performance for L-Coarse and L-Granular issue
identification, respectively. Given the complexity
and challenges of the tasks, such results indicate
the effectiveness of our approach. On the other
hand, the better L-Granular performance aligns
with our previous observations that model gener-
alizes better on L-Granular issues than L-Coarse
issues. We hypothesize that this is due to that fact
that L-Granular issues are concrete ones while L-
Coarse issues are more abstract, which is more
challenging for the model to learn, as also observed
in Zeyu Liu (2021).

Issue Level Relative to Human
Performance

L-Coarse 82.1%
L-Granular 95.4%

Table 4: Model performance based on human auditing.

5.4 Ablation Study

We examine the effect of adding auxiliary tasks
and sentences & issues shuffling to model training.
Here, the baseline model is a T5 model that’s fined
tuned using only L-Coarse & L-Granular issue iden-
tification tasks where the issues are presented in a
fixed order.

Additional Training Tech-
niques

L-Coarse L-Granular

Summarization, Token-
infilling, classification

-0.16% +1.44%

Sentences & issues shuffling +3.48 % -0.89%
All tasks above +4.40 % +1.33%

Table 5: Effect of auxiliary tasks and sentences &
issues shuffling (SimCSE F1-scores).

Table 5 shows the change in SimCSE F1-scores
when including the additional training techniques.
As can be seen from this table, auxiliary tasks im-
prove L-Granular performance while sentences &
issues shuffling gives better performance at the L-
Coarse level. We achieve the best overall model
performance by combining both set of techniques.

6 Conclusion

In conclusion, we analyzed the challenges in iden-
tifying diverse and multi-level product issues from
customer feedback. To overcome these challenges,
we creatively formulated our problem as a seq2seq
modeling problem and leveraged text-to-text trans-
fer learning framework. We utilized multi-tasking
to generate product issues at multiple levels using
a single model, which minimizes operational cost.
Results show that our model performs closely to hu-
man on issue identification tasks. We also observed
that our approach is label efficient and our model
generalizes well to identify unseen L-Granular is-

25

sues. Our next step is to explore ways to improve
our model’s performance and generalizability on
L-Coarse issue prediction.

References
Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,

Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo
Ni, et al. 2021. Ext5: Towards extreme multi-
task scaling for transfer learning. arXiv preprint
arXiv:2111.10952.

Ayoub Bagheri, Mohamad Saraee, and Franciska
De Jong. 2014. Adm-lda: An aspect detection model
based on topic modelling using the structure of re-
view sentences. Journal of Information Science,
40(5):621–636.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Stefan Debortoli, Oliver Müller, Iris Junglas, and Jan
Vom Brocke. 2016. Text mining for information
systems researchers: An annotated topic modeling
tutorial. Communications of the Association for In-
formation Systems, 39(1):7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Hui Du, Xueke Xu, Xueqi Cheng, Dayong Wu, Yue Liu,
and Zhihua Yu. 2016. Aspect-specific sentimental
word embedding for sentiment analysis of online
reviews. In Proceedings of the 25th International
Conference Companion on World Wide Web, pages
29–30.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Maarten Grootendorst. 2020. Bertopic: leveraging
bert and c-tf-idf to create easily interpretable top-
ics (2020). URL https://doi. org/10.5281/zenodo,
4381785.

Byeongki Jeong, Janghyeok Yoon, and Jae-Min Lee.
2019. Social media mining for product planning:
A product opportunity mining approach based on
topic modeling and sentiment analysis. International
Journal of Information Management, 48:280–290.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019a. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. arXiv preprint arXiv:1910.13461.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019b.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Tong Liu, Siyuan Wang, Jingchao Fu, Lei Chen,
Zhongyu Wei, Yaqi Liu, Heng Ye, Liaosa Xu,
Weiqiang Wang, and Xuanjing Huang. 2021a. Fine-
grained element identification in complaint text of
internet fraud. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management, pages 3268–3272.

Yang Liu, Yifei Sun, and Vincent Gao. 2021b. Improv-
ing factual consistency of abstractive summarization
on customer feedback. In Proceedings of The 4th
Workshop on e-Commerce and NLP, pages 158–163.

Jian Mou, Gang Ren, Chunxiu Qin, and Kerry Kurcz.
2019. Understanding the topics of export cross-
border e-commerce consumers feedback: an lda ap-
proach. Electronic Commerce Research, 19(4):749–
777.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019b. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. arXiv
preprint arXiv:1703.01488.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Xuesong Tong, Bin Wu, Shuyang Wang, and Jinna Lv.
2018. A complaint text classification model based on
character-level convolutional network. In 2018 IEEE
9th International Conference on Software Engineer-
ing and Service Science (ICSESS), pages 507–511.
IEEE.

26

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Jungo Kasai Hannaneh Hajishirzi Noah A. Smith
Zeyu Liu, Yizhong Wang. 2021. Probing across
time: What does roberta know and when? In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pages 820—-842.

Zhongwu Zhai, Bing Liu, Hua Xu, and Peifa Jia. 2011.
Constrained lda for grouping product features in opin-
ion mining. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 448–459.
Springer.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
CoRR, abs/1912.08777.

A Auxiliary Tasks

• Summarization: We use a customized dataset
containing 14k customer-feedback records
with human-annotated summaries. For this
task, we train the model to mimic human-
generated summaries.

• Token Span infilling: It has been recently
shown (Devlin et al., 2018a) that a masked
language modeling based objective results in
superior performance on various downstream
tasks. The objective for the model is to predict
the missing tokens during model pre-training.
We follow a similar approach by randomly
replacing spans of token by single sentinel to-
kens. The target sentence corresponds to all
of the dropped-out spans of tokens, delimited
by the same sentinel tokens used in the input
sequence. The number of samples for this task
is 7k.

• Classification: For this auxiliary task, we use
a customer-feedback dataset that has been la-

belled using a fixed set of product-related cat-
egories. There are 10k samples in total. We
cast this classification problem into a text-to-
text format, where the input is the customer
feedback text and the output is a text-based
label.

B SimCSE Evaluation

For each sample, we compute pairwise cosine sim-
ilarity base on the SimCSE (Gao et al., 2021) sen-
tence embedding computed for each of the model-
generated and human-annotated issues. If the simi-
larity is greater than a threshold for an issue pair,
we increment the number of matches by 1, even
if there is more than one match for a given issue.
The threshold was selected based on L-Coarse and
L-Granular intra-issue similarity distributions, i.e.,
the distribution of all the pairwise cosine similarity
between the unique issues from the data. Based on
our emperical study, we choose 0.7 as the thresh-
old. Table 6 illustrates the SimCSE precision and
recall calculation process. Note that the issues are
comma delimited. We can see for the first example
in the table although "minor scratches" and "minor
cosmetic defects" vary lexically, the two are seman-
tically similar, which is reflected in their greater
than 0.7 SimCSE similarity. On the other hand,
"minor scratches" has a SimCSE similarity lower
than 0.7 with "counterfeit issue" and hence not a
match, which is consistent with our intuition. The
number of matches includes all the issues with sim-
ilarity greater than 0.7. Based on the number of
matches, we can calculate the instance level preci-
sion and recall as usual. Averaging instance level
precision and recall, we can obtain precision and
recall for aggregated dataset level.

C Training Parameters

For training transfomer-based seq2seq models, we
select maximum input text and target text lengths
as 512 and 64, respectively. We use a batch size of
40 distributed equally over 8 GPUs, with a learning

Model Output Human Annotation # Match
minor scratches minor cosmetic defects,

fitting issue
1

size issue, not
as described

size issue, material is-
sue, not as described

2

quality issue quality issue 1

Table 6: Calculation of the Precision and Recall, with
similarity threshold of 0.7 for L-Coarse

27

rate of 5e-5. We train this setup over 25 epochs on
a p3.16xlarge EC2 instance with distributed model
and data parallelism to fine-tune the model. During
inference we use beam search (Sutskever et al.,
2014) to generate the target text sequence with a
beam width of 2 and length penalty α = 2.5 (Wu
et al., 2016).

28

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 29 - 34
May 26, 2022 c©2022 Association for Computational Linguistics

Data Quality Estimation Framework for Faster Tax Code Classification

Ravi Kondadadi and Allen Williams and Nicolas Nicolov
Avalara Inc.

255 South King St., Suite 1800
Seattle, WA 98104

{ravi.kondadadi, allen.williams, nicolas.nicolov}@avalara.com

Abstract

This paper describes a novel framework to es-
timate the data quality of a collection of prod-
uct descriptions to identify required relevant
information for accurate product listing clas-
sification for tax-code assignment. Our Data
Quality Estimation (DQE) framework consists
of a Question Answering (QA) based attribute-
value extraction model to identify missing at-
tributes and a classification model to identify
bad quality records. We show that our frame-
work can accurately predict the quality of prod-
uct descriptions. In addition to identifying low-
quality product listings, our framework can also
generate a detailed report at a category level
showing missing product information resulting
in a better customer experience.

1 Introduction

As a global tax compliance company, Avalara en-
ables businesses to use the correct sales tax rate
by mapping their product catalogs to a tax code
taxonomy built by Avalara. The tax codes, in turn,
inform the tax calculation engine how to apply the
tax for a transaction. This mapping process is very
laborious today due to many reasons. One of the
main challenges is the quality of the product cata-
log data we receive from customers. Many times,
this data is quite vague and noisy. This can be
caused by many factors.

1. Not enough context about the business: For
tax code classification, we only receive a col-
lection of product titles. This product informa-
tion does not give enough context about the
industry in general, causing problems in tax
code mapping, especially if the language in
the product information is ambiguous. This
lack of context results in the mapping team
having to talk to the business to get more infor-
mation about the business and the correspond-
ing industry. This is a very tedious process

requiring a lot of manual effort, causing de-
lays in the customer onboarding process.

2. Missing attributes in the product titles and
descriptions: Many product descriptions do
not have relevant attributes. This makes it
hard for the models to map the products in the
catalog to applicable tax codes. For example,
a clothing product without specific attributes
like knitted/crocheted cannot be mapped to
the appropriate tax code.

3. Product information contains rare words, and
acronyms: If the product information includes
words that were not seen before, acronyms or
abbreviations, it makes it harder for the model
to classify.

4. The industry of the business is unknown or
not currently covered by the tax code taxon-
omy: If the business belongs to a new sector
or belongs to an industry with low tax code
coverage, the mapping would be more chal-
lenging.

A model including these factors to identify the qual-
ity of product titles would help the mapping team
request additional information for those products
from the business and accelerate the onboarding
process for that customer.

In this paper, we describe a novel data quality es-
timation framework which businesses can interact
with and provide all relevant information required
to map all entries in a product catalog to the corre-
sponding tax codes. Iteratively, the tool can map
input product records to tax codes, identify low
quality records and present pertinent questions to
the user for the bad records. The tool repeats the
process until all records are fixed, and the mappings
are complete for the entire product catalog.

Next, we discuss our Data Quality Estimation
framework. We then describe our methodology and
experiments followed by relevant recent work.

29

2 Data Quality Estimation Framework

In this section, we present details of the Data Qual-
ity Estimation framework. The framework includes
a tax code classification model, an attribute-value
extraction model, and a quality assessment model.
Next, we will discuss each of these components in
detail.

2.1 Tax Code Classification

The Avalara Tax code system consists of thousands
of codes hierarchically organized by categories and
the nature of the business. The codes fall into
a dozen major categories ranging from products
to food and beverages. The automatic tax code
classification system is responsible for identify-
ing the appropriate tax code for any given product
in a customer’s inventory catalog. The tax codes
are mapped when the customer is onboarded to
the Avalara system. The classification system at
Avalara uses a tiered approach where a top-level
model predicts the probable category, and then a
category-specific model predicts a probable tax
code. This approach was chosen predominantly
to keep the number of labels for each model down
to a manageable number and allow for targeted
improvements for each category without interfer-
ing with other categories. Each of the models is a
BERT (Devlin et al., 2019) model fine-tuned for
classification.

2.2 Attribute Value Extraction (AVE)

The most important parts of product information
to determine the relevant tax code are the prod-
uct title and product description. An attribute is a
feature that describes a specific property of a prod-
uct. Some examples of attributes include brand,
color, material, etc. An attribute-value is a partic-
ular value assumed by the attribute. For example,
for the product title “Apple iPhone 13 Pro, 128GB,
Sierra Blue”, iPhone is the main entity. The cor-
responding attribute-values are “Apple”, “13 pro”
and “Sierra Blue”. Apple is the brand, “13 pro” is
the model and “Sierra Blue” is the color.

The presence of attributes is quite important to
classifying a product title to the most relevant tax
code. Often, we lack attribute information in the
product title data we receive from our customers.
This usually results in lot of back and forth with
the customer and causes significant delays in the
time to fully onboard a customer. A model that
can extract attribute-values from product titles and

identify missing attributes would be of great help
in determining the quality of the customer data.

Input to the attribute-value extraction model
would include the product listing and a set of at-
tributes. These attributes come from a tax code
ontology developed internally by Avalara that cov-
ers a wide range of tax code categories. The tax
code classification model is used to identify the
relevant category for the product listing. We can
then identify the related attributes for that category
from the ontology.

For our experiments, we formulated the attribute-
value extraction as a Question Answering problem
as mentioned in (Wang et al., 2020a). The advan-
tage of a Question Answering (QA) formulation is
that it can scale well with more attributes and can
work well with unseen attributes in the training data.
We can treat the product listing as the document,
attribute name as the question and retrieve the value
as the answer. We used the MAVE dataset (Yang
et al., 2021) for training the QA model. MAVE is
a product dataset for Multi-source Attribute-Value
Extraction, created by Google. MAVE is the largest
product attribute-value extraction dataset by the
number of attribute-value examples containing over
3M attribute-value annotations from 2.2M Amazon
product descriptions.

2.3 Quality Assessment
The goal of the quality assessment model is to iden-
tify the product listings that require more informa-
tion in order to be correctly mapped to the relevant
tax codes. We created a logistic regression (LR)
(Cox, 1958) model for this classification task. Our
features include prediction probabilities from the
tax code classification model, missing attribute in-
formation, title length, and category meta data, etc.

Here is an overview of the steps involved in run-
ning the framework.

1. First run the current tax code classification
model.

2. Remove the records with good predictions
based on the prediction probabilities.

3. For the remaining records, run the attribute-
value extraction to identify missing attributes.

4. Identify the quality score using the quality
assessment model.

5. Generate a detailed report listing relevant
questions for each category to cover the ma-

30

jority of the bad records and share the report
with the user for feedback.

6. Repeat steps 1-5 on the updated records set
from the user until the number of bad records
fall below a predefined threshold.

3 Experimental Results

In this section, we present the evaluation of both
the attribute-value extraction and the quality assess-
ment models.

3.1 Attribute-Value Extraction Evaluation
We evaluated various attribute-value extraction
methods on two different datasets.

1. MAVE dataset: A random subset of around
10,000 records from MAVE for evaluation.

2. Compliance dataset: A subset of around 1,000
product listings that was manually annotated
with attribute-value information.

We compared two different approaches for attribute-
value extraction.

1. AVE-FT: This is a hybrid approach of look-
up and classification. We created a list of
1,200 most frequent attributes and the possible
values they could take. For example, for the
attribute "material-type" we included phrases
like “plastic”, “pvc”, “synthetic rubber” as
possible values. We first check if we can find
an attribute-value in the listing using a look-
up approach. We used a SpaCy (Honnibal
and Montani, 2017) matcher to identify such
values. In order to work with attributes that are
not in our list, we used a fastText (Bojanowski
et al., 2017) model to identify if a product
listing contains a specific attribute. The model
was trained on our historical data where we
know whether a specific attribute is present.

2. AVE-QA: We developed a QA model
fine-tuned on a DistilBERT (AVE-QA-
DISTILBERT) (Sanh et al., 2019) model on a
subset of records from the MAVE dataset as
mentioned in (Wang et al., 2020a). We also
created a different QA model by fine-tuning
on the MiniLM model (AVE-QA-MINILM)
(Wang et al., 2020b).

We used the F1-score metric as defined in the
SQuAD (Rajpurkar et al., 2016) evaluation dataset
for Question Answering.

Attribute-Value
Extractor

MAVE
F1-score

Compliance
set F1-
score

AVE-FT 0.15 0.19
AVE-QA-
DISTILBERT

0.95 0.54

AVE-QA-MINILM 0.93 0.63

Table 1: Comparison of various attribute-value extrac-
tion methods on the MAVE and Compliance datasets

Table 1 shows the evaluation of various attribute-
value extraction methods on the MAVE and the
Compliance datasets. We can see that the Question-
Answering based models outperformed the Fast-
Text baseline on both datasets and MiniLM per-
forms slightly better than Distilbert version. Not
surprisingly, both QA models performed well on
the MAVE datasets as the QA models were fine-
tuned on MAVE. The compliance dataset includes
attributes related to domains like Insurance and
Medical care whereas the MAVE data was predom-
inantly about e-commerce. Although our perfor-
mance is currently low on the compliance dataset,
we are working on augmenting MAVE with compli-
ance related information and retraining the model
with more compliance data.

3.2 Evaluation of Data Quality Estimation

In this section, we compare different configura-
tions of Attribute-value extraction and Data qual-
ity assessment for estimating the data quality of
a set of product listings. In addition to the Logis-
tic Regression model for quality assessment, we
also evaluated two baselines. The first baseline
simply predicts the quality based on the predic-
tion probability. The second baseline includes both
tax-code level precision (this can be determined
from the historical performance of the tax-code)
and prediction probabilities. For the evaluation, we
used the same sample of 1,000 listings from the
attribute-value extraction experiment. The dataset
was reviewed by our tax coding experts to classify
each listing as good/bad quality. Table 2 shows
the evaluation of various data quality estimation
methods. For this experiment, we used a threshold
of 0.5 for prediction probabilities. It can be seen
from the results that our classification model for
data quality assessment outperformed the baselines
based on prediction probabilities and tax-code level
precision. Although adding the missing attribute

31

Attribute-
Value
Extrac-
tor

Data Quality Esti-
mator

F1-score

None Pred.Prob. Thresh-
olding

0.755

None Pred.Prob.+Tax-
code precision

0.741

None Logistic Regression 0.823
AVE-FT Logistic Regression 0.826
AVE-QA-
MINILM

Logistic Regression 0.828

Table 2: Comparison of various data quality estimation
models

information to the model did not help, it is use-
ful in explaining why the data is inadequate to our
customers.

Figure 1: Importance of quality estimation features

Figure 1 shows the importance of various fea-
tures in the quality estimation model. It can be
seen that title length and missing attribute infor-
mation are the most important features for quality
estimation. It also shows that using attribute value
extraction model alone is not enough in assessing
the data quality of product listings.

We generate a summary report at a category level
showing the missing attribute information to help
our customers understand how they can enhance
their product descriptions. Figure 2 shows a sample
screenshot of the detailed report showing missing
attribute information at a category level. We are
currently working on including this tool in produc-
tion to estimate the data quality of product catalogs
from our customers.

Figure 2: A sample data quality report

4 Related Work

The quality of predictions of a machine learning
model is dependent on the quality of the data it
is trained on. Poor data results in bad predictions
from the model, translating to a poor customer
experience. Due to increased usage of data in
businesses, researchers have been seeking to de-
fine data quality. Batini et al. (2009) compares
data quality and assessment methodologies along
several dimensions. Pipino et al. (2002), Cai and
Zhu (2015) identify various dimensions for defin-
ing data quality. ONeill (2020) proposed a deci-
sion tree algorithm to predict data quality. Schelter
et al. (2018) proposed a declarative API to “unit-
test” data. They also discussed methods such as
anomaly detection to assess data quality. Active
learning (Settles, 2009) has also been used to de-
termine most confusing entries in a dataset. Active
learning suggests labeling samples that are most
uncertain based on prediction probabilities. But
the prediction probabilities are not always good
enough to identify data quality and to understand
what information is missing from the product list-
ings.

Attribute-value extraction was predominantly
solved using rule-based approaches (Nadeau and
Sekine 2007; Vandic et al. 2012) in the past. The
disadvantage with these methods is that they are
domain-specific and require extensive feature en-
gineering. More recently, with the advances in
Neural Networks-based methods, approaches like
BiLSTM-CRF (Kozareva et al. 2016; Zheng et al.
2018) have been proposed. Wang et al. (2020a) for-
mulated attribute extraction as a Question Answer-
ing problem. They proposed a multi-task frame-
work to address generalizability. Yang et al. (2021)

32

extended this work by adopting an ETC encoder
(Ainslie et al., 2020) to generate the contextual em-
beddings for title and description of the product
listing to handle longer descriptions.

5 Conclusion

We presented a novel data quality estimation frame-
work for the e-commerce domain that can iden-
tify product listings with incomplete information.
The framework includes a Question Answering
based attribute-value extraction model trained on
the MAVE dataset. We prove that our framework
can reliably identify inadequate product listings
resulting in faster tax code classification.

Beyond mapping products to tax codes, our
framework is applicable to services (in fact, our top-
level categories already include a Services group),
as well as, utilities/energy, or in general any do-
main where items can be described in terms of
attributes and values. We are applying this frame-
work to other tax code ontologies like the Harmo-
nized Commodity Description and Coding System
(HS) which provides codes for traded products as
part of international transactions.

6 Acknowledgements

We would like to thank our coworkers Mike Lash
and Brandon Van Volkenburgh for helping us with
the data annotation. We also would like to thank
Vsu Subramanian, and Rajesh Muppalla for their
support and valuable feedback.

References
Joshua Ainslie, Santiago Ontañón, Chris Alberti, Va-

clav Cvicek, Zachary Kenneth Fisher, Philip Pham,
Anirudh Ravula, Sumit K. Sanghai, Qifan Wang, and
Li Yang. 2020. Etc: Encoding long and structured
inputs in transformers. In EMNLP.

Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and
Andrea Maurino. 2009. Methodologies for data qual-
ity assessment and improvement. ACM computing
surveys (CSUR), 41(3):1–52.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the associa-
tion for computational linguistics, 5:135–146.

Li Cai and Yangyong Zhu. 2015. The challenges of data
quality and data quality assessment in the big data
era. Data science journal, 14.

David R Cox. 1958. The regression analysis of binary
sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing.

Zornitsa Kozareva, Qi Li, Ke Zhai, and Weiwei Guo.
2016. Recognizing salient entities in shopping
queries. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 107–111.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvis-
ticae Investigationes, 30(1):3–26.

Allen ONeill. 2020. Data quality evaluation using prob-
ability models. arXiv preprint arXiv:2009.06672.

Leo L Pipino, Yang W Lee, and Richard Y Wang. 2002.
Data quality assessment. Communications of the
ACM, 45(4):211–218.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Victor Sanh, L Debut, J Chaumond, and T Wolf. 2019.
Distilbert, a distilled version of bert: Smaller, faster,
cheaper and lighter. arxiv 2019. arXiv preprint
arXiv:1910.01108.

Sebastian Schelter, Dustin Lange, Philipp Schmidt,
Meltem Celikel, Felix Biessmann, and Andreas Graf-
berger. 2018. Automating large-scale data quality
verification. Proceedings of the VLDB Endowment,
11(12):1781–1794.

Burr Settles. 2009. Active learning literature survey.

Damir Vandic, Jan-Willem Van Dam, and Flavius Fras-
incar. 2012. Faceted product search powered by the
semantic web. Decision Support Systems, 53(3):425–
437.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020a.
Learning to extract attribute value from product via
question answering: A multi-task approach. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 47–55.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression

33

of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Li Yang, Qifan Wang, Zac Yu, Anand Kulkarni, Sumit
Sanghai, Bin Shu, Jon Elsas, and Bhargav Kanagal.
2021. Mave: A product dataset for multi-source
attribute value extraction.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
1049–1058.

34

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 35 - 43
May 26, 2022 c©2022 Association for Computational Linguistics

CML: A Contrastive Meta Learning Method to Estimate Human Label
Confidence Scores and Reduce Data Collection Cost

Bo Dong, Yiyi Wang, Hanbo Sun, Yunji Wang, Alireza Hashemi, Zheng Du
Amazon Alexa AI

{dongbd,yiyiwang,sunhanbo,yunjiwan,arhash,zhengdu}@amazon.com

Abstract

Deep neural network models are especially sus-
ceptible to noise in annotated labels. In the
real world, annotated data typically contains
noise caused by a variety of factors such as
task difficulty, annotator experience, and an-
notator bias. Label quality is critical for label
validation tasks; however, correcting for noise
by collecting more data is often costly. In this
paper, we propose a contrastive meta-learning
framework (CML) to address the challenges in-
troduced by noisy annotated data, specifically
in the context of natural language processing.
CML combines contrastive and meta learning
to improve the quality of text feature represen-
tations. Meta-learning is also used to generate
confidence scores to assess label quality. We
demonstrate that a model built on CML-filtered
data outperforms a model built on clean data.
Furthermore, we perform experiments on de-
identified commercial voice assistant datasets
and demonstrate that our model outperforms
several SOTA approaches.

1 Introduction

Deep neural networks’ remarkable capacity for rep-
resentation learning has resulted in performance
gains across a wide range of applications. The
majority of these gains are dependent on having
high-fidelity data; however, in practice, large-scale
datasets are frequently corrupted by noise caused
by a variety of factors such as task difficulty, an-
notator experience, and annotator bias. This is a
concern because training data with corrupted la-
bels can adversely affect the performance of deep
learning models. Collecting ground truth data to al-
leviate this problem, on the other hand, has proven
both time consuming and costly.

We can broadly enhance model performance on
corrupted labels by applying two approaches: im-
proving model robustness and improving quality
of feature representation. A number of existing
methods such as robust loss function based meth-

ods (Wang et al., 2019a; Zhang and Sabuncu, 2018;
Ghosh et al., 2017), loss adjustment based meth-
ods (Ren et al., 2018; Zheng et al., 2021; Shu et al.,
2019), and sample selection based methods (Jiang
et al., 2018; Malach and Shalev-Shwartz, 2018;
Han et al., 2018), have been proposed to enhance
model robustness. In spite of these advances, these
methods are primarily concerned with computer
vision and lack quality assessment for feature rep-
resentation.

There are also several approaches to improving
the quality of existing feature representations. They
do not, however, specifically address the adverse
effects of noisy (corrupted) labels in the context of
natural language processing (NLP). (Chen et al.,
2020; Ghosh and Lan, 2021) proposed a contrastive
learning-based approach for improving feature rep-
resentation quality for computer vision (not NLP)
applications through augmentation steps in the fea-
ture learning process. (Gao et al., 2021) proposed a
contrastive learning-based approach to improving
the quality of sentence embedding. However, this
approach does not address the problems caused by
noise-corrupted labels.

In this paper, we propose a contrastive meta-
learning (CML) framework for simultaneously ad-
dressing the challenges introduced by corrupted la-
bels, in the context of NLP. Importantly, our frame-
work learns a confidence score for evaluating the
quality of annotations. In the real world, the work
of data annotators is typically evaluated against
ground truth data. The term "ground truth data"
refers to validated data labels that have been sub-
jected to multiple passes by data annotators and la-
belled using majority vote. (Namazifar et al., 2021).
We will hereafter refer to a dataset consisting of
ground truth labels as a "gold" dataset, contrasting
it with a "standard" dataset annotated by a single
data associate.

Collecting ground truth data ("gold" datasets) is
time consuming and expensive, and sometimes in-

35

volves heavy engineering efforts (Sun et al., 2020).
The confidence score generated by our model of-
fers the potential to perform large-scale evaluations
of annotation tasks. Another application of the con-
fidence score generated by our model is to select
high-quality data from a noisy dataset.

To address the issue of corrupted labels, we em-
ploy meta learning, which combines meta data and
training data. Our meta data is comprised of a rel-
atively small number of ground truth labels. The
training data consists of unverified annotations (i.e.
corrupted labels). Our model also learns an explicit
loss-weight function while performing classifica-
tion, which predicts label confidence scores.

We utilized a meta learning approach (Shu et al.,
2019) as our meta module. The meta module is
concatenated with the classifier. The meta module
learns an explicit loss-weight function in a meta-
learning manner. We use the output loss of the
classifier as the input to the meta module. The
meta module learns confidence scores using a mul-
tilayer perceptron on the output loss of the classifier,
which reflects the quality of labels and can also im-
prove classifier performance. Each of our training
processes contains two steps. The first step consists
of using our training data to update the parameters
of the classifier, and the second step consists of
using our meta data to update the parameters of
the meta weight net. To improve the quality of
feature representations, we apply contrastive learn-
ing to a pretrained BERT model (Gao et al., 2021).
Contrastive learning aims to learn effective repre-
sentations by pulling semantically close neighbors
together and pushing apart non-neighbors. In or-
der to have semantically close neighbors, the same
sentence pass the pretrained encoder twice to pre-
dict the sentence itself with noise introduced by
standard dropout layer. In such way, we have two
embeddings generated from the same sentence but
with slight difference. These two embeddings are
“positive pair”.

As we mentioned above, current methods (Zheng
et al., 2021; Shu et al., 2019) designed to address
corrupted labels are mainly geared towards com-
puter vision applications. In addition, their moti-
vation is largely centered around label correction
or improving the performance of a classifier. In
contrast, in the NLP domain, researchers mainly
focus on improving the quality of embeddings or
learning representations of text data. Our proposed
framework unifies the advantages of current meth-

ods and is suitable for NLP. We demonstrate that
CML not only addresses concerns stemming from
having corrupted labels, but also learns feature rep-
resentations from raw text data effectively.

Additionally, in real-world applications, we are
concerned with the quality of annotations. As such,
evaluating the work of annotators presents an im-
portant challenge. During the training process,
CML learns a confidence score for labels, which
can be used to evaluate annotators’ work online. In
other words, CML offers the potential for scaling
the work of data annotators. Furthermore, because
CML predicts a confidence score for labels, it can
be applied to a wide range of use cases. In many
instances only incorrectly labelled data is available
and collecting ground truth data is time-consuming
and costly. We can therefore use CML to filter
high-quality data for such problems, saving both
time and money.

To summarize, the main contributions of our
work are listed as follows:

• CML combines meta learning and contrastive
learning to address the corrupted label issue
and feature representation quality issue in tan-
dem.

• CML predicts confidence score for annotated
labels which solves the problem of evaluating
annotators’ work at scale.

• CML can be applied to filter high quality data
from raw annotations, which proves to be of
the same level of quality as the ground truth
data. It reduces costs associated with collect-
ing massive amounts of ground truth data for
downstream model development.

The remainder of this paper is organized as follows:
We introduce related work in section 2. We then
formalize the problem and present our proposed ap-
proach in section 3. Next, we present applications
and corresponding results of our experiments in
section 4 and 5. Finally, we present our conclusion
and propose future research directions.

2 Related Work

In this section, we discuss some of the related work
in contrastive learning and learning from corrupted
labels.

2.1 Learning from Corrupted Labels
Machine learning techniques (Liu et al., 2021,
2019; Dong et al., 2017, 2018; Wang et al., 2020,

36

2019b; Li et al., 2021; Dong et al., 2019) have
been widely applied on labeling tasks. With re-
spect to learning from corrupted labels, a variety
of methods have been proposed. Namely, (Zheng
et al., 2021) proposes a meta-learning framework
for re-weighting and correcting corrupted labels.
This method requires a clean dataset (without cor-
rupted labels) alongside a dataset with corrupted
labels. The focus of above paper is label correc-
tion. It provides an approach to predict a set of
weights in label space for each instance. We cannot
get a single weight score for each instance directly
by using this method. (Li et al., 2017) proposes
a distillation framework which uses metadata, in-
cluding a small clean dataset and label relations in
a knowledge graph to learn from corrupted labels.
However, in the real world setting, it is difficult
to collect sufficient and useful metadata. (Dong
et al., 2020) proposes a new loss function which
includes an importance weight for training instance.
This importance embedding serves the function of
finding important training instances. The impor-
tance embedding is trained during model training.
However, this method is not originally designed for
corrupted labels and can not make use of ground
truth data and corrupted labels in tandem, in the
training process. (Shu et al., 2019) proposes a meta
learning method to learn weight score to evaluate
label quality. Their approach focuses on corrupted
labels and addresses class imbalance issues. It
also learns an explicit loss-weight function, param-
eterized through a multi-layer perceptron during
meta-learning.

2.2 Learning Feature Representation

Feature representation quality is a critical factor
affecting deep neural network performance. One
research direction is contrastive learning. (Chen
et al., 2020) proposes a contrastive learning frame-
work which can improve feature representation
via contrastive loss with augmented data for com-
puter vision applications. (Ghosh and Lan, 2021)
demonstrates that initializing supervised robust
methods using representations learned through a
contrastive learning framework leads to signifi-
cantly improved performance with noisy labels.
(Kim et al., 2021) proposes a contrastive learn-
ing method that uses self-guidance to fine tune
BERT, which does not rely on sentence augmenta-
tion. (Fang et al., 2020) also fine tune a pretrained
language encoder like BERT. This approach uses

back-translation as augmentation of input sentence.
(van den Oord et al., 2019) designs a contrastive
predictive coding method to extract representations
from high-dimensional data in a universal unsuper-
vised manner.

3 Approach

3.1 Problem Setting

In this paper, we propose a contrastive meta learn-
ing framework(CML). Basically, in learning with
corrupted labels, we assume that a small set of
data with clean labels and a large set of data with
noisy (corrupted) labels are needed (Zheng et al.,
2021). Usually due to scarcity and high cost of
generating ground truth labels, the relative size of
the clean dataset is much smaller than the noisy
one. Since a small training set tends to cause over-
fitting, utilizing a clean dataset alone may lead to
creating a model that does not generalize well. On
the other hand, training with noisy data is also not
a very desirable option since large high-capacity
models will fit and memorize the noise (Zhang
et al., 2017). Therefore, an effective way to over-
come the aforementioned challenges is to build
a framework which utilizes both noisy/corrupted
data and clean data. Our framework consists of
two modules: the main module and meta module.
The main module learns feature representations in
a contrastive manner and builds a predictive model.
At the same time, we also learn a meta module
which is a loss weight function. The meta module
tries to learn confidence scores for corresponding
labels. Our framework allows the main module and
meta module to learn from each other.

3.2 Framework

The CML framework (Figure 1) consists of two
modules: the main module and the meta module.
The main module adopts pre-trained BERT-base in
a contrastive manner followed by a dropout layer, a
hidden layer, and several fully connected layers to
map the input data into a semantic representation.
The last layer in the main module is a linear output
layer. The meta module is an MLP(multilayer per-
ceptron) network with only one hidden layer. The
activation function for all hidden layers is ReLU.
The meta module utilizes a small set of clean data
to guide the training of all of its parameters.

37

Training data

Meta data

ASR text feature (contrastive learning)

W1 W2 WM

1 2 3

1 2 3

4

Step2

Training data:
1 2 3

Meta data:
1 2 3

Step1

 ∑

Output

Classifier(W)

Meta weight net(Q)
Confidence

score

Update Q by meta data

Update W by training data

4W Q

4

4

two dogs are running

a kid is on a skete board

a man surfing on the sea

Input sentence

W1 W2 WM

Encoder

Different dropout masks in
two forward passes

Figure 1: CML framework: one iteration consists of two steps. Both start with contrastive learning that is a
pretrained dropout masked BERT, followed by fully connected layers and meta weight net. In the first step, we
keep the meta weight net unchanged and only update weight of fine tuned layers. The second step is to feed meta
data (ground truth) to update meta weight net with main model’s predicted probability as input to meta weight net.
In addition, meta weight net learns an explicit loss-weight function to predict label confidence. We demonstrate
an example in the figure where contrastive learning takes automatic speech recognition(ASR text) to predict if the
recognition is capable to represent the speaker’s goal.

3.2.1 Main Module
We fine-tune simCSE framework (Gao et al., 2021)
for learning the text feature representation in a con-
trastive manner. A commonly used contrastive
learning setting is as follows, assume we have a
collection of paired sentences S = (xi,x

+
i), where

xi and x+
i are semantically related. Then we can

use a base encoder F(·)(pre-trained BERT-base) to
encode each sentence xi as follows

ei = F(xi) (1)

Let ei and e+i represent the feature representation
of xi and x+

i . The contrastive learning loss func-
tion is designed as:

l =
N∑

i=1

log
exp(sim(ei, e

+
i)/τ)∑N

j=1 exp(sim(ei, e
+
j)/τ)

(2)

where τ is the temperature parameter and sim is

the cosine similarity e⊤i e+i
∥ei∥·∥e+i ∥ .

In above setting, simCSE let x+
i = xi. Then

use emi = F(xm
i) to represent the feature repre-

sentation of xi with random mask m for dropout.
The same sentence pass to the encoder twice with
different dropout masks m, n. The loss function is
defined as follows:

l =
N∑

i=1

log
exp(sim(emi

i , eni
i)/τ)

∑N
j=1 exp(sim(emi

i , e
nj

j)/τ)
(3)

We utilize pre-trained simCSE to learn represen-
tations of the input sentence in our main module
for predicting labels.

3.2.2 Meta Module
Inspired by (Shu et al., 2019), we incorporate a
loss-weight function(a multilayer perceptron) into
our meta module. This module learns confidence
scores which can be used to evaluate the quality
of labels. When an input sentence passes the main
module, we have a loss computed using the pre-
dicted label and the original label. In the meta mod-
ule, we utilize a small set of clean data to learn a
confidence score from the output of the main mod-
ule. We initialize the parameters w of the main
module and parameters θ of the meta module. In
general, our framework is an iterative procedure.
For each iteration, it mainly contains two steps.
The first step is to update the parameters w of the
main module as equation 4 indicated by feeding
biased training data.

ŵt+1(θ) = wt−α
1

n
×

n∑

i=1

G(Ltrain
i (wt), θt+1)∇w (4)

where∇w is computed as follows

∇w =
∂Ltrain

i (w)

∂w
|w=wt (5)

The second step is to pass the clean data to update
the parameters θ of meta module as equation 6
indicated.

θt+1 = θt − β
1

m

m∑

i=1

∂Lmeta
i (ŵt(θ))

∂θ
|θ=θt (6)

After the learning process, we can predict confi-
dence scores for annotated labels by inference from
our trained model.

38

Algorithm 1 CML Learning Algorithm
Input: Biased training data S with batch size m,
Unbiased meta data Ŝ with batch size n, max itera-
tions I
Parameter: Main module parameters w and meta
module parameters θ
Output: Main module parameters w and meta
module parameters θ

1: Let t = 0.
2: while t in range [0, I) do
3: (x, y)← Sample Mini Batch (S,m)
4: (xmeta, ymeta)← Sample Mini Batch (Ŝ,n)

5: if Data comes from S then
6: Fine-tune main module
7: update main module parameters w with

equation 4
8: else
9: update meta module parameters θ with

equation 6
10: end if
11: t = t+ 1
12: end while
13: return w, θ

4 Application

The confidence score obtained from CML’s out-
put has an important application for data labeling
services: measuring label quality at scale. In the
industrial setting, the quality of each annotator’s
work is measured by ground truth reference, which
is usually of limited quantity. Small volumes of
gold reference data could cause high variance in
assessing annotator’s performance. As such, it of-
ten requires complex procedures to find root cause
of quality issue. Error detection model is broadly
used in industry but remains a challenge due to
limited ground truth labels.

The confidence score from CML is a promising
attempt to solve the aforementioned challenges. In
particular we implement the following two applica-
tions:
4.1 Application 1

Use confidence scores to generate a quality metric
for each label, and shows that these scores manage
to distinguish the labels in different levels of quality.

4.2 Application 2

Use the data filtered by the confidence score to
build an error detection model and demonstrate

Figure Statistics P value
Figure 2 (a) 0.834 0.000
Figure 2 (b) 0.752 0.000

Table 1: Kolmogorov–Smirnov test results

that it will produce better results.

5 Evaluation

This section shows the experiment results. We also
compare our method to state-of-the-art methods.

5.1 Dataset
In our experiment, we process and de-identify com-
mercial voice assistant dataset that assess goal suc-
cess rate(GSR). We evaluate the goal category task,
i.e. labeling a given utterance to a fixed taxonomy
of categories. Text ASR (automatic speech recogni-
tion) is used as the input feature. Data is collected
from both the standard and gold data. Because the
standard data only performs one pass on each task,
it contains some corrupted labels. Data collected
from the gold data can be conceived as "ground
truth" data. It will be the data source from which
we will generate synthetic data.

5.2 Application 1
In this experiment, we use synthetic data to show
that the confidence score produced by CML is ca-
pable to separate the incorrect label from correct
label at various noise level.

5.2.1 Synthetic data generation process
We generate synthetic data by flipping labels of
gold data with different noise ratios for the training
set with corrupted labels. Ambiguous labels are
generated by flipping label based on assuming that
the gold dataset is "correct". The level of noise
is also varied between 0% and 20%. We generate
synthetic training data by flipping X% labels to
incorrect labels. When the flipping rate is 0, the
training data are all ground truth. For the test set,
we synthetically flip 50% data to incorrect labels.

5.2.2 Metrics and graph explanations
Figure 2 illustrates the confidence scores for the test
dataset. The left figure represents the confidence
score learned by CML model with training data
containing 0% corrupted labels. The right figure
represents the confidence score result learned by
CML with training data containing 20% corrupted
labels. In Table 1, a Kolmogorov–Smirnov test
(Massey, 1951) shows the confidence scores from

39

confidence score
(a)

nu
m

be
ro

fi
ns

ta
nc

es

confidence score
(b)

nu
m

be
ro

fi
ns

ta
nc

es

Figure 2: Confidence score distribution on test set learned from training set with 0%, 20% corrupted labels
experiments

0.1 0.3 0.5 0.7 0.9
60

70

80

90

Filter threshold

Pe
rf

or
m

an
ce

Figure 3: Parameter sensitivity on training data set con-
tains 30% noise (Accuracy Precision
Recall F1 score)

the correct labels and the incorrect labels are from
different distributions in both scenarios, with the
test statistic showing a more extreme value in the
0% noisy label case. From Figure 2 we can see, our
learned confidence scores can differentiate correct
labels and incorrect labels clearly. In addition, the
noise ratio of training set negatively correlate with
the level of difference of the confidence scores.

5.3 Application 2

In this experiment, we use both synthetic data and
commercial voice assistant data to show that the
data filtered by the confidence score works better in
error prediction than the same model trained with
either the raw training data or the clean data alone.

5.3.1 Synthetic data generation
For the training set, we generate synthetic data
similarly as in application 1 by flipping labels of
gold data with different noise ratios. We generate
training data with 10%, 20%, 30%, 40% and 50%
noisy labels. For test set, we synthetically flip 50%

labels to incorrect labels.

5.3.2 Experiment setup

The experiment is conducted with the following
steps: 1) In a classification task, we train CML to
learn the confidence score from the training set, i.e.
to predict the correct goal category. 2) We set a
threshold to filter good quality data based on the
learned confidence score (the threshold is treated
as a hyperparameter). 3) Using the filtered train-
ing data set, we train a separate BERT-based error
detection model. 4) We train the same error de-
tection model using only biased training data. 5)
We run the above two models on the same test set
and compare their performance. For model eval-
uation, commonly used metrics such as accuracy,
precision, recall, and F1 score are used.

5.3.3 Explain results

Table 2 shows the model performance. The result
obtained after CML filtered data outperforms the
result obtained using biased training data for all
metrics. In addition, based on the last two columns,
with the data filtering setup, we select most correct
labeled instances and very few incorrect instances.
Figure 3 indicates the sensitivity experiment result
of threshold for filtering. Figure 3 illustrates that
threshold is sensitive for all evaluation metrics.

5.3.4 Real data

We utilize data collected from standard dataset and
gold dataset for evaluation. Data collected from
standard dataset contains corrupted labels. We de-
sign two sets of experiments.

40

Training set Accuracy Precision Recall F1 score #Correct #Incorrect
Biased training data with 50% noise 40.04 57.54 40.51 43.53 5000 5000
CML Filtered data 77.38 79.57 74.81 76.33 4664 902
Biased training data with 40% noise 68.60 73.27 65.01 67.13 6000 4000
CML Filtered data 79.76 81.13 77.50 77.98 5590 714
Biased training data with 30% noise 77.36 78.33 72.09 74.51 7000 3000
CML Filtered data 82.18 82.67 81.43 81.45 6509 537
Biased training data with 20% noise 80.64 82.61 78.68 80.01 8000 2000
CML Filtered data 82.98 83.30 82.26 82.17 7432 350
Biased training data with 10% noise 83.70 83.55 82.82 83.10 9000 1000
CML Filtered data 83.72 83.14 83.32 82.77 8353 162

Table 2: Experiment result for synthetic data: compare model built on full data with model built on selected data that
are filtered by CML. The number of correct and incorrect in the table stand for the volume of examples with correct
and incorrect labels respectively. For instance, 50% noise data contain 5000 correct labeled examples and 5000
incorrect labeled examples. Filtered by CML, we obtain 4664 correct labeled and 902 incorrect labeled examples
respectively.

5.3.5 Experiment setup
1) We sample data from the gold dataset (gold-1 of
size 3k, and gold-2 of size 6k) to be the unbiased
meta data, and sample data from standard dataset
(of size 100k) to be the noisy training data. We uti-
lize both of these datasets to train the CML model.
We filter the noisy training data by the confidence
score learned from CML model, and then build
two error detection models with gold-1 data and
the filtered data separately. At last we compare
the performance on a hold-out gold data set of size
5k. This hold-out data set is used for all the eval-
uation cases. In a variant of this experiment, we
replicate the same process for gold-2. 2) This set of
experiment is designed to verify that CML achieves
better performance by ingesting small proportion
of gold data, compared to model trained on noisy
data alone. We sample data from gold dataset of
size 3k and sample standard(noisy) data of size
20k.

5.3.6 Experiment results
Comparing row 1 and 3 of Table 3, we demonstrate
that the model trained with filtered standard data
outperforms the model trained with gold data. This
is achieved when the size of noisy training data is
30 folds larger than that of gold data. Comparing
rowd 2 and 3, even though the size of the gold
data is doubled, the model’s performance is still
worse than the model trained with filtered standard
data. Comparing rowd 4 and 5, we demonstrate that
using CML with a noisy training set and small meta
data outperforms using noisy training set alone.

In the commercial setting, we hold a large

Training set Accuracy Precision Recall F1 score
gold1(3k) 79.42 78.78 78.64 78.70
gold2(6k) 80.72 80.02 79.93 79.97
Filtered data 81.28 81.66 79.44 80.53
Biased data 80.20 80.71 77.67 78.02
Biased+meta data 81.82 81.16 81.82 81.25

Table 3: Experiment result for real data.
Filtered data: filter from the biased training data(100k).

amount of data with corrupted labels. Collecting
ground truth data is time consuming and expensive.
Based on the above experiment results, CML and
its applications provide a economic way to building
label error detection model.

5.4 Model Evaluation

5.4.1 Data set

For this set of experiment we want to verify the per-
formance of CML. We sample 3k examples from
gold dataset as meta data. We also sample 20k
examples from standard dataset as noisy training
data.

5.4.2 Experiment setting

We evaluate our proposed approach CML against
state-of-the-art methods(Shu et al., 2019; Han et al.,
2018) for learning with noisy labels. As we men-
tioned in Section 1, current state-of-the-art meth-
ods mainly focus on computer vision domain. We
revise the architecture of these two baselines by us-
ing pre-trained BERT-base as their main classifiers.
We also compare our approach with contrastive
learning benchmarks (Gao et al., 2021).

41

Method Accuracy Precision Recall F1 score
MetaNet 82.54 82.25 80.79 81.51
simCSE 79.66 80.31 79.65 77.34
Co-teaching 77.00 69.78 76.74 72.73
CML(ours) 82.82 82.86 82.58 82.71

Table 4: Experiment result for CML and baselines.

Figure 4: Confusion matrix(goal category prediction
with CML)

.5.4.3 Experiment results
From Table 4 we can see that our approach out-
performs the other three baselines. We not only
improve the quality of feature representation, but
also improve model performance under noisy label
scenario. We also render a confusion matrix for
our method as illustrated in Figure 4. As we can
see, the “Not Set” category does not perform good
since annotators would choose “Not set” category
when the category is ambiguous and they are not
sure the correct answer. For another example, for
“Timers” category, both recall and precision are
very high as a result of less ambiguity compared to
other categories.

6 Conclusion

In this paper, we propose a contrastive meta learn-
ing framework (CML) for estimating human la-
bel confidence scores and lowering data collection
costs. We use contrastive learning and meta learn-
ing to jointly address the main challenges of label
scarcity and poor feature representation. We de-
sign three sets of experiments with two application
settings and three state-of-the-art baseline models
to test the effectiveness of our proposed method.
Our experiments on a commercial voice assistant

GSR dataset show that our method can predict a
reliable confidence score for annotations while also
effectively lowering the cost of ground truth data
collection. Moreover, our proposed method outper-
forms several SOTA approaches.

References
Ting Chen, Simon Kornblith, Mohammad Norouzi, and

Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Bo Dong, Jinghui Guo, Zhuoyi Wang, Rong Wu, Yang
Gao, and Latifur Khan. 2019. Regression prediction
for geolocation aware through relative density ratio
estimation. In 2019 IEEE International Conference
on Big Data (Big Data), pages 1644–1649.

Bo Dong, Md Shihabul Islam, Swarup Chandra, Latifur
Khan, and Bhavani M. Thuraisingham. 2018. GCI:
A transfer learning approach for detecting cheats of
computer game. In IEEE International Conference
on Big Data, Big Data 2018, Seattle, WA, USA, De-
cember 10-13, 2018, pages 1188–1197.

Bo Dong, Yifan Li, Yang Gao, Ahsanul Haque, Lati-
fur Khan, and Mohammad M. Masud. 2017. Mul-
tistream regression with asynchronous concept drift
detection. In 2017 IEEE International Conference
on Big Data, BigData 2017, Boston, MA, USA, De-
cember 11-14, 2017, pages 596–605.

Bo Dong, Cristian Lumezanu, Yuncong Chen, Dongjin
Song, Takehiko Mizoguchi, Haifeng Chen, and Lat-
ifur Khan. 2020. At the speed of sound: Efficient
audio scene classification. In Proceedings of the
2020 International Conference on Multimedia Re-
trieval, ICMR ’20, page 301–305, New York, NY,
USA. Association for Computing Machinery.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. Cert: Contrastive self-
supervised learning for language understanding.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings.

Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. 2017.
Robust loss functions under label noise for deep neu-
ral networks. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, page
1919–1925. AAAI Press.

Aritra Ghosh and Andrew Lan. 2021. Contrastive learn-
ing improves model robustness under label noise.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels.

42

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. 2018. MentorNet: Learning data-
driven curriculum for very deep neural networks on
corrupted labels. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
2304–2313. PMLR.

Taeuk Kim, Kang Min Yoo, and Sang goo Lee. 2021.
Self-guided contrastive learning for bert sentence
representations.

Yi-Fan Li, Bo Dong, Latifur Khan, Bhavani Thuraising-
ham, Patrick T. Brandt, and Vito J. D’Orazio. 2021.
Data-driven time series forecasting for social stud-
ies using spatio-temporal graph neural networks. In
Proceedings of the Conference on Information Tech-
nology for Social Good, GoodIT ’21, page 61–66,
New York, NY, USA. Association for Computing
Machinery.

Yuncheng Li, Jianchao Yang, Yale Song, Liangliang
Cao, Jiebo Luo, and Li-Jia Li. 2017. Learning from
noisy labels with distillation.

Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li.
2021. Fauce: fast and accurate deep ensembles with
uncertainty for cardinality estimation. Proceedings
of the VLDB Endowment, 14(11):1950–1963.

Jie Liu, Jiawen Liu, Wan Du, and Dong Li. 2019. Perfor-
mance analysis and characterization of training deep
learning models on mobile device. In 2019 IEEE
25th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pages 506–515. IEEE.

Jie Liu, Jiawen Liu, Zhen Xie, and Dong Li. Flame:
Aself-adaptive auto-labeling system for heteroge-
neous mobile processors.

Eran Malach and Shai Shalev-Shwartz. 2018. Decou-
pling "when to update" from "how to update".

F. J. Massey. 1951. The Kolmogorov-Smirnov test for
goodness of fit. Journal of the American Statistical
Association, 46(253):68–78.

Mahdi Namazifar, John Malik, Li Erran Li, Gokhan Tur,
and Dilek Hakkani Tür. 2021. Correcting automated
and manual speech transcription errors using warped
language models.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 4334–4343. PMLR.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. 2019. Meta-weight-
net: Learning an explicit mapping for sample weight-
ing.

David Q. Sun, Hadas Kotek, Christopher Klein, Mayank
Gupta, William Li, and Jason D. Williams. 2020. Im-
proving human-labeled data through dynamic auto-
matic conflict resolution.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019.
Representation learning with contrastive predictive
coding.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jin-
feng Yi, and James Bailey. 2019a. Symmetric cross
entropy for robust learning with noisy labels.

Zhuoyi Wang, Bo Dong, Yu Lin, Yigong Wang,
Md Shihabul Islam, and Latifur Khan. 2019b. Co-
representation learning framework for the open-set
data classification. In 2019 IEEE International Con-
ference on Big Data (Big Data), pages 239–244.

Zhuoyi Wang, Yigong Wang, Bo Dong, Sahoo Pracheta,
Kevin Hamlen, and Latifur Khan. 2020. Adaptive
margin based deep adversarial metric learning. In
2020 IEEE 6th Intl Conference on Big Data Security
on Cloud (BigDataSecurity), IEEE Intl Conference
on High Performance and Smart Computing, (HPSC)
and IEEE Intl Conference on Intelligent Data and
Security (IDS), pages 100–108.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization.

Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels.

Guoqing Zheng, Ahmed H. Awadallah, and Susan Du-
mais. 2021. Meta label correction for noisy label
learning. In AAAI 2021.

43

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 44 - 48
May 26, 2022 c©2022 Association for Computational Linguistics

Improving Relevance Quality in Product Search using High-Precision
Query-Product Semantic Similarity

Alireza Bagheri Garakani, Fan Yang, Wen-Yu Hua, Yetian Chen,
Michinari Momma, Jingyuan Deng, Yan Gao, Yi Sun

Amazon
Seattle, WA, USA

{alirezg,fnam,wenyuhua,yetichen,
michi,jingyua,yanngao,yisun}@amazon.com

Abstract
Ensuring relevance quality in product search is
a critical task as it impacts the customer’s abil-
ity to find intended products in the short-term
as well as the general perception and trust of
the e-commerce system in the long term. In
this work we leverage a high-precision cross-
encoder BERT model for semantic similarity
between customer query and products and sur-
vey its effectiveness for three ranking applica-
tions where offline-generated scores could be
used: (1) as an offline metric for estimating rel-
evance quality impact, (2) as a re-ranking fea-
ture covering head/torso queries, and (3) as a
training objective for optimization. We present
results on effectiveness of this strategy for the
large e-commerce setting, which has general
applicability for choice of other high-precision
models and tasks in ranking.

1 Introduction

Search is one of the primary means used by cus-
tomers to find products in e-commerce and there-
fore it is critical to ensure the relevance quality of
search results. A search result may be considered
to have low relevance quality (search defect) if it
mismatches the customer’s query intent. Such de-
fects may range from the mild case of mismatch in
brand or color (i.e., substitutes) to the more egre-
gious case of a completely irrelevant result of a
different product type. Addressing search defects
is a critical task as it can damage customer trust
and perception of the e-commerce system, and in
general hinder the ability to sell products.

As a simplified view, product search may con-
sist of two distinct phases. First, given a search
query, a set of candidate products are determined
based on various matchset generation techniques
(e.g. lexical/semantic matching, historical associa-
tions from past query reformulations, and others).
Next, a ranking model is used to generate a score
for each (query,product) pair upon which a descend-
ing sort determines a ranked list. In the ideal case,

the construction of the matchset would be strictly
restricted to products that are only relevant to the
customer’s query, however, this can be challenging
to enforce without potentially limiting recall, which
itself presents issues that negatively impact search
experience. In practice, products in the matchset
may still contain complementary or related items to
the customer-intended one due to partial matches
or from noisy historical associations.

The ranking phase can be used to mitigate the
impact of search defects that may exist in the match-
set by demoting such results out of the first several
pages. In contrast to matchset restrictions, demo-
tion in ranking can be seen as a softer approach
since a product will not be entirely eliminated from
search results but simply moved beyond the top-
results. Given a dataset with relevance labels for
query-product pairs, relevance quality can be op-
timized within ranking to demote products esti-
mated to be less relevant to the customer’s query.
However, this strategy will have a dependence on
similarity measures that often need to favor online
efficiency over a higher-precision computationally-
expensive counterpart. For example, common
ranking features may include query-product lex-
ical/semantic match features and behavioral fea-
tures that incorporate historical customer interac-
tions; for all these cases, efficient computation over
the entire matchset will be required, whether by
simple online computations (e.g. TF-IDF, cosine
similarity) or by retrieving pre-computed offline
(intermediate) results or a combination of both.

In this work we leverage a high-precision model
bounded by offline computational resources for
addressing our ranking-based task. Specifically,
we develop a high-precision cross-encoder BERT
model for semantic similarity between customer
query and products that is optimized for predicting
relevance quality and we survey its effectiveness for
three applications where offline-generated scores
could be used: (1) as an offline metric for estimat-

44

ing relevance quality impact, (2) as a re-ranking
feature covering head/torso queries, and (3) as a
training objective for optimization. We present re-
sults on effectiveness of this strategy for the large
e-commerce setting, which has general applicabil-
ity for choice of other high-precision models (i.e.
other than BERT) and tasks in ranking (other than
relevance quality).

2 Related Work

Generating textual representations that are effective
for downstream tasks is an active area of research
that has seen significant improvement in the last
several years (Peters et al., 2018; Cer et al., 2018;
Devlin et al., 2019). BERT (Devlin et al., 2019)
is one such model based on a multi-layer bidirec-
tional Transformer encoder (Vaswani et al., 2017)
that has shown state-of-the-art performance on var-
ious NLP tasks. In this work, we leverage BERT
for two-sentence classification with cross-encoders
that is known to have strong predictive performance
while at the same time presenting computational
challenges for large-scale product search (Humeau
et al., 2020; Reimers and Gurevych, 2019). Vari-
ous strategies can be used towards improving scal-
ability of model inference such as model distilla-
tion/compression (Hinton et al., 2015; Sanh et al.,
2019; Bucila et al., 2006; Liu et al., 2021; Gordon
et al., 2020) and factorizing inputs into separate
model paths (i.e. two-tower or bi-encoder models)
(Huang et al., 2013; Reimers and Gurevych, 2019;
Humeau et al., 2020), but these optimizations typi-
cally come at the expense of model performance.
For example, using a factorized model enables op-
portunities to cache pre-computed embeddings and
use efficient distance functions on embeddings vec-
tors (e.g. cosine similarity), but this architecture
will sacrifice interactions between inputs within
early model layers that tend to be helpful. Indeed,
the trade-off between precision and inference speed
is not limited to BERT nor transformer-based mod-
els; in general, higher precision for a given task
may be achievable when there is flexibility to use
more complex models (e.g. more parameters, en-
semble methods), and consume more costly fea-
tures (e.g. embeddings generated from a secondary
model and fed as input). Given its applicability
and known computational challenges for our task,
in this work we use BERT directly as our high-
precision model (i.e. without any computational
efficiency optimizations) and apply it for several

applications where offline-computed scores are per-
mitted.

3 Query-Product Semantic Similarity

For our task we would like to develop a measure of
semantic similarity g : (Q,A)→ R, given an arbi-
trary query q ∈ Q and product a ∈ A, where we
assume the cardinality of Q and A may be infinite.
We select g by favoring a model that maximizes pre-
dictive performance bounded by offline resources
as opposed to meeting stricter online inference re-
quirements. As mentioned in the previous section,
we adopt BERT and frame our problem as two-
sentence classification (Devlin et al., 2019) to in-
corporate textual inputs for the query and product.

For two-sentence classification using BERT as a
cross-encoder the input sequence is prepared by
prefixing a ’CLS’ token followed by the query
textual representation, a special separator token
(’SEP’), and finally the product textual represen-
tation via product title. This input sequence is
segmented into sub-words using WordPiece algo-
rithm (Wu et al., 2016) and fed through BERT-base
pre-trained model (12 transformer blocks, 768 hid-
den units, and 12 self-attention heads). We fur-
ther pre-train the BERT-base model using both
Masked LM and Next Sentence Prediction tasks
as described in (Devlin et al., 2019) on product
metadata such as title and description. For building
a classification model, the output embedding for
’CLS’ token is passed to a final linear classification
layer. All model weights, including transformer
block layers, are trained jointly using binary cross-
entropy loss. The labeled dataset consisting of
judgments tuples (query,product,label) is based on
historical query-product samples with relevance
judgments (relevant vs irrelevant), which is split
into train/validation/test datasets. Table 1 shows a
few examples of query-product pairs with their re-
spective model score. Further model improvements
(e.g. use of pairwise loss for finetuning, extension
beyond BERT to include product images) are ap-
plicable for our problem setting but left as future
work.

For evaluating relevance quality, we use NDCG
metric (Normalized Discount Cumulative Gain)
that achieves the highest value of 1 when the rank
order respects the ideal relevance label ordering,
which is then averaged over all queries. Table 2
shows the performance of our BERT-based classifi-
cation model benchmarked against a competitive

45

Table 1: Example query and product inputs with respective BERT-based predictions with higher scores indicating
stronger relevance.

Search Query Product Title (truncated) Label Score
blankets for winter double bed soft ... Microfiber Single Comforter ... exact 0.911
kitchen small storage boxes ... Plastics Polka Container Set ... exact 0.967
girl jacket for winter ... Women’s Slim Fit Joggers ... irrelevant 0.011

Table 2: Relevance quality (NDCG@16) over compet-
itive GBDT baseline model, including evaluation over
query-frequency segments. Table includes BERT model
without additional pre-training (sem-noPT), after pre-
training (sem), and added as additional feature on top
of GBDT baseline.

Relevance Quality
Model Overall Head+Torso Tail
sem-noPT -0.25% -0.60% 0.18%
sem -0.13% -0.59% 0.44%
sem+GBDT 0.75% 0.64% 0.89%

model based on Gradient Boosted Decision Tree
(GBDT) (Friedman, 2000) using existing search
ranking features (lexical, semantic, and behav-
ioral based) that are either computed in real-time
or as part of an offline build. We observe that
the BERT-based predictor after pre-training (sem)
has significant improvement in the tail-query seg-
ment (+0.44%) but sub-par for head+torso queries
(−0.59%); this is expected as behavioral features
as part of the GBDT baseline model tend to perform
well for frequent traffic segments where historical
customer behavior signals are available but will
be sparse or noisy otherwise. Finally, we build a
GBDT-based predictor in a similar manner as the
baseline except including our BERT model score
as an additional input feature used for feature se-
lection. This final model demonstrates the value
brought over the existing set of online-efficient fea-
tures (+0.75% overall improvement), where gains
are seen even for the head-torso query segment sug-
gesting the new feature works in a complimentary
way with existing features.

Using this high-precision predictor, we explore
several applications in search ranking where we can
leverage this model using offline-generated scores
for our end task. These are discussed in the next
section.

Table 3: Measure of correlation metrics between offline
and online measurements for relevance improvement,
where offline estimator is baseline or our high-precision
predictor.

estimator Pearson Kendall
baseline 0.58029 0.20589
sem+GBDT 0.83764 0.59298

4 Applications within Ranking

4.1 Offline Estimation of Relevance Quality

Given that relevance quality is an important metric
across search, it is useful to monitor it alongside
other important metrics (e.g. revenue, latency) for
each experiment that impacts ranking of products
and search experience. Here we propose using
our semantic predictor for estimating online rele-
vance impact and seek to measure which offline
estimator (our high-precision predictor or baseline)
better reflects the changes observed for the online
metric. We represent our observations as pairs
(xi, yi) where, for of a given model (treatment)
over production (control), xi is the estimated im-
provement given an estimator and offline dataset,
and yi is the actual observed improvement as mea-
sured by human-judged labels. For our study, our
dataset consists of 19 pairs collected from 5 exper-
iments within a 6-month span impacting ranking
for a particular marketplace. Our offline estimate is
measured on a ranking evaluation dataset of query-
product pairs by measuring the improvement in
exact probability (output of our semantic predictor)
among top results based on the treatment’s rank
over the control’s rank, averaged over all queries.
Similar estimation is done for our baseline model,
which is a GBDT model trained similar to baseline
in section 3. Using this dataset of offline-online im-
pact pairs, we measure Pearson and Kendall corre-
lation coefficients. Table 3 indicates that while nei-
ther estimator perfectly reflects online observed val-
ues, our high-precision semantic predictor shows
significantly improvement over our baseline and,
hence, can be used for more effective model selec-

46

Table 4: Online relevance quality (NDCG@16) of re-
ranking models using high-precision semantic model
(sem+GBDT) and refreshed baseline over production
model.

Model Relevance Quality
baseline -0.15% (p=0.39)
sem+GBDT 0.46% (p=0.017)

tion and metric monitoring.

4.2 Feature for Search Re-ranking

We explore using our high-precision model as an
input feature for search re-ranking. Re-ranking is
a second ranking phase on the top-K results from
the preceding (main) ranking phase. Given that
our semantic predictor cannot be trivially applied
online for the entire matchset due to computational
and latency costs, we instead pre-computed seman-
tic scores for more frequent queries and their re-
spective top results and index these scores for fast
online retrieval. Specifically, coverage is limited to
queries having a predefined number of searches S
within the last D days and for their top-P ranked
results. For our experiment we re-rank top-16 re-
sults where feature coverage exists for head/torso
queries (influenced by S and D parameters) and
their respective products (by selecting P >= 16),
however, feature will lack coverage for infrequent
queries.

We prepare GBDT predictor models similar to
section 3, except the semantic feature used within
’sem-GBDT’ is modified to reflect the expected
feature coverage online. Results are shown in Table
4, where we observe from online results that we
are able to significantly improve NDCG by 0.46%
while avoiding regression to revenue, latency, or
other guardrails (not shown).

4.3 Objective for Optimization

In this section we prepare primary-phase ranking
models and introduce an objective for optimization
of search quality. We take the optimization-based
approach in ranking, as opposed to feature-based
as used for re-ranking usecase, given that offline
score pre-computation is no longer practical as it
would need to cover the entire matchset (or at least
a sizable portion) to be useful. Instead, by using
an optimization-based approach we can use full-
coverage estimates using our high-precision pre-
dictor at training time. Tail queries (e.g. a query
never seen before) were strictly not covered in the

Table 5: Online relevance quality (NDCG@16) of multi-
objective ranking model using high-precision semantic
predictor as an objective over comparable baseline. Re-
sults include query frequency segments. All measure-
ments are statistically significant (p < 0.05).

Relevance Quality
Exp. Overall Head+Torso Tail
1 0.29% 0.19% 0.44%
2 0.49% 0.52% 0.42%

feature-based re-ranking usecase, but the optimiza-
tion route can be useful even for this segment by
allowing the model to learn associations between
other existing ranking features and the task-specific
labels generated via our high-precision predictor.

We use the constraint-based optimization algo-
rithm, AL-LambdaMART (Momma et al., 2020),
for the multi-objective formulation:

min
s
Cp(s) s.t. Cs(s) ≤ b (1)

where the cost terms are NDCG-weighted pair-
wise loss as similarly defined in LambdaMART
(Burges, 2010)). In our problem we assume two
objectives – relevance quality and revenue – and
our modeling goal is to maximize relevance qual-
ity [minsC

p(s)] while remaining at least flat on
revenue relative to the existing production model
[Cs(s) ≤ b]. For the latter, the upperbound value
b is set accordingly to achieve this goal using the
approach outlined in (Momma et al., 2020). The
motivation for having both objectives, despite be-
ing generally aligned, is that relevance quality may
be one of several factors important for a customer’s
shopping mission.

We ran 2 online experiments for a particular mar-
ketplace against the existing production model. To
isolate impact, each experiment included a com-
parable treatment optimized similarly but without
the high-precision semantic score. Results in Ta-
ble 5 show that in each experiment our semantic
treatment is able to achieve higher online relevance
impact over the baseline ranking model, while keep-
ing flat on revenue (not shown). Each experiment
also showed improvements across all query seg-
ments, including tail queries.

5 Conclusion and Future Work

To improve relevance quality in search ranking
we applied a high-precision BERT cross-encoder
model for semantic similarity in search. We demon-
strated three applications where offline-generated

47

scores can be leveraged to improve the end task.
This can be viewed as a complementary approach
alongside efforts for developing online-efficient
models, where the advantages include leveraging
higher-precision models and with potentially less
development overhead. A follow-up study includ-
ing benchmarking on public datasets is left as fu-
ture work.

References
Cristian Bucila, R. Caruana, and Alexandru Niculescu-

Mizil. 2006. Model compression. In KDD ’06.

Chris J.C. Burges. 2010. From ranknet to lambdarank to
lambdamart: An overview. Technical Report MSR-
TR-2010-82.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Jerome H. Friedman. 2000. Greedy function approx-
imation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155, Online. Association for Com-
putational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. ACM International Conference on
Information and Knowledge Management (CIKM).

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In International Conference
on Learning Representations.

Peiyang Liu, Xi Wang, Lin Wang, Wei Ye, Xiangyu Xi,
and Shikun Zhang. 2021. Distilling Knowledge from
BERT into Simple Fully Connected Neural Networks

for Efficient Vertical Retrieval, page 3965–3975. As-
sociation for Computing Machinery, New York, NY,
USA.

Michinari Momma, Alireza Bagheri Garakani, Nanxun
Ma, and Yi Sun. 2020. Multi-Objective Ranking via
Constrained Optimization, page 111–112. Associa-
tion for Computing Machinery, New York, NY, USA.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Neural Information Processing Systems.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

48

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 49 - 57
May 26, 2022 c©2022 Association for Computational Linguistics

Comparative Snippet Generation

Saurabh Jain, Yisong Miao, Min-Yen Kan
National University of Singapore

saurabhjain@u.nus.edu, miaoyisong@gmail.com,
kanmy@comp.nus.edu.sg

Abstract
We model product reviews to generate compar-
ative responses consisting of positive and nega-
tive experiences regarding the product. Specifi-
cally, we generate a single-sentence, compara-
tive response from a given positive and a nega-
tive opinion. We contribute the first dataset for
this task of Comparative Snippet Generation
from contrasting opinions regarding a product,
and a performance analysis of a pre-trained
BERT model to generate such snippets.

1 Introduction

The proliferation of opinions on the Web has trans-
formed the way users express their opinions and
experiences about aspects of products and services.
Online user reviews contribute personal opinions,
and when aggregated together, these reviews play a
crucial role in purchasing decisions. However, due
to the large volume of reviews, it can be infeasible
for customers to skim all such sources. As users
have to navigate through a large pool of opinions
to make decisions, opinion mining and summariza-
tion grows in importance. As such, this area of
work has received significant attention.

Many e-commerce platforms provide function-
alities to compare products. These functionali-
ties may be template-based and compare products
on the basis of information provided by sellers.
Comparative opinions from customers, who are
experienced users of the product or service, are
largely missing from such template-based compar-
ison. On the other hand, question answering sys-
tems based on reviews, such as AmazonQA (Gupta
et al., 2019), often only tell one side of the story
in the response: either positive or negative. In
our opinion, there is a demand for compact repre-
sentations of both positive and negative opinions
of products. Such compact textual representation
could be enunciated by dialogue agents or shown
as a succinct summary to drill-down on in a mobile
interface. To the best of our knowledge, no such

Figure 1: Comparative Snippet Generation: taking a
positive and a negative opinion and generating a com-
parative response.

work has been done yet to provide comparative re-
sponses regarding a product to a user. We attempt
this novel task. We take as input a positive and
a negative opinion regarding a product and gener-
ate a comparative, single-sentenced fused response,
which we call a comparative snippet (Fig. 1).

We extract single-sentence summaries of pos-
itive and negative opinions, separately, from re-
views of 3,269 products mentioned by the Ama-
zon Reviews Dataset (2018). We chose to base
our corpus on this existing dataset to help spur fu-
ture research on our task that can leverage existing
work on the parent dataset. We then combine these
positive and negative opinions to generate compar-
ative responses. Our final dataset contains 174, 394
training instances, 19, 725 validation instances, and
21, 397 test instances1. We also successfully model
positive and negative opinions to generate a com-
parative response expressing both positive and neg-
ative opinions about a target product.

2 Related Work

Sentence Sentiment Detection. Sentiment detec-
tion classifies the opinion of a sentence into two
classes, Positive and Negative. Sometimes a third
class, Neutral, is also included. Early works focus
on unsupervised approaches and the use of senti-
ment lexicons to compute the overall sentiment of a
text; e.g., (Turney, 2002). Subsequently, the convo-

1https://github.com/WING-NUS/
comparative-snippet-generation-dataset

49

lutional neural network (CNN) architecture was in-
troduced to classify the sentiment of sentences Kim
(2014). Socher et al. (2011) use recursive neural
networks to learn sentiment at varying granularities
(i.e., words, phrases, and sentences). Many current
well-performing neural models use the attention
mechanism (Vaswani et al., 2017; Devlin et al.,
2019) to encode a text into a vector representation.

Opinion Summarization. Opinion summariza-
tion differs from other summarization tasks in two
aspects. First, it cannot rely on reference sum-
maries for training, as it is infeasible to get such
meta-reviews. To produce a reference summary
for a single product, a reviewer may have to go
through hundreds of reviews. Second, due to the
subjectivity and conflicting nature of reviews, the
notion of information importance applies differ-
ently. In this task, output summaries are based
on the popularity of opinions. Moreover to be vi-
able, approaches must be flexible with respect to
input size as products can be reviewed frequently,
resulting in increasing amounts of review content.

Opinion summarization can be either abstractive
or extractive. In abstractive summarization, sum-
maries are generated token-by-token to generate
new sentences that articulate prevalent opinions
from the inputs. These generated summaries of-
fer a solution to the lack of reference summaries,
and can be written in the style of the input re-
views. However, prior work have used unrealis-
tically small number of input reviews — 10 or
fewer — to generate output summaries Suhara et al.
(2020); Amplayo and Lapata (2021). Due to these
shortcomings, we chose the alternative style of
extractive summarization, which generates sum-
maries by selecting phrases from the inputs. As a
foundation, we base our method on Angelidis et al.
(2021), who used the Vector-Quantized Variational
Autoencoder (VQ–VAE) in their extractive opinion
summarization. First introduced by van den Oord
et al. (2017), VQ–VAE is used to learn discrete
latent variables. It passes encoder output through a
discretization bottleneck by lookup in the space of
latent code embeddings. Specifically, we use the
Quantized Transformer (cf. § 3.1), an unsupervised
neural model inspired by VQ–VAE, to generate
popularity-driven opinions. This method does not
depend on vector averaging, nor does it suffer from
information loss, which motivates us to use it as it
easily accommodates large numbers of reviews.

Sentence Fusion. Sentence fusion combines

multiple sentences, which may contain redundan-
cies, into one coherent sentence. The output sen-
tence not only should preserve input information
but also any semantic relationships among sen-
tences. Sentence fusion requires understanding the
discourse semantics between the input sentences.
Previously, feature-based approaches were used to
combine sentences due to the lack of annotated data.
Recently, a large-scale sentence fusion dataset, Dis-
coFuse Geva et al. (2019), was introduced, which
has enabled the training of neural network-based
models for the fusion task. The authors also train
the sequence-to-sequence model to fuse the input
sentences and find that the trained model succeeds
in combining the sentences through structural con-
structions, but performs badly when fusion involves
inserting discourse connectives. Recently, Rothe
et al. (2020) uses a BERT-based encoder–decoder
model. Although this work improves the accuracy,
it struggles in detecting the semantic relationships
correctly between the input sentences.

Predicting discourse markers or connecting
strings is a sister task of sentence fusion. It is
typically utilized as an intermediate step to im-
prove downstream tasks. Ben-David et al. (2020)
train a model to learn both the discourse relation
and discourse connective together in a multi-task
framework. In our work, similar to Rothe et al.
(2020), we fuse two sentences together by train-
ing a model to learn the appropriate insertion of a
discourse connective.

3 Dataset Generation

An instance of our dataset contains positive and
negative opinions as an input and a comparative
response as an output as shown in Table 2. Since no
such dataset is available for reviews, we generate it
from scratch. Here, dataset generation includes the
tasks of opinion extraction and rule-based response
generation sub-tasks. The task of opinion extrac-
tion itself includes subtasks of extraction, polarity
classification, and summarization of segments.

3.1 Opinion Extraction

Segment Extraction. A sentence of a review may
contain more than one opinion. For e.g., “dis-
play was quite bland, didn’t enjoy much, but speed
was brilliant.” This sentence contains a positive
opinion, “but speed was brilliant”, and a negative
opinion, “display was quite bland”. Therefore, as
suggested by Angelidis and Lapata (2018), it is

50

Review In the end, take this tablet for what it
is, a low end budget tablet that runs
Lollipop smoothly but has a less than
desirable screen resolution.

EDUs
In the end, take this tablet
for what it is, a low end budget table
that runs Lollipop smoothly
but has a less than desirable screen
resolution.

Table 1: A review and its extracted segments.

Input the display is awesome. camera is not
good.

Output the display is awesome. however,
camera is not good.

Table 2: An instance of our dataset.

beneficial to process phrases and discourse units
extracted from review sentences compared to pro-
cessing these sentences directly. Hereafter, we re-
fer to these phrases and units as segments. We
use work done by Feng and Hirst (2014) to extract
segments from reviews (as shown in Table 1’s ex-
ample). After extracting segments, we perform
the following five post-processing steps to improve
overall quality:

1. We remove segments having less than three
words, e.g. “good product”, “best product”,

“very sad”, etc. Such short segments are not
relevant to our work.

2. We remove leading and trailing punctuations;
e.g., “.”, “!”. “,” and “-”.

3. We remove segments that do not contain at
least one noun or pronoun and one main or
auxiliary verb; e.g., “the only problem”, “and
was destroyed” and “which is annoying”. We
use Spacy2 to extract a noun and a verb from
a segment.

4. Since we focus on working with segments
with third-person narrative, we discard seg-
ments containing first-person words: “i”,
“me”, “my”, “myself”, “mine”, “we”, “us”,
“our”, “ourselves”. While our extractive sum-
marization approach (§3.1) will eventually
rank such segments low, we prefer to drop
these here for efficiency.

2https://spacy.io/

5. If a segment starts with We delete any leading
occurrences of “because”, “and”, “before”,
“but”, “however”, “now”, “of”, “then”, “&”,
“or” from the segment. As an example, we
edit “but it is not that great” into “it is not
that great”, by omitting the leading “but”.

Segment Sentiment Classification. We next
classify each segment into one of two categories,
positive or negative. Reviews from different
domains may differ in syntactic properties — e.g.,
length and vocabulary — however, the underlying
semantics and discourse properties remain the
same. To the best of our knowledge, there are
no segment-level polarity-annotated datasets that
build from the Amazon Reviews. As such, we use
SPOT: Sentiment Polarity Annotation Dataset3,
which contains 197 reviews taken from the Yelp
Tang et al. (2015) and IMDB Diao et al. (2014)
datasets, annotated with segment-level polarities
for positive, neutral, or negative sentiments. AS
our work only utilizes positive and negative
opinions to generate a comparative response, we
discard the neutral segments. We fine-tune BERT
Devlin et al. (2019) for polarity classification using
the SPOT dataset. Then we classify extracted
segments into positive or negative class using the
fine-tuned model.

Segment Summarization. Products may
have a large number of reviews. In our dataset,
the single most-reviewed product has a massive
10, 222 reviews, generating 90, 314 segments –
completely infeasible to manually process. Also,
many reviews may express the same meaning.
These two characteristics strongly motivate the
need for a summarization algorithm to extract
popular segments. Our summarization algorithm
should satisfy the following requirements: 1) it
must be unsupervised, since we do not have refer-
ence summaries; 2) it must be highly scalable since
reviews per product regularly exceed 1, 000 inputs;
and 3) it should extract frequently-occurring
segments. In the case of reviews, we observe
that the popularity of a segment is generally
associated with their frequency of repetition. If
several reviewers talk about a specific segment,
e.g., “display is very good”, in their reviews for a
product, it becomes a popular segment.

To satisfy these requirements, we employ the
3https://github.com/EdinburghNLP/

spot-data

51

Positive Negative
it is great battery life is lackluster
the display is awesome camera is not good
screen is great does have some issues with

clearing memory
meets all expectations it ’s just annoying
this tablet is fantastic eventually it refuses to turn

on at all

Table 3: Extracted Summaries. This table depicts five
segments each of positive and negative opinions from a
extracted summary of a product.

technique of Angelidis et al. (2021). They train an
embedding space consisting of latent codes. Each
latent code is a randomly-initialized vector that
groups semantically similar segments. Then, a later
part of the algorithm extracts top segments from
each code which are considered popular segments.

Our work uses a slightly different approach to
determine segments to extract. While Angelidis
et al. (2021) use a threshold for the total number of
words in the desired output summary, our method
emphasizes popularity: we select segments for the
output summary which are sampled greater than a
tunable threshold t times. With an overly high t
(e.g., t = 50), too few segments are selected; but
if set too low (e.g., t = 5), the resultant segment
quality is often poor and also often syntactically
invalid, semantically incomplete or repetitive. We
set the threshold to t = 18, based on appropriate
empirical tuning on our validation set. For each
product, we perform summarization on positive and
negative opinions separately. Table 3 illustrates a
few examples of extracted summaries.

3.2 Rule-based Response Generation
After extracting popular positive and negative seg-
ments separately, our final step is to generate the
contrastive snippets, conforming to the format ex-
emplified by Table 4.

We first analyzed sampled extracted reviews to
understand how users actually combine two con-
trasting opinions when writing their own reviews.
As a result, we inventoried seven common tem-
plates that users employ to combine both positive
(POS) and negative (NEG) opinions:

1. {POS} . but , {NEG} .

2. {POS} . however {NEG} .

3. {POS} . on the other hand , {NEG} .

4. although {POS} , according to a few users
{NEG} .

Figure 2: Model Architecture from Rothe et al. (2020).

5. {POS} . yet , some users have also mentioned
that {NEG} .

6. {POS} . however , there are people who have
complained that {NEG} .

7. {POS} . on the other hand , a few users have
complained that {NEG} .

For a given product e, letOp andOn represent a set
of positive and negative opinions, respectively, ex-
tracted by our opinion extraction method. We com-
bine op ∈ Op, and on ∈ On using the templates,
as illustrated in Table 4, to generate an output re-
sponse. Then, for each product, we combine each
positive segment, op, with each negative segment,
on, present in the respective extracted summaries.

4 Model Architecture

Given a positive opinion op ∈ Op, and a negative
opinion on ∈ On, our task is to generate a re-
sponse R as shown in Table 4. We use an Encoder–
Decoder based architecture similar to Rothe et al.
(2020), as depicted in Fig. 2. For the encoder, we
inherit BERT Transformer layer implementations
which differs slightly than the canonical Trans-
former layer implementation Vaswani et al. (2017);
as BERT replaces the standard RELU with GELU
activation (Hendrycks and Gimpel, 2016). The im-
plementation of our decoder is also similar to BERT
with two modifications: First, the self-attention
mechanism is modified to look only at the left con-
text. Second, an encoder–decoder attention mecha-
nism is added. We initialize both the encoder and
decoder with publicly available pre-trained check-
points from the uncased base model of BERT to
learn and decode hidden representations. We join
op and on, respectively, with a full stop (.) to make
an input sequence. We use mean cross entropy
(MCE) to compute loss. We fine-tune our model to
generate a response fusing a positive and a nega-
tive opinion. In the next section, we describe our
experimental settings and analyze results in detail.

52

Input Positive Opinion: it works great.
Negative Opinion: camera is not good.

Response Format {POS} . However , some users have also mentioned that {NEG} .
Generated Response it works great . However , some users have also mentioned that camera is not good .

Table 4: Response generation example: a tuple of consisting of a template-based response, generated from an
extracted positive and a negative opinion of a product.

5 Evaluation and Results

Dataset. We use reviews of products from the
“Electronics” category of Amazon Reviews Dataset
(2018) Ni et al. (2019). We generate our dataset in
two phases, following the steps in § 3. In the first
phase, we consider reviews of 74 products only
and hand-curate segments in the generated sum-
maries. We consider syntactically and semantically
valid segments only. In the second phase, we scale
the number of products and consider reviews of
3, 269 products. After extracting segments from
these reviews, we consider only those segments for
the summary generation which have part-of-speech
patterns similar to hand-curated segments extracted
in the first phase. Thus, we can ensure syntactic
validity of the segments. Our final dataset con-
tains 174, 394 training instances generated from
reviews of 2, 569 products, 19, 725 validation in-
stances generated from reviews of 321 products,
and 21, 397 test instances generated from reviews
of 379 products.

5.1 Implementation Details

We use the Transformer architecture in segment
summarization model and uncased base BERT
architecture for our response generation model.

Segment Summarization. As our summa-
rization model is similar to Angelidis et al. (2021),
we retain their settings in our experiments. We
use a unigram LM SentencePiece vocabulary
of size 32K4 to encode opinion segments. Our
Transformer has a dimension size of 312, while its
feed-forward layers are of size 512. It uses 3 layers
and 4 internal heads. The input embedding layer
is shared between the encoder and decoder, and
H = 8 sentence heads are used to represent every
sentence. For the quantizer, we set number of
latent codes k = 1024 and sample m = 30 codes
for each segment. We use the Adam optimizer
(Kingma and Ba, 2015) with an initial learning
rate of 10−3 and a learning rate decay of 0.9.

4https://github.com/google/
sentencepiece

We disable segments assignments to latent codes
for the first 4 epochs as warm–up steps for the
Transformer. We train the model for a total of 20
epochs. At prediction time, in two-step sampling,
we sample 300 latent codes, and for each code, we
sample n = 30 segments.

Response Generation. Due to the effectiveness
of BERT over Transformers in text generation
tasks (Devlin et al., 2019), we use the base BERT
model for our encoder and decoder. Since we
initialize both the encoder and decoder with
uncased base BERT pre-trained checkpoints, our
experimental settings are similar to what were
used while training the base BERT model. It
has 12 layers, hidden size of 768, 12 attention
heads, and vocabulary of ∼ 30K word pieces. We
fine-tune this model for 5 epochs with a batch size
of 32. Inputs and outputs are padded to a length of
the largest available instance present in training,
validation, and test sets.

5.2 Metrics

An output response should be evaluated on the
basis of three aspects:

1. Preservation of input information. There
should not be any change in positive and negative
opinions. The semantic meaning and the syntactic
structure of these opinions should be preserved.
We use ROUGE-L to evaluate this aspect. It mea-
sures the longest common subsequence between an
output sentence and a reference sentence. Since we
do not modify the positive and negative opinions,
the longest common subsequence is identical to
one of the input opinions. For example, for an
input sentence “display is awesome. battery takes
long time to charge.” and the corresponding output
sentence “display is awesome. however, battery
takes long time to charge.”, the longest common
sub-sequence is “display is awesome. battery takes
long time to charge.”

2. Quality of output. In this aspect, we
53

Recall
Model
Based

Rule
Based Comparison Source

ROUGE-L 0.9876 1.0 Input and predicted output
ROUGE-3 0.8563 1.0 Prediction output and the most similar reference
ROUGE-4 0.7885 1.0 Prediction output and the most similar reference
ROUGE-2 0.8376 1.0 Connecting strings from the prediction output and the most similar reference
ROUGE-3 0.7884 1.0 Connecting strings from the prediction output and the most similar reference

Table 5: Comparative Snippet Generation Model Evaluation (Column 2; “Model Based”). The first row (ROUGE-L)
measures input information preservation. The next two rows (ROUGE-3 and -4) measure the quality of predicted
outputs, and the last two rows’ entries measure the quality of the model-proposed connecting strings.

measure whether the order of words is correct,
and connecting string is inserted at the right place.
We use ROUGE-3 and ROUGE-4 to measure
this aspect. These metrics measure the number
of common trigrams and quadgrams between a
generated output and a reference. We compare a
generated output with each reference separately,
and consider the score corresponding to the closest
matching reference.

3. Quality of connecting string. This as-
pect measures whether words in connecting string
are in the correct order and represent a valid
sentence connector. For example, the connecting
string “on the other hand, some users have also
mentioned that” is of higher quality than the string

“on, some users have also mentioned that”. We
use ROUGE-2 to measure this aspect. Since a
valid connecting string may comprise of part of
two or more connecting strings, we do not use
ROUGE-3 and ROUGE-4 to avoid heavy penalties.
We remove those tokens from an output that are
also present in the input sentence. We assume
that thus remaining sub-string comprises tokens
only from connecting strings. We repeat the
same for all the references. Then we compute the
ROUGE-2 metric between the processed output
and references.

5.3 Results and Analysis

Overall Performance. We compute ROUGE-L-
recall between input and a generated output to eval-
uate the model’s performance in preserving input
information. As shown in Table 5, recall of model-
based generations is high: 0.9876; yet less than the
perfect rule-based generation method that created
the dataset. We consider recall values of ROUGE-
3 and ROUGE-4 metrics to measure the quality
of generated outputs with respect to the reference
outputs. As shown in Table 5, recall values of
ROUGE-3, and ROUGE-4 metrics for model-based

Connecting String %age
but, 0.64%
however 44.68%
on the other hand, 33.65%
yet, some users have also mentioned that 0.86%
although [positive opinion], according to a few
users

0.57%

on the other hand, a few users have complained
that

10.79%

however, there are people who have com-
plained that

8.82%

Table 6: Distribution of connecting strings for which a
prediction output matches with one of the references.
This distribution is with respect to the total number of
exact matches.

generations are 0.8563, and 0.7885, respectively,
which we believe is adequate. Finally, we com-
pute the ROUGE-2 metric specifically confined
specifically to the connecting string, in the man-
ner described in (cf. § 5.2). As shown in Table 5,
the recall of ROUGE-2 for our model-based gen-
eration is 0.8376. We believe that the connecting
string quality is adequate but can definitely be im-
proved with more careful modelling, and that the
connecting string realization is a key component
also contributing to overall quality in our second,
overall output quality evaluation.
Study on Connective Prediction. We examine
the connective prediction in more detail as this is
the key aspect that is variable in the generation
task. The model’s prediction outputs exactly match
with one of the references in 13.09% test cases.
Table 6 shows distribution of connecting strings
corresponding to these exact matches. Our model
not only learns to generate comparative responses
by fusing positive and negative opinions but also
learns to generate new connecting strings by fus-
ing words of two separate connecting strings or by
appending a punctuation symbol with a connecting
string. Our model fuses an additional 13.94%
test cases with newly-generated connecting strings.
Table 7 shows the distributional analysis of such

54

New Connecting String Percent.
yet, there are people who have complained that 0.07%
but, there are people who have complained that 0.07%
however, some users have also mentioned that 48.74%
but, some users have also mentioned that 0.23%
however, 48.34%
yet, 1.51%
but 0.10%
yet 0.94%

Table 7: Distribution of new connecting strings. This
distribution is with respect to the total number of newly-
generated connecting strings.

Error Type Percent.
Incorrect mixing 48.22%
Missing although word 17.82%
Single word “on” insertion 14.65%
Input information modification 19.26%

Table 8: Common generation errors from our pre-trained
BERT model’s output.

newly-generated connecting strings. We can see
that “however, some users have also mentioned that”
occurs the maximum number of times in such test
cases and has been generated by fusing “however”,
and “some users have also mentioned that”. The
second most-frequent generated string is “however,”
in which a comma (“,”) has been appended to a
connecting string.

Our model also generates incorrectly fused sen-
tences. Table 8 shows main types of error. The
maximum number of failure cases occur due to
incorrect mixing of parts of different connecting
strings. In such cases, either an extra word is in-
serted, or more words are missing from the con-
necting string. Table 9 depicts top incorrect mixing
patterns. In the four patterns, we can see that the
first word of negative opinion is inserted in between
the connecting string. Our analysis shows that it
happens due to the ambiguity present in our train-
ing dataset. For example, our training dataset con-
tains connecting strings “however”, and “however,
there are people who have complained that”. In the
case of the former, just after the connecting string

“however”, the model inserts words from the nega-
tive opinion. While in the latter case, words from
a connecting string are inserted after “however”.
Therefore, we assume that at prediction time prob-
ability of inserting the first word of the negative
opinion after “however” becomes highest, thus re-
sulting in an incorrect mixing of connecting strings.
A similar argument exists for the incorrect cases
containing string “on the other hand”. Table 10

shows an example of incorrectly mixed connecting
string.

The second most common failure case is
associated with input information modification.
Ideally, a comparative output sentence must
contain positive and negative opinions without
modification. But our model, sometimes, generates
an output sentence that either deletes or repeats
one or more words from the input or replaces a
word with its synonym or base form (Table 10). As
mentioned in the section (cf. § 3.2), except one,
in all other templates connecting string is inserted
between the positive and negative opinions. In case
of although POS, according to a few users NEG,
we also prepend a word “although” in the output
sentence. Since most of the training instances
insert a connecting string only in between, our
model does not learn properly to prepend a word

“although” and thus gives rise to the third most
occurring failure cases in which the first word
of the positive opinion is repeated instead of
prepending a word “although”. An example of
such a case has been shown in Table 10. The last
most occurring errors are associated with single
word insertion “on” between the positive and
negative opinions, as shown in Table 10.

Why not use rules to generate responses if these
give better performance? As shown in our re-
sults, rule-based generations outperform model-
based generations. Therefore, an obvious question
arises on the use of model-based generations. Tem-
plates used for generating rule-based generations
have been manually selected from a random anal-
ysis of reviews. But, in the future, we want our
model to automatically learn styles of compara-
tive response generations from the given dataset
and use these styles to fuse positive and negative
opinions. Therefore, we prefer to use model-based
generations and improve their accuracy.

6 Conclusion and Future Work

We introduced a novel task of generating a compar-
ative response (or “snippet”) regarding a product
that combines positive and negative opinions to-
gether in a single sentence. As such comparative
responses are not easily found in natural review
environments, we generate such comparative re-
sponses through extractive summaries of product
reviews using an unsupervised approach. To spur
future research in this area, we have also made our

55

Incorrect Mixing Pattern Distribution
however the other hand, [first word from the negative opinion] few users have complained that 9.85%
however [first word from the negative opinion] there are people who have complained that 7.83%
on the other hand, [first word from the negative opinion] few users have complained that 5.83%
on [first word from the negative opinion] there are people who have complained that 7.38%
on, some users have also mentioned that 8.15%
however the other hand, 6.40%

Table 9: Top incorrect mixing patterns. Here percentage is w.r.t. all the failure cases.

Incorrect
mixing

Expected the entire set is comfortable. on the other hand, a few users have complained that right side
slides down.

Predicted the entire set is comfortable. on the other hand, right few users have complained that right side
slides down.

Missing
“although”

Expected although the retractil system works fine, according to a few users the pads are sort of squarish.
Predicted the the retractil system works fine, according to a few users the pads are sort of squarish.

Insertion
of “on”

Expected the 415’s are a great upgrade from the oem earbuds. but, it is super uncomfortable.
Predicted the 415’s are a great upgrade from the oem earbuds. on, it is super uncomfortable.

Information
modification

Expected sound is pretty good. but, the movement is actually more like a saw.
Predicted sound is pretty good. however, the movement is actually more like a see.

Table 10: Examples of top errors.

dataset public and leveraged the prior Amazon re-
views corpus, popular with the research community.
Throughout our work we assume that all reviews
are genuine and have been written by buyers who
have used the product. We investigate and bench-
mark a baseline model for this task that combines
state-of-the-art text representation (BERT) in an
encoder–decoder architecture to generate a com-
parative response. Our analysis of the output results
shows that even such a state-of-the-art pre-trained
model does not generate perfect responses.

There are limitations of our work that we hope
to address in the future. Currently, positive and
negative opinions in a generated response may or
may not be related to the same aspect. As such,
improvements to better generate more naturalis-
tic responses may restrict generation to opinions
where both the positive and negative discuss the
same product aspect. In future we would also like
to quantify the veracity of the opinions and weight
them accordingly.

Acknowledgements

We acknowledge the support of NVIDIA Corpo-
ration for their donation of the Titan X GPU that
facilitated this research.

References
Reinald Kim Amplayo and Mirella Lapata. 2021. Infor-

mative and controllable opinion summarization. In
EACL.

Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko

Suhara, Xiaolan Wang, and Mirella Lapata. 2021.
Extractive opinion summarization in quantized trans-
former spaces. Transactions of the Association for
Computational Linguistics, 9:277–293.

Stefanos Angelidis and Mirella Lapata. 2018. Multiple
instance learning networks for fine-grained sentiment
analysis. Transactions of the Association for Compu-
tational Linguistics, 6:17–31.

Eyal Ben-David, Orgad Keller, Eric Malmi, Idan Szpek-
tor, and Roi Reichart. 2020. Semantically driven
sentence fusion: Modeling and evaluation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1491–1505, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alex
Smola, Jing Jiang, and Chong Wang. 2014. Jointly
modeling aspects, ratings and sentiments for movie
recommendation (jmars). Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints and
post-editing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 511–521,
Baltimore, Maryland. Association for Computational
Linguistics.

56

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. DiscoFuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3443–3455, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda,
Anirudha Rayasam, and Zachary Chase Lipton. 2019.
Amazonqa: A review-based question answering task.
In IJCAI.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging non-
linearities and stochastic regularizers with gaussian
error linear units. ArXiv, abs/1606.08415.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264–280.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 151–161, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

Yoshihiko Suhara, Xiaolan Wang, Stefanos Angelidis,
and Wang-Chiew Tan. 2020. OpinionDigest: A sim-
ple framework for opinion summarization. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5789–
5798, Online. Association for Computational Lin-
guistics.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1422–1432, Lisbon, Portu-
gal. Association for Computational Linguistics.

Peter Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifica-
tion of reviews. In Proceedings of the 40th Annual
Meeting of the Association for Computational Lin-
guistics, pages 417–424, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In NIPS.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

57

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 58 - 62
May 26, 2022 c©2022 Association for Computational Linguistics

Textual Content Moderation in C2C Marketplace

Yusuke Shido
Mercari, inc.

shidoy@mercari.com

Hsien-Chi Toby Liu ∗

tobbymailbox@gmail.com
Keisuke Umezawa

Mercari, inc.
k-umezawa@mercari.com

Abstract

Automatic monitoring systems for inappropri-
ate user-generated messages have been found
to be effective in reducing human operation
costs in Consumer to Consumer (C2C) market-
place services, in which customers send mes-
sages directly to other customers. We propose
a lightweight neural network that takes a con-
versation as input, which we deployed to a pro-
duction service. Our results show that the sys-
tem reduced the human operation costs to less
than one-sixth compared to the conventional
rule-based monitoring at Mercari.

1 Introduction

Mercari is a C2C marketplace app available in
Japan and the United States. The application oper-
ates along the lines of an online flea market in
which any customer can list items for sale and
purchase others’ listings. To prevent unpleasant
customer experiences and unnecessary difficulties,
Mercari defines some guidelines for using the plat-
form. If a customer violates the guidelines, mod-
erators from the customer support of Mercari may
give them a warning to protect the safety and trust-
worthiness of the market.

To prevent abuse, platforms try to screen and
monitor user-generated content. This is a human-
intense task known as content moderation, and
some companies like Appen, Facebook, and Pin-
terest introduced content-based deep learning ap-
proaches (Pavlopoulos et al., 2017a; Risch and
Krestel, 2020a) to content platforms in recent years.
Likewise, Mercari operates such moderation sys-
tems for several domains to maintain a safe and
enjoyable marketplace.

We observed that most difficulties are encoun-
tered while sellers and buyers process with their
transactions. In contrast to a normal B2C e-
commerce pattern, sellers and buyers need to send

∗Work performed while at Mercari, inc.

Figure 1: The overview of the moderation system for
messages under transaction.

messages to complete transactions, even though
they are often both inexperienced customers. For
example, customers might send messages to each
other to provide specialized delivery information.
Moderation of user messages is thus a crucial mea-
sure to prevent any forms of abuses, e.g. the trans-
mission of offensive messages to others, induc-
ing others to conduct an offline transaction, or
even urging buyers to pay upfront via external ser-
vices. These abuses are commonly detected by
keyword-based monitoring or patrol (random in-
spections made by moderators of the customer sup-
port), which has been noted as being extremely
limited in terms of scale and efficiency.

In this work, we introduce a scalable textual con-
tent moderation system based on machine learn-
ing models to perform the message moderation
task. 1 Figure 1 shows an overview of our moder-
ation system. In the proposed moderation system,
messages with abusive intent or content that vi-
olate the terms and conditions could be reported
from these three channels: patrol (random inspec-

1We analyzed messages between customers and introduced
the machine learning-based system as fraud countermeasures
in a legally permissible manner, with the consent and aware-
ness of customers.

58

tions), keyword/rule-based monitoring, and pre-
dictions made by machine learning (ML) models.
In this work, we found that ML models success-
fully detected potentially-violated messages with
a much higher precision compared to the conven-
tional keyword/rule-based monitoring. However,
because the type of violations may evolve over
time, (e.g., a local government prohibiting the re-
selling of medical masks during COVID-19) updat-
ing ML-based methods in a timely manner follow-
ing the fluctuations of the marketplace is notably
difficult. We preserve the rule-based approach to
accommodate the latest types of violations, so that
moderators can still quickly revise the monitoring
set of keywords and rules, which helps the system
detect new domains of violations. In addition, a
moderation system cannot tolerate false positives
of any misjudged violation which might negatively
effect the customer experience. All of the messages
considered as potential violations by our modera-
tion system are thus checked manually by moder-
ators. This ensures that the customer experience
on the marketplace is not compromised, and also
creates a perfect human-in-the-loop cycle. To bet-
ter detect offending messages and improve on the
accuracy of existing ML models, we used these
human-checked messages as an accurately-labelled
dataset for model re-training.

The contributions of the present work are sum-
marized as follows.

• A scalable machine learning-based violation
detection system for content moderation of
user-generated conversation is proposed.

• A resilient microservice architecture with high
availability to serve violation domain models
in an one-vs-rest manner was implemented.

• A human-in-the-loop framework was used
successfully to reduce the workloads of mod-
erators in customer support with ML-driven
approaches.

2 Related Work

In contrast to typical B2C or B2B2C platforms, in
which every item for sale can often be accessed
with a single click, communication is inevitable on
a C2C platform. Therefore, commercial content
moderation plays a vital role in the process of com-
munication to complete transactions successfully
(Roberts, 2016).

Because manual content moderation does not
scale to large platforms, it is natural to introduce
automated content moderation systems. Pavlopou-
los et al. (2017b); Risch and Krestel (2020b) inves-
tigated the applicability of machine learning-based
approaches to the facilitation of content modera-
tion by detecting textual violations using language
models.

In the same context, to relieve human resources
in the task at Mercari, Ueta et al. (2020) in-
troduced a machine learning-driven item screen-
ing system that detects banned listings such as
weapons, money, and medicine.

3 Method

3.1 Dataset

Some intents and behaviors, usually stated explic-
itly by service providers in terms and conditions,
are prohibited in our marketplace to prevent unex-
pected difficulty between sellers and buyers. In this
work, we focus on the messages freely exchanged
between sellers and buyers until a transaction is
completed.2 The in-house dataset used in this work
included the following three features. A Message,
a text body sent by either the buyer or seller to the
other. A positive example of a message that vio-
lates the terms and conditions is “Can we continue
trading on this site to avoid fees?” This message
is prohibited because the writer is trying to induce
another customer to conduct the transaction with an
external service, which is a violation of the terms
of service. To comprehend the context of a conver-
sation, we monitor the most recent five messages.
The Writer is a label of either the seller or buyer,
which indicates who wrote the message. Every
message has one writer attribute. Status indicates
the status of the transaction, e.g. “waiting for pay-
ment” or “waiting for shipping”. This is an useful
feature because exchanging contacts (e.g. SNS ac-
counts) during the transaction have a higher chance
to be made with abusive intentions, whereas it is
usually normal to do so after the transaction has
been completed.

During the creation of the dataset, we delib-
erately sampled positive and negative data with
different sampling ratios, because the majority of
messages exchanged on the platform do not vio-

2We use data from Japanese version of the Mercari app.
We mask user’s personal identifiable information, e.g. full
names and addresses in the messages, at the pre-processing
phase to use for analysis and the machine learning system.

59

late policy. We acquired raw data of one-year in-
transaction conversations and divided them into the
first 10 months, as the training set; the following
month as the validation set; and the final month for
the testing set so that the training results would be
robust over time.

For a C2C marketplace like Mercari, we argue
that a uniform language model for toxic speech
may not fulfill our scenario in which violations
may appear in a variety of forms. Violations also
occur when users try to make deals offline by send-
ing messages or by threatening other users to make
payments upfront, in addition to hate speech. These
intents and behaviors are considered as among the
targets to be moderated. Considering the vari-
ety of violations as our targeted labels, we take
the advantage of one-vs-rest classifiers to leverage
this multi-label issue (Gunasekara and Nejadgholi,
2018). Thus, the proposed system comprises an
assemblage cluster of sub-language models, and is
designed to perform inference against a range of
specific violation domains in a one-vs-rest fashion.

3.2 Metrics
As noted above, we had a quote for the number of
alerts in actual use case. Therefore, we aimed to
maximize the precision @K of the model, where
K is the capable number of alert for moderators.
We monitor the precision @K of running models
to detect deterioration of model performance and
concept drift (Zliobaite et al., 2016) in actual oper-
ation. However, K may vary due to various factors
and the policy itself may change depending on the
social situation, which causes concept drift. To
simplify the experiment, we use the area under the
receiver operating characteristic curve (AUROC)
and average precision (a.k.a. AUPRC) to compare
the models in this work. Also, the extent to which
the ML model obviates the need for human labor
is the important metric in our scenario. To monitor
this, we measured the number of alerts from the
ML model required to detect the same number of
positives as the rule-base.

3.3 Model Architecture
Our neural network model shown in figure 2 re-
ceives three features described in 3.1 and out-
puts the probability of a violated message. The
model extracts textual features using a convo-
lutional neural network (CNN) and flattens the
grasped sentence-level features into a 1D feature
representation as an input to the subsequent re-

Figure 2: Neural network model architecture.

current neural network (RNN). First, we parse the
“Message” input using the fast Japanese morpholog-
ical analyzer MeCab (Kudo, 2005) with the large
dictionary (Toshinori, 2015). We transform the
messages to sequences of numeric tokens, and em-
bed them to matrices x(M) =

(
x
(M)
1 , . . . , x

(M)
Nd

)
,

where x(M)
i ∈ RNs×d

(M)
e is a sequence of word

vectors of i-th sentence, Nd, Ns, and de are the
number of sentences, the length of sentences, and
the dimension of embedding space, respectively.
We use the word vectors pretrained with word2vec
(Mikolov et al., 2013) to perform embedding and
optimize the word vectors in the same manner as
other model parameters during training. We adopt
the convolutional neural network proposed in Kim
(2014) (a.k.a. KimCNN) for textual feature ex-
traction because it is lightweight and can reach
relatively good accuracy even with a small number
of parameters. The d-dimensional textual feature
vectors f (M)

i ∈ Rd is computed from each x(M)
i

using a single KimCNN. The “Writer” feature of
i-th sentence and the single “Status” feature are
also embedded as d-dimensional vectors f (W)

i and
f (S), respectively. The feature of i-th sentence is
computed as the sum of the “Message” feature and
“Writer” features as f (M+W)

i = f
(M)
i +f

(W)
i . The

gated recurrent units (GRUs) (Ballakur and Arya,
2020) compute the feature vector representing the
entire conversation g(M+W) ∈ Rd from sentence
features f (M+W) =

(
f
(M+W)
1 , . . . , f

(M+W)
Nd

)
.

The GRU is expected to understand the conver-
sation as a sequence of sentences. We use two
GRUs, one to enter in forward order and another
to enter in reverse order. Finally, the model output
p ∈ [0, 1] is computed from combined feature vec-
tor f (M+W+S) = g(M+W) + f (S) using a multi-
layer perceptron (MLP). The model parameters

60

Figure 3: Core components of our ML moderation sys-
tem.

including embedding vectors are trained by mini-
mizing entropy as −y log p− (1− y) log (1− p),
where y ∈ (0, 1) is the true label for the prediction
p.

3.4 System Deployment

As one of the largest online marketplace in Japan,
Mercari deals with thousands of transaction mes-
sages every minute. The system must be robust
with high short term capacity to accommodate a va-
riety of language models for each violation domain.
Also, it must be easy to add new models and update
existing models to keep up with the market situa-
tion. Hence, we trained machine learning models
in one-vs-rest manner for easy model addition and
update, and designed the whole system to serve
the models in a horizontal asynchronized pattern
(Yusuke, 2020) as shown in Figure 3 to overcome
peak traffic. The proxy and each language model
components are able to be scaled separately.

Starting from an incoming request sent to the
proxy component with a specific message id, the
system sends a feature request to the internal API
endpoint to fetch the dialogue content as a second
step. The proxy component generates feature repre-
sentations by doing preprocessing over sentences in
a given dialogue and sends them to each language
model as Steps three and four. Predictions against
each violation domain are inferred and returned
by the components serving language models as a
proxy component again to perform post-processing
in Step five. In that step, we send alerts to modera-
tors if the inferred probability surpasses thresholds
pre-defined to control the amount of alerts for each
violation domain. We also record prediction results
for the later human-in-the-loop evaluation.

3.5 Experiments

We conducted experiments to examine whether the
data enrichment described in 3.1 improved the per-

#M W S AUROC AUPRC
1 99.4068 97.1052
5 99.6919 98.3702
5 X 99.6996 98.3793
5 X 99.6947 98.3733
5 X X 99.7274 98.4194

Table 1: AUROC and AUPRC score with various fea-
tures. Here, #M represents the number of message to
input to the model and the check mark in column W
or S indicates that Writer or Status feature was used.
We trained the model three times with different initial
weights for each, and adopted average value for the
model performance.

formance of the proposed model. Table 1 shows
the result of our experiments. We can confirm that
using multi-round messages and their additional
metadata was effective for the detection of violat-
ing messages. In the experiments, we adopted the
AdaBound optimizer with a learning rate of 0.001
and decaying learning rate according to the cosine
curve. We trained the model for 10 epochs and
adopted the weights at epoch, which yielded the
best performance on the validation loss. The final
performance was evaluated with the testing set.

In online evaluation, we observe that our model
was able to find the same number of positive mes-
sages as existing rule-base search methods with
16.05% of the number of alerts from the rule-base
in this violation domain. This means that by re-
placing the rule-based method with the ML model,
the human resources requirements of the system
can theoretically be reduced by more than half.
However, we preserved rule-bases for the reasons
mentioned in Section 1.

4 Conclusion

In this work, we have proposed a scalable ML-
based violation detection system designed to accept
multi-round user conversations and some categor-
ical features. A variety of violation domains are
served as individual components in an one-vs-rest
fashion to retain scalability to high volumes of re-
quests and flexibility on targeting domains. In com-
parison with conventional rule-based monitoring,
we have demonstrated that the proposed ML-driven
approach successfully reduced the workloads of
moderators in customer support to less than one-
sixth of their previous levels by automatically de-
tecting abusive messages.

61

References
Appen. Leveraging ai and machine learning for content

moderation [online].

Amulya Arun Ballakur and Arti Arya. 2020. Empirical
evaluation of gated recurrent neural network archi-
tectures in aviation delay prediction. In 2020 5th
International Conference on Computing, Communi-
cation and Security (ICCCS), pages 1–7. IEEE.

Facebook. How we review content [online].

Isuru Gunasekara and Isar Nejadgholi. 2018. A review
of standard text classification practices for multi-
label toxicity identification of online content. In Pro-
ceedings of the 2nd workshop on abusive language
online (ALW2), pages 21–25.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

T. Kudo. 2005. Mecab : Yet another part-
of-speech and morphological analyzer.
http://mecab.sourceforge.net/.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017a. Deeper attention to abu-
sive user content moderation. In Proceedings of the
2017 conference on empirical methods in natural
language processing, pages 1125–1135.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017b. Deeper attention to abu-
sive user content moderation. In Proceedings of the
2017 conference on empirical methods in natural
language processing, pages 1125–1135.

Pinterest. Getting better at helping people feel better
[online].

Julian Risch and Ralf Krestel. 2020a. Toxic comment
detection in online discussions. In Deep Learning-
Based Approaches for Sentiment Analysis, pages 85–
109. Springer.

Julian Risch and Ralf Krestel. 2020b. Toxic comment
detection in online discussions. In Deep Learning-
Based Approaches for Sentiment Analysis, pages 85–
109. Springer.

Sarah T Roberts. 2016. Commercial content modera-
tion: Digital laborers’ dirty work.

Sato Toshinori. 2015. Neologism dictionary based on
the language resources on the web for mecab.

Shunya Ueta, Suganprabu Nagaraja, and Mizuki Sango.
2020. Auto content moderation in c2c e-commerce.
In 2020 USENIX Conference on Operational Ma-
chine Learning (OpML 20). USENIX Association.

Shibui Yusuke. 2020. Machine learning system design
pattern.

Indre Zliobaite, Mykola Pechenizkiy, and Joao Gama.
2016. An Overview of Concept Drift Applications,
Studies in Big Data, pages 91–114. Springer Inter-
national Publishing AG, Switzerland.

62

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 63 - 67
May 26, 2022 c©2022 Association for Computational Linguistics

Spelling Correction using Phonetics in E-commerce Search

Fan Yang, Alireza Bagheri Garakani, Yifei Teng
Yan Gao, Jia Liu, Jingyuan Deng, Yi Sun

Amazon
Seattle, Washington, USA

{fnam,alirezg,yifeit,yanngao,hliujia,jingyua,yisun}@amazon.com

Abstract

In E-commerce search, spelling correction
plays an important role to find desired products
for customers in processing user-typed search
queries. However, resolving phonetic errors is
a critical but overlooked area. The query with
phonetic spelling errors tends to appear cor-
rect based on pronunciation but is nonetheless
inaccurate in spelling (e.g., "bluetooth sound
system" vs. "blutut sant sistam") with numer-
ous noisy forms and sparse occurrences. In
this work, we propose a generalized spelling
correction system integrating phonetics to ad-
dress phonetic errors in E-commerce search
without additional latency cost. Using India
(IN) E-commerce market for illustration, the
experiment shows that our proposed phonetic
solution significantly improves the F1 score
by 9%+ and recall of phonetic errors by 8%+.
This phonetic spelling correction system has
been deployed to production, currently serving
hundreds of millions of customers.

1 Introduction

Search is critical to provide a great customer shop-
ping experience in E-commerce. Usually, as the
first step of the search workflow, spelling correction
is responsible to reduce the irrelevant and sparse
search results caused by spelling errors in search
keywords. In addition, low latency is required con-
sidering spelling correction is only part of many
modules in the search workflow. Despite the large
amount of research on correcting spelling errors
(Hládek et al., 2020), addressing phonetic errors
is an important, but overlooked area. Phonetic
spelling error typically happens when the query
has similar pronunciation but is nonetheless inaccu-
rate in spelling (e.g., "bluetooth sound system" vs.
"blutut sant sistam" in English). Figure 1 describes
the phonetic error percentage of misspelled queries
based on a human annotated spelling correction
dataset sampled from the Amazon search query

log. We find that this type of spelling error domi-
nates in multiple E-commerce markets with various
languages, existing mostly on generic item terms
(e.g., "nacklesh" vs. "necklace") and brand terms
(e.g., "scalkendy" vs. "skullcandy"). This issue
might damage customer trust and present greater
challenges when E-commerce offers more prod-
ucts (i.e., brand names) with sensational spelling
(e.g., Hasbro’s Playskool [school]) and attracts cus-
tomers with low written proficiency.

Figure 1: Phonetic error ratio on brand terms (blue),
generic item terms (red) or any terms (green) out of all
spelling errors in multiple markets (languages).

However, the traditional spelling correction sys-
tem is not able to address phonetic spelling er-
rors well because it usually searches the correc-
tion of given spelling errors up to a certain edit
distance (Damerau, 1964) apart (Gorin et al., 1971;
Whitelaw et al., 2009), while phonetic spelling
errors could lead to large edit distance with vari-
ously noisy forms (e.g., EditDist("blutut" vs. "blue-
tooth")=4).

There exists multiple attempts to address pho-
netic errors by generating soundslike equivalent
candidates based on phonetic algorithms (Atkin-
son, 2006). Although soundslike equivalent candi-
dates may handle phonetic errors better, they tend
to be too noisy to cover the correct spelling of
non-phonetic errors in a limited size satisfying low
latency requirements (shown in Section 3).

To address these limitations, we propose a gen-
eralized spelling correction system that enables
us to integrate phonetics into E-commerce search
without additional latency cost. It includes a new

63

hybrid candidate generation method with phonetic
mapping as well as an effective candidate rank-
ing method leveraging phonetic signals. In par-
ticular, our major contributions include: (1) we
propose an effective hybrid candidate generation
method, which aims to capture the complemen-
tary candidates across edit distance and soundslike
based methods to address both phonetic and non-
phonetic spelling errors; (2) we propose a flexible
candidate ranking stage by leveraging phonetic sig-
nals, which tends to rank the correct spelling of
phonetic errors to the top; (3) our offline study
shows a 9%+ speller overall improvement with an
8% improvement on phonetic errors without addi-
tional latency cost by incorporating phonetics into
our generalized spelling correction system. To the
best of our knowledge, this work is the first to pro-
pose an efficient and effective phonetic solution
with ablation study in E-commerce search, and this
phonetic solution can be easily applied to any au-
tomatic spelling correction system with candidate
generation or ranking stage.

2 Problem Formulation and Modeling

In this section, we formally define our generalized
spelling correction structure using phonetics. Most
current search engines detect and correct spelling
errors automatically. One of the most popular struc-
tures defined by (Kukich, 1992) includes candidate
generation and candidate ranking steps based on
the noisy channel model (NCM) (Jurafsky and Mar-
tin, 2008). The basic idea of NCM is to find the
spelling correction C∗ given the input query Q and
its spelling correction candidates C = c1 . . . cn via
the Bayes’ Rule:

C∗ = argmax
c
P (Q|C)P (C), (1)

where the language model P (C) represents the
probability of the C to be correct, and the error
model P (Q|C) represents the chance of the trans-
formation from C to Q. We define NCM score as
the logarithm summation of the language and error
model score. On top of this popular noisy channel
structure, we introduce our generalized spelling
correction system using phonetics below.

Hybrid candidate generation: The candidate
generation step is to generate the correction candi-
dates given an input query. In our proposed hybrid
candidate generation stage, the first step is to lever-
age an auto-split-combine module tokenizing an
input query into tokens and split (combine) tokens

when the resulting bigram has a higher probability
in the search query log. Second, each token’s candi-
dates are generated from the vocabulary dictionary
(built from the search query log) up to a certain edit
distance. Similar to (Sun et al., 2010; Whitelaw
et al., 2009), a trie-based data structure is leveraged
that allows to efficiently search within a maximum
edit distance (e.g., a common setting is 2 to avoid
high latency). Token candidates are sorted based
on NCM score built on the search query log limited
by a certain size. Caching is applied to avoid dupli-
cated efforts. Considering the potentially large dis-
tance introduced by phonetic spelling errors (e.g.,
EditDist["blutut", "bluetooth"]=4), we design the
hybrid candidate generation stage. It additionally
includes a phonetic mapping with the key represent-
ing the pronunciation and its value being a list of
token soundslike candidates, complementing edit-
distance based token candidates. Specifically, we
leverage phonetic algorithms’ encoding (Vykho-
vanets et al., 2020) to convert the token to the key
of the phonetic mapping. The token candidates in
the phonetic mapping are extracted from tokenized
Amazon product titles sorted by its frequency be-
cause Amazon product titles contain rich product
information (brands, generic items, etc.), which
commonly suffers from phonetic errors. In addi-
tion, the top candidates are required to have the
same phonetic key, while the remaining candidates
can allow a small edit distance of the phonetic key,
which introduces noise, but with higher coverage.

Table 1 shows an example of the phonetic map-
ping in English leveraging Double Metaphone
(DM) (Philips, 2000) phonetic algorithm with the
phonetic encoding key: "PLTR". Top 10 candidates
have the same DM phonetic key "PLTR" and the re-
maining 30 candidates allow one edit distance. For
the given token "blutur" with DM key "PLTR", the
correct candidate "bluetooth" is the 13th candidate
with phonetic key "PLTT".

Top-K Token Candidates

1-10 "platter","builder","boulder",. . .

11-40 "leather","holder","bluetooth",. . .

Table 1: The phonetic mapping of DM phonetic key:
"PLTR"

Token candidates compose both edit-distance
and phonetic mapping based candidates. Following
Eq. (1) to approximately find the top-K query-level

64

Figure 2: General workflow of spelling correction sys-
tem. "E": edit distance of the token candidates. "P":
edit distance based on phonetic encoding key.

candidates, we leverage the beam search algorithm
with the beam search size K, tunable to balance
the system latency and its performance. Figure 2
shows the general workflow of the spelling correc-
tion system including the hybrid candidate gener-
ation stage based on the input query "blutut sant
sistam". Take the input token "sant" as an example,
"sound" is generated from phonetic mapping, while
"sand" is from both edit-distance and phonetic map-
ping based candidates with maximum edit-distance
setting being 2.

Candidate ranking: Although the hybrid can-
didate generation stage can return candidates with
sorted NCM score, we add this candidate rank-
ing stage to flexibly leverage phonetic features and
powerful ranking algorithms. Typical ranking fea-
tures could be candidates’ language scores from
different sources (e.g., search query log, product
titles, etc.) and different types of error scores char-
acterized by the probability of each edit in different
edit levels (e.g.,character-level (Mays et al., 1991;
Church and Gale, 1991), subword-level (Brill and
Moore, 2000) ,phrase-level (Sun et al., 2010)). We
specifically add the phonetic distance feature: the
edit distance of the phonetic encoding key between
the input query and its candidate. The goal of
adding this feature is to allow the model to rank
the correct candidate of a phonetically misspelled
query higher. For the ranking algorithm, the system
is flexible to support linear models (e.g., logistic
regression (Cox, 1958)), tree based model (e.g.,
XGBoost (Chen and Guestrin, 2016)) and deep
learning models in point-wise and pairwise level.
In addition, a classification module can be option-
ally added after the ranking stage (e.g., (Whitelaw

et al., 2009)) to balance between auto-correction
and no-correction speller actions. Figure 2 includes
the workflow of the candidate ranking stage.

3 Experiments

In this section, we formally evaluate our proposed
spelling correction system integrating phonetics.
We use IN E-commerce market for illustration. We
train and evaluate the candidate ranker based on
the human annotated dataset with 30000 query-
correction pairs from the search query log. We split
33.33% for training, validating, and testing. The
evaluation metric is the F1 score, which is a har-
monic mean of the precision and recall. Precision
represents the speller’s accuracy rate when its ac-
tion is auto-correction, while recall is defined as the
speller’s accuracy rate for misspelled queries. We
also report the recall of queries with phonetic errors
and top percentile (TP) 99 latency of the spelling
correction system in milliseconds. We treat the top
1 candidate as the correction of a given input query
with auto-correction action when the top 1 candi-
date is different from the input query, although the
system supports more complicated classifiers after
the ranking stage. Relative impacts (instead of ab-
solute values) are reported for legal requirements.

We first conduct an ablation study for the can-
didate ranking module. We apply a standard set-
ting in the candidate generation step that allows 20
edit distance based token candidates with allowed
maximum edit distance 2 and beam search size 12.
Typical ranking features based on different types
of language and error models are included, and we
focus on the impact of the phonetic distance fea-
ture. Table 2 shows F1 score, recall of phonetic
errors (column name: "ph-recall"), and TP99 la-
tency evaluated in the test dataset. Column name
"ph-dist" indicates if the phonetic distance feature
is added in the ranking model. Row [i] leverages
pair-wised logistic regression algorithm, while row
[ii, iii] leverage XGBoost LambdaMART algorithm
to rank candidates. We have the following observa-
tions. First, switching from logistic regression to
XGBoost ranking algorithm (comparing row [ii] to
row [i]), we find 7%+ improvement on F1 score and
6%+ on recall of phonetic errors with minor latency
increase (i.e., 1.5%). The nonlinear structure and
the nature of handling feature interaction effects
in tree-based models (i.e., XGBoost) might be the
reason that our method outperforms linear ranking
models (e.g., logistic regression). Second, adding

65

row
hyperparameter performance

algorithm ph-dist F1 ph-recall TP99

[i] logistic regression no - - 13

[ii] XGBoost no +7.2% +6.3% +1.5%

[iii] XGBoost yes +10.6% +8.9% +3.8%

Table 2: Candidate ranking ablation study (c. row[i])

the phonetic distance feature contributes to 3%+
F1 and 2%+ phonetic error recall improvement
(comparing row [iii] to row [ii]). This supports our
motivation that the phonetic distance feature tends
to rank the correct candidate of a phonetically mis-
spelled query higher, improving both the overall F1
score and recall of phonetic errors.

Adopting XGBoost LambdaMART algorithm
with phonetic distance feature in the candidate rank-
ing stage, we evaluate the hybrid candidate genera-
tion performance in Table 3 (row [i] in Table 3 is
row [iii] in Table 2). Columns "ph-s" and "ed-s"
represent the size of phonetic mapping and edit-
distance based token candidates. Column "beam-s"
is the beam search size and "ed-th" is the maximum
edit distance allowed for edit-distance based token
candidates. Phonetic mapping is created based on
DM phonetic algorithm, limiting the top 10 candi-
dates to have same DM phonetic key and allowing
maximum 1 edit distance of the phonetic encoding
key for the remaining candidates. Row [i] serves as
a baseline model without phonetic mapping based
token candidates. Row [ii] shows the impact of
maximum edit distance setting on edit-distance
based token candidates. We find that enlarging
the maximum edit distance leads to high latency
(371%+ increase) by comparing row [ii] with row
[i], but with minor improvement on F1 and pho-
netic error recall. This indicates resolving phonetic
errors (with distant edit distance to the correction)
by directly searching the correct spelling within the
edit distance threshold is not feasible. Row [iii-vi]
shows the impact of adjusting different sizes of pho-
netic mapping and edit-distance based token candi-
dates. We find that increasing edit-distance based
token candidate size (comparing row [iii] to row [i])
leads to minor improvement (F1 + 0.6%, ph-recall
+1.9%), but complementing token candidates by
adding phonetic-mapping based candidates outper-
forms baseline by 6%+ on F1 and 5%+ on phonetic
error recall (comparing row [iv] to row [i]). If
phonetic mapping is the only source of token can-
didates (comparing row [v] to row [i]), there exists

row
hyperparameter performance

ph-s ed-s beam-s ed-th F1 ph-recall TP99

[i] 0 20 12 2 - - 13.5

[ii] 0 20 12 3 +0.4% +0.2% +371%

[iii] 0 40 12 2 +0.6% +1.9% +16.3%

[iv] 20 20 12 2 +6.2% +5.1% +22.2%

[v] 20 0 12 2 -11.2% -16.8% -1.5%

[vi] 40 0 12 2 -6.6% -8.8% +23.7%

[vii] 20 20 8 2 +6.2% +5.4% -3%

[viii] 20 20 1 2 -5.9% -8.8% -20.7%

Table 3: Candidate generation ablation study (c. row[i])

a performance regression on both F1 and phonetic
error recall. Furthermore, enlarging the phonetic
mapping (row [vi]) is not an optimal solution con-
sidering its worse performance than hybrid sources
(row [iv]). Then, we select the beam search size
(row [vii,viii]) to control the similar TP99 for best
F1 and phonetic error recall, compared with base-
line (row [i]). The setting in row [vii] achieves 6%+
F1 score and 5%+ phonetic error recall improve-
ment with flat latency. Aggregating the phonetic
feature’s impact (compare row [vii] in Table 3 to
row [ii] in Table 2), the spelling correction system
improves the F1 score by 9%+ and phonetic error
recall by 8%+ by integrating phonetics into hybrid
candidate generation and candidate ranking steps.

We adopt row [i] in Table 2 and row [vii] in Table
3 as baseline speller and phonetic speller for online
A/B testing. We find significant business metrics
gain without additional latency cost. Moreover,
Figure 3 shows an example that the phonetic speller
is able to resolve the irrelevant and/or sparse results
based on the search query: "blutut sant systam".
That is, there are only 82 search results returned by
the baseline speller, while more than 9000 results
are shown after applying the phonetic speller.

4 Conclusions and Future Work

In this work, we developed a generalized spelling
correction system integrating phonetics into both
hybrid candidate generation and candidate ranking
stages on E-commerce domain. We demonstrated
that our proposed phonetic solution improves more
than 9% on F1 score and 8% on recall of phonetic
errors without additional latency cost. This solution
can be applied to any automatic spelling correc-
tion system with candidate generation or ranking
stage. Online A/B testing showed positive business

66

(a) Search results based on baseline speller

(b) Search results based on phonetic speller

Figure 3: Baseline speller vs. phonetic speller for search
query: "blutut sant systam"

metrics while reducing sparse/irrelevant search re-
sults. Future directions include applying similar
phonetic integrating ideas to other spelling correc-
tion frameworks (Jayanthi et al., 2020; Park et al.,
2021) considering the growing popularity of the use
of encoder-decoder deep learning architectures.

References
Kevin Atkinson. 2006. Gnu aspell 0.60. 4.

Eric Brill and Robert C Moore. 2000. An improved
error model for noisy channel spelling correction.
In Proceedings of the 38th annual meeting of the
association for computational linguistics, pages 286–
293.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794, New York, NY, USA. ACM.

Kenneth W Church and William A Gale. 1991. Proba-
bility scoring for spelling correction. Statistics and
Computing, 1(2):93–103.

David R Cox. 1958. The regression analysis of binary
sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232.

Fred J Damerau. 1964. A technique for computer detec-
tion and correction of spelling errors. Communica-
tions of the ACM, 7(3):171–176.

RE Gorin, Pace Willisson, Walt Buehring, Geoff Kuen-
ning, et al. 1971. Ispell, a free software package for
spell checking files. The UNIX community.

Daniel Hládek, Ján Staš, and Matúš Pleva. 2020. Sur-
vey of automatic spelling correction. Electronics,
9(10):1670.

Sai Muralidhar Jayanthi, Danish Pruthi, and Graham
Neubig. 2020. Neuspell: A neural spelling correction
toolkit. arXiv preprint arXiv:2010.11085.

Daniel Jurafsky and James H Martin. 2008. Speech &
language processing (2nd ed.). Prentice Hall.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. Acm Computing Surveys
(CSUR), 24(4):377–439.

Eric Mays, Fred J Damerau, and Robert L Mercer. 1991.
Context based spelling correction. Information Pro-
cessing & Management, 27(5):517–522.

Chanjun Park, Kuekyeng Kim, YeongWook Yang,
Minho Kang, and Heuiseok Lim. 2021. Neural
spelling correction: translating incorrect sentences to
correct sentences for multimedia. Multimedia Tools
and Applications, 80(26):34591–34608.

Lawrence Philips. 2000. The double metaphone search
algorithm. C/C++ users journal, 18(6):38–43.

Xu Sun, Jianfeng Gao, Daniel Micol, and Chris Quirk.
2010. Learning phrase-based spelling error models
from clickthrough data. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 266–274.

Valeriy S Vykhovanets, J Du, and SA Sakulin. 2020.
An overview of phonetic encoding algorithms. Au-
tomation and Remote Control, 81(10):1896–1910.

Casey Whitelaw, Ben Hutchinson, Grace Chung, and
Ged Ellis. 2009. Using the web for language indepen-
dent spellchecking and autocorrection. In Proceed-
ings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 890–899.

67

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 68 - 79
May 26, 2022 c©2022 Association for Computational Linguistics

Logical Reasoning for Task Oriented Dialogue Systems

Sajjad Beygi, Maryam Fazel-Zarandi∗, Alessandra Cervone,
Prakash Krishnan, Siddhartha Reddy Jonnalagadda

Amazon Alexa AI
{beygi, fazelzar, cervon, prakaskr, sjjonnal}@amazon.com

Abstract

In recent years, large pretrained models have
been used in dialogue systems to improve suc-
cessful task completion rates. However, lack
of reasoning capabilities of dialogue platforms
make it difficult to provide relevant and fluent
responses, unless the designers of a conversa-
tional experience spend a considerable amount
of time implementing these capabilities in ex-
ternal rule based modules. In this work, we
propose a novel method to fine-tune pretrained
transformer models such as Roberta and T5, to
reason over a set of facts in a given dialogue
context. Our method includes a synthetic data
generation mechanism which helps the model
learn logical relations, such as comparison be-
tween list of numerical values, inverse relations
(and negation), inclusion and exclusion for cat-
egorical attributes, and application of a com-
bination of attributes over both numerical and
categorical values, and spoken form for numer-
ical values, without need for additional train-
ing data. We show that the transformer based
model can perform logical reasoning to answer
questions when the dialogue context contains
all the required information, otherwise it is
able to extract appropriate constraints to pass
to downstream components (e.g. a knowledge
base) when partial information is available. We
observe that transformer based models such as
UnifiedQA-T5 can be fine-tuned to perform
logical reasoning (such as numerical and cate-
gorical attributes’ comparison) over attributes
seen at training time (e.g., accuracy of 90%+
for comparison of smaller than kmax=5 values
over heldout test dataset).

1 Introduction

Logical reasoning is an important aspect of hu-
man thinking and communication. Humans reason
over beliefs, preferences, time, facts, and other
contextual information to achieve complex tasks,
derive meaning, and analyze emotions. Current

∗Work done while at Amazon Alexa AI.

Figure 1: The dialogue system with reasoning ability.

task-oriented dialogue systems, however, only sup-
port very limited forms of logical reasoning. More
specifically, although reasoning ability has been in-
vestigated as part of chatbots (Cui et al., 2020) and
question-answering systems (Huang et al., 2019;
Chen et al., 2020), in many task-oriented dialogue
systems today, the reasoning is mainly focused on
determining which slot values are still unknown to
the system but are required and elicit them (Guo
et al., 2017). However, in realistic task-oriented
dialogues, logical reasoning is required to under-
stand the user’s request, ask questions that help
address the user’s task successfully and minimize
asking irrelevant questions. The lack of robust,
generalizable reasoning capabilities for dialogue
systems, requires developers of the system to spend
a considerable amount of time implementing these
capabilities in external, rule-based and domain spe-

68

cific components. This leads to a poor user experi-
ence requiring users to often correct the system’s
understanding, repeat themselves to ask the same
question in different ways, restart the conversation
when the system fails to recover from a ‘dead-end’,
or even change their goal.

In this work, we propose to build on recent ad-
vances in research on logical reasoning and deep
networks (e.g., Dong et al. 2019; Wang et al. 2019;
Xie et al. 2019; Clark et al. 2020; Arabshahi
et al. 2020) to bring reasoning capabilities to task-
oriented dialogue systems. Our primary focus in
this work is on mechanisms by which logical rea-
soning can be learned and used in conversational
systems. In this direction, we propose a novel deep
learning method to fine-tune pretrained models to
reason over numerical and categorical attributes in
the dialogue context and present an architecture
for the integration of this model in task-oriented
dialogue systems. Our objective is for the model
to do logical reasoning to respond to queries from
the dialogue context when it has all the required
information available in the dialogue context with-
out additional external logic (e.g., “Add the most
popular to my cart” in Figure 1), extract constraints
and inform downstream components when it only
has partial context (e.g., “Actually I’m allergic to
berries. Find something cheaper and with vanilla
flavor” in Figure 1, where cheaper means cheaper
than what was shown so far), and not provide an
answer when it does not have any relevant infor-
mation and delegate to the dialogue policy to deter-
mine the next action.

We specifically choose to fine-tune transformers
since these models operate on language directly,
do not impose any structure on the reasoning pro-
cess (Clark et al., 2020), and we can leverage the
knowledge and diversity of language that the pre-
trained models have already learned. Furthermore,
Ding et al. (2020) recently showed that these ap-
proaches can outperform neuro-symbolic methods.
Our approach is similar to recent works on using
transformers as soft reasoners (Clark et al., 2020;
Talmor et al., 2020). However, compared to these
methods, we focus on use cases relevant to conver-
sational systems and our model goes beyond pre-
dicting a true/false response to directly predicting
the answer when the model has the information or
extract constraints when it has partial information.
In this direction, we report experimental results
that show using our training method transformers

can learn to reason over numerical and categorical
attributes in the dialogue context.

Note that although we use transformers for our
experiments, our proposed method can be used to
generate data and train any other seq2seq model
for the same task and be integrated with any di-
alogue system in a similar manner. Furthermore,
our proposed method is different from question-
answering or machine reading comprehension in
that we are not looking for an answer in a specific
passage; rather, we want the model to reason over
facts in the dialogue context to draw parallels and
conclusions to inform decision making, similar to
how humans reason over a multi-turn conversation.

2 Related Work

The approaches for integrating reasoning with deep
networks can be categorized into the following.

Reasoning after Semantic Parsing These ap-
proaches convert utterances to a semantic repre-
sentation and feed it to a set of rules or a formal
reasoner for reasoning. For example, Kamath and
Das (2018) provide examples where given a natu-
ral language utterance and context in the form of a
relational database, the system first converts the nat-
ural language utterance to a SQL query that is then
executed using standard SQL grammar to retrieve
the answer. This is also similar in approach to how
some teams that participated in the WikiSQL task
(Victor et al., 2017) developed natural language in-
terfaces for relational databases. However, writing
and maintaining rules is not scalable especially as
more complex types of reasoning become needed.
The data annotation itself becomes hard to manage
efficiently as more functionalities need to be sup-
ported. Furthermore, deep semantic parsing and
reliably extracting attributes and relations and oper-
ating on multi-sentence input remains a challenge.

Satisfiability-based Approaches Wang et al.
(2019) propose to integrate a differentiable max-
imum satisfiability solver into the loop of larger
deep learning systems, and use this approach to
successfully learn logical structures such as the
rules of Sudoku. Previous works have shown that
temporal reasoning can be modeled as a proposi-
tional satisfiability problem (Pham et al., 2008);
however, generalizability to other types of reason-
ing needs further investigation. Although covering
a rich class of problems, these approaches impose
a structure on the reasoning problem (Clark et al.,

69

2020), i.e., learning of logical structure specifically
as expressed by satisfiability problems.

Neuro-symbolic Approaches Neuro-symbolic
systems are hybrid models that leverage neural net-
works and symbolic reasoning to integrate learning
and reasoning. Besold et al. (2017) provide a sur-
vey of how symbolic approaches for reasoning are
integrated with the machine learning approaches
that bring in reasoning. More recently, Dong et al.
(2019) propose Neural Logic Machines and apply
them to different tasks such as relational reason-
ing and sorting. Arabshahi et al. (2020) propose
an end-to-end differentiable solution that uses a
Prolog proof trace to learn rule embeddings from
data, and apply their approach to the task of un-
covering commonsense presumptions. Similarly,
Xie et al. (2019) generate a graph model to em-
bed logic rules into the prediction. However, Ding
et al. (2020) show that a fully-learned neural net-
work with the right inductive biases can outperform
neuro-symbolic approaches in the context of spatio-
temporal interactions between objects.

Transformer Approaches Clark et al. (2020)
and Talmor et al. (2020) propose to train trans-
formers to reason over natural language sentences,
bypassing a formal representation and show such
reasoning over language is learnable. Ding et al.
(2020) apply a similar technique to visual ques-
tion answering and show that their approach out-
performs neuro-symbolic approaches. Han et al.
(2020) use a similar approach to fine-tune a lan-
guage model for event temporal reasoning. Our
approach builds on top of these works in that we in-
tegrate reasoning into task-oriented dialogues and
go beyond predicting a true/false response for an
input and instead directly predict the answer when
the model has the information or extract constraints
when it has partial information.

Knowledge Grounding in Dialogue Similar to
how Victor et al. (2017) retrieve knowledge from
Wikipedia, approaches such as (Ghazvininejad
et al., 2018; Neelakantan et al., 2019; Gopalakr-
ishnan et al., 2019) retrieve knowledge from a
database to be incorporated into dialogue. These
approaches extend the seq2seq approach to con-
dition on the facts present in the knowledge
bases. While this is a promising architecture,
such approaches are good for applications such as
knowledge-grounded open domain chat but not for
supporting reasoning in task-oriented dialogues.

Other Approaches There are also other tech-
niques in the literature such as integrating rules
defined in first-order logic with knowledge distil-
lation (Hu et al., 2016) that are outside the above
categories. There have also been efforts such as
CLUTRR (Sinha et al., 2019), bAbI dataset (We-
ston et al., 2015), Single Rule Test (Richardson
et al., 2020), QuaRTz dataset (Tafjord et al., 2019),
HotpotQA (Yang et al., 2018), and ROPES (Rea-
soning over Paragraph Effects in Situations) (Lin
et al., 2019), that focus on creating benchmarks for
reasoning that measure how well existing systems
perform on generalized reasoning.

3 Problem Statement

Task-oriented dialogue systems use a natural lan-
guage understanding component to extract seman-
tic meaning from the user utterance, and elicit
constraints from users to understand their goals
in order to provide information, perform a task
or provide options and alternatives for users to
choose from, retrieved from external knowledge
sources (e.g, through API calls). As such, we
focus on reasoning over tasks and recommended
items in the dialogue which are typically charac-
terized by different attributes, for example, movie
names and show-times for a ticket booking sce-
nario. These systems rely on such representa-
tions to answer user queries such as “At what
time is Vertigo playing?” by performing API
calls (e.g. searchTime(movie=Vertigo)) which
return the required information in a structured
form (Movie=Vertigo, Times=[12:30-2:30 PM, 3-
5 PM], Theater=Cineplex). The required infor-
mation is then returned to the user in natural lan-
guage (e.g. Vertigo is playing today from 12.30
to 2.30 PM and from 3 to 5 PM.). However,
in most currently available task-oriented dialogue
systems if the user said next “Book me the ear-
liest one,” although this information is already
available to the system from the previous API
call, given the lack of reasoning abilities the sys-
tem would either not support such queries, or it
would have to make an additional independent
API call (e.g., searchEarliestTime(movie=Vertigo)
or searchTime(movie=Vertigo, modifier=earliest)),
creating redundant latency in the response and
requiring the developer of the system to add
APIs/rules to handle these use cases.

Given the above description, our objective is
to train a model to learn how to reason over the

70

Figure 2: The reasoning model can be easily integrated
in task-oriented dialogue architecture, as a component
of the Dialogue Manager, i.e., the module in charge of
predicting the next system action.

information provided in the context. We assume
the following scenarios for each user utterance:

1. Reasoning-required, answer available in
the context: The case where the user utterance
requires reasoning and it is possible to infer the
answer to the user query from the information re-
turned by the previous API calls (e.g., “Give me the
earliest one”). Rather than extracting mentions and
querying the knowledge base again, in this case the
model directly outputs the predicted next system
action along with its arguments.

2. Reasoning-required, answer not available
in the context: The case where the user utterance
requires reasoning, but it is not possible to infer
the answer to the user query from the information
returned by the previous API calls (e.g., “Show me
cheaper options”). In this case the model extracts
constraints from the user utterance to be passed to
the back-end API.

3. Reasoning-not-required: The case where
the user utterance does not require reasoning (e.g.,
“Please repeat”).

In order to support these scenarios, the model
needs to learn to 1) compare between different
items based on numerical and categorical attributes,
2) compare across a list of numerical values to iden-
tify the minimum/maximum value among alterna-
tives, 3) be able to formulate constraints when it is
not possible to infer the answer to the user query
given the dialogue context but partial inference can
be made, and 4) respond no answer when no rea-
soning is required for answering the user’s request.

Figure 2 shows the overall architecture of a dia-
logue system with the reasoning model. The new
model is part of the dialogue manager which pre-
dicts the next system action, along side a domain
specific dialogue policy. The dialogue policy can
predict API calls for retrieving information from a

back-end Knowledge Base (KB) or can predict a
list of natural language generation (NLG) actions
for communicating information to the user (request-
ing constraints, informing available options, etc.).
The reasoning model is added as a modular compo-
nent that runs along-side the dialogue policy model.
Although it would be possible to combine the two
models, e.g, by extending the reasoning model to
also predict domain specific APIs and actions, we
believe that this modular architecture allows the
reuse of a trained reasoning model across different
domains and tasks.

4 Method

In this work we propose to fine-tune transformers
to learn logical reasoning over dialogue context in
the form of natural language sentences, bypassing a
formal representation and showing such reasoning
over language is learnable.

4.1 Data Generation

We describe a general methodology for automat-
ically creating a dataset for logical reasoning in
task-oriented dialogue systems. Each example in
the dataset is a triple (user-query, context, answer),
where the user-query refers to the last user utter-
ance, the context refers to the dialogue context and
information returned by API calls to the back-end
system (see an example in Figure 1), and the answer
refers to the next action to be taken by the dialogue
system. The user-query and the context constitute
the information given as input to the model, while
the answer represents the output.

In order to simulate the context, the objects re-
turned by API calls to the back-end system, we
assume an available knowledge base (KB). We fur-
ther assume that the KB will have different items,
identified by an item-name (e.g., Yogurt Anisakis),
an item-type (e.g., yogurt), and a series of attributes,
each with an attribute key and value (e.g., price:
$3.40). For generalizability, we do not assume that
all item types have the same attributes, nor that all
items of the same type have the same attributes.

The data generation procedure consists of four
main steps:
1. Items sampling: In order to construct input-
output pairs for training, we first randomly select
k items, where 0 ≤ k ≤ kmax, with the same
item-type to create the input context c. While in
this work we compare items of the same item-type,
this is not a strict requirement of data generation.

71

Figure 3: Task structure for the generative model.

The motivation behind this choice is given by a
typical scenario of a task-oriented dialogue sys-
tem where a user might search for a specific object
(movie times of Vertigo) and the system would sub-
sequently present different options for that object
(“Vertigo is playing today from 12:30 to 2:30 PM
and from 3 to 5 PM.”).

2. Context conversion to pseudo-language: Once
a set of items has been sampled, we transform
the structured information (list of triplets) asso-
ciated to each item into pseudo-language by using
a template-based approach, as in Figure 3. Our tem-
plates are constructed in a domain-agnostic way, so
that they would be directly applicable to other sce-
narios. We define two main types of statements in
pseudo-language, each one associated to a specific
template (see first two rows in Table 1). The IsA
template is used to define the type of an item, while
the HasAttribute relation is used for triplets
expressing the value of a given attribute for the
specified item. We note that other templates for
the context statements could easily be created to
accommodate different scenarios. Finally, we con-
catenate all the generated statements, after random-
izing their order for improving robustness, to form
the final input context.

3. Query generation: In this step we generate a
set of user queries q suitable for the given context
using templates, thus generating several number
of different input pairs (c, qi) where i is an index
over possible queries related to the context c. Note
that templates for the queries are manually created
for each attribute, but they are all agnostic from

the domain of the task-oriented dialogue system.
Examples of user queries are shown in Table 1. As
it can be seen, each template for the user query was
associated to the expected output action predicted
by the system and the particular reasoning ability
involved (e.g., Inform). We also consider more
complex cases such as negation, e.g., “I don’t want
anything vegan,” and conjunction, e.g., “Which is
the cheapest one and doesn’t have strawberry?”.
Additionally, each template is associated with sev-
eral different surface form variations to add robust-
ness to the model. Each generated user query is
then prepended to the context c. An additional
optional post-processing step consists of convert-
ing all the numerical values in the user queries
from written to spoken format (e.g. “$3.50” is con-
verted to “three dollars fifty”). This step might be
required in the context of a spoken dialogue system
scenario, which takes directly as input the output
of the Automatic Speech Recognition model.

4. Output creation: In the final step, for each
generated input, we automatically create the output
by combining the information from each template
in regards to the action type to take and calculating
the correct answer from the context, e.g., Yogurt
Anisakis is the cheapest. The output space con-
sists of four main outcomes, as shown in Table
2, depending on whether reasoning is required to
respond to the user utterance, and whether the an-
swer is retrievable from the available context. We
use the special token NoAnswer for user queries
that do not require reasoning. When the answer
is retrievable from the context and reasoning is re-

Type Name Template Example
Context Statement IsA [subject] is [object]. Yogurt Anisakis is a yogurt.
Context Statement HasAttribute [subject] has attribute [attribute] with value [value]. Yogurt Anisakis has attribute price with value 3.55.
User Query Inform I want something [predicate] [value]. I want something cheaper than $5.

Which one is [predicate]? Which one is the cheapest?
User Query Inform_TrueFalse Is [subject] [predicate]? Is Yogurt Anisakis the cheapest?
User Query Select Select [predicate]. Select the cheapest.

Table 1: Examples of templates for context statements (in pseudo-language) and user queries (in natural language)

72

Reasoning Answer Action Example Output
Required in Context Type
Yes Yes Inform Is the first one cheaper than the second one? inform <true/false>
Yes Yes Inform Which one is the cheapest? inform <item_name>
Yes Yes Select Add the cheapest to my cart. select <item_name>
Yes No Constraint Give me something cheaper <relation> <attribute> <value>
No − No Answer Find yogurt. NoAnswer

Table 2: Output space. In cases where there are multiple answers/constraints, they are concatenated with and.

User Utterance Constraint
Give me something vegan. include diet vegan
I don’t want mango. exclude flavor mango
It should cost $1.50. equal price 1.50
I want it cheaper than $2 less-than price 2
Anything more popular? more-than rating 4.5

Table 3: Examples of constraints representation, given
as context the one in Figure 2.

quired, we further distinguish between two main
cases: inform, when the user is simply seeking
information (e.g., “Which one is the cheapest?”),
thus performing an Information-Transfer type of
Dialogue Act (see Bunt et al. (2010)), and select,
when the user is requesting the system to perform
a specific action (e.g., “Add the cheapest to my
cart.”), an Action-Discussion Dialogue Act. For
the inform action, we also distinguish in the out-
put space between True/False questions and open-
answer questions.

In the case of constraint extraction answers, i.e.,
when the user utterance requires reasoning but the
context has partial information, the output consists
of the list of constraints extracted from the user
query and concatenated with and, as shown in
Table 3. The constraints extracted from the user
query depend on the context, not only in terms
of action to take (whether to provide an answer
directly or to extract constraints), but also in terms
of constraints generation. In the last row of Table
3, for user query ("..more popular?") the reasoning
model relies on the context by looking at the ratings
of the available products to extract the appropriate
rating constraint (e.g, more-than rating 4.5).

4.2 Training Procedure

In order to teach the model rules such as inverse
relations and transitivity by example, we investi-
gate the use of appending to the context clues that
describe the relations of one or more items. These
clues are appended to the final input context during
training, but not at inference time. We consider
two types of clues: 1) Comparative clue describes
a comparison of two items in the context along

a specific attribute. The template for this clue is:
[subject] is [predicate] [object], where
predicate refers to the quality regarding which
the items are being judged (e.g., “cheaper than”,
“pricier than”, “less than”, “equal to”). 2) Superla-
tive clue describes an object at the upper/lowest
range of a specific attribute. The template for this
clue is: [subject] is [predicate] with value
[value]. Using the base data generation and clue
generation, we are able to construct three types of
training scenarios, as follows:

Case I - Clueless context: This scenario uses
the base context encompassing the information
about the items’ different attributes. This is also
the scenario we expect at inference time.

Case II - Comparative clues: In this scenario,
we sort the items in the base context according to
the values of their attributes and append to the base
context the comparative relation between pairs of
items that are neighbors. The direction of compar-
ison selected is random (e.g. “A is larger than B”
or “B is smaller than A”) and independent from
the user query. This scenario is designed to assess
the ability of the model to learn inverse relations,
since in some queries users will ask for a relation
in the opposite direction in regards to the compar-
ative clue in the context (e.g., user asks “Is the
second one cheaper than the first one?” while in
the context we have “A is pricier than B”), so that
the model could learn that these two statements are
equivalent. When we have more than two items in
context, we can also assess the ability of the model
to learn transitivity, as we might have cases where
the user asks “Is the first one pricier than the third
one?” and in the context we have “A is pricier than
B” and “B is pricier than C”.

Case III - Superlative clues: In this scenario,
besides comparative clues, we also add superlative
clues to the context to give hints to the model about
which item in the context has the extreme value of
the attributes (e.g. “A is the cheapest”).

We pick the number of items in each context
randomly from 0 to kmax, so that the model can
be robust in its prediction for different number of

73

Rating Price Diet Flavor
Bounded
Numeric

Unbounded
Numeric

10 10K

Table 4: Attributes and their catalogs size.

items in the context. We also consider an additional
training procedure, which we refer to as Case IV,
where we randomly select one of Case I, Case II,
or Case III as our context. The random selection of
context helps the model to experience all three dif-
ferent cases and by cross learning between different
cases, it learns to apply the inverse and transitivity
rules for examples with Case I context to draw the
right conclusion.

5 Experiments

We showcase our proposed methodology in the con-
text of a dialogue system for a shopping assistant
(see Appendix A for an example interaction). We
use an ontology for data generation which consists
of item-type (e.g. yogurt) and item-name
(“Greek yogurt Anisakis”) and each item is char-
acterized by two numerical attributes price and
rating, and two categorical attributes diet and
flavor. This choice of attributes can help us ex-
plore and assess the model’s performance based
on attribute’s characteristics. Table 4 summarizes
the size of the catalog or range of values for each
attribute.

We consider two settings for assessing the logi-
cal reasoning capability of transformer models. In
the first setting, we fine-tune RoBERTa-base (Liu
et al., 2019) with a training dataset generated for
reasoning using only numerical attributes. In this
setting, we only focus on True/False prediction for
each query q given the facts provided in the context
c. The objective of this experiment is to understand
whether transformer models can learn to reason
over numerical attributes. In the second setting,
we use a T5 model (Raffel et al., 2019) fine-tuned
for the UnifiedQA data (Khashabi et al., 2020), to
predict a sequence similar to one given in Table
2. In both cases, we use disjoint catalogs to gen-
erate examples for train/dev/test datasets to avoid
over-fitting to attribute values.

5.1 True/False Queries
We consider True/False reasoning over attributes
such as assessing a conclusion about the compar-
ison of two values of an attribute, or finding min-
imum or maximum value among list of values of

Train/Test I/I II/II III/III
2 items 90% 97% 97%
3 items 88% 95% 95%
5 items 77% 91% 93%

Table 5: Roberta-Base model performance for T/F Rea-
soning over Price and Rating.

Train→ Case II Case III
Test ↓ (5 items) (5 items)
Case I, (2 items) 75% 76%

Case I, (3 items) 70% 71%

Case I, (5 items) 67% 69%

Table 6: Train on Case II or Case III with 5 items in all
the contexts and test on Case I with 2, 3, or 5 items.

an attribute for several items. Example queries in-
clude “is the second item the cheapest one” and
“is the first one cheaper than the fourth one”. We
fine-tune RoBERTa to predict True/False for each
(q, c) by adding a classification layer on top of
the RoBERTa encoder model to perform binary
classification. The training hyper-parameters for
fine-tuning this model are provided in Appendix B.
For these experiments, we generate 120K samples
for train, 5K for dev, and 25K for test set.

Clueless Training: In this case, we only add
IsA and HasAttribute relations and don’t in-
clude any clue in the context c in the training data
(i.e., Case I). For each generated context, the data
generation process attaches all possible forms of
queries and the potential true/false label and adds
them to training samples. For evaluation, we gen-
erate the test samples in a similar fashion. Table 5
summarizes the model performance for predicting
the right label for each query given the context with
k ∈ 2, 3, 5 number of items in the context. We can
see that by increasing the context size (or number
of returning items from back-end) the model perfor-
mance decreases. To understand how well a model
with larger k with comparative or superlative clues
can generalize to fewer number of items in context,
Table 6 shows the performance of a model trained
with context size of 5 items using Case II or Case
III samples and tested on samples generated by
Case I and with k ∈ 2, 3, 5 items. We observe that
the model does not generalize to different context
sizes if we fix the number of items in the context
during model training.

Clue-Aware Training: To resolve the issues
in clueless training, we add comparative and su-
perlative clues randomly to each context during the

74

Train/Test IV/I IV/II IV/III
up-to 5 items 98.70% 99.70% 99.70%

Table 7: Training with CaseIV: Roberta model perfor-
mance for T/F reasoning over numerical attributes.

training such that the model can learn the inverse
and transitivity rules; and also we add random num-
ber of items to each individual context (up to kmax).
Note that we do not add clues to the context dur-
ing evaluation/inference. Results in Table 7 show
the accuracy performance of models trained using
samples generated by Case IV and tested on Case I
(clue-less), Case II (only comparative clues), and
Case III (both comparative and superlative clues)
samples. From the results, we observed that adding
clues during model training helps the model to
achieve better performance.

5.2 Beyond True/False Queries

For this set of experiments, we pick the T5 trans-
former model which can enable us to perform
text-to-text prediction. Similar to (Khashabi et al.,
2020), we remove the task prefix that has been used
in the original T5 models, since we will use this
model only for a single reasoning task within our
defined framework. To take advantage of transfer
learning from other publicly available question-
answering datasets, we start our fine-tuning from
the pretrained Unified-QA-T5 small model. We
generate 100K samples for training dataset, 5K for
dev, and 20K examples for each test set. In our
test set we make sure that for each element in Ta-
ble 8, we have at least 5K examples. Samples are
generated as described in Section 4.1. The train-
ing hyper-parameters for fine-tuning this model are
provided in Appendix B.

In Table 8, we summarize the performance of the
fined-tuned model for different scenarios, reporting
the results separately for pair of (q, c) such that q
can have one (e.g., “Give me something organic’)
or two attributes (e.g., ‘Something cheaper than
$100 but not vegan”) about user-preferences. We
use the exact-match (EM) accuracy metric to eval-
uate model performance. We can observe that the
model can achieve an EM accuracy of over 90%
across all the scenarios. Furthermore, we see that
when increasing the number of items in the reason-
ing context, predicting the correct Inform/Select
or Extract output form becomes harder with more
attributes in the user query. Evaluating the model
performance on all examples (about 8K samples)

of Attr.s km Inform/Select Extract

1

0 – 99.5±0.02%
1 98.6±0.05% 99.2±0.03%
2 97.3±0.05% 98.5±0.05%
3 97.0±0.05% 98.0±0.03%
4 96.0±0.10% 98.0±0.05%
5 95.5±0.09% 96.0±0.06%

2

0 – 98.6±0.03%
1 98.5±0.05% 97.8±0.02%
2 95.0±0.08% 96.7±0.01%
3 94.5±0.05% 96.3±0.03%
4 91.5±0.09% 95.0±0.03%
5 90.0±0.11% 93.5±0.06%

Table 8: EM accuracy for test sets with different number
of attributes, context size, and reasoning task.

from our test set that include spoken form of numer-
ical values in q (e.g., “Give me something cheaper
than five dollars”), we observe 95% EM accuracy,
showing the ability of the model to compare writ-
ten form and spoken form versions of numbers.
We should note that the accuracy of the model
for predicting the cases with no reasoning (e.g.,
“Checkout please”) is important because it makes
the integration with the overall dialogue system
simpler where the model can delegate to the do-
main specific dialogue policy. In our experiments,
we observe an accuracy of 100% on these cases;
however, this value can vary by increasing the size
of out-of-domain space/vocabulary.

6 Conclusions

In this paper, we proposed an architecture for the
integration of a reasoning model in task-oriented
dialogue systems. We formulated the problem as
a sequence prediction problem given a user query
and context, and presented an approach for gen-
erating data and fine-tuning generative models to
reason over a set of facts in the dialogue context.
We demonstrated our approach for a shopping assis-
tant and reported experimental results for different
formulations of the problem. We showed that these
models can learn to do logical reasoning to 1) an-
swer questions from the dialogue context when all
the information is available, 2) extract constraints
when partial information is available, and 3) dele-
gate to the dialogue policy when no reasoning is
required.

For future work, we plan to investigate the ap-
plication of our method to other reasoning tasks
(e.g., temporal and spatial reasoning). We also plan
to experiment with additional models to compare
performances with the ones presented in this work,

75

to further investigate the complexity of the task at
hand. Moreover. we would like to test our mod-
els on more challenging and realistic testsets, for
example by adding noise in the current synthetic
data or by performing a data collection with human
annotators. Furthermore, we plan to explore how
logical reasoning can be used to disambiguate with
the user when multiple conclusions can be made.

References
Forough Arabshahi, Jennifer Lee, Mikayla Gawarecki,

Kathryn Mazaitis, Amos Azaria, and Tom Mitchell.
2020. Conversational neuro-symbolic commonsense
reasoning. arXiv preprint arXiv:2006.10022.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kühnberger, Luis C Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, et al. 2017. Neural-
symbolic learning and reasoning: A survey and inter-
pretation. arXiv preprint arXiv:1711.03902.

Harry Bunt, Jan Alexandersson, Jean Carletta, Jae-
Woong Choe, Alex Chengyu Fang, Koiti Hasida,
Kiyong Lee, Volha Petukhova, Andrei Popescu-Belis,
Laurent Romary, Claudia Soria, and David Traum.
2010. Towards an ISO standard for dialogue act an-
notation. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta. European Language Re-
sources Association (ELRA).

Xiuying Chen, Zhi Cui, Jiayi Zhang, Chen Wei, Jian-
wei Cui, Bin Wang, Dongyan Zhao, and Rui Yan.
2020. Reasoning in dialog: Improving response gen-
eration by context reading comprehension. CoRR,
abs/2012.07410.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. arXiv
preprint arXiv:2002.05867.

Leyang Cui, Yu Wu, Shujie Liu, Yue Zhang, and Ming
Zhou. 2020. Mutual: A dataset for multi-turn dia-
logue reasoning. CoRR, abs/2004.04494.

David Ding, Felix Hill, Adam Santoro, and Matt
Botvinick. 2020. Object-based attention for spatio-
temporal reasoning: Outperforming neuro-symbolic
models with flexible distributed architectures. arXiv
preprint arXiv:2012.08508.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang,
Lihong Li, and Denny Zhou. 2019. Neural logic
machines. arXiv preprint arXiv:1904.11694.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neu-
ral conversation model. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1).

Karthik Gopalakrishnan, Behnam Hedayatnia, Qin-
lang Chen, Anna Gottardi, Sanjeev Kwatra, Anu
Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür.
2019. Topical-Chat: Towards Knowledge-Grounded
Open-Domain Conversations. In Proc. Interspeech
2019, pages 1891–1895.

Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum,
Joseph P Bigus, Murray Campbell, Ban Kawas, Kar-
tik Talamadupula, Gerry Tesauro, and Satinder Singh.
2017. Learning to query, reason, and answer ques-
tions on ambiguous texts.

Rujun Han, Xiang Ren, and Nanyun Peng. 2020. Deer:
A data efficient language model for event temporal
reasoning. arXiv preprint arXiv:2012.15283.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep
neural networks with logic rules. arXiv preprint
arXiv:1603.06318.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391–2401, Hong Kong, China. Association for Com-
putational Linguistics.

Aishwarya Kamath and Rajarshi Das. 2018. A
survey on semantic parsing. arXiv preprint
arXiv:1812.00978.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal,
Oyvind Tafjord, Peter Clark, and Hannaneh Ha-
jishirzi. 2020. Unifiedqa: Crossing format
boundaries with a single QA system. CoRR,
abs/2005.00700.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard-
ner. 2019. Reasoning over paragraph effects in situa-
tions. arXiv preprint arXiv:1908.05852.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Arvind Neelakantan, Semih Yavuz, Sharan Narang,
Vishaal Prasad, Ben Goodrich, Daniel Duckworth,
Chinnadhurai Sankar, and Xifeng Yan. 2019. Neu-
ral assistant: Joint action prediction, response gen-
eration, and latent knowledge reasoning. CoRR,
abs/1910.14613.

Duc Nghia Pham, John Thornton, and Abdul Sattar.
2008. Modelling and solving temporal reasoning
as propositional satisfiability. Artificial Intelligence,
172(15):1752–1782.

76

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L Hamilton. 2019. Clutrr: A
diagnostic benchmark for inductive reasoning from
text. arXiv preprint arXiv:1908.06177.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter
Clark. 2019. Quartz: An open-domain dataset of
qualitative relationship questions. arXiv preprint
arXiv:1909.03553.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav
Goldberg, and Jonathan Berant. 2020. Leap-of-
thought: Teaching pre-trained models to systemati-
cally reason over implicit knowledge. arXiv preprint
arXiv:2006.06609.

Zhong Victor, Xiong Caiming, and Socher Richard.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico
Kolter. 2019. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiabil-
ity solver. In International Conference on Machine
Learning, pages 6545–6554. PMLR.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Yaqi Xie, Ziwei Xu, Mohan S Kankanhalli, Kuldeep S
Meel, and Harold Soh. 2019. Embedding sym-
bolic knowledge into deep networks. arXiv preprint
arXiv:1909.01161.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

77

A Example Interaction with the Shopping
Assistant

The following is an example interaction with the
shopping assistant with our reasoning model inte-
grated with the dialogue policy.

Speaker Utterance
User I want to buy apples
Agent The top 3 relevant products are: Organic

Honycrisp Apple, Organic Gala Apple, and
Organic Pink Lady Apple. Which one would you
like to add to the cart?

User Which one is the cheapest?
Agent The second one, Organic Gala Apple with a

price of $2.49.
User Which one is the most expensive?
Agent The first one, Organic Honeycripst Apple with a

price of $3.99
User Is the first one cheaper than the second one?
Agent No. The first one, Organic Honeycripst Apple,

costs $3.99 but the second one, Organic Gala
Apple, costs $2.49.

User Is the second one cheaper?
Agent Yes, that is correct. The second one, Organic Gala

Apple, costs $2.49.
User Give me something cheaper
Agent Top relevant product is Fuji Apple. Would you

like to add it to the cart?
User Does it cost less than two dollars?
Agent Yes, that is correct. Fuji Apple costs $1.89.
User Add it to my cart
Agent I have added Fuji Apple to your cart. What else

would you like to buy?
User Buy grapes
Agent The top 2 relevant products are: Red Seedless

Grapes and Conventional Cut Grapes. Which one
would you like to add to the cart?

User Is the second one more popular?
Agent No. The second one, Conventional Cut Grapes

has a rating of 4.3 but the first one, Red Seedless
Grapes has a rating of 4.5.

User Add the highest rated one to my cart
Agent I have added Red Seedless Grapes to your cart.

What else would you like to buy?
User Find cheese
Agent The top 2 relevant products are: Zola and Muller.

Which one would you like to add to the cart?
User Anything vegan and cheaper than five

dollars?
Agent I couldn’t find anything vegan with price less than

five dollars. But I found Vegan Artisan cheese with
price of $7.99. Would you like to add it to the cart?

User Sure
Agent I have added Vegan Artisan cheese to your cart.

What else would you like to buy?
User What’s in my cart?
Agent You have 3 items in the cart with total amount

of $12.87. Do you want to hear detailed description?
User Checkout
Agent I have placed your order.

B Training Hyper-parameters

In this section, we provide the parameters that are
used to fine-tune the transformer models in this

work. The following table summarizes the key pa-
rameters that are used during the fine-tuning of
Roberta-base and UnifiedQA-T5-small pretrained
models. For the optimizer, we use AdamW
(Loshchilov and Hutter, 2017).

Model
Batch
Size

Epoch
Opti-
mizer

Learning
Rate

Weight
Decay

Roberta-Base 192 15 AdamW 10−5 0.1
UnifiedQA-T5-small 1024 20 AdamW 10−5 0.0

C Discussion

C.1 Generalization to non-synthesis datasets

One of the directions that currently we are working
on is to create realistic (human based) conversa-
tions with logical reasoning use cases during the
interactions with the dialog systems. This type of
dataset can help us to evaluate the proposed idea
with higher degree of confidence. Since no matter
how much one spends time on generating synthetic
datasets, there will always be some uncontrolled
structures introduced by design of data simulation
mechanisms that can corrupt the fair evaluation
of deep neural network models and their learning
process. However, we believe the True/False sce-
narios in our current study are less prone to this
type of issues and are quite helpful in understating
of reasoning capabilities such as negation, numeri-
cal comparison, or inclusion/exclusion of categori-
cal values of our proposed algorithm, since model
needs to learn the reasoning procedure. In other
words, the only way to come up with the right pre-
diction by model is to apply the underlying reason-
ing procedure to formulate the output True/False
results. We will consider: a) better algorithms for
generating training data, and b) more realistic gen-
eral purpose possibly human in the loop training
data to make the data generation more general and
less domain specific, for future exploration.

C.2 Error Analysis

During our evaluation, we observed that the Trans-
former models (such as Roberta and T5) perfor-
mance degrades when the length of the reason-
ing context increases, i.e., the number of items in
the context for reasoning are longer. Also based
on the results on Table 8, we see that increasing
the number of items in reasoning context leads
to performance degradation. Another issue with
Transformer models or in general LM models is
during the output generation process beyond the

78

True/False scenario. When the size of the output
sequence length increases, e.g., there are several
items that all satisfy the user-query. The prediction
misses some of the items in the response after the
length of the output sequence (number of predicted
tokens/words) meets some threshold. This issue
is related to both long sequence generation of LM
models and also reasoning ability when the mul-
tiple items match the user-query’s criteria which
mostly occurs when the number of items in context
are larger.

C.3 Generalization to unseen attribute with
common values

One of the aspect that we like to understand is the
scalability/generalization of the proposed trained
reasoning model to unseen attributes during the test
time. There are two possibility for a new attribute:
(1) doesn’t shares values and keywords that user
may use to describe the attribute compared to the
attributes that are used during the training process
e.g., color attribute for experiment in Section 5 1.
(2) shares same values but keywords that user may
use to describe the attribute doesn’t overlap with
any of the ones used during the training process,
e.g., calorie 2. It would be very challenging to
teach model in a few-shot manner to learn about
attributes from bucket (1). However, based on our
initial experiments we have seen that model can
easily generalize to the attributes from bucket (2),
by fine-tuning to small number of examples in a
few-shot manner. For example, we fine-tuned the
model which only trained for diet, flavor,
price, and rating attributes and fine-tuned
using only 100 new reasoning context examples
which had calorie attribute as well. Table 9 sum-
marize the model performance before and after
fine-tuning. The test set used for this analysis only
has user-query about calories and includes 3K ex-
amples about Calorie attribute.

1For query about the color user may use keywords such
as: [darker, lighter, warmer, red, blue, ..., etc.] one, and
attribute values are red, blue, dark blue, etc. which doesn’t
overlap with none of the attributes that we have already in
our training dataset, i.e., diet, flavor, price, and
rating

2For query about the calories user may use keywords
such as: [healthier, higher calories, more energetic..., etc.
] one, and attribute values are numeric value that are shared
possibly with price and rating [considering we have done
unit normalization for attributes]

Model EM accuracy
Before fine-tuning 33%
After fine-tuning 80%

Table 9: Model EM accuracy performance before/after
fine-tuning to new attribute calorie.

79

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 80 - 90
May 26, 2022 c©2022 Association for Computational Linguistics

CoVA: Context-aware Visual Attention for Webpage Information
Extraction

Anurendra Kumar* Keval Morabia* Jingjin Wang
Kevin Chen-Chuan Chang Alexander Schwing

University of Illinois at Urbana-Champaign
{ak32,morabia2,jingjin9,kcchang,aschwing}@illinois.edu

Abstract

Webpage information extraction (WIE) is an
important step to create knowledge bases. For
this, classical WIE methods leverage the Doc-
ument Object Model (DOM) tree of a web-
site. However, use of the DOM tree poses
significant challenges as context and appear-
ance are encoded in an abstract manner. To ad-
dress this challenge we propose to reformulate
WIE as a context-aware Webpage Object Detec-
tion task. Specifically, we develop a Context-
aware Visual Attention-based (CoVA) detec-
tion pipeline which combines appearance fea-
tures with syntactical structure from the DOM
tree. To study the approach we collect a new
large-scale dataset1 of e-commerce websites
for which we manually annotate every web el-
ement with four labels: product price, product
title, product image and others. On this dataset
we show that the proposed CoVA approach is a
new challenging baseline which improves upon
prior state-of-the-art methods.

1 Introduction

Webpage information extraction (WIE) is an im-
portant step when creating a large-scale knowledge
base (Chang et al., 2006; Azir and Ahmad, 2017)
which has many downstream applications such as
knowledge-aware question answering (Lin et al.,
2019) and recommendation systems (Ma et al.,
2019; Lin et al., 2020).

Classical methods for WIE, like Wrapper Induc-
tion (Soderland, 1999; Muslea et al., 1998; Chang
and Lui, 2001), rely on the publicly available
source code of websites. The code is commonly
parsed into a document object model (DOM) tree.
The DOM tree is a programming language inde-
pendent tree representation of any website, which
contains all its elements. It can be obtained using

1CoVA dataset and code are available at
github.com/kevalmorabia97/CoVA-Web-Object-Detection

*These authors contributed equally to this work

various libraries like Puppeteer. These elements
contain information about their location in the ren-
dered webpage, styling like font size, etc., and text
if it is a leaf node. State of the art method in WIE
(Lin et al., 2020) uses text and markup information
and employ CNN-BiLSTM encoder (Rhanoui et al.,
2019) on the sequence of HTML nodes obtained
from DOM to learn the embedding of each node.

However, using only the DOM tree for WIE is
increasingly challenging for a variety of reasons:
1) Webpages are programmed to be aesthetically
pleasing; 2) Oftentimes content and style is sepa-
rated in website code and hence the DOM tree; 3)
The same visual result can be obtained in a plethora
of ways; 4) Branding banners and advertisements
are interspersed with information of interest.

For this reason, recently, WIE applied optical
character recognition (OCR) on rendered websites
followed by word embedding-based natural lan-
guage extraction (Staar et al., 2018). However,
as mentioned before, recent webpages are highly
enriched with visual content, and classical word
embeddings don’t capture this contextual informa-
tion. For instance, text in advertising banners may
be interpreted as valuable information. For this rea-
son, a simple OCR detection followed by natural
language processing techniques is a suboptimal for
WIE (Vishwanath et al., 2018).

In response to these challenges we develop WIE
based on a visual representation of a web element
and its context. This permits to address the afore-
mentioned four challenges. Moreover, visual fea-
tures are independent of the programming language
(e.g., HTML for webpages, Dart for Android or iOS
apps) and partially also the website language (e.g.,
Arabic, Chinese, English). Intuitively, we aim to
mimic the ability of humans to detect the location
of target elements like product price, product ti-
tle and product image on a webpage in a foreign
language like the one shown in Fig. 1.

For this, we develop a context-aware Webpage
80

(a) (b)

Figure 1: A person can detect the element for product price, title, and image, w/o knowing (a) Arabic or (b) Chinese

Object Detection (WOD), which we refer to as
Context-aware Visual Attention-based detection
(CoVA), where entities like prices are objects.
Somewhat differently from an object in natural
images which can be detected largely based on its
appearance, objects on a webpage are strongly de-
fined by contextual information. e.g., a cat’s appear-
ance is largely independent of its nearby objects,
whereas a product price is a highly ambiguous ob-
ject (Fig. 2). It refers to the price of a product only
when it is contextually related to a product title and
a product image. The developed WOD uses a graph
attention based architecture, which leverages the
underlying syntactic DOM tree (Zhou et al., 2021)
to focus on important context (Zhu et al., 2005)
while classifying an element on a webpage. Once
these web elements are identified, the relevant in-
formation e.g. price and title can be obtained from
the corresponding DOM nodes. These information
can then be indexed and used for applications like
product search and price comparison across online
retailers.

To facilitate this task we create a dataset of 7.7k
English product webpage screenshots along with
DOM information spanning 408 different websites
(domains). We compare the results of CoVA with
existing and newly created baselines that take vi-
sual features into account. We show that CoVA
leads to substantial improvements while yielding
interpretable contextual representations.

In summary, we make the following contributions:

1. We formulate WIE as a context-aware WOD
problem.

2. We develop a Context-aware Visual Attention-
based (CoVA) detection pipeline, which is
end-to-end trainable and exploits syntactic

structure from the DOM tree along with
screenshots. CoVA improves recent state-of-
the-art baselines by a significant margin.

3. We create the largest public dataset of 7.7k
English product webpage screenshots from
408 online retailers for Object Detection from
product webpages. Our dataset is ∼ 10×
larger than existing datasets.

4. We show the interpretability of CoVA using
attention visualizations (Sec. 6.5)

5. We claim and validate that visual features
(without textual content) along with DOM in-
formation are sufficient for many tasks while
allowing cross-domain and cross-language
generalizability. CoVA trained on English
webpages perform well on Chinese Webpages
(Sec. 6.4).

2 Related Work

Webpage information extraction (WIE) has been
mainly addressed with Wrapper Induction (WI).
WI aims to learn a set of extraction rules from
HTML code or text, using manually labeled ex-
amples and counter-examples (Soderland, 1999;
Muslea et al., 1998; Chang and Lui, 2001). These
often require human intervention which is time-
consuming, error-prone (Vadrevu et al., 2005), and
does not generalize to new templates.

Supervised learning, which treats WIE as a
classification task has also garnered significant at-
tention. Traditionally, natural language process-
ing techniques are employed over HTML or DOM
information. Structural and semantic features
(Ibrahim et al., 2008; Gibson et al., 2007) are ob-
tained for each part of a webpage to predict cat-
egories like title, author, etc. Wu et al. (2015)

81

Figure 2: Example webpage showing multiple possible prices (red), but relatively fewer possible title (green) or
image (purple)

casts WIE as a HTML node selection problem us-
ing features such as positions, areas, fonts, text,
tags, and links. Lin et al. (2020) proposes a neural
network to learn representation of a DOM node
by combining text and markup information. A
CNN-BiLSTM encoder is employed to learn the
embeddings for HTML node. Hwang et al. (2020)
develops a transformer architecture to learn spatial
dependency between DOM nodes. Unlike these
work which depends on text information, we aim
to learn representation of a DOM node using only
visual cues. Joshi and Liu (2009) develop a seman-
tic similarity between blocks of webpages using
textual and DOM features to extract the key article
on a webpage.

Visual features have been extensively employed
to generate visual wrappers for pattern extraction.
Mostly, these utilize hand-crafted visual features
from a webpage, e.g., area size, font size, and type.

Cai et al. (2003) develop a visual block tree of a
webpage using visual and layout features along
with the DOM tree information. Subsequent works
use this tree for tasks like webpage segmentation,
visual wrapper generation, and web record extrac-
tion (Cai et al., 2004; Liu et al., 2003; Simon and
Lausen, 2005; Burget and Rudolfova, 2009). Gogar
et al. (2016) aims to develop domain-specific wrap-
pers which generalize across unseen templates and
don’t need manual intervention. They develop a
unified model that encodes visual, textual, and po-
sitional features using a single CNN.

Object detection (OD) techniques in Com-
puter Vision, which aims to detect and classify
all objects, has been extensively studied for natu-
ral images. Deep learning methods such as YOLO
(Redmon and Farhadi, 2018), R-CNN variants (Gir-
shick et al., 2014; Girshick, 2015; He et al., 2017),
etc. yielded state-of-the-art results in OD.

82

OD methods that can capture contextual in-
formation are of particular interest here. Murphy
et al. (2006) learn local and global context by object
presence and localization and use a product of ex-
perts model (Hinton, 2002) to combine them. Kong
et al. (2021) proposes a short path context module
which transforms the integrated feature maps by
considering local feature affinities.

Graph Convolutional Networks (GCN) (Kipf
and Welling, 2016) was proposed to learn a node
representation while taking neighbors of a node
into account. Using it, Liu et al. (2019) represent
a visually rich document as a complete graph of
text content obtained by passing OCR (Mithe et al.,
2013). They employ GCN to learn node represen-
tations for each web element.

Recently, Attention mechanisms have also
shown remarkable ability in capturing contextual
information (Bahdanau et al., 2014). Vaswani
et al. (2017) propose a transformer architecture
for language modeling. Luo et al. (2018) use atten-
tion over a BiLSTM-CRF layer for Named Entity
Recognition (NER) on biomedical data. Word vec-
tors learned on BERT (Devlin et al., 2018), which
use self-attention, have yielded state-of-the-art re-
sults on 11 NLP tasks.

Separately, attention has been used for contex-
tual learning in OD (Li et al., 2013; Hsieh et al.,
2019; Morabia et al., 2020) and image captioning
(You et al., 2016). Attention mechanisms have also
been employed over graphs to learn an optimal rep-
resentation of nodes while taking graph structure
into account (Veličković et al., 2017). Moreover,
attention permits to interpret result, which is often
desired in many applications. We show our visual-
izations depicting this advantage below (Sec. 6.5).

3 Problem formulation

The DOM tree captures the syntactical structure
of a webpage similar to a parse tree of a natural
language. Our goal is to extract semantic informa-
tion exploiting this syntactic structure. We view
a leaf web element as a word and the webpage
as a document with the DOM tree as its underly-
ing parse tree. Formally, we represent a webpage
W as the set W = {v1, v2, . . . , vi, . . . , vN , D}
where vi denotes the visual representation of the
i-th web element, N denotes number of web ele-
ments, and D refers to the DOM tree which con-
tains the relations between the web elements. Our
goal is to learn a parametric function fθ(yi|W, i)

which extracts a visual representation vi of the i-th
web element from website W so as to accurately
predict label yi of the web element. In the fol-
lowing we consider four labels for a product, i.e.,
yi ∈ {product price, title, image, others}. The pa-
rameters θ are obtained by minimizing the follow-
ing supervised classification loss

θ∗ = argmin
θ

E
i,W∼PW

[L(fθ(yi|W, i), y∗i)] ,

where E denotes an expectation, yi and y∗i denote
the predicted and ground truth labels and PW de-
notes a probability distribution over webpages.

Information of a webpage is present in the leaves
of the DOM tree, i.e., the web elements i. Web ele-
ments are an atomic entity which is characterized
by a rectangular bounding box. We can extract
the target information yi from the DOM tree if we
know the exact leaf bounding boxes of the desired
element. Therefore, we can view WIE as an object
detection (OD) task where objects are leaf elements
and might contain the desired entity (target). How-
ever, identity yi of a web element is heavily depen-
dent on its context, e.g., price, title, and image of
a product are most likely to be in same or nearby
sub-tree in comparison to unrelated web elements
such as advertisements. Similarly, there can be
multiple instances of price-like elements. However,
the correct price would be contextually positioned
with product title and image (Fig. 2). Therefore,
we formulate WIE as a context-aware OD.

We use the DOM tree to identify context for
a web element. We represent the syntactic close-
ness between web elements through edges in the
graph (discussed in next section). We then em-
ploy a graph attention mechanism (Veličković et al.,
2017) to attend to the most important contexts.

4 Proposed End-to-End Pipeline – CoVA

In this section, we present our Context-Aware Vi-
sual Attention-based end-to-end pipeline for Web-
page Object Detection (CoVA) which aims to learn
function f to predict labels y = [y1, y2, . . . , yN]
for a webpage. The input to CoVA consists of
1. a screenshot of a webpage, 2. list of bounding
boxes [x, y, w, h] of the web elements, and 3. neigh-
borhood information for each element obtained
from DOM. It should be noted that bounding boxes
of the web elements are relatively accurate and
doesn’t pose challenges similar to OD for natural
images.

83

RN GAT v0 ..

v1

..

..

v2

....

vK

DOM

b0 ..

b1

..

..

b2

....

bK

v0 ..

v1

..

v2

....

vK

Figure 3: CoVA end-to-end training pipeline (for a single web element). CoVA takes a webpage screenshot and
list of bounding boxes along with K neighbors for each web element (obtained from DOM). RN learns visual
representation (v0) while GAT learns contextual representation (c0) from its neighbor’s visual representations.

As illustrated in Fig. 3, this information is pro-
cessed by CoVA in four stages: 1. the graph rep-
resentation extraction for the webpage, 2. the Rep-
resentation Network (RN), 3. the Graph Attention
Network (GAT), and 4. a fully connected (FC) layer.
The graph representation extraction computes for
every web element i its set of neighboring web el-
ements Ni. The RN consists of a Convolutional
Neural Net (CNN) and a positional encoder aimed
to learn a visual representation vi for each web
element i ∈ {1, . . . , N}. The GAT combines the
visual representation vi of the web element i to
be classified and those of its neighbors, i.e., vk
∀k ∈ Ni to compute the contextual representa-
tion ci for web element i. Finally, the visual and
contextual representations of the web element are
concatenated and passed through the FC layer to
obtain the classification output. We describe each
of the components next.

4.1 Webpage as a Graph
We represent a webpage as a graph where nodes
are leaf web elements and an edge indicates that
the corresponding web elements are contextually
relevant to each other. A naive way to create graph
is by putting edge between every pair of nodes (Liu
et al., 2019). An alternative way of creating a graph
is to add edges to nearby nodes based on spatial
distance. However, web elements vary greatly in
shapes & sizes, and two web elements might have
small distance but they’re contextually irrelevant
since they lie in different DOM subtrees. For this,
we use the K nearest leaf elements in the DOM

tree as the neighbors Ni a web element i. An edge
within the graph denotes the syntactic closeness in
the DOM tree.

4.2 Representation Network (RN)
The goal of the Representation Network (RN) is
to learn a fixed size visual representation vi of any
web element i ∈ {1, . . . , N}. This is important
since web elements have different sizes, aspect ra-
tios, and content type (image or text). To achieve
this the RN consists of a CNN operating on the
screenshot of a webpage, followed by a Region of
Interest (RoI) pooling layer (Girshick, 2015) and
a positional encoder. Specifically, RoI pooling is
performed to obtain a fixed size representation for
all web elements. To capture the spatial layout,
we learn a P dimensional positional feature which
is obtained by passing the bounding box features
[x, y, w, h, wh] through a positional encoder imple-
mented by a single layer neural net. Finally, we
concatenate the flattened output of the RoI pool-
ing with positional features to obtain the visual
representation vi.

4.3 Graph Attention Network (GAT)
The goal of the graph attention network is to com-
pute a contextual representation ci for each web
element i which takes visual information vi from
neighboring web elements into account. However,
out of multiple neighbors for a web element, only
a few are informative, e.g., a web element having
a currency symbol near a set of digits seems rel-
evant. To identify the relational importance we

84

use a Graph Attention Network (GAT) (Veličković
et al., 2017). We transform each of the input fea-
tures by learning projection matrices W1 and W2

applied at every node and its neighbors. We then
employ self-attention (Lin et al., 2017) to compute
the importance score,

αij =
exp(LeakyReLU(aT [W1vi||W2vj]))∑

k∈Ni
exp(LeakyReLU(aT [W1vi||W2vk]))

,

where ·T represents transposition, || is the concate-
nation operation, Ni denotes the neighbors of web
element i. The weights αij are non-negative atten-
tion scores for neighboring web elements of web
element i. Finally, we obtain the contextual rep-
resentation ci for a web element i as a weighted
combination of projected visual representations of
its neighbors, i.e., via

ci =
∑

j∈Ni

αijW2vj . (1)

4.4 Augmenting CoVA with extra features
In scenarios where additional features (e.g., text
content, HTML tag information, etc.) are avail-
able, CoVA can be easily extended to incorporate
those. These features can be concatenated with
visual representations obtained from the RN with-
out modifying the pipeline in any other way. We
refer to this extended pipeline as CoVA++. How-
ever, making the model dependent on these features
might lead to constraints regarding the program-
ming language (HTML tags) or text language. In
Sec. 6.4, we show that CoVA trained on English
webpages (without additional features) generalizes
well to Chinese webpages.

5 Dataset Generation

To the best of our knowledge there is no large-scale
dataset for WIE with visual annotations for object
detection. So far, the Structured Web Data Extrac-
tion (SWDE) dataset (Hao et al., 2011) is the only
known large dataset that can be used for training
deep neural networks for WIE (Lin et al., 2020;
Lockard et al., 2019). SWDE dataset contains web-
page HTML codes which is not sufficient to render
it into a screenshot (since it contains links to old
and non-existent URLs). Because of this we create
a new large-scale labeled dataset for object detec-
tion on English product webpage screenshots along
with DOM information. We chose e-commerce
websites since those have been a de-facto standard

for WIE (Gogar et al., 2016; Zhu et al., 2005). Our
dataset generation consists of two steps: 1. search
the web with ‘shopping’ keywords to aggregate di-
verse webpages and employ heuristics to automate
labeling of product price, title, and image, 2. man-
ual correction of incorrect labels. We discuss both
steps next.
Web scraping and coarse labeling. To scrape web-
sites, we use Google shopping2 which aggregates
links to multiple online retailers (domains) for the
same product. These links are uploaded by the
merchants of the respective domains. We do a key-
word search for various categories, like electronics,
food, cosmetics. For each search result, we record
the price and title from Google shopping. Then,
we navigate through the links to specific product
websites and save a 1280 × 1280 screenshot. To
extract a bounding box for each web element, we
store a pruned DOM tree. Price and title candi-
dates are labeled by comparing with the recorded
values using heuristics. For product images, we
always choose the DOM element having the largest
bounding box area among all the elements with an
 HTML tag, although this might not be true
for many websites. We correct this issue in the next
step.
Label correction. The coarse labeling is only
∼60% accurate because 1. price on webpages
keeps changing and might differ from the Google
shopping price, and 2. many bounding boxes have
the same content. To correct for these mistakes,
we manually inspected and correct labeling errors.
We obtained 7,740 webpages spanning 408 do-
mains. Each of these webpages contains exactly
one labeled price, title, and image. All other web
elements are labeled as ‘others’. On average, there
are ∼90 leaf web elements on a webpage.
Train-Val-Test split. We create a cross-domain
split which ensures that each of the train, val and
test sets contains webpages from different domains.
We observed that the top-5 frequent domains were
Amazon, EBay, Walmart, Etsy, and Target. So, we
created 5 different splits for 5-Fold Cross Valida-
tion such that each of the major domains is present
in one of the test splits.

6 Experimental Setup & Results

6.1 Baseline Methods
We compare the results of our end-to-end pipeline
CoVA with other existing and newly created base-

2shopping.google.com

85

Figure 4: Gini impurity-based importance of features in
RF

lines summarized below. Our newly created base-
lines combine existing object detection and graph
based models to identify the importance of visual
features and contextual representations.
(Gogar et al., 2016): This method identifies prod-
uct price, title, and image from the visual and tex-
tual representation of the web elements.
Random Forest on Heuristic features: We train a
Random Forest classifier with 100 trees using var-
ious HTML tags, text, and bounding box features
as shown in Fig. 4.
Fast R-CNN*: We compare with Fast R-CNN (Gir-
shick, 2015) to quantify the importance of contex-
tual representations in CoVA. We use the DOM tree
instead of selective search (Uijlings et al., 2013)
for bounding box proposals. We also use positional
features as described when discussing the repre-
sentation network (Sec. 4.2) for a fair comparison
with CoVA. We will refer to this baseline as ‘Fast
R-CNN*.’
Fast R-CNN* + GCN (Kipf and Welling, 2016):
We use GCN on our graph formulation where node
features are the visual representations obtained
from Fast R-CNN*.
Fast R-CNN* + Bi-LSTM (Schuster and Paliwal,
1997): We train a bidirectional LSTM on visual rep-
resentations of web elements in preorder traversal
of the DOM tree. We use its output as the con-
textual representation and concatenate it with the
visual representation of the web element obtained
from Fast R-CNN*.

6.2 Model Training, Inference and Evaluation

In each training epoch, we randomly sample 90%
from others. This increases the diversity in train-
ing data by providing different contexts for web-

pages with exactly the same template. We use batch
normalization (Ioffe and Szegedy, 2015) between
consecutive layers, Adam optimizer for updating
model parameters and minimize cross-entropy loss.
During inference, the model detects one web ele-
ment with highest probability for each class. Once
the web element is identified, the corresponding
text content can be extracted from the DOM tree or
by using OCR for downstream tasks.

For CoVA++ we use as additional information
the same heuristic features used to train the Ran-
dom Forest classifier baseline. Unless specified
otherwise, all results of CoVA and baselines use
the following hyperparameters where applicable:
learning rate = 5e-4, batch size = 5 screenshot im-
ages, K = 24 neighbor elements in the graph, RoI
pool output size (H ×W) = (3 × 3), dropout =
0.2, P = 32 dimensional positional features, out-
put dimension for projection matrixW1,W2 is 384,
weight decay = 1e-3. We use the first 5 layers of
a pre-trained ResNet18 (He et al., 2016) in the
representation network (RN), which yields a 64
channel feature map. This significantly reduces
the parameters in the RN from 12m to 0.2m and
speeds up training at the same time. The evalua-
tion is performed using Cross-domain Accuracy
for each class, i.e., the fraction of webpages of new
domains with correct class. All the experiments are
performed on Tesla V100-SXM2-16GB GPUs.

6.3 Results

As shown in Table 1, our method outperforms
all baselines by a considerable margin especially
for price prediction. CoVA learns visual features
which are significantly better than the heuristic fea-
ture baseline that uses predefined tag, textual and
visual features. Fig. 4 shows the importance of
different heuristic based features in a webpage. We
observe that a heuristic feature based method has
similar performance to methods which don’t use
contextual features. Moreover, CoVA++ which
also uses heuristic features, doesn’t lead to statis-
tically significant improvements. This shows that
visual features learnt by CoVA are more general
for tasks like price & title detection. Context in-
formation is particularly important for price (in
comparison to title and image) since it’s highly
ambiguous and occurs in different locations with
varying contexts (Fig. 2). This is evident from
the ∼8.9% improvement in price accuracy com-
pared to the Fast R-CNN*. Unless stated other-

86

Method Params Price Acc Title Acc Image Acc
Gogar et al. (2016) 1.8m 78.1± 17.2 91.5± 1.3 93.2± 1.9
Random Forest using Heuristic features - 87.4± 10.4 93.5± 5.3 97.2± 3.8
Fast R-CNN* (Girshick, 2015) 0.5m 86.6± 7.3 93.7± 2.2 97.0± 3.6
Fast R-CNN* + GCN 1.4m 90.0± 11.0 95.4± 1.5 98.2± 2.8
Fast R-CNN* + Bi-LSTM 5.1m 92.9± 4.6 94.0± 2.1 97.6± 3.6

CoVA 1.6m 95.5± 3.8 95.7± 1.2 98.8± 1.5
CoVA++ 1.7m 96.1± 3.0 96.7± 2.2 99.6± 0.3

Table 1: Cross Domain Accuracy (mean ± standard deviation) for 5-fold cross validation.

wise, we will discuss results with respect to price
accuracy. We observe that CoVA yields stable re-
sults across folds (∼3.5% reduction in standard
deviation). This shows that CoVA learns features
which are generalizable and which have less depen-
dence on the training data. Using GCN with Fast
R-CNN* leads to unstable results with 11% stan-
dard deviation while yielding a 3.4% improvement
over Fast R-CNN*. Fast R-CNN* with Bi-LSTM is
able to summarize the contextual features by yield-
ing a ∼6.3% improvement in comparison to Fast
RCNN*. CoVA outperforms Fast RCNN* with
Bi-LSTM by ∼2.6% with much fewer number of
parameters while also yielding interpretable results.
We also obtained top-3 accuracy for CoVA, which
are 98.6%, 99.4%, and 99.9% for price, title and
image respectively.

6.4 Cross-lingual Evaluation of CoVA

To validate our claim that visual features (with-
out textual or HTML tag information) can capture
cross-lingual information, we test our model on
webpages in a foreign language. In particular, we
evaluated CoVA (trained on English product web-
pages) using 100 Chinese product webpages span-
ning across 25 unique domains. CoVA achieves
92%, 90%, and 99% accuracy for product price,
title, and image. It should be noted that image has
the same accuracy as for English pages. This is ex-
pected since images have no language components
that the model can attend to.

6.5 Attention Visualizations

Table 1 shows that attention significantly improves
performance for all the three targets. As discussed
earlier, only few of the contexts are important
which are effectively learnt by Graph Attention Net-
work (GAT). We observed that on average, ∼20%
of context elements were activated (score above
0.05 threshold) by GAT. We also study a multihead

attention instead of single head following (Vaswani
et al., 2017), which didn’t yield significant improve-
ments in our case.

Fig. 5 shows visualizations of attention scores
learnt by GAT. Fig. 5(a) shows an example where
title and image have more weight than other con-
texts when learning a context representation for
price. This shows that attention is able to focus on
important web elements and discards others. Simi-
larly, Fig. 5(b) shows that price has a much higher
score than other contexts for learning contextual
representation for title.

7 Ablation Studies

Importance of Positional features: Table 2 shows
that positional features can significantly improve
accuracy for price, title, and image prediction. This
also validates that for webpage OD, location and
size of a bounding box carries significant informa-
tion, making it different from classical OD.
Dependence on number of neighbors in graph:
Fig. 6 shows the variation in cross domain accuracy
of CoVA with respect to the number of neighboring
elements K. Note that having 0 context elements
is equivalent to our baseline Fast R-CNN*. We
observe that, unlike title and image, price accu-
racy can significantly be improved by considering
larger contexts. This is due to the fact that price
is highly ambiguous (Fig. 2). We also study the
graph construction described by (Liu et al., 2019)
where all nodes are considered in the neighborhood
of a particular node. This significantly reduced the
performance for price (90.7%) and title (92.7%).

8 Conclusion & Future Work

In this paper, we reformulated the problem of web-
page IE (WIE) as a context-aware webpage object
detection. We created a large-scale dataset for this
task and is available publicly. We proposed CoVA

87

(a)

(b)

Figure 5: Attention Visualizations where red border denotes web element to be classified, and its contexts have
green shade whose intensity denotes score. Price in (a) get much more score than other contexts. Title and image in
(b) are scored higher than other contexts for price.

Method Price Accuracy Title Accuracy Image Accuracy
CoVA without positional features 89.2± 10.3 91.9± 1.4 95.9± 1.8
CoVA 95.5± 3.8 95.7± 1.2 98.8± 1.5

Table 2: Importance of positional features in RN

Figure 6: Comparison of context size with accuracy

which uses i) a graph representation of a webpage,
ii) a Representation Network (RN) to learn visual
representation for a web element, and iii) a Graph
Attention Network (GAT) for contextual learning.
CoVA improves upon state-of-the-art results and
newly created baselines by considerable margins.
Our visualizations show that CoVA is able to attend
to the most important contexts. In the future, we

plan to adapt this method to other tasks such as
identifying malicious web elements. Our works
shows the importance of visual features of WIE
which is traditionally overlooked. We hope that
our work will motivate researchers in WIE to em-
ploy CV alongwith NLP techniques to solve this
important problem.

References
Mohd Amir Bin Mohd Azir and Kamsuriah Binti Ah-

mad. 2017. Wrapper approaches for web data extrac-
tion: A review. In 2017 6th International Conference
on Electrical Engineering and Informatics (ICEEI),
pages 1–6. IEEE.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Radek Burget and Ivana Rudolfova. 2009. Web page
element classification based on visual features. In

88

2009 First Asian Conference on Intelligent Informa-
tion and Database Systems, pages 67–72. IEEE.

Deng Cai, Xiaofei He, Ji-Rong Wen, and Wei-Ying Ma.
2004. Block-level link analysis. In Proceedings of
the 27th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 440–447.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying
Ma. 2003. Vips: a vision-based page segmentation
algorithm.

Chia-Hui Chang, Mohammed Kayed, Moheb R Girgis,
and Khaled F Shaalan. 2006. A survey of web in-
formation extraction systems. IEEE transactions on
knowledge and data engineering, 18(10):1411–1428.

Chia-Hui Chang and Shao-Chen Lui. 2001. Iepad: in-
formation extraction based on pattern discovery. In
Proceedings of the 10th international conference on
World Wide Web, pages 681–688.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

John Gibson, Ben Wellner, and Susan Lubar. 2007.
Adaptive web-page content identification. In Pro-
ceedings of the 9th annual ACM international work-
shop on Web information and data management,
pages 105–112.

Ross Girshick. 2015. Fast r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 1440–1448.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Ji-
tendra Malik. 2014. Rich feature hierarchies for ac-
curate object detection and semantic segmentation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587.

Tomas Gogar, Ondrej Hubacek, and Jan Sedivy. 2016.
Deep neural networks for web page information ex-
traction. In IFIP International Conference on Artifi-
cial Intelligence Applications and Innovations, pages
154–163. Springer.

Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. 2011.
From one tree to a forest: a unified solution for struc-
tured web data extraction. In Proceedings of the 34th
international ACM SIGIR conference on Research
and development in Information Retrieval, pages 775–
784.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 2961–2969.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural com-
putation, 14(8):1771–1800.

Ting-I Hsieh, Yi-Chen Lo, Hwann-Tzong Chen, and
Tyng-Luh Liu. 2019. One-shot object detection with
co-attention and co-excitation. In Advances in Neural
Information Processing Systems, pages 2725–2734.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, So-
hee Yang, and Minjoon Seo. 2020. Spatial depen-
dency parsing for semi-structured document informa-
tion extraction. arXiv preprint arXiv:2005.00642.

Hossam Ibrahim, Kareem Darwish, and Abdel-Rahim
Madany. 2008. Automatic extraction of textual ele-
ments from news web pages. In LREC.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Parag Mulendra Joshi and Sam Liu. 2009. Web docu-
ment text and images extraction using dom analysis
and natural language processing. In Proceedings of
the 9th ACM symposium on Document engineering,
pages 218–221.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Yuqiu Kong, Mengyang Feng, Xin Li, Huchuan Lu,
Xiuping Liu, and Baocai Yin. 2021. Spatial context-
aware network for salient object detection. Pattern
Recognition, 114:107867.

Gui Li, Cheng Chen, Zheng Yu Li, Zi Yang Han, and
Ping Sun. 2013. Web data extraction based on tag
path clustering. In Advanced Materials Research,
volume 756, pages 1590–1594. Trans Tech Publ.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. arXiv preprint
arXiv:1909.02151.

Bill Yuchen Lin, Ying Sheng, Nguyen Vo, and Sandeep
Tata. 2020. Freedom: A transferable neural architec-
ture for structured information extraction on web doc-
uments. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 1092–1102.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Bing Liu, Robert Grossman, and Yanhong Zhai. 2003.
Mining data records in web pages. In Proceedings
of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 601–
606.

89

Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha
Zhao. 2019. Graph convolution for multimodal in-
formation extraction from visually rich documents.
arXiv preprint arXiv:1903.11279.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong.
2019. OpenCeres: When open information extrac-
tion meets the semi-structured web. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3047–3056, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ling Luo, Zhihao Yang, Pei Yang, Yin Zhang, Lei
Wang, Hongfei Lin, and Jian Wang. 2018. An
attention-based bilstm-crf approach to document-
level chemical named entity recognition. Bioinfor-
matics, 34(8):1381–1388.

Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin,
Chenyang Wang, Yiqun Liu, Shaoping Ma, and Xi-
ang Ren. 2019. Jointly learning explainable rules
for recommendation with knowledge graph. In The
World Wide Web Conference, pages 1210–1221.

Ravina Mithe, Supriya Indalkar, and Nilam Divekar.
2013. Optical character recognition. Interna-
tional journal of recent technology and engineering
(IJRTE), 2(1):72–75.

Keval Morabia, Jatin Arora, and Tara Vijaykumar. 2020.
Attention-based joint detection of object and seman-
tic part. arXiv preprint arXiv:2007.02419.

Kevin Murphy, Antonio Torralba, Daniel Eaton, and
William Freeman. 2006. Object detection and local-
ization using local and global features. In Toward
Category-Level Object Recognition, pages 382–400.
Springer.

Ion Muslea, Steve Minton, and Craig Knoblock. 1998.
Stalker: Learning extraction rules for semistructured,
web-based information sources. In Proceedings of
AAAI-98 Workshop on AI and Information Integra-
tion, pages 74–81. AAAI Press.

Joseph Redmon and Ali Farhadi. 2018. Yolov3:
An incremental improvement. arXiv preprint
arXiv:1804.02767.

Maryem Rhanoui, Mounia Mikram, Siham Yousfi, and
Soukaina Barzali. 2019. A cnn-bilstm model for
document-level sentiment analysis. Machine Learn-
ing and Knowledge Extraction, 1(3):832–847.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681.

Kai Simon and Georg Lausen. 2005. Viper: augmenting
automatic information extraction with visual percep-
tions. In Proceedings of the 14th ACM international
conference on Information and knowledge manage-
ment, pages 381–388.

Stephen Soderland. 1999. Learning information extrac-
tion rules for semi-structured and free text. Machine
learning, 34(1-3):233–272.

Peter WJ Staar, Michele Dolfi, Christoph Auer, and
Costas Bekas. 2018. Corpus conversion service: A
machine learning platform to ingest documents at
scale. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 774–782.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. 2013. Selective
search for object recognition. International journal
of computer vision, 104(2):154–171.

Srinivas Vadrevu, Saravanakumar Nagarajan, Fatih
Gelgi, and Hasan Davulcu. 2005. Automated meta-
data and instance extraction from news web sites. In
The 2005 IEEE/WIC/ACM International Conference
on Web Intelligence (WI’05), pages 38–41. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

D Vishwanath, Rohit Rahul, Gunjan Sehgal, Arindam
Chowdhury, Monika Sharma, Lovekesh Vig, Gau-
tam Shroff, Ashwin Srinivasan, et al. 2018. Deep
reader: Information extraction from document im-
ages via relation extraction and natural language. In
Asian Conference on Computer Vision, pages 186–
201. Springer.

Shanchan Wu, Jerry Liu, and Jian Fan. 2015. Automatic
web content extraction by combination of learning
and grouping. In Proceedings of the 24th interna-
tional conference on World Wide Web, pages 1264–
1274.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4651–4659.

Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds,
and Sandeep Tata. 2021. Simplified dom trees for
transferable attribute extraction from the web. arXiv
preprint arXiv:2101.02415.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and
Wei-Ying Ma. 2005. 2d conditional random fields for
web information extraction. In Proceedings of the
22nd international conference on Machine learning,
pages 1044–1051.

90

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 91 - 98
May 26, 2022 c©2022 Association for Computational Linguistics

Product Titles-to-Attributes As a Text-to-Text Task

Gilad Fuchs
eBay Research, Israel
gfuchs@ebay.com

Yoni Acriche
Bravado, USA

yoni@bravado.co

Abstract

Online marketplaces use attribute-value pairs,
such as brand, size, size type, color, etc. to
help define important and relevant facts about a
listing. These help buyers to curate their search
results using attribute filtering and overall cre-
ate a richer experience. Although their critical
importance for listings’ discoverability, getting
sellers to input tens of different attribute-value
pairs per listing is costly and often results in
missing information. This can later translate
to the unnecessary removal of relevant listings
from the search results when buyers are filter-
ing by attribute values. In this paper we demon-
strate using a Text-to-Text hierarchical multi-
label ranking model framework to predict the
most relevant attributes per listing, along with
their expected values, using historic user be-
havioral data. This solution helps sellers by
allowing them to focus on verifying informa-
tion on attributes that are likely to be used by
buyers, and thus, increase the expected recall
for their listings. Specifically for eBay’s case
we show that using this model can improve
the relevancy of the attribute extraction pro-
cess by 33.2% compared to the current highly-
optimized production system. Apart from the
empirical contribution, the highly generalized
nature of the framework presented in this pa-
per makes it relevant for many high-volume
search-driven websites.

1 Introduction

Many online marketplaces have new-listing forms
that include both structured and unstructured input
types to help sellers describe their listing1. While
the unstructured part often includes free-text input
boxes for title and description, a pictures upload
option, etc., the structured part can include the
selection of the listing category from a predefined
list, or selecting specific attribute-value pairs (e.g.
{"Brand":"Apple", "Color":"Black"}). Of the two,

1or service; for simplicity we’ll continue with the listing
notation.

structured input often enables marketplaces a more
streamline use of the data, since it requires less
preprocessing and allows for more direct usage
(via search results filters, etc.). On the flip-side,
entering such data is more labor intensive for the
sellers, and therefore, more expensive to get. This
can also be intricate work for sellers since in most
cases there are tens of different possible attribute
names for every listing, with some attributes having
more than one possible value.

To reduce the seller-inflicted cost of entering list-
ing attribute values we set two solution guidelines:
(a) sellers should focus on the top attributes that
are expected to impact their listing discoverability.
This aims to reduce the number of attributes for
which seller attention is required and only focus
on those which are likely to be used in the buyer-
journey of their target audience. And (b), in an
effort to further reduce friction, the marketplace
should pre-populate a suggested value for each of
these top attributes.

To identify the top attributes in a scalable man-
ner we leveraged the rich historical data of buyer
behavior on the eBay website. Like many other
search-driven websites, eBay allows buyers to cu-
rate search results by applying filters on top of the
initial results from the free-text-based query. Log-
ging the filtering selections of buyers, alongside
with their post-search actions, allows for an oppor-
tunity to learn what are the key attributes that buy-
ers value when searching for the right result. For
example, a common buyer behavior is to type a gen-
eral description in the search box, like "handbag",
and then to filter the results using more granular
attributes, like "Material", etc. (Figure 1). Follow-
ing this filtering step, the buyer might click on, and
potentially purchase, a specific listing that was a
part of the filtered results set. Mapping this buyer
journey, from search to filtering and listing-click,
allows to learn which attributes are most important
for the discovery of every listing.

91

Figure 1: An example of a typical buyer search session.
A buyer is searching for "handbag" in the search box
(top) and further filters the results by selecting the at-
tribute value "Leather" under "Material" (left).

From a modeling standpoint, to accommodate
both of the solution guidelines above, the output set
of the model should include the importance ranking
of the top attributes and their expected value. As
to the model input, in order for the solution to gen-
eralize across different downstream tasks, we need
to pick a minimal viable data point that all listings
have, but yet, that is highly informative. In our case
that would be the listing title. Model design can
be examined using different lenses; A supervised
model based on the historical mapping between list-
ing titles and multiple attribute-value pairs can be
modeled as a multi-label text classification (MLTC)
task. However, since there is a hierarchical relation-
ship between the attributes and values (since each
attribute has a finite list of possible values), the task
can also be viewed as a hierarchical multi-label
text classification (HMLTC) task. Last, since we
care about the importance ranking of the attribute-
value pairs, this can also be viewed as a ranking
task. Recent Text-to-Text-driven approaches have
shown to be highly valuable for various Natural
Language Processing (NLP) tasks including MLTC
and HMLTC (Nam et al., 2017; Yang et al., 2018;
Chang et al., 2018; Li et al., 2018; Lin et al., 2018;
Raffel et al., 2019). Inspired by these approaches,
we demonstrate using a Text-to-Text framework
in a HMLTC ranking task and compare it to other
classification models.

Specifically in our case, the use of a Text-to-
Text model approach is useful since it allows to
produce multiple ranked hierarchical predictions,
while separating between the probability score for

the attributes and values. This introduces further
flexibility to the solution (beyond the scope of the
above guidelines) by allowing to report high im-
pacting attributes even if we are uncertain about
their expected attribute values. Furthermore, in
comparison to approaches such as Named Entity
Recognition (NER), a Text-to-Text model does not
require the reported top attribute values to exist
in the input title. This is useful since sellers are
not always mentioning the most valuable attribute
values in the listing title. Last, from an empiri-
cal standpoint, the Text-to-Text models we trained
almost always outperformed models from other
approaches (see section 4.2).

To conclude, in this work we suggest a scalable
and automatic method for using listing titles to iden-
tify the most valuable set of attribute-value pairs by
learning from the buyers’ filtering behavior. In the
next section we describe related work in the field
of attribute-value extraction and hierarchical classi-
fication tasks. In the following section we describe
our data collection methodology and the training
procedures used for the four models that we trained.
This is followed by a quantitative comparison of
the results of the models, and a qualitative evalua-
tion of the results of our best performing one. We
conclude by discussing the tradeoffs of our current
approach, and describe our plans for future work.

2 Related Work

Various methods are used to automatically extract
attribute-value pairs from product-related text. This
ranges from manual rules and regular expressions
(Petrovski et al., 2014) to more advanced modern
learning algorithms (Ghani et al., 2006; Kannan
et al., 2011; de Bakker et al., 2013; Melli, 2014;
Joshi et al., 2015; Ristoski and Mika, 2016; More,
2016; Petrovski and Bizer, 2017; Majumder et al.,
2018; Charron et al., 2016). In contrast to our work,
these methods are focusing on extracting the most
complete set of attribute-value pairs, or limited to
only attribute values which appear explicitly in the
product-related text. Apart from (Charron et al.,
2016), non of these works have leveraged data from
historical user interaction with the attribute-value
pairs.

Hierarchical classification has been of wide inter-
est both in computer vision applications and text re-
lated tasks. Early work has been focusing on flatten-
ing the labels (Cai and Hofmann, 2004; Hayete and
Bienkowska, 2005) or on training multiple local

92

classifiers, where the number of classifiers is depen-
dent on the depth of the label hierarchy (Koller and
Sahami, 1997; Sun and Lim, 2001; Cesa-Bianchi
et al., 2006). More recent studies aimed to train
a single neural network which can learn the label
hierarchy complexity (Johnson and Zhang, 2015;
Peng et al., 2018; Mao et al., 2019), while others
combined both a single global network and multi-
ple local classifiers (Wehrmann et al., 2018). Most
recently, several works demonstrated that sequence-
to-sequence (Seq2Seq) networks are a promising
representation for hierarchical text classification
tasks (Nam et al., 2017; Lin et al., 2018). How-
ever, less focus was given to using Seq2Seq for the
ranking of multiple hierarchical label data struc-
tures, which are commonly being used, especially
in online marketplaces.

3 Methodology

3.1 Datasets

Our training dataset includes information from two
major eBay verticals - "Electronics" and "Fash-
ion", where search-filtering activity is most fre-
quent. The data includes roughly 10M and 3M
random entities from Fashion and Electronics (re-
spectively), all from the eBay US website. Each
training entity includes a listing title and one match-
ing attribute-value pair which was previously used
in a single search filtering session to discover that
listing. Since the distribution of attribute-value
pairs has a long-tail, we reduced the complexity of
the task by truncating the data to include only the
top 800 most frequent combinations. Doing so,
we kept 90% of all of the filtering activity done by
buyers (which is considered sufficient coverage for
our use case). We used 5% of the data for valida-
tion and and model selection, and an additional
5% for test. For non-hierarchical classification
experiments we have concatenated attribute-value
pairs to a single token (e.g. {"Color":"Black"} was
transformed to "Color:Black"). For Seq2Seq hi-
erarchical classification, we kept the pairs as two
separated tokens (e.g. "Color Black"). Separat-
ing the tokens allows the Seq2Seq model to na-
tively perform hierarchical classification, as the
Seq2Seq decoder’s predictions are dependent on
the previous predicted tokens (e.g. in case the at-
tribute prediction token is "Color" the next token
prediction is likely to be a color name, such as
"Black"). All tokens in multi-token attribute names
or values were concatenated with an underscore

as a delimiter. As duplications in the training set
represent a frequent, and therefore more impor-
tant, listing discovery pattern, the data was not de-
duplicated in any way. For example, the title "Color
Clash 100% Genuine Leather Snake Ladies Hand-
bag Tote Shoulder Bag" might appear 20 times
in the training data, out of which 12 times it will
be coupled with the attribute-value pair {"Mate-
rial":"Leather"}, 6 times with {"Style":"Tote"} and
only 2 times with {"Size":"Large"}. The listing
titles dataset was pre-processed by transforming
the tokens to lowercase and removing known stop-
words and non-alphanumeric characters.

3.2 Model Training

For the Text-to-Text approach we trained a Con-
volution Neural Network (CNN) Seq2Seq model
(Gehring et al., 2017) via the Fairseq framework
(Ott et al., 2019). For this we used a CNN archi-
tecture, following (Gehring et al., 2017), which
consists an embedding layer, positional embedding
layer, an encoder with 4 convolutional layers, a
decoder with 3 convolutional layers and a kernel
width of 3. The output of the each encoder convo-
lutional layer is transformed by a non-linear gated
linear units (GLU) (Dauphin et al., 2016) with
the residual connections linking between the GLU
blocks and the convolutional blocks. Each decoder
GLU output undergoes a dot-product based atten-
tion with the last encoder GLU block output (see
also (Gehring et al., 2017) for more details). Train-
ing was done with learning rate of 0.25, gradient
clipping (clip-norm) of 0.1, dropout of 0.2, maxi-
mum number of tokens in a batch (max-tokens) of
4000 and max number of epochs of 15, with a Nes-
terov Accelerated Gradient (NAG) optimizer (NES-
TEROV, 1983) on a single GPU. Prior to training,
pre-processing was done with "fairseq-preprocess"
to build a vocabulary and binarize the data. For
predictions, beam search size was set to 5. We
trained two versions of the Seq2Seq models - one
with attribute-value labels flattened to a single to-
ken (Seq2Seq-single), and the other where we kept
their hierarchical structure (Seq2Seq-hierarchical),
as described in section 3.1 above. Both versions
were trained with the same hyper-parameters.

We tested our Text-to-Text modeling approach
for attributes prediction against BERT and ULM-
FiT models, which have both been shown to be
highly beneficial for multiple text classification
tasks (Howard and Ruder, 2018; Devlin et al.,

93

2018). Apart from their past success, we also se-
lected BERT and ULMFiT because they allowed
us to test two different types of pre-training and
fine-tuning approaches, as described below. For
the multi-classification BERT model (Devlin et al.,
2018), we used the FastBert library2 which is based
on HuggingFace (Wolf et al., 2019). The model
that we fine-tuned was bert-base-uncased which
includes 110 million parameters, 12 encoder layers
consisting of 12 attention heads per layer and 768
hidden units. Fine-tuning was done for a maximum
of 3 epochs with a batch size of 16, learning rate of
5e-5, a maximum sequence length of 128, a LAMB
optimizer (You et al., 2019; Lan et al., 2019) and
using 4 GPUs.

Next, for the multi-classification ULMFiT
(Howard and Ruder, 2018) we used eBay’s title
corpus to fine-tune an English language model
(LM) with an AWD-LSTM architecture (Merity
et al., 2017a), which is an LSTM model with tuned
dropout hyper-parameters that consists of an em-
bedding size of 400, 3 layers and 1150 hidden ac-
tivations per layer which were pre-trained on the
Wikitext-103 dataset (Merity et al., 2017b) and
downloaded from fast.ai3. The LM fine-tuning was
done using the same data that is described in sec-
tion 3.1, with a batch size of 64, a dropout set to
0.5, for 2 epochs using one cycle policy (Smith and
Topin, 2019) and with a maximum learning rate of
1e-2 and 1e-3 for each on a single GPU. Next, a
classifier model was trained while using the fine-
tuned LM as an encoder, with a batch size of 64,
for 3 epochs on 4 GPUs, using one cycle policy,
with a discriminative layer training and gradual un-
freezing (Howard and Ruder, 2018). During the
first epoch only the last layer was fine-tuned, with
a maximum learning rate of 1e-2. For the second
epoch we fine-tuned the last two layer groups, with
a maximum learning rate ranging between 2.5e-3
and 5e-3, and for the last epoch we fine-tuned all
of the layers with a maximum learning rate rang-
ing between 2e-5 and 2e-3. The labels for both
BERT and ULMFiT were represented as a single
token (see section 3.1 above). We also trained a
multi-classification model for both, instead of a
multi-label one, since we saw that the latter per-
formed significantly worse.

All models were trained on data from eBay’s
Electronics and Fashion verticals as described at

2https://github.com/kaushaltrivedi/fast-bert
3https://docs.fast.ai/index.html

Section 3.1.

4 Results

4.1 Evaluation Metrics

As commonly used in similar ranking tasks, we
computed Precision at k (Prec@k) and normalized
Discounted Cumulative Gain at k (nDCG@k or
N@k) for model evaluation. Prec@k is defined as
follows:

Prec@k =
1
k

k∑

l=1

yrank(l)

Where rank(l) is the index of the l-th highest
predicted label and y ∈ {0, 1}L is the true binary
vector. nDCG@k is defined as follows:

DCG@k =
k∑

i=1

reli
log(i + 1)

iDCG@k =
|RELk |∑

i=1

reli
log(i + 1)

nDCG@k =
DCG@k
iDCG@k

Where reli is the relevance of the result at po-
sition i and RELk represents the list of relevant
documents (ordered by their relevance) in the cor-
pus up to position k. The relevance score of each
attribute-value pair per listing title is defined as the
number of times it was used by buyers to filter the
results, prior of clicking that specific listing.

4.2 Quantitative Evaluation

To compare the performance of the different mod-
els we computed the ranking accuracy of each us-
ing historic attribute-value pairs that were used
by buyers to filter their results, prior of clicking a
specific listing. As seen in Table 1, the Seq2Seq-
hierarchical model outperformed the other models
in most of the test criteria. Interestingly, both of
the Seq2Seq models (single and hierarchical) out-
performed BERT and ULMFiT in almost all of the
metrics, which demonstrates the advantage of us-
ing a Text-to-Text frameworks in both hierarchical
and non-hierarchical learning tasks.

In theory, the results from Table 1 could be
purely due to better attribute value prediction by the
Seq2Seq-hierarchical model, and not necessarily
because of better attribute ranking. Therefore, to
further examine the robustness of these results, we

94

Table 1: Model performance measured by Precision@k
(P@k) and nDCG@k (N@k) comparison of the four
models - ULMFiT (ULM), BERT, Seq2Seq-single (S2S)
and Seq2Seq-hierarchical (S2S-hier) for the Electronics
(Elec) and Fashion (Fash) verticals. Best results are
marked in bold.

Data Metric BERT ULM S2S S2S
-hier

P@1 54 59.4 61.6 62.7
P@3 33.3 37.2 39.4 40.1

Elec P@5 24.4 26.9 28.7 29.2
N@1 50.6 56.2 58.1 59.5
N@3 56.7 63.4 67.2 68.3
N@5 60.5 66.7 71.1 72.1

P@1 61 62.8 62.8 63.1
P@3 33.8 35.4 36.2 36.3

Fash P@5 23 24.1 25.2 25.2
N@1 59.4 61.2 61.2 61.5
N@3 64.7 67.7 68.8 69
N@5 67.7 70.9 72.6 72.6

disconnected the ranking evaluation from the value
prediction one, and tested the above models just
on attribute ranking. To conduct this comparison
we split the models’ concatenated attribute-value
predictions to attribute and attribute value predic-
tions (i.e. {"Color:Black"} was split to "color" and
"black") and re-computed the evaluation metrics
only on the former. As seen in Table 2, the models’
performance-ranking is overall consistent with pre-
vious experiments, with the Seq2Seq-hierarchical
model also outperforming for the attribute ranking
task.

In addition, from a pure technical perspective,
Seq2Seq was the fastest model to train (x15 faster
than BERT and x5 faster than ULMFiT), did not
require any pre-trained models, and consisted of

Table 2: Model performance comparison solely for the
attributes ranking task. Best results are marked in bold.

Dataset Metric BERT ULM S2S S2S
Attr Attr Attr -hier

Attr

P@1 92.4 94 93 94.6
P@3 74 76 76.2 78

Elec P@5 51.8 53.8 56 57.8
N@1 78.9 81.9 79.4 82.1
N@3 82.8 85.2 84.3 86.6
N@5 83.1 85.6 85.7 87.8

P@1 95.7 95.5 95.5 96
P@3 61.9 61.2 63.2 63.6

Fash P@5 40.1 40.2 43.2 43.5
N@1 86.2 85.9 87.2 88
N@3 88.3 88.5 89.5 90.3
N@5 87.7 88.4 90.2 90.7

only a single training step (unlike ULMFiT, which
also required an LM fine-tune step).

To get a sense of the magnitude of impact that the
Seq2Seq-hierarchical model could have on eBay’s
on-site experience, we compared our results to
those from eBay’s Attribute Extraction Service
(AES). AES is a production system that has been
highly optimized over the years, and is in charge of
automatically extracting attribute-value pairs from
titles that sellers provide. Currently it is mostly
reliant on extensively curated rules that got added
and optimized over the years. To compare the per-
formance of the two methods we used around 15K
attribute-value pairs that were used by buyers to
filter search results and to discover a specific list-
ing from the Electronics and Fashion verticals. For
each we computed whether the attribute extraction
method could automatically provide the relevant
attribute-value given only the listing’s title. This
count was later divided by the number of attribute-
value pairs to compute a percentage. As seen in Ta-
ble 3, Seq2Seq-hierarchical led to an overall 33.2%
improvement in relevant attribute-value extraction
compared to AES.

Table 3: A comparison between eBay’s current pro-
duction system (AES) and the Seq2Seq-hierarchical
(S2S-hier) model for the task of relevant attribute-value
extraction. The number of attribute-value pairs which
were used for the evaluation is denoted as N. For each
method we show the percentage of cases that the rele-
vant attribute-value pairs were extracted correctly (as
defined by buyer behaviour).

Dataset N AES S2S-hier

Electronics 10,289 58.8% 71.9%
Fashion 4,752 40.2% 67.4%

Total 15,041 52.9% 70.5%

4.3 Qualitative Evaluation

Since Seq2Seq-hierarchical outperformed the other
models (Table 1), we focused our qualitative evalu-
ation only on its predictions. Table 4 shows exam-
ples of the top predictions of five different listings,
ordered by the model likelihood score (descending
order).

As seen in Table 4, {"Brand":"Ray-Ban"} was
only the 3rd most important attribute-value pair
picked by the model for the title "Ray-Ban G-
15 Aviator Black Frame Black Classic 58mm".
This can be counterintuitive from a domain ex-
pertise standpoint, since the latter is clearly a

95

Table 4: Example of Seq2Seq-hierarchical prediction, including values which are not explicitly mentioned in the
title and multi-values attributes. Values are ordered by their importance rank.

Title Predictions

Ray-Ban G-15 Aviator Black Frame Black Classic {"Frame Color":"Black", "Lens Color": "Black", "Brand": "Ray-Ban"}
Asus Strix Gaming LGA1151 DDR4 Motherboard {"Form Factor": "microATX", "Compatible CPU Brand": "Intel"}

DJI Phantom 4 Aerial UAV Drone Quadcopter {"Camera": "Included", "Features": "4K HD Video Recording"}
Nike Air Max Shoes Men’s Size 7-9 {"US Shoe Size (men’s)": [8, 8.5, 9, 7.5, 7]}

Men’s Slim Fit Coat Jean Denim Jacket Size S-XL {"Size (men’s)": ["M", "L", "XL", "S"]}

more differential attribute-value pair for the cat-
egory of sunglasses than, for example, {"Frame
Color":"Black"}, which was picked first. However,
looking at a sample of the search queries that were
prior to the filtering steps (not shown here), we see
that 93% of them already contained some variation
of the term "Ray-Ban" (e.g. "rayban sunglasses",
"ray ban sunglasses aviator", "ray-ban aviator").
Therefore most of the search engine’s out-of-the-
box results already included "Ray-Ban" branded
sunglasses, which mitigated the need to further fil-
ter by brand. In contrast, only 2% of the queries
mentioned the color "black", which explains the
frequent buyer behavior of further filtering the re-
sults by color after seeing the search results (which
included sunglasses from various colors). Such
ranking results are in-line with our solution guide-
line to identify the top attributes that are expected
to be used in the listing’s buyer-discovery-journey,
and therefore, help maximize the listing’s chances
to be discovered.

In Table 4 we provide further prediction exam-
ples which show that our Text-to-Text model does
not require the reported top attribute values to be
included in the input title. In addition, we evaluated
the model’s predictions in cases where attributes
can include multiple values, like with ’size’, and
show that the model successfully extracts all of
the relevant values from the ranges that appear in
the titles. Note that the different likelihood predic-
tion for each size value can serve as proxy to its
popularity among buyers.

5 Conclusion

In this paper we demonstrate using filtering be-
havior data to predict the most relevant listing
attribute-value pairs, and the superiority of using
a Text-to-Text approach for modeling a hierarchi-
cal multi-label text classification (HMLTC) task
that combines ranking. We identify several key
advantages of this solution framework: First, ac-
quiring the training data we use is a scalable and

inexpensive process which does not require man-
ual labor. Therefore, the volume of data collected
in high-volume websites is likely to be sufficient
for training deep-learning-based models such as
Seq2Seq. Second, unlike methods such as NER,
using a Text-to-Text approach enables to identify
attribute-value pairs that do not necessarily exist
in the title, to extract multiple values per attribute
(Table 4) and to separately analyze the importance
of every possible attribute-value pair. Third, as to
the choice of hierarchical modeling, this allows us
to separately analyze the likelihood probabilities
of the expected attributes and values, which further
generalizes the model for additional downstream
tasks.

As for classifiers performance, the Seq2Seq mod-
els provided better results for most metrics com-
pared to BERT and ULMFiT. Unlike the latter two,
the Seq2Seq models didn’t use a Transfer Learn-
ing approach that leverages a pre-trained Language
Models. We suspect that the relatively short length
of listing titles (12 tokens on average), combined
with the unique jargon in eBay’s data, which is hard
to fully capture in the fine-tune process, might have
negatively impacted the performance of BERT and
ULMFiT.

Regardless to the classifier of choice, we keep
in mind that the model’s attribute ranking is clearly
affected by the set of filtering options that were
presented to the buyers on the site, and thus, cannot
find attribute pairs that have not been historically
used for filtering. Therefore, to avoid a closed
feedback loop scenario, we would avoid using the
model’s attribute ranking results as an input to de-
cide these filtering options. Also, to further in-
crease the quality of the attribute ranking we can
use a training data that consists of a sample of
buyers that were served with a random (or partly
random) list of filtering options. Nonetheless, even
without this sample, the model can still provide
sellers with meaningful information about their po-
tential buyers’ current attribute priority ranking.

96

References
Lijuan Cai and Thomas Hofmann. 2004. Hierarchi-

cal document categorization with support vector ma-
chines. In Proceedings of the Thirteenth ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’04, page 78–87, New York, NY,
USA. Association for Computing Machinery.

Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zani-
boni. 2006. Hierarchical classification: Combining
bayes with svm. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, ICML ’06,
page 177–184, New York, NY, USA. Association for
Computing Machinery.

Wei-Cheng Chang, Hsiang-Fu Yu, Inderjit S. Dhillon,
and Yiming Yang. 2018. Secseq: Semantic coding
for sequence-to-sequence based extreme multi-label
classification.

Bruno Charron, Yu Hirate, David Purcell, and Martin
Rezk. 2016. Extracting semantic information for
e-commerce. pages 273–290.

Yann N. Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2016. Language modeling with gated con-
volutional networks.

Marnix de Bakker, Flavius Frasincar, and Damir Vandic.
2013. A hybrid model words-driven approach for
web product duplicate detection. In CAiSE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proc. of ICML.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema,
and Andrew Fano. 2006. Text mining for prod-
uct attribute extraction. SIGKDD Explor. Newsl.,
8(1):41–48.

Boris Hayete and Jadwiga Bienkowska. 2005. Gotrees:
Predicting go associations from protein domain com-
position using decision trees. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing,
10:127–38.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Rie Johnson and Tong Zhang. 2015. Effective use of
word order for text categorization with convolutional
neural networks. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 103–112, Denver, Col-
orado. Association for Computational Linguistics.

Mahesh Joshi, Ethan Hart, Mirko Vogel, and Jean-David
Ruvini. 2015. Distributed word representations im-
prove NER for e-commerce. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing, pages 160–167, Denver, Col-
orado. Association for Computational Linguistics.

Anitha Kannan, Inmar E. Givoni, Rakesh Agrawal, and
Ariel Fuxman. 2011. Matching unstructured product
offers to structured product specifications. In Pro-
ceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’11, page 404–412, New York, NY, USA.
Association for Computing Machinery.

Daphne Koller and Mehran Sahami. 1997. Hierarchi-
cally classifying documents using very few words. In
Proceedings of the Fourteenth International Confer-
ence on Machine Learning, ICML ’97, page 170–178,
San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations.

Wei Li, Xuancheng Ren, Damai Dai, Yunfang Wu,
Houfeng Wang, and Xu Sun. 2018. Sememe pre-
diction: Learning semantic knowledge from unstruc-
tured textual wiki descriptions.

Junyang Lin, Qi Su, Pengcheng Yang, Shuming Ma,
and Xu Sun. 2018. Semantic-unit-based dilated con-
volution for multi-label text classification.

Bodhisattwa Prasad Majumder, Aditya Subramanian,
Abhinandan Krishnan, Shreyansh Gandhi, and
Ajinkya More. 2018. Deep recurrent neural networks
for product attribute extraction in ecommerce.

Yuning Mao, Jingjing Tian, Jiawei Han, and Xiang Ren.
2019. Hierarchical text classification with reinforced
label assignment. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 445–455, Hong Kong, China. Association for
Computational Linguistics.

Gabor Melli. 2014. Shallow semantic parsing of prod-
uct offering titles (for better automatic hyperlink in-
sertion). In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’14, page 1670–1678, New
York, NY, USA. Association for Computing Machin-
ery.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017a. Regularizing and optimizing lstm
language models.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017b. Pointer sentinel mixture
models.

97

Ajinkya More. 2016. Attribute extraction from product
titles in ecommerce. CoRR, abs/1608.04670.

Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J Kim,
and Johannes Fürnkranz. 2017. Maximizing subset
accuracy with recurrent neural networks in multi-
label classification. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 5413–5423.
Curran Associates, Inc.

Y. E. NESTEROV. 1983. A method for solving the
convex programming problem with convergence rate
o(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference,
WWW ’18, page 1063–1072, Republic and Canton
of Geneva, CHE. International World Wide Web Con-
ferences Steering Committee.

Petar Petrovski and Christian Bizer. 2017. Extracting
attribute-value pairs from product specifications on
the web. In Proceedings of the International Con-
ference on Web Intelligence, WI ’17, page 558–565,
New York, NY, USA. Association for Computing
Machinery.

Petar Petrovski, Volha Bryl, and Christian Bizer. 2014.
Learning regular expressions for the extraction of
product attributes from e-commerce microdata. In
Proceedings of the Second International Conference
on Linked Data for Information Extraction - Volume
1267, LD4IE’14, page 45–54, Aachen, DEU. CEUR-
WS.org.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Petar Ristoski and Peter Mika. 2016. Enriching product
ads with metadata from html annotations. In Pro-
ceedings of the 13th International Conference on The
Semantic Web. Latest Advances and New Domains
- Volume 9678, page 151–167, Berlin, Heidelberg.
Springer-Verlag.

Leslie N. Smith and Nicholay Topin. 2019. Super-
convergence: very fast training of neural networks
using large learning rates. In Artificial Intelligence

and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pages 369 – 386. Inter-
national Society for Optics and Photonics, SPIE.

Aixin Sun and Ee-Peng Lim. 2001. Hierarchical text
classification and evaluation. In Proceedings of the
2001 IEEE International Conference on Data Mining,
ICDM ’01, page 521–528, USA. IEEE Computer
Society.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Bar-
ros. 2018. Hierarchical multi-label classification net-
works. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages
5075–5084, Stockholmsmässan, Stockholm Sweden.
PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. Sgm: Sequence gen-
eration model for multi-label classification.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2019. Large batch optimization for deep learning:
Training bert in 76 minutes.

98

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 99 - 110
May 26, 2022 c©2022 Association for Computational Linguistics

Product Answer Generation from Heterogeneous Sources: A New
Benchmark and Best Practices

Xiaoyu Shen1, Gianni Barlacchi1, Marco del Tredici1, Weiwei Cheng1

Adria de Gispert1 and Bill Birne1,2
1Amazon Alexa AI

2Univeristy of Cambridge
{gyouu, gbarlac, mttredic, weiweic, agispert, willbyrn}@amazon.com

Abstract
It is of great value to answer product questions
based on heterogeneous information sources
available on web product pages, e.g., semi-
structured attributes, text descriptions, user-
provided contents, etc. However, these sources
have different structures and writing styles,
which poses challenges for (1) evidence rank-
ing, (2) source selection, and (3) answer gen-
eration. In this paper, we build a benchmark
with annotations for both evidence selection
and answer generation covering 6 information
sources. Based on this benchmark, we con-
duct a comprehensive study and present a set
of best practices. We show that all sources are
important and contribute to answering ques-
tions. Handling all sources within one sin-
gle model can produce comparable confidence
scores across sources and combining multi-
ple sources for training always helps, even for
sources with totally different structures. We fur-
ther propose a novel data augmentation method
to iteratively create training samples for answer
generation, which achieves close-to-human per-
formance with only a few thousand annotations.
Finally, we perform an in-depth error analysis
of model predictions and highlight the chal-
lenges for future research.

1 Introduction

Automatic answer generation for product-related
questions is a hot topic in e-commerce applications.
Previous approaches have leveraged information
from sources like product specifications (Lai et al.,
2018a, 2020), descriptions (Cui et al., 2017; Gao
et al., 2019) or user reviews (McAuley and Yang,
2016; Yu et al., 2018; Zhang et al., 2019) to an-
swer product questions. However, these works
produce answers from only a single source. While
a few works have utilized information from mul-
tiple sources (Cui et al., 2017; Gao et al., 2019;
Feng et al., 2021), they lack a reliable benchmark
and have to resort to noisy labels or small-scaled
human evaluation (Zhang et al., 2020; Gao et al.,

2021). Furthermore, almost none of them make
use of pretrained Transformer-based models, which
are the current state-of-the-art (SOTA) across NLP
tasks (Devlin et al., 2019; Clark et al., 2020).

In this work, we present a large-scale benchmark
dataset for answering product questions from 6 het-
erogeneous sources and study best practices to over-
come three major challenges: (1) evidence ranking,
which finds most relevant information from each
of the heterogeneous sources; (2) source selection,
which chooses the most appropriate data source to
answer each question; and (3) answer generation,
which produces a fluent, natural-sounding answer
based on the relevant information. It is necessary
since the selected relevant information may not be
written to naturally answer a question, and there-
fore not suitable for a conversational setting.

Most published research on product ques-
tion answering is based on the AmazonQA
dataset (McAuley and Yang, 2016), which takes
the community question-answers (CQAs) as the
ground truth. This leads to several problems. (1)
CQAs, even the top-voted ones, are quite noisy.
Many are generic answers or irrelevant jokes (Gao
et al., 2021). (2) CQAs are based more on the opin-
ion of the individual customer who wrote the an-
swer rather than on accompanying sources such as
product reviews and descriptions. As such, CQAs
are not reliable references for judging the quality of
answers generated from these sources (Gupta et al.,
2019). (3) There are no annotations for assessing
the relevance of the information across multiple
data sources. This makes it difficult to evaluate the
evidence ranker and generator separately. Some
works collect annotations for evidence relevance,
but only for a single source and with questions for-
mulated post-hoc rather than naturally posed (Lai
et al., 2018a; Xu et al., 2019). To address these
shortcomings, we collect a benchmark dataset with
the following features: (1) It provides clear an-
notations for both evidence ranking and answer

99

generation, enabling us to perform in-depth evalu-
ation of these two components separately. (2) We
consider a mix of 6 heterogeneous sources, ranging
from semi-structured specifications (jsons) to free
sentences and (3) It represents naturally-occurring
questions, unlike previous collections that elicited
questions by showing answers explicitly.

As sources differ in their volume and contents,
collecting training data covering all sources of nat-
ural questions and answers is challenging. To get
enough positive training signals for each source, we
propose filtering community questions based on the
model score of a pretrained QA ranker. Questions
are only passed for annotation when the confidence
scores of top-1 evidence lie within some certain
range. This greatly reduces annotation effort by
removing most unanswerable questions.

After collecting the data, we apply SOTA
Transformer-based models for evidence ranking
and answer generation, and present a set of data
augmentation and domain adaptation techniques to
improve the performance. We show that pretrain-
ing the model on the AmazonQA corpus can pro-
vide a better initialization and improve the ranker
significantly. For evidence ranking, we apply ques-
tion generation with consistency filtering (Alberti
et al., 2019) to obtain large amounts of synthetic
QA pairs from unannotated product sources. For
answer generation, we propose a novel data aug-
mentation algorithm that creates training examples
iteratively. By first training on this augmented data
and then finetuning on the human annotations, the
model performance can be further enhanced.

As for the model design, we homogenize all
sources by reducing them to the same form of in-
put which is fed into a unified pretrained Trans-
former model, similarly to many recent works of
leveraging a unified system for various input for-
mats (Oguz et al., 2020; Su et al., 2020; Komeili
et al., 2021). We show that combining all sources
within a single framework outperforms handling
individual sources separately and that training sig-
nals from different answer sources can benefit each
other, even for sources with totally different struc-
tures. We also show that the unified approach is
able to produce comparable scores across different
sources which allows for simply using the model
prediction score for data source selection, an ap-
proach that outperforms more complex cascade-
based selection strategies. The resulting system
is able to find the correct evidence for 69% of the

Question: how much weight will it safely hold?

Source Supporting Evidence Relevance

Attribute item_weight:{unit:
pounds,value:2.2} ✖

Bullet Point supports up to 115 pounds ✔
Description weight limit: 115 lbs. ✔

OSP if you’re looking for an inex-
pensive way to change up ... ✖

CQA we put ours on a swingset. ✖
Review it is sturdy and well made. ✖

Annotated Answer: it can support up to 115 pounds.

Table 1: Annotation example. Relevance annotation: Given
one question and evidence from heterogeneous sources, judge
if each one is relevant to the question. Answer elicitation:
annotators produce a natural-sounding answer given the ques-
tion and the evidence that was marked as relevant.

questions in our test set. For answer generation,
94.4% of the generated answers are faithful to the
extracted evidence and 95.5% of them are natural-
sounding.

In summary, our contributions are four-fold: (1)
We create a benchmark collections of natural prod-
uct questions and answers from 6 heterogeneous
sources covering 309,347 question-evidence pairs,
annotated for both evidence ranking and answer
generation. This collection will be released as open
source. (2) We show that training signals from dif-
ferent sources can complement each other. Our
system can handle diverse sources without source-
specific design. (3) We propose a novel data aug-
mentation method to iteratively create training sam-
ples for answer generation, which achieves close-
to-human performance with only a few thousand
annotations and (4) We perform an extensive study
of design decisions for input representation, data
augmentation, model design and source selection.
Error analysis and human evaluation are conducted
to suggest directions for future work.

2 Benchmark test set collection

We begin by explaining how we collect a bench-
mark test set for this problem. The benchmark
collection is performed in 4 phases: question sourc-
ing, supporting evidence collection, relevance an-
notation, and answer elicitation. An annotation
example is shown in Table 1.
Question sourcing To create a question set that
is diverse and representative of natural user ques-
tions, we consider two methods of question sourc-
ing. The first method collects questions through
Amazon Mechanical Turk, whereby annotators are
shown a product image and title and instructed to

100

ask 3 questions about it to help them make hypo-
thetical purchase decisions. This mimics a scenario
in which customers see a product for the first time,
and questions collected in this way are often gen-
eral and exploratory in nature. The second method
samples questions from the AmazonQA corpus.
These are real customer questions posted in the
community forum and tend to be more specific and
detailed, since they are usually asked after users
have browsed, or even purchased, a product. We
then filter duplicated and poorly-formed questions.
This yields 914 questions from AmazonQA and
1853 questions from Mturk. These are combined
to form the final question set.
Collecting Supporting Evidence We gather “sup-
porting evidence” from 6 heterogeneous sources:
(1) Attributes: Product attributes in json format ex-
tracted from the Amazon product database 1. (2)
Bullet points: Product summaries from the prod-
uct page. (3) Descriptions: Product descriptions
from the manufacturer and Amazon. (4) On-site-
publishing (OSP): Publications about products (for
example here). (5) CQA: Top-voted community
answers. Answers directly replying to questions
in our question set are discarded and (6) Review:
User reviews written for the product.
Relevance Annotation Annotators are presented
with a question about a product and are instructed
to mark all the items of supporting evidence that are
relevant to answering the product question. Such
evidence is defined as relevant if it implies an an-
swer, but it does not need to directly address or
answer a question. For evidence items from source
1, we directly present the attribute json to annota-
tors. For sources 2∼6, we split the evidence into
sentences and present each sentence as a separate
item to be considered. There can be a very large
number of CQA and Reviews for each product.
As manual annotation of these would be impracti-
cal, we annotate only the top 40 and 20 evidence
from each collection, respectively, as determined
by a deep passage ranker pretrained on general-
domain QA. Each item of evidence is inspected
by 3 annotators and is marked as relevant if sup-
ported by at least two of them. In this way, items
of evidence are paired with questions for review
by annotators. Overall, annotators have inspected
309,347 question-evidence pairs, of which 20,233
were marked as relevant.

1We select 320 unique attributes that have diverse struc-
tures and hierarchies without standard schema.

Source #words available answerable N/P
Attribute 5.84 100% 36.10% 22.88
Bullet 12.55 100% 24.95% 5.59
Desc 12.86 98.37% 38.59% 23.97
OSP 17.75 18.98% 4.54% 11.16
CQA 13.32 99.39% 70.61% 13.85
Review 18.37 95.64% 61.16% 2.28

93.72% questions are answerable from at least 1 source.

Table 2: Benchmark statistics: average number of words
per evidence (#words), percentage of questions for which
the source is available (available), percentage of answerable
questions (answerable) and the negative-positive ratio (N/P).

Answer Elicitation In the answer elicitation stage,
annotators are presented with a question and an
item of supporting evidence that has been marked
as relevant. They are required to produce a fluent,
natural-sounding and well-formed sentence (not
short span) that directly answers the question. We
sample 500 positive question-evidence pairs from
each source for answer elicitation (if that many are
available). The annotated answers are evaluated by
another round of annotation to filter invalid ones. In
the end, we obtain 2,319 question-evidence-answer
triples for answer generation.

Table 2 shows the collection statistics. Availabil-
ity differs across sources. Only 19% of questions
have available OSP articles, but all products have
corresponding Attributes and Bullet Points. 93.72%
of questions are answerable from at least 1 out of
the 6 sources, indicating these sources are valuable
as a whole to address most user questions.

3 Training data collection

For training data collection, a complete annotation
of each set of evidence is not necessary; we need
only a rich set of contrastive examples. Therefore,
we propose to select questions for annotation based
on the confidence score of a pretrained ranker (the
same ranker we used to select top evidence for
CQA and review). We sample 50k community
questions about products in the same domain as the
testset. We first select questions whose top-1 item
of supporting evidence returned by the pretrained
ranker has a prediction score of > 0.8. In this
way the selected questions have a good chance
of being answerable from the available evidence
and the approach should also yield enough positive
samples from all sources to train the ranker. This
selection step is crucial to ensure coverage of low-
resource sources, like OSP, which otherwise might
have zero positive samples. To avoid a selection

101

process that is biased towards easy questions we
further include questions whose top-1 evidence has
a score within the range of 0.4∼0.6. Intuitively
these questions will pose more of a challenge in
ranking the evidence and their annotation should
provide an informative signal.

From each out of the 6 sources, we sample 500
questions with prediction score > 0.8 and another
500 questions with scores in the range of 0.4∼0.6.
For each question, we then annotate the top-5 (if
available) evidence items returned by the pretrained
ranker. This reduces annotation cost relative to
the complete annotation that was done for the test
set. The final dataset contains 6000 questions with
27,026 annotated question-evidence pairs being an-
notated, 6,667 of which were positive. We then
submit the positive question-evidence pairs for an-
swer elicitation. After filtering invalid annotations
as was done for the benchmark collection, we ob-
tain a set of 4,243 question-evidence-answer triples
to train the answer generator. For both evidence
ranking and answer generation, we split the col-
lected data by 9:1 for train/validation.

4 Model

4.1 Evidence Ranking

Evidence ranking aims to get the best evidence
from each of the sources. We build our evidence
ranker with the Electra-base model (Clark et al.,
2020). The question and evidence are concatenated
together and fed into the model. We flatten the json
structured from the attribute source into a string
before feeding it to the encoder, whereas we split
evidence from other sources into natural sentences,
so it can be encoded as plain text (training detail
in appendix D). We present comparison studies in
Figure 1 with the best model configuration. Due
to space constraints we report only p@1 scores in
Fig 1, with full results in appendix C.
Pre-tuning on AmazonQA Pre-tuning the evi-
dence ranker on similar domains has shown to be
important when limited in-domain training data is
available (Hui and Berberich, 2017; Hazen et al.,
2019; Garg et al., 2020; Hui et al., 2022). For
our product-specific questions, the AmazonQA cor-
pus is a natural option to pre-tune the model (Lai
et al., 2018b). The corpus contains 1.4M question-
answer pairs crawled from the CQA forum. We
remove answers containing “I don’t know” and
“I’m not sure”, and filter questions of more than
32 words and answers of more than 64 words. We

Figure 1: Ablation studies of evidence ranker. From up to
down (1) effects of pre-tuning on AmazonQA, mix/separate
sources, (2) effects of linearization methods of attributes, and
(3) effects of data augmentation by question generation.

construct negative evidence with answers to differ-
ent questions for the same product. The filtered
corpus contains 1,065,407 community questions
for training. In the training stage, we first finetune
the Electra-base model on the filtered AmazonQA
corpus and then finetune on our collected training
data. As can be seen, pre-tuning on the AmazonQA
corpus improves the p@1 on all sources. The con-
clusion holds for both training on mixed sources
and individual sources separately.

Mixed sources vs split sources We investigate
whether different sources conflict with each other
by (1) training a single model on the mixed data
from all sources, and (2) training a separate model
for each individual source. For the second case, we
obtain 6 different models, one from each source.
The resulting models are tested on 6 sources indi-
vidually. We can observe that mixing all answer
sources into a single training set improves the per-
formance on each individual source. The training
signals from heterogeneous sources complement
each other, even for sources with totally different
structures. p@1 on the semi-structured attribute
improves consistently through adding training data
of unstructured text. This holds for models with
and without pre-tuning on AmazonQA.

Linearization methods In the above experiment,
we use a simple linearization method that flattens
the json-formatted attributes into a string. We also

102

selector
ranker BM25 AmazonQA our best

perfect 0.4709 0.7546 0.8338
best-score 0.2880 0.5370 0.6986

highest-score 0.2696 0.5089 0.6888
cascade 1 0.2653 0.5298 0.6791
cascade 2 0.2638 0.5110 0.6715

Table 3: p@1 using different rankers and source selectors.

compare it with 3 other different linearization meth-
ods: (1) key-value pairs: Transform the hierar-
chical json format into a sequence of key-value
pairs. For example, the attribute in Table 1 will
be transformed into “item_weight unit pounds |
item_weight value 2.2”. (2) templates: Transform
the json by pre-defined templates, e.g. “The [at-
tribute_name] of it is [value] [unit]” and (3) NLG:
Transform the json into a sentence by a neural data-
to-text model. The results show that the best per-
formance is achieved by simply linearizing the json
into a string. Although applying the template or
neural data-to-text model is closer to a natural sen-
tence, this did not lead to an improvement in p@1.
Nonetheless, all these methods have rather simi-
lar performance, suggesting the model can adapt
quickly to different representations by finetuning
on limited training data and that more complex
linearization methods are unnecessary.

Question Generation Question generation has
been a popular data augmentation technique in
question-answering. We collect ∼50k unannotated
pieces of evidence from the 6 sources and apply a
question generator to generate corresponding ques-
tions. The question generator is finetuned first on
the AmazonQA corpus and then on our collected
training data. We apply nucleus sampling with
p = 0.8 to balance the diversity and generation
quality (Sultan et al., 2020). We further filter the
generated questions with our evidence ranker by
only keeping those with model prediction scores of
> 0.5, which has been shown crucial to get high-
quality augmented data (Alberti et al., 2019). We
try different finetuning methods and report the re-
sults on the bottom of Fig 1, where the “+” means
the finetuning order. As can be observed, finetuning
on the augmented data brings further improvement
to the model. A three-step finetuning to gradually
bring the model to our interested domain leads to
the best performance over all sources.

4.2 Source Selection

Source aims to select the best source to answer
after we obtain the top-1 item of evidence from
each source. We show results for the following
source selectors: (1) perfect: oracle selection of
the correct item of evidence (if any) in the top-1
pieces of evidence provided from the 6 sources.
(2) best-score: evidence item with the highest em-
pirical accuracy in its score range which should
yield the upper-bound performance for a selector
based on model prediction scores. (3) highest-
score: evidence with the highest model prediction
score. (4) cascade 1: prioritizes evidence from the
attribute/bullet sources since they have the high-
est p@1 scores. If the top-1 evidence item from
those two sources has a score of more than ϵ, it
is selected. Otherwise, the evidence item with
the highest prediction score is selected from the
remaining sources and (5) cascade 2: prioritizes
evidence from attribute, bullet, and descriptions
sources since these have better official provenance
than user-generated data sources. The selection
logic is the same as cascade 1. highest-score is the
most straightforward choice but relies on a compa-
rable score across sources. cascades 1/2 are also
commonly used to merge results from sub-systems.
For the best-score selector, we split the prediction
score range into 100 buckets and estimate the em-
pirical accuracy on the test data. For example the
prediction score of 0.924 for the top-1 evidence
from an attribute source will fall into the bucket
0.92∼0.93. In our test set, evidence items from
each source will have an empirical accuracy within
each score bin 2. This will lead to an upper-bound
approximation of a selector based on prediction
scores since we explicitly “sneak a peep” at the
test set accuracy. We combine these selectors with
3 evidence rankers: BM25, Electra-based tuned
on AmazonQA, and our best ranker (AmazonQA
+ QG + Real in Figure 1). The results are in Ta-
ble 3. The thresholds for cascade 1/2 are tuned to
maximize the p@1 on the testset.

As our best “fair” ranker, the highest-score selec-
tor performs remarkably well, with p@1 only 1%
lower than that of the best-score-based selectors. It
also outperforms the two cascade-based selectors
which prioritize official and high-precision sources.
This implies the the prediction scores across differ-

2By continuing to split the confidence range into more
buckets we can make an arbitarily exact approximation to the
perfect selector for the test set, but with significant over-fitting.

103

ent sources are comparable in our model, which
might be because our model is trained on a com-
bination of all sources with the same representa-
tion. For the model tuned on AmazonQA, where
evidence comes solely from the CQA source, the
highest-score selector is not as effective as the cas-
cade selectors. For all rankers, even with the best-
score-based selector, there is still a large p@1 gap
with the perfect selector, suggesting a further im-
provement must take into account evidence content,
in addition to the prediction scores.

Figure 2: Answer source distribution as the threshold changes
when using the cascade selection. Yellow line is with highest-
score selector and red line is with a perfect selector.

In Figure 2, we visualize the distribution of se-
lected sources by varying the threshold of two
cascade-based selectors. We also show the dis-
tribution by using the highest-score selector (score)
on the left. As the threshold grows, model pre-
cision first grows and then degrades, suggesting
all sources can contribute to answering product
questions. There is no single source that dominates.
Although the cascade selection strategy underper-
forms the highest-confidence selector, it provides
us with a flexible way to adjust the source distri-
bution by threshold tuning. In practice, one may
want to bias the use of information from official
providers, even with a slight reduction in precision.

4.3 Answer Generation
After selecting an evidential item from one source,
the role of answer generation is to generate a
natural-sounding answer based on both the ques-
tion and the evidence. We build our answer genera-
tor with the Bart-large model (Lewis et al., 2020).
Similar to the evidence ranker, we take a unified
approach for all sources by concatenating both the
question and the evidence together (split by the to-
ken “|”) as the model input. The model is then fine-
tuned on the collected question-evidence-answer
(q-e-a) triples. As in training the ranker, we flatten
the json structures into strings and process them in
the same way as the other sources.

Figure 3: Ablation studies of answer generation. copy evi-
dence vs separate sources/combine sources vs our best model.

Mixed sources vs split sources We experimented
with training the generative model on each individ-
ual source separately as well as mixing the training
data from all sources and training a unified model.
We measured the BLEU scores of these systems
with results shown in Figure 3, where we also in-
clude the results of directly copying the evidence.
We can see that training a unified model to han-
dle all sources improves the performance on all
sources, as is consistent with our findings in evi-
dence ranking. This is not surprising since previous
research on data-to-text has also found that text-to-
text generative models are quite robust to different
variants of input formats (Kale and Rastogi, 2020;
Chang et al., 2021). Directly copying the evidence
as the answer leads to very low BLEU scores, espe-
cially for json-formatted attributes. This indicates
we must significantly rewrite the raw evidence to
produce a natural answer.
Conditional Back-translation (CBT) In our sce-
nario, the AmazonQA contains a large amount
of q-a pairs but these do not have corresponding
evidence. We can apply a similar idea as back-
translation (Sennrich et al., 2016) but further “con-
dition” on the question. Firstly, we train an ev-
idence generator based on our annotated q-e-a
triples. The model is trained to generate the ev-
idence by taking the q-a pairs as input. We then ap-
ply the model to generate pseudo-evidence e′ from
the q−a pairs in AmazonQA. The answer generator
is then first finetuned on the pseudo q−e′−a triples
and then finetuned further on the real q − e − a
annotations. It can be considered as a “conditional”
version of back-translation where the model is ad-
ditionally conditioned on the questions. We use nu-
cleus sampling with p=0.8 to generate the evidence
e′ since the diversity of inputs is important for back-
translation (Edunov et al., 2018; Zhao et al., 2019).
The results are displayed in Table 4. We can see
that adding the conditional back-translation step
improves the BLEU score by nearly 3 points.
Noisy Self-training (NST) Self-training is an-

104

Method BLEU B-1 B-2 B-3 B-4
Copy 4.0 47.3 22.4 15.9 12.6
Bart-large 30.9 57.6 36.1 24.9 17.6
CBT 33.5 60.3 39.0 27.6 20.5
NST 32.5 59.5 37.3 26.2 19.2
NST + noise 33.2 59.8 38.0 26.9 19.9
Iteration-1 34.3 61.1 39.4 28.0 20.8
Iteration-2 34.9 61.1 39.8 28.3 21.4
Iteration-3 34.9 61.3 39.7 28.6 21.6
Iteration-4 34.7 61.3 39.8 28.5 21.3

Table 4: BLEU scores on different methods: copying the
input evidence as the answer (copy), finetuning Bart-large on
training samples (Bart-large), Bart-large + conditional back-
translation (CBT) and Bart-large + noisy self-training (NST).

other popular technique in semi-supervised learn-
ing (Scudder, 1965). It uses a trained model to
generate outputs for unlabeled data, then uses the
generated outputs as the training target. In our
scenario, however, the unlabeled input data is not
readily available since it requires positive question-
evidence pairs. We first apply the same question
generation model used for evidence ranking to cre-
ate “noisy” q′ − e pairs. The current model then
generates an answer a′ based on the q′−e pairs. We
use beam search with beam size 5 to generate the
answers as the generation quality is more important
than diversity in self-training (He et al., 2020). A
new model is then initialized from Bart-large, first
finetuned on the q′ − e− a′ triples, then finetuned
on the real training data. We also experimented
with adding noise to the input side when training
on the q′ − e − a′ triples, which has shown to be
helpful for the model robustness (He et al., 2020) 3.
As shown in Table 4, NST improves the model per-
formance by over 1 BLEU point. Adding the noise
to the input further brings slight improvement.
Iterative Training We further investigated com-
bining the proposed CBT and NST into an iterative
training pipeline. The intuition is that CBT can im-
prove the answer generator which then helps NST
to generate higher-quality pseudo answers. The
higher-quality triples from NST can in turn be used
to ‘warm up’ the evidence generator for CBT. Al-
gorithm 1 details the process. It can be considered
a variant of iterative back-translation (Hoang et al.,
2018; Chang et al., 2021) with an additional con-
dition on the question and the noisy self-training
process inserted in between. It essentially follows
a generalized EM algorithm (Shen et al., 2017; Cot-

3We apply a similar noise function as in Edunov et al.
(2018) that randomly deletes replaces a word by a filler token
with probability 0.1, then swaps words up to the range of 3.

(Inilialization) Ge = Ga = Bart-large;
for i=1 to N do

Finetune Ge on {q − a− e}real;
Generate e′ with Ge from {q − a}AmazonQA;
Finetune Ga on generated
{q − e′ − a}AmazonQA;

Finetune Ga on {q − e− a}real;
Noisy Self-training (Ga);
Generate a′ with Ga from {q′ − e}QG;
Finetune Ge on generated {q′ − a′ − e}QG;

end
Algorithm 1 (Iterative Training Process): Ge is the

evidence generator and Ga is the answer generator.

{q − a − e}real,{q − a}AmazonQA and {q′ − e}QG

indicate the data from the real annotation, AmazonQA

and question generation respectively.

Evaluated Faithfulness (%) Naturalness (%)

copied evidence - 15.44
our best 94.39 95.51

human reference 97.00 95.82

Table 5: Human evaluation results.

terell and Kreutzer, 2018; Graça et al., 2019) where
the evidence generator and the answer generator
are guaranteed to improve iteratively. We show the
results after each iteration in Table 4. As can be
seen, the iterative training pipeline further improves
generation quality. Most gains are found in the first
iteration and the model saturates at iteration 3 with
a BLEU score of 34.9.
Human Evaluation We run a human evaluation
to assess generation quality of our best generator
(iteration-3 from Table 4), human reference and the
copied evidence. We evaluate from two perspec-
tives: (1) Faithfulness: A sentence is unfaithful to
the evidence if it contains extra or contradictory
information, and (2) Naturalness: A sentence is
unnatural if it is not fluent; contains additional in-
formation that not relevant as an answer; or does
not directly reply to the question.

We show the results in Table 5. We can observe
that copying the evidence directly leads to a natu-
ralness score of only 0.15, which further confirms
that an answer generator is needed for a natural
presentation. The generations from our best model
improve the naturalness score to 0.9551 and are
faithful to the evidence in 94.39% of the cases,
only slightly lower than the human references.

4.4 Best Practices

To summarize the best practices, the attribute json
strings can be directly flattened and all sources are

105

Subjectivity of Relevance

Question: what is the snow made of?
Predicted: kind of cotton like.

Noise in Attribute Value

Question: is it dark green or brown?
Predicted: color: { value:“as shown” }

Overfit to String Match

Q: what is the length of the solder?
Predicted: coil of solder is about 1-3/4 long and ...

Uncertain Evidence

Q: can it be machine washed?
Predicted: not sure if it is machine washable.

Table 6: Common errors of evidence relevance ranking.

Number accuracy

Q: what’s the size of the house?
E: item_dimensions: {width:... height:{unit:centimeters,
normalized_value:{unit:inches, value:15.35},value:39.}}
G: The house is 10.24× 30.31× 39 inches

Hallucination when Inference needed

Q: are the dolls with it?
E: included_components:{value:“my dreamy doll-
house”}
G: Yes, it comes with a doll.

Sensitivity to typographical errors

Q: for he many players?
E: ages 7 and up, 2-12 players
G: this game is for ages 7 and up.

Table 7: Common errors of answer generations.

mixed together and trained with a single unified en-
coder. The ranker is finetuned on AmazonQA, aug-
mented data obtained by question generation and
manually annotated training data in order. Source
selection can be performed based solely on the
model confidence score and the answer generator
can be trained as in Algorithm 1.

5 Error analysis

Based on the human evaluation, we identified the
following key problems that exist in the current sys-
tem. For evidence ranking, the major problems are:
(1) subjectivity of relevance: It can be subjective
to define whether a piece of evidence is enough
to answer a given question. The model will some-
times pick a somewhat relevant piece of evidence,
even though there could be other, better options that
support a more comprehensive answer. (2) noise
in attribute value: When an attribute value con-
tains uninformative data due to the noise of data
sources, the model still may choose it based on
its attribute name. (3) overfitting to string match:
The model tends to select strings similar to the ques-

tion while ignoring their fine semantics, a common
problem from the bias to ‘shortcut learning’ of neu-
ral networks (Geirhos et al., 2020). (4) uncertain
evidence: The model ranks evidence highly, even
if this evidence is an uncertain expression. This
can be viewed as a special case of over-fitting to
string match. We show examples in Table 6. We
can attempt to alleviate errors of type 1 by provid-
ing finer-grained labels in the training data instead
of only binary signals (Gupta et al., 2019). Error
types 2 and 4 could be mitigated by data augmenta-
tion, constructing negative samples by corrupting
the attribute values or making evidence uncertain.
Error type 3 is more challenging. One possible
solution is to automatically detect spurious correla-
tions and focus the model on minor examples (Tu
et al., 2020). Nevertheless, a fundamental solution
to fully avoid Error 3 is still an open question.

For answer generation, we identify the major
problems as: (1) Number accuracy: The model
cannot fully understand the roles of numbers from
the limited training examples. (2) Hallucination
if inference is needed: when it is not possible to
generate an answer by simple rephrasing, the model
can hallucinate false information. (3) Sensitivity
to typos: The model is not robust to typos in the
question. A tiny typo can easily break the system.

We provide examples of these errors in Table 7.
Error types 1 and 3 could be alleviated through data
augmentation. We can create new samples to let the
model learn to copy numbers properly and learn to
be robust to common typos. Another way to reduce
number sensitivity could to delexicalize numbers
in the inputs, a common strategy in data to text
generation (Wen et al., 2015; Gardent et al., 2017).
Error type 2 is a challenging open problem in neu-
ral text generation. Many techniques have been
proposed such as learning latent alignment (Shen
et al., 2020), data refinement with NLU (Nie et al.,
2019), etc. These could potentially be applied to
our task, which we leave for future work.

6 Conclusion

To the best of our knowledge, this work is the first
comprehensive study of product answer generation
from heterogeneous sources including both semi-
structured attributes and unstructured text. We col-
lect a benchmark dataset with annotations for both
evidence ranking and answer generation. It will be
released to benefit relevant study. We find that the
best practice is to leverage a unified approach to

106

handle all sources of evidence together and further
experimented with a set of data augmentation tech-
niques to improve the model performance. Error
analysis is provided to illustrate common errors,
which we hope will lead to inspire future work.

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin,

and Michael Collins. 2019. Synthetic qa corpora gen-
eration with roundtrip consistency. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6168–6173.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Demberg,
and Hui Su. 2021. Neural data-to-text generation
with lm-based text augmentation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 758–768.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Ryan Cotterell and Julia Kreutzer. 2018. Explaining and
generalizing back-translation through wake-sleep.
arXiv preprint arXiv:1806.04402.

Lei Cui, Shaohan Huang, Furu Wei, Chuanqi Tan, Chao-
qun Duan, and Ming Zhou. 2017. Superagent: A
customer service chatbot for e-commerce websites.
In Proceedings of ACL 2017, System Demonstrations,
pages 97–102.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500.

Yue Feng, Zhaochun Ren, Weijie Zhao, Mingming Sun,
and Ping Li. 2021. Multi-type textual reasoning for
product-aware answer generation. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1135–1145.

Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan
Zhao, and Rui Yan. 2021. Meaningful answer gen-
eration of e-commerce question-answering. ACM
Transactions on Information Systems (TOIS), 39(2):1–
26.

Shen Gao, Zhaochun Ren, Yihong Zhao, Dongyan Zhao,
Dawei Yin, and Rui Yan. 2019. Product-aware an-
swer generation in e-commerce question-answering.
In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages
429–437.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg chal-
lenge: Generating text from rdf data. In Proceedings
of the 10th International Conference on Natural Lan-
guage Generation, pages 124–133.

Siddhant Garg, Thuy Vu, and Alessandro Moschitti.
2020. Tanda: Transfer and adapt pre-trained trans-
former models for answer sentence selection. In
AAAI.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Miguel Graça, Yunsu Kim, Julian Schamper, Shahram
Khadivi, and Hermann Ney. 2019. Generalizing
back-translation in neural machine translation. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers), pages 45–
52.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda,
Anirudha Rayasam, and Zachary C. Lipton. 2019.
Amazonqa: A review-based question answering task.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 4996–5002. International Joint Conferences on
Artificial Intelligence Organization.

Timothy J Hazen, Shehzaad Dhuliawala, and Daniel
Boies. 2019. Towards domain adaptation from lim-
ited data for question answering using deep neural
networks. arXiv preprint arXiv:1911.02655.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In International Conference on
Learning Representations.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24.

Kai Hui and Klaus Berberich. 2017. Transitivity, time
consumption, and quality of preference judgments in
crowdsourcing. In European Conference on Informa-
tion Retrieval, pages 239–251. Springer.

Kai Hui, Honglei Zhuang, Tao Chen, Zhen Qin, Jing
Lu, Dara Bahri, Ji Ma, Jai Prakash Gupta, Ci-
cero Nogueira dos Santos, Yi Tay, et al. 2022. Ed2lm:
Encoder-decoder to language model for faster docu-
ment re-ranking inference.

107

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text pre-
training for data-to-text tasks. In Proceedings of the
13th International Conference on Natural Language
Generation, pages 97–102.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2021.
Internet-augmented dialogue generation. arXiv
preprint arXiv:2107.07566.

Tuan Lai, Trung Bui, Sheng Li, and Nedim Lipka.
2018a. A simple end-to-end question answering
model for product information. In Proceedings of the
First Workshop on Economics and Natural Language
Processing, pages 38–43.

Tuan Lai, Trung Bui, and Nedim Lipka. 2020. Isa: An
intelligent shopping assistant. In Proceedings of the
1st Conference of the Asia-Pacific Chapter of the As-
sociation for Computational Linguistics and the 10th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 14–19.

Tuan Manh Lai, Trung Bui, Nedim Lipka, and Sheng
Li. 2018b. Supervised transfer learning for product
information question answering. In 2018 17th IEEE
International Conference on Machine Learning and
Applications (ICMLA), pages 1109–1114. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Julian McAuley and Alex Yang. 2016. Addressing
complex and subjective product-related queries with
customer reviews. In Proceedings of the 25th In-
ternational Conference on World Wide Web, pages
625–635.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and
Chin-Yew Lin. 2019. A simple recipe towards re-
ducing hallucination in neural surface realisation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2673–
2679.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2020.
Unified open-domain question answering with struc-
tured and unstructured knowledge. arXiv preprint
arXiv:2012.14610.

Henry Scudder. 1965. Probability of error of some
adaptive pattern-recognition machines. IEEE Trans-
actions on Information Theory, 11(3):363–371.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and Di-
etrich Klakow. 2020. Neural data-to-text generation
via jointly learning the segmentation and correspon-
dence. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7155–7165.

Xiaoyu Shen, Youssef Oualil, Clayton Greenberg, Mit-
tul Singh, and Dietrich Klakow. 2017. Estimation of
gap between current language models and human per-
formance. Proc. Interspeech 2017, pages 553–557.

Hui Su, Xiaoyu Shen, Zhou Xiao, Zheng Zhang, Ernie
Chang, Cheng Zhang, Cheng Niu, and Jie Zhou. 2020.
Moviechats: Chat like humans in a closed domain.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6605–6619.

Md Arafat Sultan, Shubham Chandel, Ramón Fernan-
dez Astudillo, and Vittorio Castelli. 2020. On the
importance of diversity in question generation for
qa. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5651–5656.

Lifu Tu, Garima Lalwani, Spandana Gella, and He He.
2020. An empirical study on robustness to spuri-
ous correlations using pre-trained language models.
Transactions of the Association for Computational
Linguistics, 8:621–633.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
hao Su, David Vandyke, and Steve J Young. 2015. Se-
mantically conditioned lstm-based natural language
generation for spoken dialogue systems. In EMNLP.

Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. Re-
view conversational reading comprehension. arXiv
preprint arXiv:1902.00821.

Qian Yu, Wai Lam, and Zihao Wang. 2018. Respond-
ing e-commerce product questions via exploiting qa
collections and reviews. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2192–2203.

Shiwei Zhang, Jey Han Lau, Xiuzhen Zhang, Jeffrey
Chan, and Cecile Paris. 2019. Discovering relevant
reviews for answering product-related queries. In
2019 IEEE International Conference on Data Mining
(ICDM), pages 1468–1473. IEEE.

Wenxuan Zhang, Qian Yu, and Wai Lam. 2020. Answer-
ing product-related questions with heterogeneous in-
formation. In Proceedings of the 1st Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing,
pages 696–705.

Yang Zhao, Xiaoyu Shen, Wei Bi, and Akiko Aizawa.
2019. Unsupervised rewriter for multi-sentence com-
pression. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2235–2240.

108

Figure 4: The ngram distribution of prefixes of questions.

A Collected Data

All our collected data have also been manually
verified to remove sample with private or offensive
information.

In Figure 4, we show the ngram distribution of
question prefixes i our collected data. As can be
seen, a large proportion of questions are boolean
questions starting with “is”, “does”, “can”, “are”,
“do” and “will”. The rest are mostly factual ques-
tions like “how many/tall/long ...” and “what ...”.
Most of them should be able to answer with a short
span since there are not many opinion questions
like “how is ...”, “why ...”.

B Instruction for Human Annotation

All annotators are based on the US. We first per-
form in-house annotation and then estimate the
time needed for each annotation. We then set the
payment to be roughly 15 USD per hour. The pay-
ment is decided based on the average payment level
in the US. All annotators are informed that their col-
lection will be made public for scientific research
according to the Amazon Mechanical Turk code
of rules. The data collection protocol has been
approved by an ethics review board.

B.1 Question Collection
Read the given product name and image, imagine
you are a customer and are recommended this prod-
uct. Write one question about it to decide whether
or not to purchase this product.

Examples of questions: is it energy efficient?
does it require a hub? can I watch sports on this
TV? will the plug work with an extension cord?

B.2 Evidence Selection

At the start of each task, the workflow application
will present a product, a question about the product
and a set of candidates which describe the prod-
uct. Your annotation task is to mark the proper
candidate that contains information to answer the
question from the attribute set. If none of the pro-
vided candidates contain the information, select
”None of the above”.

B.3 Answer Generation

Read the raised product question and provided in-
formation, write a natural, informative, complete
sentence to answer this question. If the provided
information cannot address the question, write
”none”. Make sure the answer is a natural, in-
formative and complete sentence. Do not write
short answers like ”Yes”, ”Right”, ”It is good”, etc.
Provide enough information to help the asker un-
derstand more about the question. If the provided
information can only partially answer the question,
only reply to the answerable part.

Good Examples:
question: what age range is this product designed

for?
Provided information: age_range_description:

value:”3 - 8 years
Answer: It is designed for the age range of 3 - 8

years old.
question: how many people can play at one time?
provided information: number_of_players:

value:”8
answer: It is designed for 8 players at one time.
Bad Examples:
question: what age range is this product designed

for?
Provided information: age_range_description:

value:”3 - 8 years
Answer: 3 - 8 years.
question: how many people can play at one time?
provided information: number_of_players:

value:”8
answer: 8.

C Full Results of Ranker

We show the full results of our best-performed
ranker in Table 8. As can be seen, different sources
have different accuracy score. The attribute and
bullet point source have the highest accuracy score
because the former is more structured, and the lat-
ter has a consistent writing style with only a few

109

Source MAP MRR NDCG P@1 HIT@5

Attribute 0.965 0.966 0.974 0.943 0.996
Bullet 0.935 0.935 0.952 0.890 0.993
Description 0.648 0.708 0.747 0.611 0.822
OSP 0.667 0.708 0.763 0.579 0.873
Review 0.796 0.860 0.875 0.778 0.966
CQA 0.643 0.750 0.766 0.636 0.897

Table 8: Performance of our best ranker on different sources.

sentences. User reviews also have a high accuracy
score. This might be because the candidates of re-
views are already the top ones selected by our pre-
trained ranker. Many of them are already relevant
and the negative-positive ratio is low. The model
does not have extreme difficulty in handling the
user reviews. The model performs worst on the de-
scription, OSP and CQA answer source. This might
result from the diversity of their writing styles and
the high negative-positive ratio, which increase the
difficulty. Moreover, these two sources usually
depend more on the context to interpret the evi-
dence than other sources. The text description is
extracted from the multi-media web page. Simply
extracting the text part might lose richer context
to interpret the extracted text. Similarly, the CQA
usually depends on the community question. If we
only extract a sentence from the answer, it might
contains references that is not self-contained.

D Training details

For both the generative Bart-large model and the
discriminative Electra-base model, we truncate the
total input length to 128 subword tokens and se-
lect the learing rate from [5e − 6, 1e − 5, 3e −
5, 5e − 5, 1e − 4]. The warm-up step is selected
from [5%, 10%, 20%, 50%] of the whole training
steps. For the discriminative model, we choose the
best configuration based on the F1 score on the vali-
dation set. For the generative model, we choose the
best configuration based on the perplexity on the
validation set. In the end, we set the learning rate
of Electra-base as 3e− 5 and that of Bart-large as
1e− 5. The warm-up step is set as 20% for Electra-
base and 10% for Bart-large. The batch size is set
as 64 for Electra-base and 16 for Bart-large. For
Electra-base, we measure the validation F1 score
after finishing every 1% of the whole training steps
and stop the model when the valitaion F1 score
does not increase for 30% of the whole training
steps. For Bart-large, we measure the validation

loss every 200 steps and stop the model when the
validation loss stops decreasing for 1000 steps. All
models are trained once on 8 Nvidia V100 GPUs
and the random seed is set as 42.

110

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 111 - 120
May 26, 2022 c©2022 Association for Computational Linguistics

semiPQA: A Study on Product Question Answering over Semi-structured
Data

Xiaoyu Shen, Gianni Barlacchi, Marco del Tredici, Weiwei Cheng and Adria de Gispert
1Amazon Alexa AI

{gyouu, gbarlac, mttredic, weiweic, agispert}@amazon.com

Abstract

Product question answering (PQA) aims to au-
tomatically address customer questions to im-
prove their online shopping experience. Cur-
rent research mainly focuses on finding an-
swers from either unstructured text, like prod-
uct descriptions and user reviews, or structured
knowledge bases with pre-defined schemas.
Apart from the above two sources, a lot of
product information is represented in a semi-
structured way, e.g., key-value pairs, lists, ta-
bles, json and xml files, etc. These semi-
structured data can be a valuable answer source
since they are better organized than free text,
while being easier to construct than struc-
tured knowledge bases. However, little atten-
tion has been paid to them. To fill in this
blank, here we study how to effectively incorpo-
rate semi-structured answer sources for PQA
and focus on presenting answers in a natu-
ral, fluent sentence. To this end, we present
semiPQA: a dataset to benchmark PQA over
semi-structured data. It contains 11,243 written
questions about json-formatted data covering
320 unique attribute types. Each data point
is paired with manually-annotated text that de-
scribes its contents, so that we can train a neural
answer presenter to present the data in a nat-
ural way. We provide baseline results and a
deep analysis on the successes and challenges
of leveraging semi-structured data for PQA. In
general, state-of-the-art neural models can per-
form remarkably well when dealing with seen
attribute types. For unseen attribute types, how-
ever, a noticeable drop is observed for both
answer presentation and attribute ranking.

1 Introduction

Product question answering (PQA) is playing an
increasingly important role in e-commerce plat-
forms. It is able to greatly improve the online shop-
ping experience since customers do not need to
traverse over the detailed web pages to seek infor-
mation themselves. Traditional approaches built

structured knowledge bases for product attributes
and mapped customer questions into executable
queries(Frank et al., 2007; Tapeh and Rahgozar,
2008; Hui et al., 2013; Li et al., 2019). In recent
years, with the rapid progress of large-scaled pre-
trained neural models, many research works have
achieved promising results by leveraging only un-
structured text, like product descriptions, user re-
views and community answers (Cui et al., 2017;
Gupta et al., 2019; Gao et al., 2019; Zhang et al.,
2020). Lying between these two source types, a lot
of product information is often organized in a semi-
structured form, e.g., key-value pairs, lists and ta-
bles from product web pages, json and xml files
from internal databases, etc. These semi-structured
data can be a valuable answer source since they are
better organized and more precise than free text,
while being much cheaper to maintain than struc-
tured knowledge bases. Nonetheless, few research
works have ever considered them and there is no
public available dataset for its study. This paper
aims to fill in this blank and study how to effectively
incorporate semi-structured answer sources for
PQA and present answers in a natural sentence. To
this end, we construct a dataset to benchmark this
study. It contains 11,243 product questions about
json-formatted semi-structured data 1. The data
contains 320 unique attribute types (size, material,
color, etc) spanning a diverse set of semi-structured
forms like key-value pairs, lists and hierarchies.
Each data is paired with manually annotated text
that describes its contents. Table 1 shows some
examples from the dataset. Given a question, there
are two steps we need to get an answer: (1). At-
tribute ranking: selecting the proper attribute that
contains the information to answer the question.
Modern pre-trained neural models and QA datasets
mainly focus on plain text, so they may not gen-

1As json is a standard format for storing data with arbitrary
types/schemata, other representations (such as tables or xml
files) can be easily mapped to it.

111

eralize well to ranking semi-structured attributes,
especially with limited training data. (2). Answer
presentation: presenting the answer in a fluent sen-
tence. It is not user-friendly to directly present the
semi-structured data to customers, especially for
applications like voice assistants. We apply data-
to-text generation models to convert these data into
fluent text.

For attribute ranking, we build our model
upon state-of-the-art pre-trained language mod-
els. Due to the small size of our training
data, we follow the common practice of pre-
finetuning the attribute ranker on four large-scale
QA datasets: Natural Questions (Kwiatkowski
et al., 2019), AmazonQA (McAuley and Yang,
2016), NewsQA (Trischler et al., 2017) and
Squad (Rajpurkar et al., 2016). Since these are
all based on unstructured text, we also experiment
with converting semi-structured attributes into text
before being passed to the ranker. Our results
show that text-based QA models are quite robust to
semi-structured data representations, and can rank
attributes correctly with only keyword matching
without the extra order information.

For answer presentation, we consider a question-
independent answer presenter, which is less risky
than question-dependent presentation while being
more flexible than span extraction or multi-choice
selection. We evaluate both a template-based sys-
tem and a neural sequence-to-sequence genera-
tion model. Each template is one or more sen-
tences with gaps that can be filled with pre-defined
rules (Deemter et al., 2005). However, semi-
structured data does not follow any unified schema,
so designing rules to cover all possible data forms
or unseen attributes is infeasible. Our neural gener-
ation models are initialized with Bart (Lewis et al.,
2020) and T5 (Raffel et al., 2020), two represen-
tative pretrained models for generative tasks, and
fine-tuned on a small set of annotated examples.
Compared with the template system, we show the
neural approach improves not only the fluency, but
also the faithfulness of presented answers.

Finally, we discuss and analyse the challenge
of generating factually-correct sentences without
hallucinate information, as well as the difficulty
of handling unseen attributes in both ranking and
answer presentation.

2 Dataset

The data collection contains 3 stages: semi-
structured attribute collection, text annotation and
question sourcing. This section will explain these
three stages in order then present the statistics.
Attribute Collection We obtain the semi-
structured attributes of product information from
our internal database. These attributes are aggre-
gated from different providers with varied schema.
We select 320 unique attribute types from it, filter
out information only for internal use and indica-
tor tags containing no actual information like "lan-
guage_tag", "attribute_id" etc. For each of the 320
attribute types, we randomly sample 20 products
containing such attribute from 5M products sold
in the US market (The 5M products are randomly
sampled from different categories), then extract
their attribute instances. After removing duplicate
ones, we get 3,316 unique attribute instances in the
end. We then preprocess them to lower-case all
characters, remove emojis and normalize all floats
to contain at most 2 decimals.
Text Annotation After obtaining the semi-
structured attributes, we hire annotators from Ama-
zon Mechanical Turk to write a natural sentence for
each attribute instance. We restrict to US-based an-
notators who completed > 500 tasks, out of which
more than 97% had been accepted. Before the for-
mal annotation, we did a pilot study with 100 sam-
ples. Without extra information, we find 16% of
attributes are not understandable to humans, which
indicates proper context is necessary to understand
the meanings of attributes. Therefore, we also pro-
vide the product image and title in the second round
of pilot study. By adding the extra information,
only 4% of them are not understandable. We then
continue with this setting and get all attributes an-
notated. We also remove all attributes that are not
understandable to annotators (usually those that
rely on other information to interpret), and end up
with 3,191 attribute instances annotated with their
description text.
Question Sourcing We collect questions on Me-
chanical Turk by present annotators with the image,
title and rating of the product plus one of its asso-
ciated attribute instances. Annotators are asked
to imagine themselves as potential customers, and
their task is to ask four questions about this at-
tribute, which means that the attribute contains the
information to answer their question. We explicitly
add three criteria that annotators must follow: ques-

112

Table 1: Examples of question-data-text triples in the dataset. The data features diverse forms of semi-structures like key-value
pairs, lists and hierarchies.

Question: Is the body made out of nylon?
Data (key-value): fabric_type:{ value:"Body: Nylon/spandex; cup linings:100% polyester;cup pad:100% polyurethane."}

Text: The body is made of nylon and spandex, the linings in ...
Question: What kind of devices fit in this?
Data (list): compatible_devices: {value:“apple ipad mini 4"}; {value:“apple ...

Text: The product is compatible with apple ipad mini 4, apple ipad air...
Question: Is this metal?

Data (hierarchy): blade:{material:[{value:“Plastic"}],length:[{unit:inches,value:3.0}]}
Text: The blade on this measures 3 inches and is plastic.

tion must be (1) Meaningful, having a reasonable
chance of being asked in daily shopping, and not
parroted, rigid questions like "what is the [attribute
name]"; (2) Diverse, so the three questions must not
be paraphrase each other, and (3) Answerable by
the attribute, ensuring that the attribute contains the
information to answer the questions. After getting
these questions, we lower case them and remove
duplicate questions about the same products.
Dataset Split and Statistics The dataset will be
used to train and evaluate the (1) attribute ranker
and (2) answer presenter. For both, we have two
test scenarios, one containing only seen attributes
with unseen values, and the other containing only
unseen attributes to test the model generalization
capability. For the unseen scenario, we randomly
sample 30 attribute types from all 320 types. We
sample 58 instances from them and add into the
dev set, while the rest are used as test set. For the
seen scenario, we randomly sample 440 instances
from the remaining 290 attribute types. 220 of
them are added into the dev set and the rest serve
as the test set. We use one fixed dev set contain-
ing both seen (220) attributes and unseen (58) at-
tributes. All remaining instances serve as training
set. Due to the small data size, we perform cross
validation to get more reliable results. We repeat
the above process ten times with different seeds to
get 10 different splits, then train/evaluate on them
and average the results. For each question asking
about one attribute, we treat all other attribute in-
stances belonging to the same product as negative
candidates. The candidate positive-negative ratio
is 1:17.89.

3 Attribute Ranking

Attribute ranking aims to select the proper attribute
that contains the information to answer the user-
posed question.

We start from a tf-idf baseline, which has been

shown a strong baseline for sentence matching
tasks (Arora et al., 2017). We count the frequency
based on the attribute instances on the training set.
At test time, we convert question and answer can-
didate into tf-idf vectors based on the counted fre-
quency, then compute their cosine similarity as the
ranking score.

Following the common practice, we also tried
concatenating the question and candidate attribute
into one sequence then feeding into the Roberta-
base encoder (Liu et al., 2019), a Transformer-
based neural model pretrained on billions of text.
The final classifier is built on top of the represen-
tation of the first [CLS] token. The multi self-
attention layers of the encoder makes sure each
token is able to interact with all other tokens to
capture the dependency relations. The model is
trained to maximize the likelihood of the positive
candidates and minimize that of the negative candi-
dates. As for the input form of the semi-structured
attribute, we experimented with 5 forms: (1) name-
only: only use the attribute name as input. (2)
value-only: only use the attribute value as input.
(3) linearized: use the linearized json which con-
catenates the attribute name and value as input. (4)
template: use the template system to generate its
corresponding text, then use the generated text as
input. (5) neural: use the neural generator to gen-
erate its corresponding text, then use the generated
text as input.

Due to the limited size of our training data, we
follow a two-step setting (Garg et al., 2020) where
the Roberta-base model is first fine-tuned on a large-
scale QA dataset, then fine-tuned on our semiPQA
training data. This has been shown to improve
performance in the low-resource setting (Hazen
et al., 2019; Garg et al., 2020). We consider 4
datasets: (1) NQ: the Google Natural Questions
dataset. We use its sentence selection version (Garg
et al., 2020), where its negative samples are cate-

113

gorized into 4 classes to improve the robustness
of the model. It contains 61,186 questions from
the Google queries for training. (2) AmazonQA:
QA pairs from the Amazon community QA web-
site (Gupta et al., 2019). We remove answers con-
taining “I don’t know", “I’m not sure" etc, and
filter questions more than 32 words and answers
more than 64 words. Negative candidates are an-
swers about different questions under the same
product. It contains 1,065,407 community ques-
tions for training. (3) NewsQA: QAs about news
articles (Trischler et al., 2017). We convert it into
sentence selection and drop the span label. For
each question, we sample 5 negative sentences not
labeled as correct for training. The training dataset
contains 75,473 questions. (4) Squad: QAs about
wikipedia paragraphs (Rajpurkar et al., 2016). We
treat sentences containing the ground-truth span as
positive and other sentences in the same paragraph
as negative. The training dataset contains 87,599
questions. Notably, all answers in the above 4
datasets are in form of unstructured sentences..

We analyzed the performance under three set-
tings: (1) zeroshot where the model is applied di-
rectly to the testsets without using our training data,
(2) performance on seen attributes after finetuning
on the training data and (2) performance on unseen
attributes after finetuning on the training data 2.
Precision@1 results are shown in Figure 1. We
also computed other metrics like MAP, MRR and
HIT@5, but they show a similar trend and are omit-
ted for space limit.
Zeroshot Performance The zeroshot results are
visualized in the upper part of Figure 1, where we
apply the rankers finetuned on different datasets
to directly test on our data. As can be seen, when
only the attribute name or value is available, the
performance is significantly lower than the others,
both for neural models and the tf-idf baseline. This
suggests we need information from both the at-
tribute name and value to rank attributes properly.
Neither of them are sufficient by its own. Neural
models finetuned on unstructured text can gener-
ally adapt well to semi-structured data (linerized
form), except for the one finetuned on NQ which
performs poorly compared with others. One rea-
son could be that the negative samples from NQ
are finer-grained. It must learn to differentiate be-
tween sentences containing correct answer spans

2In the zeroshot setting, we only evaluate on the seen
attribute split since there is no concept of "seen" or "unseen"
for zeroshot evaluation.

Figure 1: p@1 in zeroshot/finetuned settings.

but talking about irrelevant things, and correct sen-
tences. Therefore, it must rely on the sentence
structure to infer the meaning and decide whether
it is relevant or not (Garg et al., 2020). When di-
rectly tested on semi-structured jsons, it cannot
easily interpret non-natural sentences. When fine-
tuned on other datasets like NewsQA, AmazonQA
and Squad, negative samples are randomly sam-
pled and hardly contain the correct answer span,
so the model might only rely on span detection
and do not need well-formed sentences. Using
template-generated text leads to the best zeroshot
performance for all models, next come the neural-
generated text and linearized json which perform
slightly worse. Among all datasets used for finetun-
ing, AmazonQA adapts best for all input formats.
This is not surprising considering that it is also
about product questions and has the largest data
size for finetuning.
Finetuned Performance on Seen Attributes The
finetuned results on seen attributes is visualized
in the middle of Figure 1. "Roberta" indicates
the model is initialized with the Roberta-based
checkpoint without being finetuned on any other
QA datasets in advance. "NQ" indicates that the
Roberta-based model is first finetuned on NQ, then
finetuned on our training data, same for "Ama-
zonQA", "NewsQA" and "Squad". Similarly to the
zeroshot setting, using only the attribute name or

114

Figure 2: p@1 with varying input formats.

value leads to significantly worse results, although
attribute names seem to be more important when
finetuning on the training data. Using the linearized
json format and the template-generated text have
the best overall performance, achieving a precision
score of over 85%. Using more natural and flu-
ent text does not help the ranking performance on
seen attributes. Although neural generated text are
of higher-quality according to human evaluations
(to be shown in Section 4), this does not make the
ranking task easier and leads to performance drop,
suggesting that presentation is not a requirement
for ranking and can be addressed separately. Pre-
finetuning on large-scale text-based QA datasets
also does not help the performance on seen at-
tributes, as the Roberta result already achieves sim-
ilar performance. The model is able to quickly
learn the correspondence between questions and
seen attributes even with the limited training data.

Finetuned Performance on Unseen Attributes In
the bottom of Figure 1, we show the finetuned per-
formance when testing on unseen attributes. As
expected, a significant performance drop is ob-
served for all models, especially when using at-
tribute names only as this is mostly equivalent to
classification over unseen labels. Using neural-
generated text as input achieves the best perfor-
mance in all settings. We hypothesise that the
neural-generated texts are less rigid and more di-
verse than template-generated or linearised json
data, which prevents the model from overfitting.

Finetuning from Roberta directly performs the
worst on average, and finetuning first on Ama-
zonQA generally leads to a smaller performance
drop with respect to seen attributes. The large
amount of questions in AmazonQA, though not
helpful for seen attributes, do improve the model
robustness over unseen attributes.
Analysis As shown above, directly using the lin-
earized json format performs well in the zeroshot
setting, which indicates that models finetuned on
QA datasets are able to learn to generalize to the
json format when finetuning on the sentence format.
To investigate this surprising finding, we perform
an ablation study in the following settings:

1. Remove all quotation marks plus curly braces
from the json.

2. On top of (1), further remove all colons from
the json.

3. On top of (2), further shuffle the word order
in json.

By gradually removing the structural features of
the representation, we aim to evaluate whether the
model needs this json structure for attribute ranking.
The zeroshot p@1 scores obtained are reported in
Figure 2. We also do the same to text generated
from the template and neural models.

As can be seen, removing the json structure does
not have a great effect on performance. Even after
shuffling the word orders completely, the perfor-
mance drop is within 5% for most models. How-
ever, removing either the attribute name or value
does lead to significant performance drops, which
indicates that the model relies more on semantic
matching against both attribute name and value
for prediction, rather than on the structure or word
order information.

Finally, the bottom figure shows that in the ze-
roshot setting, shuffling the word order reduces
the performance for both the linearized, template
and neural format. The drop is more for template
and neural format but less for the linearized json
format. This implies the pretrained QA models
are more sensitive to word orders in the sentence
format than the structured json format. When fine-
tuned on the training data, however, word orders
loses importance. Interestingly, when testing on
unseen attribute, shuffling the word order even im-
proves model performance. This further confirmed
that for this task, the model does not need to rely on

115

the word order to make predictions, shuffling the
word order can even improve the model robustness
on generalizing to unseen attributes.

4 Answer Presentation

The first approach we consider for answer presen-
tation is to use handcrafted templates. However,
defining a perfect template for each attribute is chal-
lenging due to the lack of a standard schema and
templates cannot scale to unseen attributes. With
this concern, we also experiment with training a
neural data-to-text generator trained with annotated
text as the target.
Template System When designing the template
system, we aim to capture general rules across dif-
ferent attribute types so that one template can be
reusable to other similar attributes. We define each
template should contain (1) a precondition special-
izing when to apply the template, (2) one or several
corresponding text with gaps to fill, and (3) a set
of rules defining how to fill in the gaps. For exam-
ple, the following is a template defined from the
attribute type ARE_BATTERIES_REQUIRED:

Precondition: applies if the POS
tag of the attribute
name follows the pattern of
be_NOUN_VERBed.
Rule: (1) If the value is "Y" or
"yes" or "True":
output "It VERBs the NOUN".
(2) Otherwise: output "It does
not VERB the NOUN".

where VERBs and VERBed mean the third
person singular and past particle form of the
verb. For ARE_BATTERIES_REQUIRED, VERBs
would be “requires" and VERBed is “required". It
can also apply to other attribute types following
the same pattern like “is_assembly_required" and
“is_software_included".

During template construction, we maintain a
template bank starting from empty. As we see more
attribute types, we check if any template from the
bank can be applied, and if so, whether it generates
the correct text or whether we need to manually
update the template. Otherwise, we create a new
template for this attribute type. This process is re-
peated until we go over all the 320 attribute types
three times, to refine, merge and fix the template
bank and rules. After these rounds, we end up with
a total of 23 distinct templates.

Nevertheless, during the construction process,

Attribute value Text
{ value:"gas-
powered"}

The product is gas-
powered.

{ value:"batteries"} It runs on batteries.
{ value:"Manual" } This doesn’t have

power.
{ value:"NA" } This doesn’t run on

any power.

Table 2: Different instances of the attribute type
“power_source_type" and human annotated text.

we realize it is nearly impossible to devise a tem-
plate system to cover all cases well, even for the
limited 320 attribute types that we focus on. The
difficulty lies in the following two diversities in the
data: (1) linguistic diversity: The attribute values
do not follow any strict rule. They can be free text
as long as it conveys the meaning, which makes
it hard to design general rules even for a single
attribute type. (2) structural diversity: The json
format is a loose structure. The same semantic
meaning can be organized in different ways and
hierarchies. Applying one rule for different struc-
tures can easily lead to parsing errors. Table 2
shows some examples of different values for the
same attribute type. We can see that even for one
single attribute, it requires many verbalizing rules
to handle different structures and attribute values,
let alone extending the template rules to multiple
attribute types.
Neural Generator To avoid pre-defined rules and
to generalise to unseen attributes, we train a neural
generator model initialized either with Bart (Lewis
et al., 2020) or T5 (Raffel et al., 2020), two state-
of-the-art generative models pretrained on large
amount of web text with self-supervised objectives.
As input, we feed the linearized json-formatted
data 3 and the output is the annotated text.

We further normalize the numbers in both the
attribute and text to keep them in a consistent form,
to help the model learn their correspondence in the
generation task. For example, we turn forms like
“1.", “1.0" and “1.00" into 1, and normalize words
to numeric values (“one"→ “1" etc).

To minimize the changes of hallucination in the
generation, we also delexicalize words in the an-

3We also tried other input formats like flattening the hi-
erarchical structure, adding instruction prompts (Schick and
Schütze, 2020; Liu et al., 2021) etc, but did not find significant
improvements.

116

Model BLEU chrF PARENT-F1 #PARAMs Faith Cov Flu
Performance on Seen Attributes

Template - - - - 0.9612 0.9546 3.203
Reference - - - - 0.9574 0.9728 3.532
Bart-Base 0.3704 0.571 0.36445 139M - - -
Bart-Large 0.3917 0.615 0.38748 406M - - -
T5-Small 0.3267 0.542 0.33128 60M - - -
T5-Base 0.4061 0.601 0.38214 220M - - -
T5-Large 0.4060 0.616 0.40806 770M 0.9731 0.9776 3.657

T5-L (delex) 0.3911 0.604 0.39277 770M 0.9620 0.9640 3.632
Performance on Unseen Attributes

Reference - - - - 0.9401 0.8050 3.520
Bart-Base 0.3386 0.553 0.31463 139M - - -
Bart-Large 0.3541 0.586 0.33292 406M - - -
T5-Small 0.3187 0.512 0.31379 60M - - -
T5-Base 0.3293 0.544 0.33113 220M - - -
T5-Large 0.3869 0.610 0.37365 770M 0.9125 0.9231 3.610

T5-L (delex) 0.3696 0.597 0.35275 770M - - -

Table 3: Automatic Metric and human evaluation Results for Answer Presentation

notated text that match with the attribute values,
replacing them by a tag in the input attribute, a com-
mon technique used in data-to-text generation (Wen
et al., 2015; Ferreira et al., 2019; Chang et al.,
2020b,a). The tag is the linearized path from the
root node (attribute name) to the tag of the value.
For example, for the second sentence in Table 1,
the text “The product is compatible with ..." will be
delexicalized into “The product is compatible for
(concatenated) [value]." In the testing phase, after
the model decodes the delexicalized text, the tag
is then replaced to the corresponding value in the
input attribute. While this can provide the model
with a clear correspondence between input and out-
put, it also adds the risk of losing the linguistic
information like tense, singular/plural after delexi-
calization.

Automatic Evaluation For the automatic met-
rics, we report the BLEU (Papineni et al., 2002),
chrF (Popović, 2015) and PARENT-F1 (Dhingra
et al., 2019) score. The results of automatic met-
rics are shown in Table 3, where we try different
sizes of models and list their number of model
parameters (#PARAMs). Generally all the three
metrics correlate well with each other. As expected,
larger models tend to perform better than smaller
models, with a larger difference on unseen versus
seen attributes, which suggests that larger models
generalize better than smaller models on unseen
attributes. This could be because larger models
are encoded with more language knowledge, which
makes them less likely to overfit to the attributes in
the training data.

T5-large achieves the best performance across

all metrics. Therefore, we train with the delexi-
calized text as mentioned in Section 4 based on
T5-large to see if the delexicalization can improve
the performance further (T5-L (delex) in the table).
All scores are evaluated on the lexicalized text out-
put, which means that all delexicalized parts have
been replaced with the input attribute values so that
we can have a fair evaluation.

Delexicalization, unfortunately, does not help
with the performance. It lowers down the scores
over all metrics compared with directly using the
original text as the target. The reason could be that
T5 is pretrained with natural text itself. It has no
delexicalized slots in its training corpus. Therefore,
it fails to adapt well to the format of delexicalized
text. Indeed, we find that T-5 sometimes generates
text with slot names that do not exist in the input
attribute which affects its performance. For future
research, it would be interesting to see how to adapt
pretrained generative models to delexicalized text,
or even directly pretraining large-scaled generative
models on delexicalized text.

Human Evaluation We conduct a human evalua-
tion of the generated texts, focusing the following
three dimensions: (1) Faithfulness, whether the
text is faithful to the attribute (binary). (2) Cov-
erage, whether the text covers all contents in the
attribute (binary). (3) Naturalness, whether the
text is a natural sentence rather than a machine-
generated rigid one. 4-ary score from 1(rigid),
2(slightly rigid), 3(slightly natural) to 4(natural)
On seen attributes, we evaluate the T5-large and T5-
large with delexicalized text (T5-L (delex)), plus
the template system and the annotated reference.

117

Attribute From Template From T5-large
allergen_information: {
value:gluten_free }; { value:dairy_free
}

allergen warning: the product contains
gluten free,dairy free.

this product is gluten free and dairy
free.

team_name: { value:"null" } the team name of the product is null. this does not have a team name.
speaker_type: {value:"portable blue-
tooth speakers"}

the product has a portable bluetooth
speakers speaker.

this is a portable bluetooth speaker.

installation_type: value:"driver side" the product is installed using the driver
side.

this is installed on the driver side.

Table 4: Example of template-generated texts that are labeled as unfaithful.

Attribute Reference From T5-large
size_per_pearl: { value:"iphone" } it is an iphone. the product has an iphone size pearl.
switch_type: { value:"rotary switch" } this has a switch that turns. the product has a rotary switch.
target_species: { value:"Dog" } for dogs. this is for dogs.
installed_size:[{unit: un-
known_modifier, value:32.}]

its cache memory installed_size:[{unit:
unknown_modifier, value:32.}]

the product has a cache memory of 32
units.

Table 5: Example references which are labeled as unfaithful(first two rows) or unnatural (last two rows).

On unseen attributes, we only evaluate T5-large
and the reference since handcrafted templates can-
not be applied to unseen attributes at all. From each
of 10 data splits, we randomly sample 50 attributes
from it such that each model has 500 attribute-text
pairs being evaluated. Each pair is evaluated by
three annotators. The final scores are averaged
over the 500 pairs for each model. We show the
results and the agreement score among annotators
in Table 3 and Table 6 respectively.

Faithful Coverage Natur-4class Natur-2class
0.97762 0.97402 0.80499 0.92569

Table 6: Agreement Score for Answer Presentation.

Overall, the evaluation has a rather high agree-
ment score. Naturalness has the lowest agreement
since it is 4-ary. We also calculate the binary score
for naturalness by combining natural and slightly
natural into one bucket, and combining rigid and
slightly rigid into the other bucket. The agreement
score grows to over 0.92 by this means. We then
manually checked and corrected all attribute-text
pairs that do not have an agreement score of 1 for
faithfulness and coverage. For naturalness, as it is a
rather subjective metric anyway, we do not correct
it. We also manually verified the faithfulness and
coverage for the attribute nutritional_info, which
we find especially hard to be evaluated correctly
due to its complexity.

Overall all models have high scores on both faith-
fulness and coverage, and differences are small.
For naturalness, as expected, templates have the

lowest score. Using delexicalization underper-
forms the standard neural model, which is con-
sistent with the findings from the automatic metric
scores. We observe two interesting phenomena:
(1) Neural models outperform templates even for
faithfulness and (2) Neural models outperform hu-
man references for faithfulness and naturalness. In
Table 4 and 5, we list examples of text generated
from templates/references that are labeled as un-
faithful/unnatural to the attribute. As can be seen,
errors in template-generated texts usually occur be-
cause the templates designed for certain values do
not apply to a new value. Errors in humans refer-
ences are due to annotation noise, which is usually
inevitable. The T5 model outperforms the refer-
ence, suggesting that it is able to round up these
few annotation errors and learn the general pattern
from the most correct references.

5 Conclusion

In this work, we study how to effectively lever-
age semi-structured data for product question an-
swering. As there is no public datasets for this
problem, we collect a dataset containing manually
annotated questions together with description text
about semi-structured attributes from our internal
database. We present empirical results and findings
about two key challenges of this problem: attribute
ranking and answer presentation . Experiments
show that neural models can provide superior text
than template systems and perform well for ranking
seen attributes, albeit there is still a noticeable drop
when it comes to unseen attributes for both ranking

118

and generation.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A

simple but tough-to-beat baseline for sentence embed-
dings. In 5th International Conference on Learning
Representations, ICLR 2017.

Ernie Chang, David Ifeoluwa Adelani, Xiaoyu Shen,
and Vera Demberg. 2020a. Unsupervised pidgin text
generation by pivoting english data and self-training.
arXiv preprint arXiv:2003.08272.

Ernie Chang, Jeriah Caplinger, Alex Marin, Xiaoyu
Shen, and Vera Demberg. 2020b. Dart: A lightweight
quality-suggestive data-to-text annotation tool. In
Proceedings of the 28th International Conference on
Computational Linguistics: System Demonstrations,
pages 12–17.

Lei Cui, Shaohan Huang, Furu Wei, Chuanqi Tan, Chao-
qun Duan, and Ming Zhou. 2017. Superagent: A
customer service chatbot for e-commerce websites.
In Proceedings of ACL 2017, System Demonstrations,
pages 97–102.

Kees van Deemter, Mariët Theune, and Emiel Krahmer.
2005. Real versus template-based natural language
generation: A false opposition? Computational lin-
guistics, 31(1):15–24.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 552–562.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans
Uszkoreit, Berthold Crysmann, Brigitte Jörg, and Ul-
rich Schäfer. 2007. Question answering from struc-
tured knowledge sources. Journal of Applied Logic,
5(1):20–48.

Shen Gao, Zhaochun Ren, Yihong Zhao, Dongyan Zhao,
Dawei Yin, and Rui Yan. 2019. Product-aware an-
swer generation in e-commerce question-answering.
In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages
429–437.

Siddhant Garg, Thuy Vu, and Alessandro Moschitti.
2020. Tanda: Transfer and adapt pre-trained trans-
former models for answer sentence selection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7780–7788.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda,
Anirudha Rayasam, and Zachary C Lipton. 2019.
Amazonqa: A review-based question answering task.
arXiv preprint arXiv:1908.04364.

Timothy J Hazen, Shehzaad Dhuliawala, and Daniel
Boies. 2019. Towards domain adaptation from lim-
ited data for question answering using deep neural
networks. arXiv preprint arXiv:1911.02655.

Kai Hui, Bin Gao, Ben He, and Tie-jian Luo. 2013.
Sponsored search ad selection by keyword structure
analysis. In European Conference on Information
Retrieval, pages 230–241. Springer.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Feng-Lin Li, Weijia Chen, Qi Huang, and Yikun Guo.
2019. Alime kbqa: Question answering over struc-
tured knowledge for e-commerce customer service.
In China Conference on Knowledge Graph and Se-
mantic Computing, pages 136–148. Springer.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Julian McAuley and Alex Yang. 2016. Addressing
complex and subjective product-related queries with
customer reviews. In Proceedings of the 25th In-
ternational Conference on World Wide Web, pages
625–635.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Maja Popović. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages
392–395.

119

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Timo Schick and Hinrich Schütze. 2020. Few-shot text
generation with pattern-exploiting training. arXiv
preprint arXiv:2012.11926.

Ali Ghobadi Tapeh and Maseud Rahgozar. 2008. A
knowledge-based question answering system for b2c
ecommerce. Knowledge-Based Systems, 21(8):946–
950.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. Newsqa: A machine comprehension
dataset. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, pages 191–200.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically conditioned lstm-based natural language
generation for spoken dialogue systems. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1711–1721.

Wenxuan Zhang, Yang Deng, Jing Ma, and Wai Lam.
2020. Answerfact: Fact checking in product question
answering. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2407–2417.

120

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 121 - 133
May 26, 2022 c©2022 Association for Computational Linguistics

Improving Specificity in Review Response Generation
with Data-Driven Data Filtering

Tannon Kew Martin Volk
Department of Computational Linguistics,

University of Zurich
{kew,volk}@cl.uzh.ch

Abstract

Responding to online customer reviews has be-
come an essential part of successfully manag-
ing and growing a business both in e-commerce
and the hospitality and tourism sectors. Re-
cently, neural text generation methods intended
to assist authors in composing responses have
been shown to deliver highly fluent and natu-
ral looking texts. However, they also tend to
learn a strong, undesirable bias towards gener-
ating overly generic, one-size-fits-all outputs to
a wide range of inputs. While this often results
in ‘safe’, high-probability responses, there are
many practical settings in which greater speci-
ficity is preferable. In this work we examine
the task of generating more specific responses
for online reviews in the hospitality domain by
identifying generic responses in the training
data, filtering them and fine-tuning the gener-
ation model. We experiment with a range of
data-driven filtering methods and show through
automatic and human evaluation that, despite a
60% reduction in the amount of training data,
filtering helps to derive models that are capable
of generating more specific, useful responses.

1 Introduction

Sequence-to-sequence (Seq2Seq) modelling with
neural networks has proven to be an extremely pop-
ular and effective paradigm for a wide range of
conditional text generation tasks (Sutskever et al.,
2014; Vinyals and Le, 2015; Nallapati et al., 2016;
Lebret et al., 2016, etc.). More recently, the de-
velopment of large, pre-trained Seq2Seq models
(e.g. Lewis et al., 2019) has lowered the bar on the
amount of labelled in-domain data required to train
models on a particular task and still achieve highly
grammatical and fluent text. However, generative
models often tend to produce bland and generic
text, which significantly inhibits their potential util-
ity (Holtzman et al., 2020). This problem is es-
pecially prevalent in tasks with valid many-to-one
mappings, where generic outputs occur frequently

Amazing food variety for a coeliac friendly
staff and great service. Apartment ideal for
business trip maybe needs a bit updating
for a family stay. Will definitely be back for

leisure stay. Ideally situated.

Thank you for your glowing review! It is a
delight to hear that you enjoyed your

visit. We look forward to welcoming you
again in the near future.

Thank you for your great review. Our
fantastic chefs do their best to cater to all

kinds of dietary requirements. Often
creating off menu dishes when requested.
We think they do a brilliant job. We hope
to be able to impress you again with our
service next time you stay with us. Be
sure to call us direct for the best rates

available.

Response A:

Review

Response B:

Figure 1: A user-written hotel review with two poten-
tially valid responses. Response A (in blue) is a generic,
one-size-fits-all style response, while Response B (in
green) addresses and reiterates some, but not all, of the
positive points raised in the review.

in the training data; in dialogue modelling it has
been referred to as the “I don’t know” problem
(Khayrallah and Sedoc, 2021).

In this work we consider the task of automat-
ically generating responses to online hospitality
reviews. Figure 1 provides an example of the task
and presents a user-written hotel review along with
two potentially valid responses. While Response
B is highly specific, addressing the opening com-
ment of the review and the positive mention of the
service, Response A is generic. Such a response
would be applicable to a broad range of positive
reviews, highlighting the many-to-one problem.

Defining exactly what constitutes a good review
response is not straightforward. Formal require-

121

ments such as structure, style, intent and gram-
maticality are all important to consider, however,
in this work we focus on content. Popular web-
based review platforms (e.g. Google, Tripadvisor,
etc.) recommend that responses should address
topics raised in the review specifically. Such an ap-
proach is also supported by the Gricean maxims of
quantity (be informative) and relation (be relevant)
(Grice, 1975). Thus, we aim to avoid generating
generic responses such as Response A in Figure 1.
Yet, given a lack of constraints in response author-
ship, a significant portion of data that is available
from online platforms consists of generic responses
which are potentially of little benefit or even detri-
mental. In order to derive models that are capable
of producing more specific, contentful responses, it
is essential to mitigate the negative impact of these
generic responses in the training data.

A simple yet effective method for improving a
model’s performance toward a specific goal is to
increase the amount of training examples that ex-
hibit the associated target quality and decrease the
amount that do not. However, depending on the ob-
jective, this can be difficult. For example, classify-
ing an arbitrary piece of text for specificity is chal-
lenging since there is limited consensus on what
exactly constitutes specificity (Li et al., 2017b).
Nevertheless, we investigate this idea and apply
unsupervised scoring techniques to hotel review
responses that aim to indicate a text’s genericness.
Given these scores, we infer suitable thresholds and
filter out highly generic training data examples. We
find that refining the training data and using just
40% of the original training examples allows us to
derive models that are capable of producing fewer
generic review responses according to both auto-
matic metrics and human evaluation. Our code to
reproduce the data used and relevant experiments
is available on GitHub.1

2 Background and Related Work

Review Response Generation Thanks to an in-
creasing awareness of the benefits associated with
addressing online customer feedback (Proserpio
and Zervas, 2018; Li et al., 2017a), there is a grow-
ing body of literature on automated review response
generation. Previous work in this area has consid-
ered various domain applications and extended the
basic encoder-decoder architecture to incorporate

1https://github.com/ZurichNLP/
specific_hospo_respo

additional contextual information alongside a re-
view text. Zhao et al. (2019) generate responses for
product reviews on an e-commerce platform using
tabular product information as additional context,
while Gao et al. (2019a) focus on generating re-
sponses for smartphone app reviews and incorpo-
rate discrete external attribute features, such as the
review rating and app category. Kew et al. (2020)
later applied the same model to restaurant and ho-
tel reviews in English and German and showed
that extensive variability in hospitality responses
(compared to app review responses) leads to consid-
erably worse performance according to automatic
metrics.

Combating Generic Outputs Considerable
work has been dedicated to mitigating generic out-
puts in dialogue models. One popular approach is
to feed the model additional contextual information
in order to encourage more ‘contentful’ responses.
Depending on the availability of relevant data, this
might include the dialogue history (Sordoni et al.,
2015), free text from an external knowledge source
(Ghazvininejad et al., 2018; Bruyn et al., 2020),
or embedded topic signals derived from the input
query (Xing et al., 2017). Meanwhile, a number of
works have focused on improving the model archi-
tecture (Serban et al., 2016a,b; Zhao et al., 2017;
Bao et al., 2019; Gao et al., 2019b) or modifying
the decoding strategy (Baheti et al., 2018; Li et al.,
2016).

Since generic responses occur with high fre-
quency in the dialogue training data they induce a
strong, undesirable bias. Thus, it also makes sense
to tackle this problem at its source. Previous work
in this direction has aimed to remove uninforma-
tive training examples in a conditional framework
by performing comparisons between source and
target pairs (Xu et al., 2018; Csáky et al., 2019).
In contrast to dialogue data, review-response pairs
typically consist of multiple sentences, resembling
paragraphs rather than single sentences. This leads
to extensive variance in the surface form on both
the source and target side, rendering conditional
approaches less suitable. For instance, initial in-
vestigations revealed that the best-performing ap-
proach presented in Csáky et al. (2019) identifies
only 5% of hospitality review-responses as generic.
Therefore, in contrast to previous works, we set out
to identify generic responses independently of their
corresponding source texts to improve our training
data.

122

3 Methods

In order to derive models that are capable of pro-
ducing fewer generic responses, we consider re-
moving them entirely from the training data. Our
hypothesis is that generic responses seen often dur-
ing training encourage the model to learn ‘safe’ but
uninformative responses and are thus detrimental
to the model’s ability to generate more specific re-
sponses. To investigate this, we define three poten-
tial methods for scoring a text’s genericness within
a corpus, operationalising these at the word, sen-
tence and document level. We then derive suitable
thresholds for each scoring method and filter train-
ing data examples according to their genericness.
Formally, given a response text in the training cor-
pusR ∈ T , we aim to assign a numerical score S ,
indicating how uniqueR is in relation to all other
responses in the corpus.

Lexical Frequency To operationalise our scoring
techniques at the word level, we define a response
text as a bag of wordsR = {w1, w2, ..., wm}. The
frequency distribution of words in natural language
corpora tends to follow a long-tailed power law
(Zipf, 1935). We exploit this property to easily
identify words that occur with such high-frequency
that they can be considered to contribute little to no
specific information.

Following Wu et al. (2018), a response may then
be considered universal if it consists predominantly
of words whose rank in the frequency table ≥ n.
Based on this intuition, this scoring method cal-
culates the ratio of high-frequency words to less
frequent ones. Specifically for each response text,
we compute,

Slex_freq =

∑m
i=1 I(wi)

m
, (1)

where I(wi) is defined as

I(wi) =

{
1 if count(wi, T) ≥ t
0 otherwise

. (2)

In our experiments, we set a frequency threshold
t = 500 in order to capture a reasonable amount of
generic content words (e.g. ‘hotel’, ‘review’, etc.)
as well as typical stop words.

Sentence Average Considering only the occur-
rence of unigrams within a response fails to take
into account the effect of larger semantic units that
may be considered as generic phrases (e.g. person-
alised greetings, salutations, expressions of grati-
tude, etc.). Therefore, we also consider a scoring

method aimed at quantifying a response’s generic-
ness at the sentence level. To operationalise this
method, we define a response text as a bag of sen-
tences,R = {s1, s2, ..., sn}. Similar to the lexical
frequency-based score described above, given a
means of reliably identifying generic sentences, we
could simply calculate the ratio of generic to non-
generic sentences comprising a response text. How-
ever, this is less straightforward since sentences do
not share the same distributional property.

Works such as Reimers and Gurevych (2019)
and Artetxe and Schwenk (2019) demonstrate that
deep contextualised sentence representations work
well for a wide range of sentence-level semantic
textual similarity (STS) tasks. Inspired by these
works, we consider scoring a response sentence for
genericness by computing its semantic similarity
against a pool of generic example sentences G =
{g1, g2, ..., gn}.

Initial experiments showed that LSTM baseline
models exhibit a strong bias towards generating
universal responses with little specificity to the
themes raised in reviews. We gathered all response
sentences generated more than once by an earlier
model, considering them as our pool of generic
examples G, and compute the maximum similarity
for each s ∈ R as follows:

ξ(s) = max
g∈G

(cos(s, g)). (3)

Then, we compute average sentence-level gener-
icness as

Ssent_avg =
1

n

n∑

i=1

ξ(si). (4)

This method constitutes a two-step approach to
improve the training data based on outputs from a
less performant model and may be seen as similar
to the idea behind the iterative ‘data distillation’
approach presented by Li et al. (2017b). However,
unlike that work, which dealt with sentence-level
outputs and compared them directly, we compute
the final score for a response text by averaging the
genericness scores of its constituent sentences.

LM Perplexity In order to score a response text
for genericness at the document level, we rely on a
causal language model (LM) and compute the per-
plexity (PPL) of each response. Intuitively, generic
responses that occur frequently and with relatively
little variation are less surprising and should thus
receive a lower LM PPL in contrast to a highly

123

specific response. Since we do not provide the
review text as context, the LM is forced to score
the response in isolation, thus maximising surprisal
for less generic responses that contain more unex-
pected events.

To this end, we use a distilled GPT-2 model that
is fine-tuned to our domain (Radford et al., 2019;
Wolf et al., 2020) and for each training response
compute

SLM_PPL = exp(CELM,R). (5)

4 Experiments

4.1 Data Set
Our primary data set comprises a total of 500k
unique hotel review-response pairs published on
Tripadvisor2. We collected data from seven dif-
ferent countries with reviews for more than 7.5k
establishments, ranging from luxury hotels to back-
packer’s hostels and small bed-n-breakfasts. Of the
500k review-response pairs, we take approximately
90% for model training, setting aside 5% for vali-
dation purposes and the final 5% for evaluation.

In addition to investigating the proposed tech-
niques on hospitality review responses, we also
conduct a small generalisability study on a related
data set from a different domain. Specifically, we
use the mobile app review responses, originally
introduced by (Gao et al., 2019a). These review
responses were collected from the Google Play
Store and differ considerably in terms of both style
and length to those found in the hospitality do-
main (Kew et al., 2020). Table 1 provides a brief
overview of both data sets.

4.2 Training Data Filtration
After having scored each response text in the cor-
pus with the methods described in Section 3, we
inspected the distributions of the resulting scores
on the training set. Figure 2 shows the distribution
of values for each scoring method. As can be seen,
the majority of the distributions follow relatively
smooth normal distributions, with various degrees
of skew, indicating that different scorers appear to
detect different qualities. In order to make all exper-
iment runs comparable, we aim to extract the ‘best’
40% of training data examples according to each
individual scoring method. To derive appropriate
thresholds for data filtering, we inspect samples
along the range of x-axis values and align these
with the following intuitions:

2https://www.tripadvisor.com/

Domain Split Rev-resp
pairs

Sents

Hospitality
Training 450,367 5.4M
Validation 24,897 299k
Test 24,736 297k

Mobile Apps
Training 278,374 1.7M
Validation 14,602 90k
Test 15,404 95k

Table 1: Overview of the review response data sets used
in our experiments. The hospitality domain refers to
pairs collected from TripAdvisor, while the mobile app
domain refers to the data set introduced by (Gao et al.,
2019a). Numbers indicate the size of the training data
before performing targeted filtering.

(i) Lexical frequency – a higher ratio of high-
frequency words indicates more genericness,
thus lower is better;

(ii) Sentence Average – a higher score indicates
a higher degree of generic sentences within a
response, thus lower is better;

(iii) LM PPL - a lower PPL indicates less sur-
prisal, while a high PPL potentially indicates
a large degree of noise and possibly ungram-
matical text, thus a mid-range score is better.

Since we filter the training data according to each
scoring method independently, it is reasonable to
expect that there may be considerable overlap be-
tween the resulting training subsets. Figure 3 shows
that most overlap occurs between the word and
sentence-level scored subsets with 65%, while the
LM PPL filtered subset contains only 57% shared
examples.

4.3 Model Training and Inference
Our response generation models are built on top
of BART (Lewis et al., 2019), a large pre-trained
model for Seq2Seq tasks. All models are initialised
with the same BART-base model from Hugging
Face (Wolf et al., 2020), which comprises six en-
coder and six decoder layers. We fine-tuned our
models with default hyperparameters and an effec-
tive batch size of 40 for a maximum of 8 epochs.3

The best model from each training run was selected
according to ROUGE-2 performance on a 25%
sample of the validation set.

3Depending on the amount of data used, fine-tuning typi-
cally runs for two to 5 days on a single 12GB GPU.

124

Figure 2: Cumulative distribution plots for each scoring method on the training data. The shaded areas show the
‘optimal’ 40% of the training data (review-response pairs) identified by the method.

lex. freq. sent. avg. LM PPL

lex. freq.

sent. avg.

LM PPL

183885 65 57

119992 182741 57

105088 103992 181924

Figure 3: The amount of overlapping examples between
each of the three filtered training sets. Numbers in
the bottom-left show the raw counts of overlapping tar-
get texts, while the numbers in the top-right show the
amount of overlap as a rounded percentage.

For all models, inference was performed using
standard beam search with k=5 on the full test set,
i.e. no filtering is applied to the test set. As a base-
line, we use a model fine-tuned on all available
training data and compare this to the three experi-
mental systems, each fine-tuned on one of the fil-
tered training sets.

4.4 Evaluation

Evaluating short text-based conversation is inher-
ently difficult since responses are, to a large de-
gree, open-ended. For any given input sequence,
the space of potentially valid outputs is extremely
large. As a consequence, it is necessary to analyse
various characteristics of the generated texts. We
employ a selection of automatic metrics that act as
approximate but useful indicators of textual qual-
ity along multiple axes. In addition, we conduct a
human evaluation and compare model outputs in
order to measure the effect of different data filtering

methods on model performance.

4.4.1 Automatic Metrics
Reference-based Metrics Ground truth re-
sponses are unlikely to serve as reliable references
for comparison with surface-level or embedding-
based automatic metrics due to the open-ended na-
ture of the task. Despite this, and other criticisms
(Reiter and Belz, 2009), popular N-gram overlap
metrics, such as BLEU have been reported in the
relevant literature (Gao et al., 2019a; Zhao et al.,
2019). An alternative, easy-to-compute metric is
chrF (Popović, 2015), which operates on character
N-grams rather than full tokens and balances both
precision and recall. This makes it considerably
more flexible than BLEU, especially for noisy web-
based text where spelling errors are common. In
addition to reporting chrF against the ground truth
responses, we also separately compute chrF using
the corresponding input reviews as ‘stand-in’ refer-
ences. This provides an approximate measure for
specificity in model outputs.

Lexical Diversity and Range Automatically
generated review responses should exhibit a de-
cent amount of both inter- and intra-textual diver-
sity. Low inter-textual diversity implies that mod-
els repeatedly generate the same or highly similar
texts, while low intra-textual diversity indicates that
model outputs contain lexical repetitions, possibly
as a result of getting stuck in repetitive degenerate
loops (Welleck et al., 2019; Holtzman et al., 2020).

To measure inter-textual diversity, we employ
Self-BLEU (Zhu et al., 2018). This metric com-
putes for each system-generated output the BLEU
score, regarding all other system-generated outputs
as makeshift references. Thereby, it effectively
measures the amount of textual similarity in terms

125

chrF-tgt ↑ chrF-src ↑ DIST-1 ↑ Self-BLEU ↓ Uniq. ↑ Len ↑
Ground truth - 20.7 75.66 1.18 37649 80.92
Rule-based 19.7 10.1 86.44 55.19 153 35.91
Baseline 30.47 15.87 76.84 24.6 7174 59.39
Lex. freq. 33.6 20.63 74.33 15.37 11859 82.37
Sent. avg. 32.53 20.2 73.46 13.11 11858 75.69
LM PPL 32.63 21.0 74.51 4.24 13366 73.82

Table 2: Model performance under all automatic evaluation metrics considered. Values reported for all BART-based
models are averaged over three individual inference runs from models trained with different random seeds to account
for potential variation between training runs. Note, metrics reported here are multiplied by 100 where applicable for
improved readability.

of N-gram overlap between generated responses. A
higher Self-BLEU score indicates less diversity.

For intra-textual diversity, we follow Choi et al.
(2020) and use Distinct-N (Li et al., 2016). This
metric calculates the ratio of unique N-grams to
the total number of N-grams generated within a
text, taking the macro average as the final score.
Following Welleck et al. (2019), we also report
the total number of unique words generated by
a model over the entire test set. This provides a
simple indicator of a model’s lexical range.

Finally, we report the average length of gener-
ated texts to provide a rough idea of a model’s
ability to generate adequate responses under the as-
sumption that shorter responses indicate a greater
degree of genericness. Where possible, we also
compute these metrics for the human-written
ground truth responses in the test set to provide
a valuable idea of expected or appropriate values.

4.4.2 Human Evaluation
In order to assess a model’s ability to generate
fewer generic, one-size-fits-all responses on the ba-
sis of training data filtering, we conduct a human
evaluation. We sampled 200 reviews from the test
set and generated responses with all four models.
We then recruited four evaluators, all of whom are
familiar with the field of NLP, and asked two eval-
uators to rate examples 1-100 and the other two
evaluators to rate examples 101-200. The evalua-
tion schema was designed to make pairwise com-
parisons between randomly selected model out-
puts and asked judges to indicate which response
is more specific to the input review. Note that
while framing the evaluation question in this way
inverts our main aim of reducing generic responses,
it simplifies the task for the judges by encouraging
them to focus more on the content that is generated

by the model, rather than what is not. To facili-
tate decision making and allow for more nuanced
judgements, we use a continuous scale that allows
evaluators to indicate the degree to which they be-
lieve one response is better than the other (Belz
and Kow, 2011). Judges were also able to accept or
reject both responses if they were equally specific
or generic, respectively.

5 Results

Automatic Metrics Table 2 compares model per-
formance under the automatic metrics considered.
In addition to the baseline and experimental mod-
els discussed above, we also compute automatic
metrics for a naïve rule-based baseline, which sim-
ply returns a single, hand-crafted response from a
small set of candidates based on the rating associ-
ated with the input review. These are intended to
be highly generic responses that fit the context and
thus provide a useful comparison and motivation
for more complex approaches.

According to both versions of chrF, all models
trained on filtered data sets show considerable gains
over the baseline model, trained on the entirety of
the data. Specifically, chrF computed against the
true target shows smaller improvements over the
baseline, while chrF computed against the corre-
sponding source shows a relatively large improve-
ment for all experimental models, bringing the de-
gree of overlap in model outputs much more in line
with human-written responses.

DIST-1 shows that intra-textual lexical diver-
sity is consistent against the human-written re-
sponses for most models, indicating the lexical
repetitions occur within a reasonable range for this
relatively restricted domain. Thus, there is no indi-
cation that our models are getting stuck in repetitive
degenerate loops (Holtzman et al., 2020).

126

Self-BLEU reveals considerable variation
among all models in terms of the diversity between
generated responses. According to this metric,
the LM PPL filtering method ensures the most
diverse response texts, while both the rule-based
and BART baseline generate the least diverse texts
by far. Noticeably, the best scoring models are not
quite on par with the diversity of human-written
responses. However, this is to be expected given
that neural models generally stick to generating
higher-frequency words (Holtzman et al., 2020).
This phenomenon is further indicated by a large
discrepancy between the counts of unique lexical
items observed.

In terms of average response length, most mod-
els under-generate when compared to the human-
written ground truth. Here, the baseline models
fall the shortest, which may be a useful proxy in-
dicating higher genericness. Meanwhile, the mod-
els trained on the lexical frequency-filtered subset
show a tendency to generate longer responses. This
may be due to the score being directly related to
the word count of a text, despite normalisation.

Human Evaluation In analysing the results of
the human evaluation, we considered only those
examples on which two judges agreed in terms of
preference towards a particular response candidate
and acceptability. This resulted in 129 valid pair-
wise comparisons. Following recommendations
by Novikova et al. (2018), we derive the overall
model rankings using the Bayesian ranking algo-
rithm TrueSkillTM (Herbrich et al., 2007).

According to the results of our human evaluation,
all filtering methods help to improve the specificity
of model outputs, thereby reducing genericness.
Figure 4 depicts the final model rankings derived
through applying the TrueSkillTM algorithm to ac-
cepted pairwise comparisons from our evaluation.
Here, it can clearly be seen that all experimental
models outperform the baseline, with a clear ten-
dency towards filtering for genericness based on
larger semantic units, i.e. sentence or document-
level.

Taken together, the results of our automatic eval-
uation and the human evaluation strongly suggest
that fine-tuning on a filtered subset of data is bene-
ficial, reducing the model’s tendency to produce
generic responses. In particular, chrF-src and Self-
BLEU are useful indicators for gauging relative
genericness and diversity of generated texts. Table
5 in Appendix A provides some examples of the

Figure 4: Final model ranking posteriors as computed
with TrueSkillTM on 129 human evaluated pairwise com-
parisons.

responses generated by all models and how they
improve in terms of specificity to the input review.

5.1 Ablations

How much filtering is too much filtering? In
the above experiments we select thresholds for each
filtering method to retain approximately only 40%
of the original training data. Results of automatic
and human evaluations reveal that the LM PPL
method performs best on balance. To investigate
the ideal amount of filtering, we train and evalu-
ate additional models by incrementing the lower
bound of the target text LM PPL filter to train on
different quantities of data. Furthermore, we also
consider combining all filtering methods together
to train a model on only the least generic responses
according to the thresholds set in Section 4.2. The
results of these ablations are presented in Table 3.4

Comparing the results for the LM PPL filter in
isolation, we see that the largest performance gains
are achieved when training with between 40 and
80% of the total amount of data. According to
metrics used as proxies for specificity, chrF-src,
Self-BLEU and Uniq., more aggressive filtering
(e.g. 40%) works best with very little cost in terms
of chrF-tgt. Meanwhile, extremely aggressive fil-
tering (20%), leads to a large performance drop
across the board. Interestingly though, combin-
ing all filtering methods to filter aggressively has
a more positive impact, suggesting that the over-
all quality of the training data used can indeed be
further improved by considering multiple filtering
methods. That said, the relatively high Self-BLEU
score indicates that this model tends to generate
the same response to different input reviews to a
greater extent than those trained on more data.

4To reduce the computational cost of ablations, we perform
a single training run for these models with a fixed random seed.

127

chrF-tgt ↑ chrF-src ↑ DIST-1 ↑ Self-BLEU ↓ Uniq. ↑ Len ↑
20% 27.0 15.3 74.39 31.21 7449 50.46
40% 32.7 21.1 74.54 4.49 13548 73.31
60% 32.8 19.6 74.55 8.08 11405 71.73
80% 32.9 18.9 74.68 12.67 8615 72.96
100% 30.5 15.8 76.95 27.1 7273 59.09

ALL 15% 33.3 22.7 72.29 18.19 14374 83.48

Table 3: Results of ablation runs investigating a) performance as a function of the percentage of data filtered using
LM PPL and b) performance as a result of combining all filtering methods with the thresholds shown in Figure 2
and training on only the ‘best’ 15% of the data.

chrF-tgt ↑ chrF-src ↑ DIST-1 ↑ Self-BLEU ↓ Uniq. ↑ Len ↑
20% 26.0 18.0 83.76 0.31 2362 40.12
40% 29.8 17.5 81.98 1.56 2111 45.04
60% 32.3 16.7 80.91 1.47 1978 49.53
80% 33.5 15.8 80.34 2.72 1545 50.65
100% 35.5 15.5 79.04 2.41 1459 53.67

Table 4: LM PPL filtering at varying thresholds for mo-
bile app review response generation (Gao et al., 2019a).

Generalisability Targeted data filtering is effec-
tive for reducing genericness in hospitality review
response generation. To investigate whether such
an approach generalises to other domains we also
consider applying our best performing filtering
method to the related task of mobile app review
response generation using the data set presented
in Gao et al. (2019a). Following the LM PPL ap-
proach described in Section 3, we again experiment
with a range of thresholds for filtering both low-
PPL and overly high-PPL responses from training
data. Table 4 shows that targeted filtering in this do-
main also leads to increased specificity according
to automatic metrics used as proxies for measuring
genericness.

Are there any side effects? Encouraging a
model to consistently produce fewer generic out-
puts may also have potential side effects. For exam-
ple, it is possible that this could lead to an increase
in hallucinated content that is unsupported by the
input and thus may be factually incorrect or mis-
leading. To investigate whether or not the proposed
approach compromises the generated outputs in
this way, we search for candidate hallucinations
in the generated responses and compare their oc-
currence frequencies to the reference texts and the
outputs from the baseline model.

As candidates, we consider named entities,
which generally constitute common hallucination
errors (Dziri et al., 2021) and mentions of reno-

Figure 5: Left: averaged occurrences of named entities
in responses that do not appear in the corresponding
input review. Right: total occurrences of the stems
‘renovat’ and ‘refurbish’ in responses texts.

vations or refurbishments. The latter is observed
frequently in hotel review responses as a suitable
reply to a criticism about outdated infrastructure
or decor. Naturally, the models themselves have
no knowledge of whether renovations are planned,
so a conservative approach would be to consider
all generated responses that mention renovations
as hallucinations.

First, we searched review-response pairs for
named entities and computed the amount of named
entities in the response that do not appear in the
corresponding review and are thus ‘unsupported’.5

On the left of Figure 5, we can see that unsupported
named entities occur more frequently in the experi-
mental models in contrast to the baseline. Second,
we counted occurrences of the stems ‘renovat’ and
‘refurbish’ in all response texts. On the right of
Figure 5, we can see that all experimental models
are guilty of over-producing claims involving reno-
vations or refurbishments and thus could be at risk
of generating more factually incorrect claims.

5For identifying named entities, we used spaCy (https:
//spacy.io/).

128

5.2 Discussion and Future Work

Based on the observations from the previous sec-
tions, it is clear filtering uninformative instances
from the training data is an effective approach to
reduce genericness in model outputs for response
generation. However, it does not come without risk.
Our analysis revealed that generated responses tend
to contain more hallucinated content. Thus, further
work is required to mitigate this and better ensure
the factual accuracy of generated outputs.

While removing generic training examples is ef-
fective at reducing unwanted predictive biases, it
does not provide any means to steer the amount
of genericness. In certain application scenarios, it
may be more desirable to be able to control the
degree of genericness at inference time in order
to handle difficult or ambiguous cases (Li et al.,
2017b). To this end, our methods for quantifying
textual genericness, might also be used to derive
categorical labels for training examples that are
provided to the model in order to be able to steer
the generation appropriately at inference time (Fil-
ippova, 2020; Martin et al., 2020). We leave a
detailed investigation in this direction for future
work.

We also acknowledge that there is a considerable
risk in deploying fully automatic review response
generation in online settings. The societal impacts
of computer-generated language are still relatively
unknown and thus it is unclear what effects such
an application may have on customer satisfaction
and business-customer relations in e-commerce and
online settings. This work is intended to support
response authors in improving their efficiency and
extending the capabilities.

6 Conclusion

State-of-the-art approaches to conditional text gen-
eration involving transfer learning can be adapted
to perform a wide range of domain-specific tasks
with strong and convincing results. However, the
content and quality of a model’s outputs largely re-
flect that of the in-domain data used for fine-tuning.
Thus, care should be taken when deciding which
data to use for training. In this paper we presented
three unconditional scoring techniques for identi-
fying and filtering generic responses in a parallel
corpus of review-response pairs. Results of both
automatic and human evaluation revealed that this
is an effective approach for helping to reduce the
production of generic, one-size-fits-all outputs for

review response generation in the hospitality do-
main, as well as for mobile app reviews. We have
also shown that such an approach has potential side
effects that must be handled appropriately before
being utilised in a real-world scenario.

Acknowledgements

This work was partially supported by the Swiss In-
novation Agency InnoSuisse as part of the ReAdvi-
sor project (project number 38943.1 IP-ICT) under
the direction of Sarah Ebling. We would like to
thank Jannis Vamvas, Janis Goldzycher, Nicolas
Spring and Noëmi Aepli for their assistance with
conducting evaluations and Chantal Amrhein and
Rico Sennrich for their valuable feedback. We also
thank the anonymous reviewers for their helpful
and constructive comments.

References
Mikel Artetxe and Holger Schwenk. 2019. Mas-

sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transactions
of the Association for Computational Linguistics,
7:597–610.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan.
2018. Generating More Interesting Responses in
Neural Conversation Models with Distributional Con-
straints. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3970–3980, Brussels, Belgium. Association
for Computational Linguistics.

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng
Wang. 2019. PLATO: Pre-trained dialogue gener-
ation model with discrete latent variable. arXiv
preprint arXiv:1910.07931.

Anja Belz and Eric Kow. 2011. Discrete vs. Contin-
uous rating scales for language evaluation in NLP.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 230–235, Portland,
Oregon, USA.

M. D. Bruyn, E. Lotfi, Jeska Buhmann, and W. Daele-
mans. 2020. BART for knowledge grounded conver-
sations. In Converse@KDD.

Byung-Ju Choi, Jimin Hong, David Keetae Park, and
Sang Wan Lee. 2020. F2̂-Softmax: Diversifying
Neural Text Generation via Frequency Factorized
Softmax. arXiv:2009.09417 [cs].

Richárd Csáky, Patrik Purgai, and Gábor Recski.
2019. Improving neural conversational models with
entropy-based data filtering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5650–5669, Florence, Italy.
Association for Computational Linguistics.

129

Nouha Dziri, Andrea Madotto, Osmar Zaiane, and
Avishek Joey Bose. 2021. Neural Path Hunter: Re-
ducing Hallucination in Dialogue Systems via Path
Grounding. arXiv:2104.08455 [cs].

Katja Filippova. 2020. Controlled Hallucinations:
Learning to Generate Faithfully from Noisy Data.
arXiv:2010.05873 [cs].

Cuiyun Gao, Jichuan Zeng, Xin Xia, David Lo,
Michael R. Lyu, and Irwin King. 2019a. Automat-
ing App Review Response Generation. In 2019 34th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 163–175, San
Diego, USA. IEEE.

Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett,
Michel Galley, Jianfeng Gao, and Bill Dolan. 2019b.
Jointly Optimizing Diversity and Relevance in Neural
Response Generation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 1229–1238, Minneapolis, USA.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
pages 5110–5117, New Orleans, USA.

Herbert P Grice. 1975. Logic and conversation. In
Speech Acts, pages 41–58. Brill.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2007.
TrueSkill(TM): A bayesian skill rating system. In
Advances in Neural Information Processing Systems
20, pages 569–576. MIT Press.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural Text
Degeneration. arXiv:1904.09751 [cs].

Tannon Kew, Michael Amsler, and Sarah Ebling. 2020.
Benchmarking Automated Review Response Gener-
ation for the Hospitality Domain. In Proceedings
of Workshop on Natural Language Processing in E-
Commerce, pages 43–52, Barcelona, Spain. Associa-
tion for Computational Linguistics.

Huda Khayrallah and João Sedoc. 2021. Measuring the
‘I don’t know’ Problem through the Lens of Gricean
Quantity. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5659–5670, Online.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. BART:
Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Com-
prehension. arXiv:1910.13461 [cs, stat].

Chunyu Li, Geng Cui, and Ling Peng. 2017a. The
signaling effect of management response in engaging
customers: A study of the hotel industry. Tourism
Management, 62:42–53.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A Diversity-Promoting Ob-
jective Function for Neural Conversation Models.
arXiv:1510.03055 [cs].

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017b. Data
Distillation for Controlling Specificity in Dialogue
Generation. arXiv:1702.06703 [cs].

Louis Martin, Éric de la Clergerie, Benoît Sagot, and An-
toine Bordes. 2020. Controllable sentence simplifica-
tion. In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4689–4698, Mar-
seille, France. European Language Resources Asso-
ciation.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gu̇lçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2018. RankME: Reliable human ratings for natural
language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 72–78, New Orleans, Louisiana. Association
for Computational Linguistics.

Maja Popović. 2015. chrF: Character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Davide Proserpio and Giorgos Zervas. 2018. Study:
Replying to Customer Reviews Results in Better Rat-
ings. Harvard Business Review.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners. Ope-
nAI Blog, 1(8).

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

130

Ehud Reiter and Anja Belz. 2009. An Investigation
into the Validity of Some Metrics for Automatically
Evaluating Natural Language Generation Systems.
Computational Linguistics, 35(4):529–558.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016a. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelli-
gence, AAAI’16, pages 3776–3783, Phoenix, Ari-
zona. AAAI Press.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2016b. A Hierarchical Latent Vari-
able Encoder-Decoder Model for Generating Dia-
logues. arXiv:1605.06069 [cs].

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A Neu-
ral Network Approach to Context-Sensitive Genera-
tion of Conversational Responses. arXiv:1506.06714
[cs].

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
arXiv:1409.3215 [cs].

Oriol Vinyals and Quoc Le. 2015. A Neural Conversa-
tional Model. arXiv:1506.05869 [cs].

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily
Dinan, Kyunghyun Cho, and Jason Weston. 2019.
Neural Text Generation with Unlikelihood Training.
arXiv:1908.04319 [cs, stat].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing. arXiv:1910.03771 [cs].

Bowen Wu, Nan Jiang, Zhifeng Gao, Suke Li, Wenge
Rong, and Baoxun Wang. 2018. Why do neural
response generation models prefer universal replies?
CoRR, abs/1808.09187.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic Aware
Neural Response Generation. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, San Francisco, USA.

Xinnuo Xu, Ondřej Dušek, Ioannis Konstas, and Ver-
ena Rieser. 2018. Better conversations by modeling,
filtering, and optimizing for coherence and diversity.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3981–3991, Brussels, Belgium. Association for Com-
putational Linguistics.

Lujun Zhao, Kaisong Song, Changlong Sun, Qi Zhang,
Xuanjing Huang, and Xiaozhong Liu. 2019. Review
Response Generation in E-Commerce Platforms with
External Product Information. In The World Wide
Web Conference on - WWW ’19, pages 2425–2435,
San Francisco, CA, USA. ACM Press.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 2017.
Learning Discourse-level Diversity for Neural Dialog
Models using Conditional Variational Autoencoders.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 654–664, Vancouver, Canada.
Association for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
Benchmarking Platform for Text Generation Models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
pages 1097–1100, Ann Arbor MI USA. ACM.

George Kingsley Zipf. 1935. The psycho-biology of
language. In Indogermanische Forschungen.

131

A Example Outputs

Review rating: 4 stars

Review

Basic clean & lovely We stayed here whilst doing a road trip between the snowy mountains and Canberra.
After doing the caves and coming through Talbingo (beautiful countryside) we were deciding whether to stay
in Tumut or Yass or Gundagai. Gundagai had more choices avail. We chose **** due to $ location. There
are 3 tiers of accom. Budget $89 basic. Upstairs w a bed shower and a v v tiny tv. Middle +$30 for ground
level bigger room and Spa room for $more again. We chose basic as it was 1 night. It was clean. Shower
pressure good and comfortable bed. All u need. Wifi didn’t happen. Reception was fine. If u don’t need
large tv and wifi go basic and stay. If u want/need more this wouldn’t be the place for you.

Ground truth
Thank you **** for your comments. Our upstairs rooms are small compact rooms and are well priced for
the size of room and location (1/2 way between Sydney & Melbourne) downstairs rooms are much more
roomy with large flatscreen TV’s, parking at the door, spacious bathrooms and of a deluxe standard - worth
the extra price for more comfort.

Baseline Thank you for taking the time to write a review. We are glad you enjoyed your stay with us.

Lex. freq.
Thank you for taking the time to write a review. We are glad that you enjoyed your stay with us. We do offer
a range of accommodation options to suit all budgets. Our budget rooms are priced at $89 per night for a
standard room and $89 for a superior room. We also offer a variety of room types to suit different needs. We
hope to see you again in the future.

Sent. avg.
Thank you for taking the time to write a review of your stay with us at ****. We are sorry to hear that you
did not enjoy your stay and that you found the TV to be small. We do have a number of larger TV’s in the
rooms and we are currently in the process of upgrading them. We hope to see you again in Gundagai.

LM PPL
Thank you for taking the time to write a review. We are glad that you enjoyed your stay with us and found
the rooms clean, comfortable and clean. We do offer a range of accommodation at **** and we are sorry
that you were not able to experience this during your stay. We hope you enjoyed the rest of your road trip.

Review rating: 3 stars

Review I frequent this hotel for business Rooms are nice. Great location. Staff should be drug tested. They have
some employees that wreak of marijuana... probably will take my business elsewhere. Bye bye. Just say no!
This was not an isolated incident.

Ground truth Thank you for taking the time to comment and I will look into your comments. I am sorry you may take your
business elsewhere.

Baseline
Dear Valued Guest, Thank you for taking the time out of your schedule to complete our Guest Survey
regarding your recent stay at our hotel. Please know that your feedback is extremely valuable to us and we
will utilize your response by continuing to focus on making each and every guest experience the best it can
be. We hope to be of service to you in the future. ...

Lex. freq.
Thank you for taking the time to complete our guest survey about your recent experience at ****. Your
feedback is critical to our continued improvement and success! We hope you will come back and stay with us
again soon. Please contact me personally to arrange your next visit so I can ensure your next stay is nothing
less than exceptional. ...

Sent. avg.
Dear Valued Guest, Thank you for taking the time to write a review about your recent stay at ****. I am
sorry to hear that your stay was not a pleasant one. We take the cleanliness and safety of our guests very
seriously. I have shared your comments with our staff to ensure that this does not happen again in the future.
Again, thank you for your review and we hope to see you in the near future. ...

LM PPL

Dear Valued Guest, Thank you for taking the time to provide us with your feedback from your recent stay at
****, a very good place to be. We are happy to hear that you found our rooms to be nice and our location
to be great. However, we are very sorry to hear about the incident that occurred during your stay with us.
We take the safety and security of all of our guests very seriously and we will be following up with the
appropriate departments to ensure this does not happen again. We hope to have the opportunity to welcome
you back in the future. ...

Table 5: Example model outputs for reviews of various user ratings (continued on next page). Coloured passages in
the responses indicate content that addresses aspects of the input review specifically. We also italicise potentially
hallucinated content, which is unsupported by the source text. Note, bold text prefixing a review indicates the
review’s title. Personalised greetings and salutations are truncated from the response texts, as indicated with ellipsis.
Similarly, identifiable information such as personal names and establishment names are anonymised with ****.

132

Review rating: 2 stars

Review
Good for location only. Disappointing overall Location is great but room faced trash bins and was loud.
Also, room was very tiny and looked dated. Windows were tough to close and no air circulation other than
the portable fan. Bathroom was hard to even walk in and out of.

Ground truth We appreciate you taking the time to offer us feedback on your stay. Please allow me to apologise that you
did not enjoy your experience on this occasion. ...

Baseline Thank you for taking the time to write a review. We are sorry to hear that you did not enjoy your stay with us.
We hope that you will consider staying with us again in the future.

Lex. freq.

Thank you for taking the time to provide us with a review based on your last experience with us. I would like
to apologize if you felt as though we had fallen short of your expectations - please allow me to express my
sincerest apologies. We are in the midst of a multi-year renovation project that will touch every corner of our
hotel - we hope to warmly welcome you back soon for a stay that is uniquely memorable for all the right
reasons.

Sent. avg.
Thank you for taking the time to write a review about your recent stay with us. I am sorry to hear that you
did not enjoy your stay. We are in the process of renovating our rooms and hope to have this completed by
the end of the year. I hope that you will give us another opportunity to show you that your unsatisfactory stay
was an exception. If I can be of any further assistance, please do not hesitate to contact me directly.

LM PPL

Thank you for taking the time to provide a review based on your last experience with us. We would like
to apologize for falling short of not only meeting your expectations, but ours as well. It is only through
feedback such as yours that we are able to maintain and indeed, where necessary, improve upon the service
we provide to our valued guests. We hope to warmly welcome you back soon for a stay that you are most
contented with.

Review rating: 1 star

Review

False advertising? Due to the favorable reviews on the Internet we have booked family room (2 rooms
with door in between). When we walked in after a full day of driving we were tempted to leave the rooms
and continue the trip, as everything but location was disappointing. Rooms were dusty (particularly carpet)
and not refurbished for more than 30 years. Beds were short (not king size), uncomfortable and with cheap
pillow. Almost every piece of furniture was chipped and broken, bathroom doors couldn’t be closed properly,
Shower head was falling down. TV reception was terrible. Acoustic insulation was inappropriate. Photo on
the Internet is not the proper representation of the motel; I almost took photos to put it on the Internet to
show how our rooms looked like. Do not be tempted to come to this nominally 3 star motel. I personally
wouldn’t give it a single star.

Ground truth

We appreciate all feed back from customers good and bad, and thankyou for taking the time to review. This is
the 1st time we have had such a review and feel just a few points should be made. We do not cater for Familys
, groups or people under 40 years old, thus the Golden Chain logo, Senior logo and the fact there is nowhere
to add children to any internet booking. When presented with a Family as occainionally does happen we
open 2 large double rooms with 2 bathrooms 2 lounge rooms and 2 balconies with 100% waterview over
****. and full breakfast for 5 delived to your room for $129 per night. All but these two rooms are Theme
rooms completed early 2010 with artworks and decoration valued at $20,000 per room. The risk of damage
is too high to have children at the motel. Not all guests like our contingency plan however I beleive it is fair.
That said we will look at a standard renovation for these rooms.

Baseline Thank you for taking the time to write a review. We are sorry to hear that you did not enjoy your stay with us.
We have taken all your comments on board and are currently in the process of refurbishing our rooms. We
hope that you will consider staying with us again in the future.

Lex. freq.

Thank you for taking the time to write a review. We are sorry to hear that you did not enjoy your stay with
us. We do not advertise that we are a 3 star motel, but we do have a very high standard of cleanliness and
customer service. Our rooms are cleaned on a regular basis, and we have never had any issues with any
of our carpets. All of our rooms have been refurbished over the past 3 years, and our rooms are regularly
inspected by our housekeeping team. We have also recently replaced all of our beds, and are currently in the
process of replacing all of the furniture in our rooms...

Sent. avg.

Thank you for taking the time to write a review. We are sorry to hear that you did not enjoy your stay with us.
We do have a wide range of room types to suit all budgets and requirements. We have a variety of different
room types available to suit different needs and budgets. All of our rooms have been refurbished over the last
2 years and we are sorry that you found the room to be dusty. We would have been more than happy to move
you to a different room had we been made aware of your concerns...

LM PPL

Thank you for taking the time to write your review. We are sorry to hear that you did not enjoy your stay
with us. Our rooms are cleaned to a very high standard and we are sorry that you found the carpet dusty
and uncomfortable. The carpets in the rooms have been replaced over the last couple of years and we have
not received any complaints about the carpet in the room you stayed in. We have not had any complaints
regarding the TV reception or the shower head. We would have been more than happy to move you to
another room if you had let us know of your dissatisfaction.

133

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 134 - 140
May 26, 2022 c©2022 Association for Computational Linguistics

Extreme Multi-Label Classification with Label Masking
for Product Attribute Value Extraction

Wei-Te Chen Yandi Xia Keiji Shinzato
Rakuten Institute of Technology,

Rakuten Group Inc.
{weite.chen, yandi.xia, keiji.shinzato}@rakuten.com

Abstract

Although most studies have treated attribute
value extraction (AVE) as named entity recog-
nition, these approaches are not practical in
real-world e-commerce platforms because they
perform poorly, and require canonicalization
of extracted values. Furthermore, since val-
ues needed for actual services is static in many
attributes, extraction of new values is not al-
ways necessary. Given the above, we formal-
ize AVE as extreme multi-label classification
(XMC). A major problem in solving AVE as
XMC is that the distribution between positive
and negative labels for products is heavily im-
balanced. To mitigate the negative impact de-
rived from such biased distribution, we propose
label masking, a simple and effective method to
reduce the number of negative labels in training.
We exploit attribute taxonomy designed for e-
commerce platforms to determine which labels
are negative for products. Experimental results
using a dataset collected from a Japanese e-
commerce platform demonstrate that the label
masking improves micro and macro F1 scores
by 3.38 and 23.20 points, respectively.

1 Introduction

Since organized product data plays a crucial role
in serving better product search and recommenda-
tion to customers, attribute value extraction (AVE)
has become a critical task in the e-commerce in-
dustry. Although many studies have treated AVE
as named entity recognition (NER) task (§ 2.1),
NER-based approaches are not practical in real-
world e-commerce platforms. First, NER-based
methods perform poorly because the number of
attributes (classes) in e-commerce domains is ex-
tremely large (Xu et al., 2019). Second, it is neces-
sary to take a further step to normalize extracted val-
ues (e.g., coral to pink). To reflect extracted values
in actual services, e-commerce platform providers
need to convert the values into canonical form by
referring their own attribute taxonomy that covers

1

Attribute
Taxonomy

Feed forward

Attribute-value pairs
associated with c

EncoderN-1

EncoderN

Concatenation

BERT

Category c

Hidden representation of
CLS token from last l
encoders

Encoder1

Probability for an attribute-
value pair

Sigmoid

Label masking

BCE loss calculation

Shoes > Men’s shoes > Sneakers

Description dTitle t

CLS Northwave Espresso Original… SEP Perfect sneakers for…

Input:

Relevant attributes and
values for all categories

Cat. Attr. Val.
Sneakers Color Red

Blue
…

Material Leather
Canvas
…

Shoe size US 4
US 4.5

… …
Sandals Color Red

… …

Figure 1: Extreme multi-label classification model with
label masking for attribute value extraction.

attributes and values for the services. Third, ex-
traction of new values is not necessary in many
attributes (e.g., country of origin). Since it is rare
for new values of attributes other than brands to be
introduced to the world, it is sufficient to extract
the values defined in the attribute taxonomy.

Given the above reasons, we formalize AVE
as extreme multi-label classification (XMC), and
design a model that directly predicts possible
canonical attribute-value pairs except for brands1

from given product data. The main problem
in solving AVE as XMC is that the number of
relevant attribute-value pairs to products is far
fewer than that of irrelevant pairs; the majority of
attribute-value pairs are regarded as irrelevant (e.g.,
⟨Memory size, 512GB⟩ for sneakers). To tackle this
problem, we propose label masking that mitigates
the negative effects of a large amount of irrelevant
pairs in training (Figure 1, § 4.2). We detect the
irrelevant pairs by referring an attribute taxonomy
(§ 3) associated with a real-world dataset we use
to train and evaluate models. Through experiments
using the dataset, we confirm that our label mask-
ing method improves micro and macro F1 scores
by 3.38 and 23.20 points, respectively.

Our contributions can be summarized as follows:

1NER-based methods are necessary to extract new values.

134

• We formalize AVE as an XMC problem.

• We proposed label masking, a simple and ef-
fective method to alleviate the negative impact
from irrelevant attribute-value pairs in training
(§ 4.2).

• We showed the effectiveness of the label mask-
ing using a real-world dataset. It especially
performed well on attribute-value pairs at the
long tail (§ 5.4).

2 Related Work

2.1 Attribute Value Extraction
There are many attempts based on NER techniques
to extract attribute values from product descrip-
tions (Probst et al., 2007; Wong et al., 2008; Put-
thividhya and Hu, 2011; Bing et al., 2012; Shin-
zato and Sekine, 2013; More, 2016; Zheng et al.,
2018; Rezk et al., 2019; Karamanolakis et al., 2020;
Zhang et al., 2020). As Xu et al. (2019) reported,
NER-based models perform poorly on a real-world
dataset including ten thousand attributes or more.

To deal with a large number of attributes, there is
research that introduces question-answering (QA)
models for the AVE task (Xu et al., 2019; Wang
et al., 2020; Shinzato et al., 2022). These QA-
based approaches take an attribute as query and a
product title as context, and extract attribute values
from the context as answer for the query. Since
those models take attributes as input, it is neces-
sary to run the extraction repeatedly on the same
product titles with different attributes. Hence, the
QA-based approaches are more time-consuming
than XMC-based approaches that can predict val-
ues for multiple attributes at a time.

2.2 Extreme Multi-Label Classification
To reduce the large output space, previous XMC
studies perform label clustering as a separate stage
from training classifiers (Wydmuch et al., 2018;
You et al., 2019; Chang et al., 2020; Zhang et al.,
2021; Jiang et al., 2021; Mittal et al., 2021a,b). For
example, XR-Transformer (Zhang et al., 2021) first
vectorizes each label with combination of TF-IDF
and embeddings of text associated with the label.
Then, it applies balanced k-means (Malinen and
Fränti, 2014) to these label vectors to generate a
hierarchical label cluster tree by recursively parti-
tioning label sets. Instead of k-means, Mittal et al.
(2021a) and Mittal et al. (2021b) partition labels
into equal sized clusters, and then train a binary

Category Shoes > Men’s shoes > Sneakers

Attributes Color Material Shoe size

Values
• Red • Leather • US 4
• Blue • Canvas • US 4.5
• Green • Gore-Tex • US 5

Table 1: Example of attribute taxonomy.

classifier per cluster that predicts whether a given
text is relevant to labels in the cluster.

On the other hand, in real-world e-commerce
platforms, an attribute taxonomy is available. This
can be regarded as label clusters manually tailored
by the e-commerce platform providers. Therefore,
we simply leverage the existing attribute taxonomy
to reduce the size of labels in training through label
masking.

3 Attribute Taxonomy

We assume that for each category, attribute tax-
onomy defines all possible attribute-value pairs
that products in the category can take. General
attribute-value pairs (e.g., ⟨Color, Red⟩) are defined
for multiple categories. Table 1 shows an example
of attributes and values defined for the category of
sneakers. By referring to the attribute taxonomy, it
is possible to determine which attributes and values
are relevant or irrelevant to which category of prod-
ucts. For example, from the table, we can see that
512GB of memory size is irrelevant to sneakers.

4 Proposed Method

This section proposes our model based on XMC
with label masking for the AVE task. Given a
product data x = ⟨c, t,d⟩, where c denotes a
category, t denotes a title consisting of n tokens
({t1,t2,. . . ,tn}) and d denotes a description con-
sisting of m tokens ({d1,d2,. . . ,dm}), respectively,
the model returns a set of attribute-value pairs that
should be linked with the product data x.

Figure 1 depicts the model architecture. As a
backbone of the architecture, we employ a pre-
trained BERT-base model (Devlin et al., 2019),
and put a feed forward layer on the top of BERT.
As an input to BERT, we construct a string
[CLS; t; SEP;d] by concatenating t, d, CLS and
SEP; CLS and SEP are special tokens to represent a
classifier token and a separator, respectively. Simi-
lar with Jiang et al. (2021), we concatenate the last
l hidden representations of the CLS token, and then
feed the concatenated vector into a feed forward

135

Category Title Description Attribute-value pairs

靴 > メンズ靴 >
スニーカー

ノ ー ス ウ エ ー ブ
【northwave】ESPRESSO
ORIGINAL RED 男性
用 メンズ / 女性用 レ
ディース /スニーカー

製品説明落ち着いたレッドが象
徴的な、足元のアクセントとし
て最適な1足。軽量ラバーでソー
ルも軽量化された人気カラーの
モデル。

⟨靴サイズ(cm), 25.0 ⟩,
⟨靴サイズ(cm), 26.0 ⟩,
⟨靴サイズ(cm), 27.0 ⟩,
⟨カラー,レッド ⟩

Shoes > Men’s shoes
> Sneakers

Northwave [northwave]
Espresso Original Red
Men’s / Women’s / Sneak-
ers

Product description. These sneakers
are the perfect accent for your feet
and come in a soft red color. The
sole is made of lightweight rubber to
reduce weight. It is a popular color.

⟨ Shoe size (cm), 25.0 ⟩,
⟨ Shoe size (cm), 26.0 ⟩,
⟨ Shoe size (cm), 27.0 ⟩,
⟨ Color, Red ⟩

Figure 2: Example of product data. The top shows the original data and the bottom shows its translation.

layer as the representation of the input.
The size of the outputs from the feed forward

layer is equal to the total number of labels (attribute-
value pairs). The outputs are converted into prob-
ability through a sigmoid layer, and then pass to
the label masking. To mask labels irrelevant to the
given product data x, we refer an attribute taxon-
omy built for an e-commerce platform. We com-
pute binary cross entropy (BCE) loss over only
relevant labels.

In testing, we choose ones whose probability
returned from the model exceeds 0.5 among labels
relevant to the product data x.

4.1 Preliminary: XMC

XMC is a special case of the multi-label classifica-
tion problem. What makes XMC unique is its size
of a target label set. The label size is 4K to 501K
in common XMC datasets (Chang et al., 2020).

Formally, XMC can be defined as follows: Giv-
ing a training set {(x(i), y(i))}Ni=1 where x(i) is the
instance, and y(i) ∈ {0, 1}L is the label of x(i)

represented by L dimensional multi-hot vectors.
L is the size of the label set. y(i)j = 1 indicates
that the j-th label is a positive example for xi.
The regular XMC is aimed to learn the function
σθ(x) ∈ {(0, 1) ⊂ R}L which predicts scores in
range of [0.0, 1.0] to all labels by giving x. σ tends
to be closed to 1.0 to j-th label when yj = 1. The
ordinary loss function in XMC is BCE:

BCE = −
L∑

j=1

(yj log σ
j
θ(x) + (1− yj) log (1− σj

θ(x)))

BCE loss sums over the log loss among all labels.

4.2 Label Masking

In the AVE task, the number of “hot” labels is ex-
tremely small compared to the number of labels

defined for the task (L). This means that distribu-
tion between positive and negative labels is heavily
imbalanced. Such distribution has the negative im-
pact on training classification models because the
BCE sums far more loss values from the negative
labels.

To alleviate the impact derived from the negative
labels, we exploit attribute taxonomy. Since the
majority of the negative labels are irrelevant labels
to given product data x, we introduce a function M
that returns only relevant labels to x. BCE loss can
be rewritten as follows:

BCE = −
∑

j∈M(x)

(yj log σ
j
θ(x) + (1− yj) log(1− σj

θ(x)))

M(x) = {j : j ∈ L ∧ lj
rel∼ x}

where lj
rel∼ x means label lj is relevant to x.

By matching a category of x with categories in
the attribute taxonomy, we can obtain all possible
attribute-value pairs for x. We regard those pairs
as relevant labels to x.

By introducing the function M, BCE loss dis-
cards the log loss values from the irrelevant labels.
The label masking enables us to train XMC models
more properly since (1) it reduces bias in the dis-
tribution between positive and negative labels, and
(2) the irrelevant labels would not affect the model
parameters during back-propagating. This makes
the model training more sensitive than normal to
misclassification within relevant labels.

5 Experiments

5.1 Dataset
We use product data and attribute taxonomy
from Rakuten2, a large e-commerce platform in
Japan. Each product consists of a tuple of cate-
gory, title, description and a set of attribute-value

2https://www.rakuten.co.jp/

136

Count

of product data 1,999,175
of top categories 38
of leaf categories 6,796
of distinct attributes 1,300
of distinct attribute-value pairs (labels) 7,979
Avg. tokens per title 44.05
Avg. tokens per description 332.04
Avg. # of positive labels 4.42
Avg. # of negative labels 7974.58
Avg. # of relevant labels 489.25
Avg. # of irrelevant labels 7489.75

Table 2: Data statistics. These numbers are calculated
from both training and test data.

pairs. Rakuten manages category and attribute tax-
onomies, and sellers assign products a category
and attribute-value pairs defined in the taxonomies.
Figure 2 shows an example of the product data.

For experiments, among product data in Rakuten,
we randomly sampled 2,000,446 product data
that own one or more attribute-value pairs ex-
cept brands. We halve this dataset as a 50-50
train/evaluation split. We selected attribute-value
pairs appeared in both datasets3, and removed prod-
uct data that did not have any selected pairs. More-
over, from the evaluation dataset, we discarded
product data whose category did not appear in the
training dataset. As a result, the training and evalu-
ation datasets contain 1,000,047 and 999,128 prod-
ucts respectively. Statistics of the dataset are listed
in Table 2. We can see that the label masking
reduces the size of labels from 7,979 to 489 on
average.

5.2 Evaluation Metrics

We use precision (P), recall (R), F1 score and pre-
cision at k (P@k, k = 1,3,5), which is widely used
in the XMC tasks.To obtain a top-k list, we regard
all prediction results as output regardless of scores.

5.3 Models

We compare the following models:

XR-Transformer XMC model that shows the
state-of-the-art performance on datasets commonly
used in the XMC field (Zhang et al., 2021). We
train the model using the codes released from the
authors4 with default parameters other than max

3The total number of the un-selected attribute-value pairs
is 1,289. These pairs appeared 10 times or less in the sampled
product data.

4https://github.com/amzn/pecos

Hyper parameter Value

Learning rate 0.0001
Weight decay 0.0
Epoch 5
Batch size 64
Dropout rate 0.1
Max. sequence length 512
Warmup proportion 10%
of CLS’s hidden representations to concat. (l) 5

Table 3: Hyper parameters

sequence length and batch size. We set 512 for max
sequence length and 64 for batch size.

BERT BERT (Devlin et al., 2019) without our la-
bel masking. It computes BCE loss from all labels.

BERT with multiple classifiers Model that sim-
ply exploits a given category. We design a clas-
sifier (feed forward) layer for each category, and
put them on the top of a single BERT. Because of
this, parameters in BERT are in common with all
classifiers. According to the category, we replace
a classifier in training and testing. We construct
mini-batches to include product data in the same
category. As categories, in addition to leaf cate-
gories (e.g., Sneakers), we also adopt top categories
(Shoes). This is because the size of training data
is not sufficient in some minor leaf categories. By
taking top categories, we can expect that the size of
training data is enlarged although it increases irrel-
evant labels to leaf categories assigned in products.
The total number of top categories is 38, including
shoes, food, furniture and home appliances.

BERT with label masking Our proposed model.
It computes BCE loss from only relevant attribute-
value pairs to the category of given product data.
Unlike BERT with multiple classifiers, this model
has a single classifier, and the classifier is trained
using product data from all categories.

For fair comparison with our model that assumes
a category of the target product to be given, we
discard irrelevant labels that the baseline models
predict.

We employ a pretrained Japanese BERT-base
model and its tokenzier released from Tohoku Uni-
versity5, and use them in all models. We apply
NFKC Unicode normalization6 to titles and de-
scriptions before the tokenization.

5https://github.com/cl-tohoku/bert-japanese
6https://unicode.org/reports/tr15/

137

Models Micro Macro P@k (%)
P (%) R (%) F1 P (%) R (%) F1 k = 1 k = 3 k = 5

XR-Transformer 92.01 73.80 81.90 45.43 19.93 27.71 90.30 65.68 53.61
BERT 88.77 74.64 81.09 26.57 15.42 19.51 87.59 63.97 52.36
BERT w/ multiple classifiers - leaf 87.79 74.90 80.83 47.24 30.89 37.36 87.79 55.63 44.60
BERT w/ multiple classifiers - top 89.04 79.88 84.21 52.12 34.99 41.87 91.10 65.95 53.75
BERT w/ label masking (ours) 88.90 80.46 84.47 52.82 35.85 42.71 91.57 66.31 54.08

Table 4: Performance of each model.

Group Freq. Micro F1 Macro F1

(# of pairs)

High (76) [104,∞) 89.57 (+1.56) 86.15 (+2.31)
Med. (454) [103, 104) 81.98 (+3.90) 78.58 (+5.24)
Low (1,457) [102, 103) 70.79 (+10.59) 66.80 (+14.55)
Rare (5,992) [1, 102) 53.85 (+33.20) 33.19 (+26.97)

Table 5: Micro and macro F1 scores of our model for
each group of attribute-value pairs. Gains over BERT
without label masking are enclosed in parentheses.

For models other than XR-Transformer, we use
gradient descent by the Adam (Kingma and Ba,
2015) optimizer. To avoid overfitting, we apply a
dropout rate at 0.1 and stochastic weight averag-
ing (Izmailov et al., 2018) to the models. Table 3
shows the hyper parameters.

Similarly with our model, as the representation
of the input to BERT and BERT with multiple clas-
sifiers, we use a vector concatenating CLS embed-
dings obtained from the last five encoders. We
implemented the models in PyTorch.

5.4 Results

Table 4 shows the performance of each model. We
can observe that our proposed model outperformed
all baselines. Micro and macro F1 gains over BERT
without label masking are 3.38 and 23.20 points, re-
spectively. The significant improvement on macro
F1 score shows that the label masking is effective
on various kinds of attribute-value pairs. These
results show that reducing the number of irrelevant
labels in training is crucial to train more accurate
XMC models.

The reason why the performance of BERT with
multiple classifiers trained on leaf categories is
lower than ours is that the number of training ex-
amples for this model is insufficient in many leaf
categories, as we mentioned. For 5,572 categories,
the number of training examples is less than 64.
Since parameters of BERT in this model are in
common with all categories, this result implies that
the classifiers are not well trained. On the other

hand, the single classifier in our model is success-
fully trained because (general) attribute-value pairs
scattered on various leaf categories are fully used
to train the classifier.

Since the data sparseness problem is alleviated,
BERT with multiple classifiers trained on top cate-
gories outperforms the model trained on leaf cate-
gories. Furthermore, its performance is closed to
ours. We believe that the gap of the performance
between the model trained on top categories and
ours is from the quality of association between cat-
egories and attributes. In case of the model trained
on top categories, attribute-value pairs defined for
different leaf categories in the same top category
are handled as relevant labels (e.g., heel height for
sneakers). Meanwhile, our model is not affected
by such attribute-value pairs. The gap implies that
these erroneous relevant pairs hurt the performance.

To see the effectiveness of the label masking in
detail, we categorize attribute-value pairs according
to the frequency in the training data, and then check
the performance for each frequency group. Table 5
shows the performance of our model in each group
together with micro and macro F1 gains over BERT.
The improvement in micro and macro F1 scores is
greater for attribute-value pairs with less training
examples. This means that the label masking works
well for attribute-value pairs at the long-tail.

6 Conclusion

In this paper, we formalized AVE as XMC, and
proposed label masking, a simple and effective
method that mitigates the negative impact from
the imbalanced distribution of attribute-value pairs
relevant and irrelevant to products. Experimental
results using a real-world dataset show that the
label masking improves the performance of BERT-
based XMC models; it is especially effective for
attributes with less training data.

As for future work, we plan to see the effective-
ness of the label masking method on other tasks in
e-commerce domains such as item classification.

138

Acknowledgement

We thank Naoki Yoshinaga for the fruitful com-
ments before the submission. We also thank the
anonymous reviewers for their careful reading of
our paper and insightful comments.

References
Lidong Bing, Tak-Lam Wong, and Wai Lam. 2012. Un-

supervised extraction of popular product attributes
from web sites. In Information Retrieval Technology,
8th Asia Information Retrieval Societies Conference,
AIRS 2012, volume 7675 of Lecture Notes in Com-
puter Science, pages 437–446, Berlin, Heidelberg.
Springer.

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming
Yang, and Inderjit S. Dhillon. 2020. Taming Pre-
trained Transformers for Extreme Multi-Label Text
Classification, KDD ’20, page 3163–3171. Associa-
tion for Computing Machinery, New York, NY, USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. In 34th Conference on Uncertainty in
Artificial Intelligence 2018, UAI 2018, 34th Confer-
ence on Uncertainty in Artificial Intelligence 2018,
UAI 2018, pages 876–885. Association For Uncer-
tainty in Artificial Intelligence (AUAI).

Ting Jiang, Deqing Wang, Leilei Sun, Huayi Yang,
Zhengyang Zhao, and Fuzhen Zhuang. 2021.
Lightxml: Transformer with dynamic negative sam-
pling for high-performance extreme multi-label text
classification. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(9):7987–7994.

Giannis Karamanolakis, Jun Ma, and Xin Luna Dong.
2020. TXtract: Taxonomy-aware knowledge extrac-
tion for thousands of product categories. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8489–8502, On-
line. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the third International Conference on Learning
Representations, San Diego, California, USA.

Mikko I. Malinen and Pasi Fränti. 2014. Balanced k-
means for clustering. In Structural, Syntactic, and
Statistical Pattern Recognition, pages 32–41, Berlin,
Heidelberg. Springer Berlin Heidelberg.

A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal,
P. Kar, and M. Varma. 2021a. Decaf: Deep extreme
classification with label features. In Proceedings of
the ACM International Conference on Web Search
and Data Mining, WSDM ’21, page 49–57, New
York, NY, USA. Association for Computing Machin-
ery.

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar,
and M. Varma. 2021b. Eclare: Extreme classifica-
tion with label graph correlations. In Proceedings of
The ACM International World Wide Web Conference,
WWW ’21, page 3721–3732, New York, NY, USA.
Association for Computing Machinery.

Ajinkya More. 2016. Attribute extraction from product
titles in ecommerce. In KDD 2016 Workshop on
Enterprise Intelligence, San Francisco, California,
USA.

Katharina Probst, Rayid Ghani, Marko Krema, An-
drew E. Fano, and Yan Liu. 2007. Semi-supervised
learning of attribute-value pairs from product de-
scriptions. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI’07,
pages 2838–2843, Hyderabad, India. Morgan Kauf-
mann Publishers Inc.

Duangmanee Putthividhya and Junling Hu. 2011. Boot-
strapped named entity recognition for product at-
tribute extraction. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1557–1567, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Martin Rezk, Laura Alonso Alemany, Lasguido Nio,
and Ted Zhang. 2019. Accurate product attribute
extraction on the field. In Proceedings of the 35th
IEEE International Conference on Data Engineering,
pages 1862–1873, Macau SAR, China. IEEE.

Keiji Shinzato and Satoshi Sekine. 2013. Unsupervised
extraction of attributes and their values from product
description. In Proceedings of the Sixth International
Joint Conference on Natural Language Processing,
pages 1339–1347, Nagoya, Japan. Asian Federation
of Natural Language Processing.

Keiji Shinzato, Naoki Yoshinaga, Yandi Xia, and Wei-
Te Chen. 2022. Simple and effective knowledge-
driven query expansion for QA-based product at-
tribute extraction. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics. (to appear).

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’20, pages 47–55, New York, NY, USA.
Association for Computing Machinery.

139

Tak-Lam Wong, Wai Lam, and Tik-Shun Wong. 2008.
An unsupervised framework for extracting and nor-
malizing product attributes from multiple web sites.
In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’08, pages 35–42, New
York, NY, USA. Association for Computing Machin-
ery.

Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov,
Róbert Busa-Fekete, and Krzysztof Dembczyński.
2018. A no-regret generalization of hierarchical soft-
max to extreme multi-label classification. In Pro-
ceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18,
page 6358–6368, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Huimin Xu, Wenting Wang, Xin Mao, Xinyu Jiang, and
Man Lan. 2019. Scaling up open tagging from tens
to thousands: Comprehension empowered attribute
value extraction from product title. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5214–5223, Florence,
Italy. Association for Computational Linguistics.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Hanchu Zhang, Leonhard Hennig, Christoph Alt,
Changjian Hu, Yao Meng, and Chao Wang. 2020.
Bootstrapping named entity recognition in E-
commerce with positive unlabeled learning. In Pro-
ceedings of The 3rd Workshop on e-Commerce and
NLP, pages 1–6, Seattle, WA, USA. Association for
Computational Linguistics.

Jiong Zhang, Wei-Cheng Chang, Hsiang-Fu Yu, and
Inderjit Dhillon. 2021. Fast multi-resolution trans-
former fine-tuning for extreme multi-label text classi-
fication. In Advances in Neural Information Process-
ing Systems, volume 34, pages 7267–7280. Curran
Associates, Inc.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. OpenTag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’18, pages 1049–1058, New York, NY, USA.
Association for Computing Machinery.

140

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 141 - 150
May 26, 2022 c©2022 Association for Computational Linguistics

Enhanced Representation with Contrastive Loss for Long-Tail Query
Classification in e-commerce

Lvxing Zhu, Hao Chen, Chao Wei, Weiru Zhang
Alibaba Group, Hangzhou, China

{lvxing.zlx, ryan.ch, weichao.wc, weiru.zwr}@alibaba-inc.com

Abstract
Query classification is a fundamental task in an
e-commerce search engine, which assigns one
or multiple predefined product categories in
response to each search query. Taking click-
through logs as training data in deep learn-
ing methods is a common and effective ap-
proach for query classification. However, the
frequency distribution of queries typically has
long-tail property, which means that there are
few logs for most of the queries. The lack of
reliable user feedback information results in
worse performance of long-tail queries com-
pared with frequent queries. To solve the above
problem, we propose a novel method that lever-
ages an auxiliary module to enhance the rep-
resentations of long-tail queries by taking ad-
vantage of reliable supervised information of
variant frequent queries. The long-tail queries
are guided by the contrastive loss to obtain
category-aligned representations in the auxil-
iary module, where the variant frequent queries
serve as anchors in the representation space.
We train our model with real-world click data
from AliExpress and conduct evaluation on
both offline labeled data and online AB test.
The results and further analysis demonstrate
the effectiveness of our proposed method.

1 Introduction

In the e-commerce search engine, query classifica-
tion is a task to assign one or multiple predefined
product categories to each search query. It is a
fundamental component that recognizes the intent
of user query and retrieves relevant products. The
task of query classification can be basically viewed
as a multi-label short text classification problem.

Deep learning methods are the mainstream ap-
proaches for query classification tasks nowadays.
Considering the massive amount of queries and cat-
egories, it’s usually too expensive to collect train
data by manually labeling. Therefore, utilizing
the click-through data as implicit feedback signals
to build a model is the most common approach

that predicts the categories of query (Shen et al.,
2009; Lin et al., 2018b) . Various deep models
have achieved great success in query classification
(Zhang et al., 2019; Yu and Litchfield, 2020; Zhang
et al., 2021). To fully utilize the mutual information
between the query and categories, some models
convert the multi-label classification to a multiple
binary classification task and obtain superior per-
formance (Liu et al., 2017; Nam et al., 2014).

However, the long-tail distribution of queries in
e-commerce websites brings challenges to deep
models. Few high-frequency queries dominate in
search input while low-frequency queries have a
very low probability of occurrences. These low-
frequency queries are what we call long-tail queries
and others are frequent queries. The users’ feed-
back logs of long-tail queries are usually difficult to
obtain and insufficient training data also result in a
serious data noise problem. Moreover, the product
taxonomy in e-commerce websites usually con-
sists of thousands of categories. The large amount
of categories aggravates the sparsity of long-tail
query-category feedback data. Therefore, the lack
and noise of training data cause the lower perfor-
mance for long-tail queries compared with frequent
queries in the task of query classification.

Another problem is that queries with slight lexi-
cal differences may have totally different category
intents (Zhang et al., 2021). Queries in e-commerce
are typically short and ambiguous (Shen et al.,
2009; Lin et al., 2018b). A modification of one
word in the query could entirely change the cor-
responding category, such as “blouse collar” and
“blouse with collar”, or “pearl ring” and “pearl ear-
ring”. This phenomenon hinders the deep models
from classifying long-tail queries because there
aren’t enough examples to distinguish the intents
of these lexically similar queries.

In summary, query classification in real-world
e-commerce scenarios differs from common text
classification tasks in at least two aspects. At First,

141

the supervised information is not entirely reliable
especially for long-tail queries, depending on the
query frequency in search logs. Secondly, most
queries are short and the textual information inside
queries is very limited.

Inspired by the aforementioned observations, we
propose a novel method to improve the perfor-
mance of long-tail query classification. The ba-
sic idea of our method is to utilize the query fre-
quency information and transfer knowledge from
frequent queries to long-tail queries, which takes
advantage of the fact that the click feedbacks of
frequent queries are more reliable. For each query,
we select several frequent queries as the variant
queries, which are lexically similar to the original
query. We use an auxiliary module coupled with a
contrastive loss (Chopra et al., 2005) to enhance the
representation of the original query by these vari-
ant queries. The variant queries serve as anchors in
vector space while the auxiliary module aligns the
representation vectors between original queries and
variant queries in the view of category semantics.
We conduct experiments on real-world click data
from AliExpress 1 and also evaluate our method on
the public dataset. The results suggest that signifi-
cant improvement of long-tail query classification
tasks on multiple metrics. We further conduct the
comparison and visualization to verify the effect of
our representation enhancement.

The major contributions of this article are sum-
marized as follows:

• We propose a novel method for long-tail query
classification by transferring knowledge from
multiple variant frequent queries to long-tail
queries.

• Our method enhances the representations of
queries with the contrastive loss which bases
on the category consistence among lexical
similar queries.

• We validate the effectiveness of our method
in a public dataset and real-world search sce-
narios.

2 Related Work

2.1 Query Classification
There have been various works studying query clas-
sification in e-commerce recently. These works can

1https://www.aliexpress.com, a cross-border e-
commerce platform of Alibaba

be classified into three categories: statistical-based
methods (Shen et al., 2009), traditional machine
learning methods and deep learning methods. Lin
et al. (2018b) introduce an unsupervised method to
collect query classification data from click-through
logs and apply several traditional methods such as
SVM, XGBoost and fastText on this task. Zhang
et al. (2019) design a progressively hierarchical
classification framework to make use of the se-
mantic information from a category tree and take
TextCNN (Zhang and Wallace, 2015) as the base
model. To incorporate information of category tree
structure, Gao et al. (2020) proposes a deep hier-
archical classification framework. The framework
generates layer representation for each layer and
shares the representation to lower layers. Yu and
Litchfield (2020) propose a multi-objective method
that optimizes hierarchical accuracy-depth trade-
off across multi-level categories. Multi-objective
optimization is adopted in post inference phase to
select the deepest category whose prediction accu-
racy exceeds its corresponding threshold. Zhang
et al. (2021) propose a framework that also focuses
on long-tail query classification in e-commerce,
which adds an auxiliary across-context attention
module to extract external information by predict-
ing the categories of variant queries.

2.2 Text Classification

Multi-label text classification can be viewed as
the generalization of query classification, although
most text classification tasks focus on long text
such as web document, papers and news. CNN-
based models, including traditional CNN (Liu
et al., 2017) and graph-CNN (Peng et al., 2018),
are the common approaches to classify text. Lin
et al. (2018a) apply multi-level dilated convolution
and attention-over-attention mechanism to gener-
ate higher-level semantic representations for text
classification. Recurrent networks are also ap-
plied to this task, You et al. (2019) proposes a
label BiLSTM-based deep learning model with
multi-label attention named AttentionXML. Atten-
tionXML uses a probabilistic label tree to handle
extreme multi-label text classification (XML). X-
Transformer (Chang et al., 2020) deals with XML
by transformer models, which predicts labels in
two steps: first, recalls the label clusters and then
re-ranks the labels within the predicted clusters.
LightXML (Jiang et al., 2021) and DECAF (Mit-
tal et al., 2021) also follows the above two-stage

142

schema but make efforts in utilizing label meta-
data and dynamic negative sampling, respectively.
Yang et al. (2018) and Lin et al. (2018a) apply a
sequence-to-sequence model on multi-label classi-
fication to capture the correlations between label.
Peng et al. (2018) use a regularized loss to model
the dependency of hierarchical classes.

2.3 Contrastive Learning

The contrastive loss is first presented by Chopra
et al. (2005) for the face verification task. By mini-
mizing the contrastive loss with siamese networks,
the similarity metric becomes small for pairs of
faces from the same person and large for pairs from
different persons. Oord et al. (2018) utilize a proba-
bilistic contrastive loss in a universal unsupervised
learning approach to extract useful representations
from high-dimensional data, such as speech, im-
ages and text. Lian et al. (2018) introduce a deep
model coupled with contrastive loss to learn dis-
criminative audio representations. The principle
that aligns the representation according to the cate-
gories is similar to contrast learning. Contrastive
learning learns effective representations by pulling
semantically close neighbors together and pushing
apart non-neighbors so that “similar” points in in-
put space are mapped to nearby points on the man-
ifold (Hadsell et al., 2006). SimCLR(Chen et al.,
2020) is a successful appliance of contrastive learn-
ing in computer vision fields and Gao et al. (2021)
introduce SimCSE in NLP, which applies contrast
learning to sentence embedding task of both unsu-
pervised approach and supervised approach.

3 Methodology

We introduce our proposed method in this section.
We first give an overview of our method in Sec-
tion 3.1 and then demonstrate each module in detail
from Section 3.2 to 3.5.

3.1 Overview

We first define the formal notation of our work.
We cast query classification task as multi-label text
classification in a binary manner. Given a query
q = [wq1, wq2, ..., wqn], a sequence of words with
length n, the task is to predict whether category
c ∈ C is a positive category for query q or not,
where C is the set of predefined e-commerce cat-
egories. The category c = [wc1, wc2, ..., wcm]
is also a sequence of words that is the descrip-
tion of the category. We denote training set as

T = {⟨qi, ci, yi⟩ |i = 1, 2, ..., N}, where yi ∈
{0, 1} is the label which indicates the pair ⟨qi, ci⟩
is a negative example or a positive example. We
denote the set of all queries in training set as
QALL = {q| ⟨q, ∗, ∗⟩ ∈ T}. We also define a fre-
quent queries set QF , which is a subset of QALL

and consists of the queries with daily average page
views more than thresq. The other queries are
regarded as long-tail queries.

shared

CLS Q Query Tokens SEP C Cate Tokens SEP

Dense

Dense

CE Loss

CLS Q VarQueryi Tokens SEP

B E R T B E R T

Main Module Auxiliary Module

Dense

Dense

CE Loss
 Query

VarQueries

Pull

Push

Contrastive Loss

Figure 1: The overview of our proposed model.

Our proposed method consists of two compo-
nents: the main module and the auxiliary module,
as depicted in Figure 1. The main module is a
standard text classification model which takes the
tokenized sequence of query and category as in-
put and predicts the relation between query and
category in an interactive manner. The auxiliary
module is to learn the representations of variant
queries and transfer the representing ability to the
main module with a contrastive loss function. The
main and auxiliary modules are optimized simulta-
neously in training phase while only the main mod-
ule is used in inference phase. Therefore, we do
not add extra computation for prediction compared
with base method. In this work, we adopt BERT
(Devlin et al., 2018) as our base model because it
achieves state-of-the-art performance among many
NLP tasks and provides a high standard of baseline.

3.2 Main Module
The main module is basically a standard BERT to
compute the relevance score between query and
category via transformer architecture and we make
a slight modification on input schema. Since each
query and category share the same BERT model,
the query input is typed by customers and the cate-

143

gory’s textual description is usually more formally
written, which differs in choice of words. Accord-
ing to ColBERT(Khattab and Zaharia, 2020), we
distinguish the input sequences by adding a spe-
cial token [Q] to queries and another token [C]
to category descriptions. Given a training exam-
ple ⟨q, c, y⟩, we get the concatenated input tokens
[CLS, [Q], wq1, ..., SEP, [C], wc1, ..., SEP]. Af-
ter feeding the input, we obtain the output vec-
tors from BERT of all tokens. We denote the out-
put vectors of [Q]-location, [C]-location and CLS-
location as hq, hc and hcls, which are expected to
represent the query, the category and the interactive
feature between query and category respectively.

We concatenate hq, hc and hcls as a hidden vec-
tor and feed it to fully connected networks with
binary cross-entropy loss to predict the target score
ŷ ∈ [0, 1]. The target score indicates the relevance
of the query and category, as follows:

ŷ = f(Wa · (hq ⊕ hc ⊕ hcls) + ba), (1)

LM = −ylog(ŷ)− (1− y)log(1− ŷ), (2)

where Wa and ba is the weight and bias of the
fully connected network and y denotes the label of
pair ⟨q, c⟩.

3.3 Variant Query Selection

To transfer knowledge from frequent queries to
long-tail queries, we introduce variant queries that
are lexically similar to the original query with sev-
eral different tokens. Despite the similarity in text,
those slight tokens’ differences between the origi-
nal query and its variant queries can lead to totally
different category intents. Since variant queries and
original queries may be fused in semantic space
because of the lexical similarity, we use the cate-
gory information from variant queries to build a
better latent representation for original queries with
auxiliary tasks.

We select M variant queries for each query in
the training set. All the variant queries are frequent
queries that are selected from the candidate set QF .
We propose a simple but effective method with a
low computational cost to select variant queries.
To measure the textual similarity between query q
and candidate query qc, let Tq and Tqc be the set of
tokens of q and qc respectively, a weighted token
similarity is calculated as follows:

Sim(q, qc) =

∑
ti∈Tq∩Tqc

wi,qc

|Tqc|
, (3)

where wi,qc is the weight score of token ti in
query qc. We take TF-IDF (Salton and Buckley,
1988) as the weight score:

wi,qc = TFi,qc ∗ IDFi, (4)

where IDFi is the inverse document (i.e., query)
frequency of token ti. We order all the candidate
queries by their similarity score Sim(q, qc) with q
and select the top M of them as the set of variant
queries, denoted as V q.

The variant queries have similar text to the orig-
inal query but they are not always have same cat-
egories. These queries with different category in-
tents become hard negative examples which are
then utilized by the contrastive loss. All the work
in this subsection is done in data preparing phase.

3.4 Auxiliary Module
The auxiliary module is also a BERT-based model
that predicts the relevance between the given cate-
gory and the variant queries. The auxiliary module
shares parameters of BERT with the main mod-
ule. However, to obtain the pure representation
of queries, the auxiliary module only receives the
tokens of variant queries as input. For each vari-
ant query qvi ∈ V q, we add the special token [Q]
ahead to indicates a query sequence, i.e., the input
sequence is [CLS, [Q], wqv1 , wq

v
2 , ..., wq

v
n, SEP].

We take the output of [CLS]-location and [Q]-
location from BERT as the representation of variant
query qvi , which is denoted as hicls and hiv. we ob-
tain representation of category c from the main
module and concatenate hicls and hiv with hc for
downstream fully connected networks. Finally, the
relevance score is predicted as follows:

ŷi = f(Wb · (hicls ⊕ hiv ⊕ hc) + bb), (5)

LA = −
∑

M

yilog(ŷi)+(1−yi)log(1− ŷi), (6)

where ŷi is the prediction value and yi is the
label that indicates whether category c is related
to the variant query qvi . The value of yi is from
the training set where yi = 1 if ⟨qvi , c, 1⟩ ∈ T
otherwise yi = 0. Through the training of the
auxiliary module, we build the representations of
variant queries which play an important role in the
calculations of contrastive loss.

144

3.5 Contrastive Loss

Since we have obtained hq and hvi , i = 1, ..,M ,
which are the representations of original query q
and its variant queries qvi , we apply a contrastive
loss function to align their representations accord-
ing to their relevance with the category c. We fol-
low the definition of contrastive loss in (Lian et al.,
2018). If the variant query qvi and original query
q belong to the same category c, the representa-
tions of the two queries should be pulled together.
Otherwise, the representations should be pushed
apart. The above process is adopted by adding the
contrastive loss as follows:

LC =
∑

i∈1,...,M
y · Li

C , (7)

Li
C =

{
∥hq − hvi ∥2 y

∧
yi = 1

max(0,m− ∥hq − hvi ∥2) y
∧
yi = 0

,

(8)
where ∥ · ∥ is the L2 norm and m is the margin.
Finally, the total loss is calculated as follows,

re-weighted by parameters λA and λC :

L = LM + λALA + λCLC . (9)

The auxiliary module aims at transferring knowl-
edge from frequent queries to long-tail queries.
Since all the variant queries are frequent queries
that have a large number of click feedback, the
supervised signal derived from those feedback is
more reliable and their representations are more
reasonable in feature space. With the constraint of
contrastive loss between the original query and lex-
ically similar variant queries (shown in Figure 1),
queries obtain better representations to recognize
different category intents.

It’s noteworthy that our proposed method en-
hances the query representations in long-tail query
classification task without bringing in external in-
formation. we neither augment the training exam-
ples nor use other data except the training set.

4 Experiments

We introduce the training and evaluation data set
and the setting of our experiments in section 4.1.
We discuss the performance and effectiveness of
our proposed method with other methods in sec-
tion 4.2 and 4.3.

4.1 Data and Setting

To collect training data, we sample search queries
and their clicked products’ categories in recent
3 months logs from AliExpress, a cross-border
e-commerce platform of Alibaba. We collect
5,000,000 ⟨query, category⟩ pairs and the num-
bers of distinct queries and categories are 3,620,000
and 6,300 respectively. All of the queries and cate-
gories are in English. Queries with daily average
page view less than thresq = 100 are defined as
long-tail queries, which include almost 97% of
queries and occupy only 56% of the whole clicked
pairs. The rest 3% of queries are defined as fre-
quent queries that contributes 44% of clicks. For
each query, we choose its corresponding categories
with high click-through rates as our positive train-
ing examples and replace the query or category ran-
domly from a different pair to generate negative ex-
amples. Finally, we obtain a training data set which
consists of about 33,400,000 pairs. We list several
examples from the training set in Table 1 including
the variant queries and their labels. The columns
named “Query”, “Category” and “Label” are the
inputs of the main module, where the “Label” col-
umn denotes whether the pair of query and category
is relevant or not. The columns named “Variant
Q1/Q2/Q3” and corresponding “Label 1/2/3” are
the inputs of the auxiliary module.

For evaluation, We randomly sample another
2,000 long-tail queries and collect a total of 78,226
correspondings clicked ⟨query, category⟩ pairs
from search engine. Each pair in the evaluation
set are labeled as relevant or irrelevant by human
annotators.

We use the BERT-Tiny pre-trained model re-
leased by google research as our base model. We
process the queries and categories by WordPiece
tokenization (Wu et al., 2016). The number of
variant queries M is 3. The number of frequent
queries N is 100,000. Margin m in contrastive
loss is 32.0 . The loss reweight parameter λA and
λC are 0.1 and 0.02 respectively. We use Adam
optimization method (Kingma and Ba, 2014) and
set the learning rate to 1e-6 while the batchsize is
1024. All hyper-parameters are adjusted according
to the performance on the held-out validation set.
We train the model for a fixed number of global
steps (640,000) and save models at regular intervals.
Then we choose the best performance achieved by
these models as the result.

145

Table 1: Examples of training set.

Query Category Label Variant Q1 Label1 Variant Q2 Label2 Variant Q3 Label3
video game consoles 16bit Handheld Game Players 1 game consoles 1 video game consoles 1 video 0
lure glass rattles Fishing Lures 1 lure 1 glass 0 fishing lure 1
fine point heels Women’s Pumps 1 point 0 heels 1 fine jewelry 0
huawei p 40 lite 5g cover Mobile Phone Cases & Covers 1 huawei 0 cover 1 huawei phone 0
612 bundles with frontal Hair Bundles with Closures 1 bundles 1 bundles with frontal 1 613 bundles 1
0.25 eyelashes Body Foundation 0 eyelashes 0 rover 25 0 false eyelashes 0
1 birthday boy clothes Audio Intercom 0 birthday 0 birthday boy 0 boy birthday 0
2000s aesthetic sunglasses Wax Fabrics 0 2000s 0 2000s aesthetic 0 sunglasses 0
pink porcelain plate Men’s Socks 0 porcelain 0 porcelain plate 0 plate porcelain 0

4.2 Performance
We use AUC (Area Under Curve), AP (Average Pre-
cision), Prec (Precision), Recall and F1 score as our
evaluation metrics. The Average precision (Turpin
and Scholer, 2006) is the area under the precision-
recall curve and it is independent of threshold as
well as AUC.

We conduct experiments on the aforementioned
data set and compare our method with the baseline
and existing approaches in Table 2:

• “Base” is the standard BERT model which
takes the same setting as our proposed method
(only preserve the main module).

• “AC(LSTM)” (Zhang et al., 2021) is the lat-
est related work for long-tail query classifi-
cation which couples with an auxiliary task
to provide across-attention information. The
original paper uses LSTM (Hochreiter and
Schmidhuber, 1997) as the encoder and the
base queries and variant queries differ in en-
coders.

• “AC(BERT)” is the modified version we im-
plemented, which shares the same BERT en-
coder for original queries and variant queries
following our proposed method setting for a
fair comparison.

• “Proposed” is our proposed method.

As shown in Table 2, our proposed method
outperforms the baselines by a statistically sig-
nificant margin on all of the metrics. Compared
with method named “Base”, our method achieves
+1.92% improvement on AUC, +2.48% improve-
ment on AP and +2.27% improvement on F1 score.
Our method also outperforms “AC(LSTM)” and
“AC(BERT)” in all of the metrics with steady mar-
gins (range from +1.19% to +1.68%) which reflect
the effectiveness. The AC methods only use one
variant query to adjust the original query represen-
tation implicitly. In contrast, our proposed method

Table 2: Performance comparison between our method
and baselines on evaluation set.

Method AUC AP Prec Recall F1 Score
Base 0.7610 0.3110 0.3367 0.3463 0.3414

AC(LSTM) 0.7622 0.3132 0.3214 0.3727 0.3452
AC(BERT) 0.7681 0.3190 0.3396 0.3632 0.3510
Proposed 0.7802 0.3358 0.3522 0.3767 0.3641

clearly establishes the pulling or pushing relations
between the original query and variant queries by
contrastive constraints.

To better understand the contribution of each key
component of our method, we conduct several abla-
tion tests and each method is described as follows:

• “Proposed-Without LC” removes the con-
trastive loss from the proposed method.

• “Proposed-Only CLS” only uses hcls as fea-
ture instead of concatenating hq, hc and hcls
in main module.

• “Proposed-Sym” means the auxiliary module
uses the same input schema as the main mod-
ule, which takes both variant query tokens and
category tokens as input.

• “Proposed-Entire Query” takes the whole
queries in the training set as variant query can-
didates rather than only the frequent queries.

The experimental results are listed in Table 3.
The results show that our proposed method out-
performs the others significantly. As contrast, the
performance of “Proposed-Without LC” decreases
significantly, which shows that the contrastive loss
plays a key role in enhancing representations. The
performance of “Proposed-Only CLS” decreases
remarkably compared with our proposed method,
which shows that the representations hq and hc can
provide extra useful information for query classi-
fication. The performance of “Proposed-Sym” is
dramatically lower than the results of “Proposed”
method and has only slight improvement compared
to the “Base” method. The result indicates that the

146

Table 3: Ablation test of our proposed method on evalu-
ation set.

Method AUC AP Prec Recall F1
Base 0.7610 0.3110 0.3367 0.3463 0.3414

Proposed-Sym 0.7650 0.3148 0.3124 0.3791 0.3425
Proposed-Without LC 0.7584 0.3147 0.3240 0.3780 0.3489
Proposed-Only CLS 0.7708 0.3245 0.3339 0.3699 0.3510

Proposed-Entire Query 0.7645 0.3209 0.3304 0.3589 0.3441
Proposed 0.7802 0.3358 0.3522 0.3767 0.3641

representation alignment effect of contrastive loss
weakens using query tokens and category tokens
simultaneously in the auxiliary module. With in-
puts of extra category tokens, the representation
of the variant query hvi loses its independence and
becomes sensitive to disturbance of category texts,
which makes hvi an unstable anchor for the original
query. The decreased performance of "Proposed-
Entire Query” shows choosing frequent queries as
variant queries can lead to better representations for
long-tail queries, which implies frequent queries
serve as better anchors in hidden spaces because of
sufficient training data.

To investigate the effect of our method on long-
tail queries, we split the evaluation set of long-tail
queries into 3 sets according to their frequency
levels in search logs. The set of relatively high-
frequency queries is named “Long-tail Head”, the
set of queries with middle-frequency level is named
“Long-tail Mid” and the set of rest queries is “Long-
tail Tail”. To compare with performance on those
long-tail query sets, we also randomly sample a
set of queries named “Top Freq” from frequent
queries as defined in Section 4.1, which includes
28,389 pairs of 512 queries. The performance of
base method and our method on the above evalu-
ation sets are listed in Table 4. Our method out-
performs the baseline by a significant margin in
all the groups of long-tail queries, where the AUC
improvements are +1.99%, +1.84% and +2.22%
respectively. The improvement on “Long-tail Tail”
set is greater than other sets, which means the great-
est improvement is achieved on the queries at the
far end of the tail. We notice that the improve-
ment on “Top Freq” queries is much smaller with
+0.28% on AUC, +0.37% on AP and +0.67% on
F1 Score, compared with the remarkable improve-
ment on long-tail queries. The results indicate that
our method improves the effectiveness on long-tail
queries more than frequent queries.

Furthermore, We evaluate our method on the
public dataset released by the personalized e-
commerce search challenge of the CIKM Cup 2016

2. This dataset contains query searching and brows-
ing logs and product metadata including the prod-
uct categories information (Wu et al., 2017). We
process the data files and collect a total of 500,000
⟨query, category⟩ pairs as training data for the
query classification task, which have 26,137 dis-
tinct queries and 1,213 distinct categories. To col-
lect test data, we sample 3000 long-tail queries
and remove the corresponding pairs from the train-
ing set. The detailed data process is described in
Appendix A. As shown in Table 5, our proposed
method substantially improves multiple metrics in-
cluding AUC, AP and F1 Score on this dataset,
with +4.3% and +2.6% absolute improvement on
AP compared with the base method and AC(LSTM)
method respectively. Considering that the dataset
is more sparse and its tokenization is different from
the common wordpiece model (Wu et al., 2016),
these performances demonstrate the effectiveness
and generalizability of our method.

4.3 Discussion

To verify whether our proposed method is able to
recognize the category intents of lexically similar
queries, we calculate two distances: 1) the average
Euclidean distance between representation vectors
of original queries and their category-consistent
variant queries and 2) the same metric between orig-
inal queries and their category-inconsistent variant
queries. We visualize the distances between the pro-
posed method and baseline with increasing training
steps in Figure 2. The curves named “PD” and
“PS” are derived from our proposed method and
the curves named “BD” and “BS” are from the
base method. In Figure 2, the gap between the
curve “BD” and “BS” are very close all the time
while the curve “PD” and “PS” gradually sepa-
rate from each other with a certain margin. As we
mentioned ahead, the phenomenon indicates that
our proposed model distinguishes different cate-
gory well by pulling original query and category-
consistent variant queries together and pushing
them of different category further apart.

To verify whether our proposed method gener-
ates better representations for long-tail queries, we
visualize the representation vectors (i.e. vector [Q]
from the model) of the baseline method and our
method in Figure 3. We randomly sample 100,000
long-tail queries and project their representations

2https://competitions.codalab.org/
competitions/11161

147

Table 4: Performance improvement of queries grouped by frequency in search logs.

base proposed
Group AUC AP Prec Recall F1 Score AUC AP Prec Recall F1 Score

Top Freq 0.7408 0.4615 0.4149 0.4852 0.4473 0.7436(+0.28%) 0.4652(+0.37%) 0.4177(+0.28%) 0.4973(+1.21%) 0.4540(+0.67%)
Long-tail Head 0.7558 0.3469 0.3359 0.3823 0.3576 0.7757(+1.99%) 0.3514(+0.45%) 0.3564(+2.05%) 0.3887(+0.64%) 0.3719(+1.43%)
Long-tail Mid 0.7461 0.3102 0.3214 0.3862 0.3508 0.7645(+1.84%) 0.3344(+2.42%) 0.3287(+0.73%) 0.4005(+2.43%) 0.3611(+1.03%)
Long-tail Tail 0.7742 0.2926 0.3103 0.3539 0.3307 0.7964(+2.22%) 0.3211(+2.85%) 0.3484(+3.81%) 0.3736(+1.97%) 0.3606(+2.99%)

Table 5: Performance comparison between our method
and baselines on the public CIKM Cup 2016 dataset.

Method AUC AP Prec Recall F1 Score
Base 0.9096 0.6465 0.6571 0.5716 0.6061

AC(LSTM) 0.9122 0.6637 0.6736 0.5732 0.6193
AC(BERT) 0.9129 0.6668 0.6845 0.5636 0.6181
Proposed 0.9160 0.6897 0.6738 0.5969 0.6330

Figure 2: The Euclidean distance of category-consistent
queries and category-inconsistent queries representation
vector.

to 2-dimensional space by UMAP(McInnes et al.,
2018) (neighbors=40, epochs=400). Each point
in Figure 3 is a long-tail query colored according
to its category. If a query is relevant to multiple
categories, the category which has the most click
logs is chosen. To simplify the figure, we only re-
serve queries that are relevant to the top-10 hot cat-
egories. As shown in the left box of Figure 3, a lot
of the query representations are scattered around
the space, and categories groups are overlapped
with each other, which means the baseline method
fails to preserve the category consistency of long-
tail queries. In contrast, the query representations
in the right figure form clusters according to their
categories spontaneously. Most of these clusters
are cohesive and keep away from other clusters.
There are still some overlaps between query clus-
ters, probably due to that some queries are natu-
rally interested with multiple categories, such as
T-shirt (Men) and T-shirt (Women). The visual-
ization results indicate that our method is able to
obtain reasonable representations corresponding to
the category semantics of queries.

Figure 3: The visualized representation vectors of long-
tail queries generated by Base model (left) and our pro-
posed model (right).

Table 6: Online performance evaluation.

Method CTR RPM
Base - -

Proposed +0.63% +1.06%

4.4 Online Evaluation
We deploy online evaluation in search advertising
system of AliExpress. Instead of comparing each
query with the whole 6,300 categories online, we
predicted categories offline beforehand and gener-
ated a query-category cached table that covers over
80% of page views. The predicted categories of
queries serve as the filters of vector-based product
retrieval and influence the relevance score between
the queries and products in our e-commerce spon-
sored search system. We conducted standard A/B
testing for 5 days and selected 5% of the search
traffic as the test group to evaluate our proposed
method. Two common metrics are calculated for
evaluation: CTR (click-through rate) and RPM
(revenues per mille). As shown in Table 6, the
results suggest that our proposed method improves
the online performance on tens of millions of user
visits. The gains of CTR and RPM reflect that our
method increases valid exposures of the advertise-
ment with better quality, which finally results in
the growth of users’ clicks and platform revenue.

5 Conclusion

In this paper, we propose a novel method for query
classification which focuses on the long-tail queries
in e-commerce. Our method consists of a main

148

module and an auxiliary module that aims at uti-
lizing reliable information from frequent queries
to help the classification of long-tail queries. The
results of extensive experiments show that our pro-
posed method outperforms the baselines by a sub-
stantial margin. Further analysis demonstrates our
method can obtain better representations for long-
tail queries and discriminate different category in-
tents from lexically similar queries. In the future,
We will generalize our idea to more situations in
e-commerce, such as multi-language query classifi-
cation and other tasks such as product retrieval or
relevance classification.

References
Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming

Yang, and Inderjit S Dhillon. 2020. Taming pre-
trained transformers for extreme multi-label text clas-
sification. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 3163–3171.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages
539–546. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dehong Gao, Wenjing Yang, Huiling Zhou, Yi Wei,
Yi Hu, and Hao Wang. 2020. Deep hierarchical clas-
sification for category prediction in e-commerce sys-
tem. ECNLP 3, page 64.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Ting Jiang, Deqing Wang, Leilei Sun, Huayi Yang,
Zhengyang Zhao, and Fuzhen Zhuang. 2021.
Lightxml: Transformer with dynamic negative sam-
pling for high-performance extreme multi-label text
classification. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages
7987–7994.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zheng Lian, Ya Li, Jianhua Tao, and Jian Huang. 2018.
Speech emotion recognition via contrastive loss un-
der siamese networks. In Proceedings of the Joint
Workshop of the 4th Workshop on Affective Social
Multimedia Computing and First Multi-Modal Af-
fective Computing of Large-Scale Multimedia Data,
pages 21–26.

Junyang Lin, Qi Su, Pengcheng Yang, Shuming Ma, and
Xu Sun. 2018a. Semantic-unit-based dilated convo-
lution for multi-label text classification. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4554–4564.

Yiu-Chang Lin, Ankur Datta, and Giuseppe Di Fab-
brizio. 2018b. E-commerce product query classifica-
tion using implicit user’s feedback from clicks. In
2018 IEEE International Conference on Big Data
(Big Data), pages 1955–1959. IEEE.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-
ing Yang. 2017. Deep learning for extreme multi-
label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
115–124.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. Umap: Uniform manifold ap-
proximation and projection. Journal of Open Source
Software, 3(29):861.

Anshul Mittal, Kunal Dahiya, Sheshansh Agrawal,
Deepak Saini, Sumeet Agarwal, Purushottam Kar,
and Manik Varma. 2021. Decaf: Deep extreme clas-
sification with label features. In Proceedings of the
14th ACM International Conference on Web Search
and Data Mining, pages 49–57.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencía, Iryna
Gurevych, and Johannes Fürnkranz. 2014. Large-
scale multi-label text classification—revisiting neu-
ral networks. In Joint european conference on ma-
chine learning and knowledge discovery in databases,
pages 437–452. Springer.

149

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 world wide web conference,
pages 1063–1072.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Dou Shen, Ying Li, Xiao Li, and Dengyong Zhou. 2009.
Product query classification. In Proceedings of the
18th ACM conference on information and knowledge
management, pages 741–750.

Andrew Turpin and Falk Scholer. 2006. User perfor-
mance versus precision measures for simple search
tasks. In Proceedings of the 29th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 11–18.

Chen Wu, Ming Yan, and Luo Si. 2017. Ensemble meth-
ods for personalized e-commerce search challenge at
cikm cup 2016. arXiv preprint arXiv:1708.04479.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. Sgm: Sequence gen-
eration model for multi-label classification. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 3915–3926.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. Advances in Neural Information Pro-
cessing Systems, 32.

Hang Yu and Lester Litchfield. 2020. Query classifi-
cation with multi-objective backoff optimization. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1925–1928.

Hongchun Zhang, Tianyi Wang, Xiaonan Meng, Yi Hu,
and Hao Wang. 2019. Improving semantic matching
via multi-task learning in e-commerce. In eCOM@
SIGIR.

Junhao Zhang, Weidi Xu, Jianhui Ji, Xi Chen, Hongbo
Deng, and Keping Yang. 2021. Modeling across-
context attention for long-tail query classification
in e-commerce. In Proceedings of the 14th ACM

International Conference on Web Search and Data
Mining, pages 58–66.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

A Data Process for CIKM Cup 2016
Dataset

We extract pairs of ⟨query, productID⟩ from
the file named train-queries.csv, which
includes user sessions from e-commerce search
engine logs. Only the query-full cases are se-
lected and each query is represented as a list
of hashed tokens. The queries which appear in
more than thresq sessions are regarded as fre-
quent queries while others are long-tail queries.
We then map the pairs of ⟨query, productID⟩ to
⟨query, categoryID⟩ according to the content of
file product-categories.csv and denote
the set of pairs as S. We denote the number of
occurrences of query q in S as fq and the number
of ⟨q, c⟩ pairs in S as fq,c where c is the category.
The pair ⟨q, c⟩ is regarded as a positive example
when it meets the requirements of both absolute
number and relative ratio, which are fq,c > thresN
and fq,c >

fq
M . We collect all positive examples as

set SP and then generate negative examples from
SP . For each ⟨q, c⟩ in SP , we replace the q and c
by a random query q′ and category c′ respectively
and repeat R times. Finally, we randomly select L
long-tail queries and then take all the correspond-
ing pairs in positive set and negative set as the test
set, while the rest of pairs are training set.

Considering there is no category description in
the original dataset, we group the products based
on their categories and take the top-K most fre-
quent tokens in product names as the description
of the category (the hashed product name tokens
are obtained from products.csv).

The values of above parameters are listed in Ta-
ble 7. The hyper-parameters of the model are the
same as Section 4.1.

Table 7: Parameters in process of CIKM Cup 2016
dataset.

Name value
thresq 5
thresN 2

M 16

Name value
R 4
L 3000
K 10

150

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 151 - 160
May 26, 2022 c©2022 Association for Computational Linguistics

Domain-specific knowledge distillation yields smaller and better models for
conversational commerce

Kristen Howell
LivePerson

khowell@liveperson.com

Jian Wang
LivePerson

jwang@liveperson.com

Akshay Hazare
LivePerson

ahazare@liveperson.com

Joseph Bradley
LivePerson

jbradley@liveperson.com

Chris Brew
LexisNexis

christopher.brew@google.com

Xi Chen
LivePerson

xchen@liveperson.com

Matthew Dunn
LivePerson

mdunn@liveperson.com

Beth Ann Hockey
LivePerson

bhockey@liveperson.com

Andrew Maurer
Amazon.com Inc

abmaurer@amazon.com

Dominic Widdows
IonQ

widdows@ionq.com

Abstract

In the context of conversational commerce,
where training data may be limited and low
latency is critical, we demonstrate that knowl-
edge distillation can be used not only to reduce
model size, but to simultaneously adapt a con-
textual language model to a specific domain.
We use Multilingual BERT (mBERT; Devlin
et al., 2019) as a starting point and follow the
knowledge distillation approach of Sanh et al.
(2019) to train a smaller multilingual BERT
model that is adapted to the domain at hand.
We show that for in-domain tasks, the domain-
specific model shows on average 2.3% improve-
ment in F1 score, relative to a model distilled
on domain-general data. Whereas much pre-
vious work with BERT has fine-tuned the en-
coder weights during task training, we show
that the model improvements from distillation
on in-domain data persist even when the en-
coder weights are frozen during task training,
allowing a single encoder to support classifiers
for multiple tasks and languages.

1 Introduction

Encoders and language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
ELMo (Peters et al., 2017) are the backbone of
many NLP technologies. They are typically trained
on data from Wikipedia, CommonCrawl, or large
homogeneous collections of text; however, lan-
guage varies widely in real-world settings and the
type of language used in some contexts is not well
represented in the data used to train these models.
In particular, the language used in e-commerce, and
more specifically, conversational commerce, such
as conversations pertaining to customer service in
the context of online shopping or banking, exhibits
both syntactic structures and vocabulary that are

under-represented in the Wikipedia data used to
train multilingual BERT.

At the same time, these models are too large to
deploy in many industry settings, where computa-
tional resources and inference-speed are concerns.
Model size is often reduced using methods such as
quantization (Whittaker and Raj, 2001; Shen et al.,
2020), pruning (Han et al., 2015, 2016) and knowl-
edge distillation (Hinton et al., 2015; Sanh et al.,
2019). However, even leveraging these techniques,
the memory footprint of the typical encoder can
easily be three orders of magnitude greater than that
of the typical classifier, and it follows that encoding
is much more time-intensive than classification.1

In conversational commerce, a variety of classifiers
are required to model different aspects of the con-
versation. In this case, it is beneficial for efficiency,
to use a single encoder for all of the classifiers as
illustrated in Figure 1 (left), rather than using a sep-
arate encoder for each classification task (Figure 1,
right).2 Thus text can be encoded only once and
passed to any number of downstream classifiers.

Typically, domain adaptation with language
models is accomplished using back-propagation
during task training (see inter alia Devlin et al.,
2019; Liu et al., 2019; Sanh et al., 2019). However,
this approach requires a separate encoder for each
classifier. Instead, we adapt the encoder to a par-
ticular domain before classifier training. We show
that knowledge distillation, a common approach
for reducing model size, is very adept for domain
adaptation. This allows us to accomplish two goals,

1For example, a BERT encoder has hundreds of millions
of parameters (see Table 7), while a self attention classifier
like the one used in Section 8 has about 600,000.

2Houlsby et al. (2019), inter alios, have proposed similar
architectures.

151

Classifiers

Encoder

Encodings
(vectors)

Messages
(texts)

Classifiers

Encoder

Encoder

Encoder

Encoder Encoder

Encoder

Encoder

Encoder

Figure 1: The difference in architecture between using one encoder for multiple tasks vs. one encoder per task

size reduction and domain adaptation, with a single
training process. Evaluating on five languages and
two domains, we show that distilling on unlabeled
data from the domain of interest results in a smaller
model that is domain-specific and outperforms the
F1-score of a model distilled on domain-general
data by 2.3% on average and the larger teacher
model by an F1 of 1.2%. The improvement in per-
formance persists even when relatively little train-
ing data is used. We show that the domain-adapted
encoder performs better than the domain-general
model both when encoder weights are fine-tuned,
as in previous work, and when they are frozen, leav-
ing them task agnostic. Furthermore, the boost in
performance from distillation on in-domain data is
greater than the improvement from fine-tuning the
encoder during task training.

We begin with an overview of previous work
in domain adaptation and knowledge distillation,
highlighting the benefit of doing both at once (§2).
This is followed by a description of the domains,
data and tasks with which we evaluate domain adap-
tation through knowledge distillation (§3). We de-
tail our approach in Section 4, investigating how
much data is necessary (§5) and examining the
impact of domain adaptation on sentence embed-
dings (§6). We evaluate on two domains and five
languages in Section 8, considering both training
scenarios where encoder weights are frozen for task
training and where they are fine-tuned.

2 Related Work

2.1 Knowledge distillation
Many state-of-the-art NLP models have achieved
high performance with increased parameters and
layers, and in doing so have become too computa-
tionally expensive for some applications. Knowl-
edge distillation addresses this problem with a
“teacher-student” training approach in which a
smaller “student” model learns to mimic a larger

“teacher” model (Sanh et al., 2019) or an ensemble
of models (Bucilǎ et al., 2006; Hinton et al., 2015).

In the context of reducing model size with BERT,
task-specific distillation has been successful (Tang
et al., 2019; Chatterjee, 2019) as has distillation of
the encoder during pre-training (Sanh et al., 2019).
Distillation of the pre-trained encoder is particu-
larly beneficial as the distilled model can be applied
to any number of downstream tasks. Sanh et al.
(2019) released a distilled version of English BERT
(DistilBERT), which is 40% smaller and 60% faster
than the original model, while retaining 97% of its
NLU capabilities. This was followed by Distilm-
BERT, distilled from mBERT using data from 104
languages, which is 24% smaller and 38% faster
than its teacher. In both cases, the same data was
used for knowledge distillation as for pre-training
the original models. We adopt this approach, limit-
ing our training data to the languages and domain
of interest to demonstrate that less data can be used
to distill a model for a specific setting.

2.2 Domain adaptation
When sufficient data is not available to train a
model from scratch, a smaller amount of data can
be used to adapt a domain-general model. In the
context of BERT, domain adaption of the encoder
through continued pre-training on in-domain data
followed by task-specific fine-tuning has improved
performance on domain-specific applications (Han
and Eisenstein, 2019; Gururangan et al., 2020; Ri-
etzler et al., 2020; Whang et al., 2020).

Previous work suggests that the teacher-student
approach used for knowledge distillation is well
suited to domain adaptation. In ASR, it has been
applied to adapt models trained on clean speech to
handle noisy speech, models for speech from head-
set mics to work for distant mics (Manohar et al.,
2018), and for speaker adaptation (Yu et al., 2013).
In neural machine translation, multidomain models

152

have been distilled from single-domain specialist
models (see inter alia Currey et al. 2020; Mghabbar
and Ratnamogan 2020). In the context of senti-
ment analysis, Ruder et al. (2017) use an ensemble
of models to train a domain-adapted model on un-
labeled in-domain data and Ryu and Lee (2020)
combine distillation with adversarial domain adap-
tation to mitigate over-fitting from task fine-tuning,
rather than to reduce model size.

We show that knowledge distillation can simul-
taneously reduce the size of the model and adapt it
to a domain. While, some degree of performance
loss during distillation is typical, we show that fo-
cusing the training objective on in-domain data
can eliminate performance loss and even improve
model performance in the domain of interest. Our
training objective does not require labeled data,
and because we do this before task fine-tuning, the
resulting model can be used for any number of
in-domain tasks.

3 Use-cases and datasets

3.1 The conversational commerce use-case
Our first use case is in conversational commerce
(hereafter CC), which involves messaging between
customers and agents (human or automated) in a
commercial customer service setting. Within CC,
there are sub-domains for commercial industries,
such as retail, financial services, airlines, etc.

Unlike the Wikipedia data used to train mBERT
and DistilmBERT, CC is marked by questions, first
and second person phrases, short responses, fre-
quent typos and other textual and linguistic fea-
tures that are more common in typed conversation.
In addition to structural variation, CC data con-
tains many product and service names that may not
be common in Wikipedia data. These differences
make CC a strong candidate for domain adaptation.

Our test-case is to classify customer messages as
intentful, meaning that the message contains some
actionable request, or not intentful. In CC, this is
an important triage step that can be applied across
sub-domains before sending messages to down-
stream classifiers. Because this classification task
is applied to different sub-domains and customers
say some surprising things, this task is rather chal-
lenging. Intentful messages can vary widely from
requests for information, attempts to place orders
or change account details, and disputes or com-
plaints. Non-intentful messages include greetings,
pleasantries, slot information that relies on a previ-

Table 1: Total amount of data used to distil each domain-
adapted model in GB of uncompressed text

Data per language (GB) Total
model eng esp jap por rus (GB)
CC-Distil
-mBERT 0.95 0.60 0.44 0.35 0.00 2.34
TD-Distil
-mBERT 1.58 0.34 0.06 0.34 0.75 3.07

Table 2: # natural (N) and translated (T) messages per
split for the CC classification task

Split Data eng esp jap por
Train N 4951 1364 1810 1845

T 4306 4306 4306
Val N 1236 255 286 323

T 1020 1020 1020
Test N 10078 719 908 909

ous message for context, etc. After this triage step,
intentful messages can be sent to downstream clas-
sifiers, which are specific to the industry or com-
pany, that predict specific intents such as “check
order status” or “schedule appointment”.

3.1.1 Dataset
We use a proprietary dataset from a variety of com-
panies that use a particular conversational com-
merce platform.3,4 We distilled the encoder using
2.3GB of unlabeled text from English [ISO 639-3:
eng], Spanish [esp], Japanese [jap] and Portuguese
[por] as detailed in Table 1. This data came from 25
companies that span the retail, telecommunications,
financial and airlines sub-domains. To verify that
the encoder generalizes beyond these companies,
we sampled data for the classification task from
an additional 14 companies that were not used in
encoder training as well as 12 that were.

Annotations classification were provided by na-
tive speakers of each language, who were trained
on the task. Due to limited access to data and an-
notators for Japanese, Portuguese and Spanish, we
supplemented natural language training data with
machine-translated data from English. For evalu-
ation, we used only naturally produced data from
each language (see Table 2). The complete break-
down by class for evaluation is in Table 3.

The majority of the English, Portuguese and
Spanish data is from the Americas and the remain-
der from Australia and Europe, while the Japanese
data is primarily from Japan. Because data-use

3To be clarified after the anonymity period.
4For customer privacy, all personally identifiable informa-

tion is masked before we use the data, but even after masking
we cannot make the data or models publicly available.

153

Table 3: # messages per label in the CC evaluation set

label eng esp jap por
intentful 4050 423 475 537
not intentful 6030 298 435 373

agreements and laws vary by company and country,
we could not sample evenly across regions; still, we
sampled from as diverse a range of countries and
company types as possible, in an effort to maximize
representation of different speaker communities.5

3.2 The technical discussion use-case
Because our first dataset is proprietary, we repeat
the experiments using data from online forums for
technical discussions about programming (here-
after TD). This domain is marked by technical jar-
gon, which includes many words that have non-
technical homonyms, as we describe in Section 6.
These forums also include code and urls, which can
be useful for classification but are not common in
the Wikipedia data used to train mBERT.

For evaluation we used a multi-label prediction
task to automatically label posts with the appropri-
ate tag or tags for the topic.6 Because StackOver-
flow uses hundreds of tags, the task is limited to
the ten most common, which are listed in Table 4.

3.2.1 Dataset
The data for this task comes from the anonymized
dumps for the StackOverflow topics in English
[eng], Japanese [jap], Portuguese [por], Russian
[rus] and Spanish [esp].7We created classification
datasets by sampling posts that contain one or more
of the ten tags targeted by the task. For our valida-
tion and held-out evaluation sets for English, Span-
ish, Portuguese and Russian, we sampled messages
such that each tag occurred in the set at least 100
times for a total of 1000 posts per set. As each post
can have multiple tags, tags can occur more than
100 times. The total posts per tag for evaluation
are in Table 4.8 We then randomly selected 8000
training samples that contained at least one of the
tags. Because the Japanese dump is much smaller,
we created splits of half the size (500/500/4000).

5We do not have access to demographic data for the users
who produced the data, and cannot make any claims about
how well the models generalize across speaker communities of
various ages, genders, ethnicities or socio-economic groups.

6This task comes from https://github.com/theRajeshReddy/
StackOverFlow-Classification

7https://archive.org/details/stackexchange
8The number of posts per tag for the train and validation

sets can be found in the dataset’s readme.

Table 4: # posts per label in the TD evaluation set

label eng esp jap por rus
c# 111 110 56 120 109
java 118 127 57 148 174
php 126 138 57 144 168
javascript 168 206 108 197 182
android 110 115 71 115 108
jquery 132 114 53 136 106
python 107 106 51 104 101
html 109 103 50 110 118
c++ 104 104 51 101 116
ios 110 100 53 102 102

For encoder training, we sampled data from the
remaining messages, including posts that did not
contain the tags of interest. We assembled a 3GB
training set (based on the results in Section 5) using
all of the data for Japanese (0.055GB, 2% of the to-
tal), Portuguese (0.34GB, 11%), Spanish (0.34GB,
11%) and Russian (0.75GB. 24%), and 1.58GB
(52%) for English to reach 3GB total.

4 Knowledge Distillation Method

For knowledge distillation, we use the established
and open-source approach of Sanh et al. (2019),910

which follows Liu et al. (2019)’s proposed best
practices for BERT training. These include dy-
namic masking, large batches to leverage gradient
accumulation and training on the masked language
modeling task but not next sentence prediction.

Sanh et al.’s implementation of knowledge distil-
lation trains the student model using the distillation
loss of the soft target probabilities of the teacher.
Because of this, the student model benefits from the
the teacher model’s full distribution during training.
Due to this rich input, we expect that high perfor-
mance can be achieved with less training data.

We use mBERT11 as the teacher model and our
student models have the same general architecture,
hidden-size dimension and number of word embed-
dings. We reduce the model size by removing the
token-embeddings and pooling and reducing the
number of layers from 12 to 6. This reduces the to-
tal number of parameters by 43 million or 24% and
increases the inference speed by 38% (Table 5).12

9Detailed instructions for training with Hug-
gingface’s Distil* module can be found at
https://github.com/huggingface/transformers/blob/
783d7d2629e97c5f0c5f9ef01b8c66410275c204/examples/
research_projects/distillation/README.md.

10Here we discuss the most relevant training details, but
Ibid. provides a full account of the training procedure.

11https://github.com/google-research/bert/blob/master/
multilingual.md

12The change in model size and speed is equivalent to that

154

Table 5: Model size and and average inference speed on
single-thread CPU with a batch size of 1

Params Inf time per message
Model (millions) (milliseconds)
mBERT 178 305
DistilmBERT 135 188
TD-DistilmBERT 135 189
CC-DistilmBERT 135 189

Whereas Sanh et al. (2019) used the same train-
ing data as the teacher model, we use only data
from the domain we are adapting to. Intuitively,
a model that will be deployed in a single domain
does not need to learn everything the base model
can do — it only needs to learn what it can do for
the domain at hand. This allows us to reduce the
training data and time needed for distillation.

5 Data requirements

Because knowledge distillation takes advantage of
an existing model, which was already trained on
a large amount of data, we expect that distillation
training will be relatively economical in its use of
data. Furthermore, many research objectives focus
on a single domain and do not require the breadth
of NLU capability of a domain-general model, but
instead benefit from a depth of capability in one do-
main. Here we attempt to establish how much data
is enough for knowledge distillation for a single
domain and where we reach diminishing returns.

As a case-study, we use increasing quantities
of StackOverflow English data for knowledge dis-
tillation and compare the performance of these
models to both the teacher model (mBERT) and
HuggingFace’s multilingual distilled BERT model
(DistilmBERT), which was distilled using the same
approach. To measure the impact of domain
adaptation from knowledge distillation alone, we
freeze the encoder weights during task training and
present the results in Table 6 and Figure 2.

We distilled models with English StackOverflow
data, using increments of 0.3GB. We found that a
minimum of 1.5GB was needed for convergence,
but 2.1GB was enough to outperform DistilmBERT
and perform on par with the teacher mBERT. Im-
provements stop after 3GB. We conclude that 2.1

in Sanh et al. 2019, however, that paper considers only the En-
glish BERT model, while we use multilingual BERT. Because
the multilingual model has a significantly larger vocabulary
(or number of word embeddings), which is not reduced by this
distillation process, the proportionate difference in model size
is for distilled mBERT models is less than for distilled BERT.

Table 6: Macro Precision, Recall and F1 on TD evalua-
tion task for models distilled with increasing data quan-
tities. The number in each TD model name corresponds
to the GB of uncompressed text used for training.13

Model Precision Recall F1
mBERT * 0.796 0.626 0.692
DistilmBERT * 0.796 0.602 0.679
Wiki3.0* 0.778 0.572 0.651
TD1.5 0.789 0.530 0.627
TD1.8 0.788 0.500 0.605
TD2.1 0.808 0.629 0.700
TD2.4 0.809 0.651 0.718
TD2.7 0.807 0.629 0.705
TD3.0 0.817 0.664 0.727
TD3.3 0.823 0.658 0.728
TD3.6 0.814 0.661 0.724
TD3.9 0.821 0.636 0.710
TD4.2 0.817 0.648 0.718
TD4.5 0.816 0.647 0.714

*=baseline model

1 2 3 4 5
0.55

0.6

0.65

0.7

0.75
TD3.0

Training set size (GB)

F1
Sc

or
e

F1 Score
mBERT

DistilmBERT
Wiki3.0

Figure 2: Training set size vs Macro F1 (see Table 6).

GB is sufficient and 3GB is optimal for adapta-
tion to the TD domain, while more data increases
training time without improving performance.

We contextualize this finding by considering
the data quantity used to train mBERT and Dis-
tilmBERT. While it is hard to ascertain the exact
amount of data used to train these models, we es-
timated by following the data sampling procedure
used by the creators of those models.14 By our best
estimate, roughly 222GB of uncompressed text was
used.15 In contrast, only 2.1GB of uncompressed

13Here and throughout the paper, reported results are the
mean of 10 random initializations.

14The procedure for mBERT is detailed at https://github.
com/google-research/bert/blob/master/multilingual.md and
DistilmBERT used data sampled in the same way (Sanh, pc).

15The original numbers may have been smaller as our esti-
mate is based on the wiki data dumps on Oct. 1, 2020 and the
models were trained before that time.

155

text was needed to outperform DistilmBERT on our
in-domain task. Thus, for distillation for a single
domain and language, the required amount of train-
ing data is reduced by two orders of magnitude.16

In this experiment, the new data matches on both
domain and language. To test whether the language
match is responsible for the improvement, we dis-
tilled a model on 3GB of English Wikipedia data.
We sampled this data by randomly selecting 3000
1MB chunks of text from the English Wikipedia
dump. This model (Wiki3.0) under-performs the
one distilled on the same amount of StackOverflow
data, showing that the language match alone is in-
sufficient to explain the improved performance and
suggests that the domain match is more important.

6 Vector changes under domain
adaptation

To better understand the differences between an
encoder trained on domain-general data versus in-
domain data, we compare sentence embeddings
produced by the encoder that we adapted to the
technical domain (TD3.0) and the encoder dis-
tilled on the same amount of domain-general data
(Wiki3.0). The TD domain has lots of homonyms
like ‘python’ and ‘float’ that have both a technical
word-sense and a non-technical one. We expect
models trained on the TD domain to pay attention
to the dominant technical word-senses, and models
trained on Wikipedia to pay greater attention to
the non-technical word-senses. By extension, a dis-
tance function derived from a TD model is expected
to be more sensitive to technical word-senses than a
distance function derived from a Wikipedia model.
Thus we expect the distance function for ‘python’
and a non-technical synonym (i.e., ‘snake’) to be
closer when derived from a domain-general model
and the distance function between ‘python’ and
another programming language (i.e., ‘PHP’) to be
closer when derived from a model trained on tech-
nical data.

Because BERT embeddings are contextual, we
provide a context for each word pair by creating
sentences for each, such that either word may ap-
pear in the sentence. Sentences designed for tech-
nical word pairs are biased towards a technical
context, and sentences for non-technical word pairs
are biased towards a non-technical sense.17 As an
example, the technical sentences used to compare

16Training with 3 GB took < 2 days using 8 A100 GPUs.
17The full collection of sentences is in the appendix.

Java and C# are given below in list items 1 and 2
and the non-technical sentences used for java and
coffee are given in list items 3 and 4.

1. I can’t find any code or post on how to get traffic
data in Java for Windows Phone 8.

2. I can’t find any code or post on how to get traffic
data in C# for Windows Phone 8.

3. Jerry can’t start his day without a cup of java.
4. Jerry can’t start his day without a cup of coffee.

Substituting each word from a pair into the sen-
tence, we have a pair of sentences like items 1 and
2 and embed each with both the TD model and
the domain-general model. We take the mean of
the token embeddings as a representation of the
sentence18 and then take the cosine similarities be-
tween the sentence embedding produced by the TD
model and the embedding from the domain-general
model. These cosine similarities are given for both
the technical and non-technical pairs in Table 7.

We find that cosine distance is smaller for sen-
tences that capture the general word-sense when
they are encoded by the general model. Similarly,
it is smaller for sentences that capture the techni-
cal word-sense when they are encoded with the
TD model. This suggests that the TD model has
adapted its representations for these homonyms to
their technical meanings.

7 Experiments

We compare the performance of two domain-
adapted encoders that were trained using the
method described in Section 4. CC-DistilmBERT
was trained with data from four languages from the
CC domain (§3.1.1) and TD-DistilmBERT with
data from five languages from the TD domain
(§3.2.1). The amount of data used to distil each
model is summarized in Table 1 and determined
primarily based on availability, though informed
by the findings in Section 5. For each language and
domain, we used as much data as was available for
distillation (see §3 for details), except in the case
of English TD data, in which case we had more
than enough data and used only as much as was
necessary to reach approximately 3GB in total.

For classifier training, we train a structured self-
18The embedding of the <CLS> token is often used as a

sentence embedding when using BERT. However, following
(Liu et al., 2019), we distill models without using the next
sentence prediction task, so the embedding for <CLS> is less
likely to be a good representation of the sentence.

18Using Euclidean distance yielded similar results.

156

Table 7: Each word in the first column has at least one technical and non-technical sense (e.g., ‘Java’) and is paired
with two terms, one technical and one non-technical that can be used in the same context (e.g., ‘coffee’ and ‘C#’).
This table shows the cosine similarity between the embedding for a sentence containing the ambiguous word and
the same sentences containing its technical and non-technical alternatives instead, using both the general encoder
(Gen. Cosine) and domain-adapted encoder (Tech. Cosine). We show that in most cases the non-technical pairs
have a greater cosine similarity when encoded with the general model and the technical pairs have a grater cosine
similarity when encoded with the technical model.

Word General Neighbor Tech. Cosine Gen. Cosine Technical Neighbor Tech. Cosine Gen. Cosine
Java coffee 0.01453 0.02816 C# 0.01350 0.00424
Python snake 0.01008 0.04663 PHP 0.00535 0.00687
floats rafts 0.00672 0.01210 doubles 0.00830 0.00401
terminal ending 0.00527 0.00759 command line 0.01341 0.00453
classes lectures 0.01124 0.01512 objects 0.00969 0.00447
Oracle Prophet 0.01055 0.01883 DynamoDB 0.00283 0.00250

attention classifier head on each encoder used in
evaluation. 19 We conduct two experiments: in
the first, we fine-tune the encoder weights, as has
been done in previous work such as Devlin et al.
2019; Sanh et al. 2019; in the second, we freeze the
encoder weights to demonstrate that this approach
can be used in contexts where the same underly-
ing encoder is to be used by multiple classifiers,
removing the need to encode a text every time it is
classified by a different classifier.

We compare our domain-adapted, distilled mod-
els using the tasks described in Section 3 with two
baselines: the teacher model used for distillation
(mBERT) and Sanh et al.’s domain-general dis-
tilled model (DistilmBERT). In each case, we train
and evaluate separate classifiers for each language
in the dataset. We evaluate model performance
two ways, first fine-tuning the encoder weights dur-
ing task training and second freezing the encoder
weights to test the generalizability of a single en-
coder to multiple classifiers.

8 Results

The results for each language and encoder are bro-
ken down for each experiment in Table 8, where
encoder weights were fine-tuned or frozen during
task training. On average for these two tasks, the
domain-adapted model achieves an F1 score that
is 1.2% greater respective to the teacher mBERT
model (an absolute difference of 0.9 F1) and 2.3%
better respective to the domain-general Distilm-
BERT model (an absolute difference of 1.7 F1).

Performance is better for all models when the
encoder weights are fine-tuned during task train-
ing. Still, domain-adapted models perform better

19Code and data for reproduction are included in supple-
mentary materials and will be made publicly available upon
publication.

relative to the baselines in both cases. The aver-
age absolute improvement of the domain-adapted
models relative to the teacher model is 1.1% and
the relative improvement over the domain-general
distilled model is 2.1% when the encoder weights
are tuned, while these improvements are 1.3% and
2.5% when the weights are frozen. This differ-
ence between the two training scenarios may be
accounted for by the encoder undergoing some de-
gree of domain adaptation during fine-tuning. Intu-
itively, the domain-general models would benefit
from this more than the domain-adapted models,
which are already tuned to the domain. Even so,
the performance of domain-adapted models relative
to the domain-general models when the encoder
weights are fine-tuned demonstrates that domain
adaptation is still beneficial in this scenario and
contributes larger improvements in model perfor-
mance than fine-tuning during task training alone.

Each result in Table 8 represents an average over
10 iterations of training and evaluation. We calcu-
late the statistical significance of the improvement
between the domain adapted models and baselines
using the Kolmogorov-Smirnov (KS) test, as our
data is non-normal (Brownlee, 2019). We found
that the improvement in F1 score due to domain
adaptation for the CC-DistilmBERT model was
statistically significant (p < .05) compared to
both baselines on all languages except Japanese,
despite the small size of our datasets. The TD-
DistilmBERT model’s improvement in F1 over the
DistilmBERT baseline was also statistically signif-
icant on all languages except Japanese, although
the support for each class was much smaller for the
TD task.

For Japanese, in the case of the TD model, very
little data was available for domain adaptation (0.06
GB; shown in Table 1). We can speculate that this

157

Table 8: Results for freezing and fine-tuning encoder weights during classifier training. F1, Precision and Recall are
for the ‘intentful’ class in the CC binary classification task and are macro averages for the TD multi label task. Each
result is an average across 10 iterations of training and evaluation. For the CC-DistilmBERT and TD-DistilmBERT
models, ⋆ indicates a statistically significant difference (p < 0.05) between that model and DistilmBERT and †

indicates a statistically significant difference (p < 0.05) between that model and mBERT.

Conversational
Commerce

Encoder Weights Model eng esp jap por
F1-Score Frozen CC-DistilmBERT 86.6⋆† 82.0⋆† 84.0 86.2⋆†

DistilmBERT 84.3 79.5 84.0 85.2
mBERT 85.4 78.7 83.6 85.2

Fine-tuned CC-DistilmBERT 88.7⋆† 82.3⋆† 84.5 87.4⋆†

DistilmBERT 85.8 79.9 83.9 85.6
mBERT 86.7 80.7 84.1 86.3

Precision Frozen CC-DistilmBERT 89.0 80.2 81.3† 86.9⋆

DistilmBERT 87.0 78.4 79.0 83.6
mBERT 87.0 78.6 77.0 85.7

Fine-tuned CC-DistilmBERT 90.2⋆† 81.4 79.9 87.3
DistilmBERT 87.6 79.6 79.9 85.8
mBERT 88.3 78.8 79.2 86.1

Recall Frozen CC-DistilmBERT 84.5 84.0 87.0⋆† 85.5
DistilmBERT 81.9 80.9 89.7 87.0
mBERT 83.9 79.0 91.6 84.8

Fine-tuned CC-DistilmBERT 87.3⋆† 83.2 89.7 87.5
DistilmBERT 84.1 80.2 88.5 85.4
mBERT 85.3 82.7 89.8 86.6

Technical
Discussion

Encoder Weights Model eng esp jap por rus
F1-Score Frozen TD-DistilmBERT 71.2⋆ 70.1⋆ 67.4 71.2⋆† 66.2⋆

DistilmBERT 68.9 68.8 65.8 68.2 64.3
mBERT 70.3 70.9 66.5 69.8 66.0

Fine-tuned TD-DistilmBERT 72.5⋆ 72.9⋆† 66.7 71.9⋆ 67.2⋆

DistilmBERT 70.6 71.5 65.9 70.4 66.0
mBERT 72.3 71.3 67.2 71.4 66.5

Precision Frozen TD-DistilmBERT 81.4⋆ 80.8 78.5⋆† 79.8 78.3⋆

DistilmBERT 79.7 78.5 75.7 78.6 75.5
mBERT 80.8 79.2 76.6 78.2 77.6

Fine-tuned TD-DistilmBERT 80.5⋆† 81.2⋆† 74.7 78.1† 76.5⋆†

DistilmBERT 77.6 77.5 73.8 76.8 72.6
mBERT 77.4 76.4 74.8 76.3 73.7

Recall Frozen TD-DistilmBERT 64.3⋆ 63.5 60.5 64.9⋆ 58.3
DistilmBERT 61.6 62.5 59.3 60.7 56.8
mBERT 63.2 65.4 59.8 63.7 58.3

Fine-tuned TD-DistilmBERT 66.9† 67.6 61.5 67.3 60.7
DistilmBERT 65.6 67.7 60.9 65.4 61.2
mBERT 68.7 68.4 62.6 67.9 61.7

lack of data made adaptation via knowledge dis-
tillation less effective. In this case, adaptation via
fine-tuning was relatively more effective than adap-
tation via knowledge distillation. For the CC model,
while somewhat more Japanese data was available
(0.44 GB), it is still less relative to English and
Spanish, so we again attribute the less significant
results for Japanese to data scarcity. We note that
for this domain, even less data was available for
Portuguese (0.35 GB) than Japanese, although for
Portuguese the domain adapted model did show
a significant improvement over mBERT. In this
case, we speculate that the domain adapted model’s
performance on Portuguese benefited from lexical
overlap with the Spanish training data.

9 Conclusion

We addressed the problem of encoder scalabil-
ity in the context of conversational commerce by
showing that knowledge distillation with domain-
specific data reduces model size, while simulta-
neously improving model performance. This ap-
proach allows for the training of an encoder that
can be used across a variety of languages, is smaller
than a state-of-the-art model like mBERT, and per-
forms better on domain-specific tasks. Because our
approach uses only training data for the domain
and languages of interest, less data is necessary for
training, reducing the time, cost and environmental
impact of training, while accommodating limited

158

data availability. A key advantage of domain adap-
tation during encoder rather than classifier training
is that it allows for the deployment of a single en-
coder, which can serve multiple classifiers at run-
time. This reduces storage and maintenance cost,
and due to the much larger size of the encoders
compared with the classifiers, provides dramati-
cally better scalability in real-world, e-commerce
applications that must support multiple languages
and tasks.

References
Jason Brownlee. 2019. How to use statistical signifi-

cance tests to interpret machine learning results. Ac-
cessed: October 11, 2021.

Cristian Bucilǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 535–541.

Debajyoti Chatterjee. 2019. Making neural ma-
chine reading comprehension faster. arXiv preprint
arXiv:1904.00796.

Anna Currey, Prashant Mathur, and Georgiana Dinu.
2020. Distilling multiple domains for neural machine
translation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4500–4511.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. Proceedings of NAACL-HLT, pages 4171—
-4186.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. 2016.
Eie: efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architec-
ture News, 44(3):243–254.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28:1135–1143.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4238–4248.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Vimal Manohar, Pegah Ghahremani, Daniel Povey, and
Sanjeev Khudanpur. 2018. A teacher-student learn-
ing approach for unsupervised domain adaptation of
sequence-trained asr models. In 2018 IEEE Spoken
Language Technology Workshop (SLT), pages 250–
257. IEEE.

Idriss Mghabbar and Pirashanth Ratnamogan. 2020.
Building a multi-domain neural machine translation
model using knowledge distillation. arXiv preprint
arXiv:2004.07324.

Matthew E Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language models.
arXiv preprint arXiv:1705.00108.

Alexander Rietzler, Sebastian Stabinger, Paul Opitz, and
Stefan Engl. 2020. Adapt or get left behind: Domain
adaptation through bert language model finetuning
for aspect-target sentiment classification. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 4933–4941.

Sebastian Ruder, Parsa Ghaffari, and John G Breslin.
2017. Knowledge adaptation: Teaching to adapt.
arXiv preprint arXiv:1702.02052.

Minho Ryu and Kichun Lee. 2020. Knowledge dis-
tillation for BERT unsupervised domain adaptation.
arXiv preprint arXiv:2010.11478.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. In
NeurIPS EMC2 Workshop.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian Based Ultra Low
Precision Quantization of BERT. In AAAI, pages
8815–8821.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. arXiv preprint arXiv:1903.12136.

159

Taesun Whang, Dongyub Lee, Chanhee Lee, Kisu Yang,
Dongsuk Oh, and Heuiseok Lim. 2020. An effective
domain adaptive post-training method for bert in re-
sponse selection. Interspeech 2020, page 1585–1589.

Edward WD Whittaker and Bhiksha Raj. 2001.
Quantization-based language model compression. In
Seventh European Conference on Speech Communi-
cation and Technology.

Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and Frank
Seide. 2013. Kl-divergence regularized deep neural
network adaptation for improved large vocabulary
speech recognition. In 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
pages 7893–7897. IEEE.

A Appendix: Sentence Pairs

The sentences used to produce the embeddings
compared in Table 8 are listed below.

A.1 Non-technical Sentences
1. Jerry has had a lot of late nights recently and

can’t start his day without a cup of {Java /
coffee}.

2. I was scared to death when I saw that {Python
/ snake}.

3. The ship is outfitted with lots of safety fea-
tures, including {floats / rafts} in case of an
emergency.

4. The {terminal / ending} scene of the movie
was a big surprise!

5. Emily had to drop out of school after she
missed too many {classes / lectures}.

6. In times of uncertainty, people would take
offerings to the temple and ask the {Oracle /
Prophet} for help.

A.2 Technical Sentences
1. I can’t find any code or post on how to get

traffic data in {Java / C#} for Windows Phone
8.

2. I have {Python / PHP} code for shortening a
URL.

3. Suppose I need to parse space delimited lists
of numbers where some lists contain integers
and some lists contain {floats / doubles}.

4. I am a spark newbie and I want to run a Python
script from the {terminal / command line}.

5. fill up a div with this data with relevent
markup - divs id’s {classes / objects} suround-
ing this data.

6. So what I’m doing is reading a lot of data from
remote Nettezza database and inserting them
into another remote {Oracle / DynamoDB}
database.

160

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 161 - 170
May 26, 2022 c©2022 Association for Computational Linguistics

OpenBrand: Open Brand Value Extraction from Product Descriptions

Kassem Sabeh
Free University of

Bozen-Bolzano
ksabeh@unibz.it

Mouna Kacimi
Wonder Technology

Srl
mouna@wonderflow.ai

Johann Gamper
Free University of

Bozen-Bolzano
jgamper@unibz.it

Abstract
Extracting attribute-value information from un-
structured product descriptions continue to be
of a vital importance in e-commerce applica-
tions. One of the most important product at-
tributes is the brand which highly influences
customers’ purchasing behaviour. Thus, it is
crucial to accurately extract brand information
dealing with the main challenge of discover-
ing new brand names. Under the open world
assumption, several approaches have adopted
deep learning models to extract attribute-values
using sequence tagging paradigm. However,
they did not employ finer grained data repre-
sentations such as character level embeddings
which improve generalizability. In this paper,
we introduce OpenBrand, a novel approach
for discovering brand names. OpenBrand is
a BiLSTM-CRF-Attention model with embed-
dings at different granularities. Such embed-
dings are learned using CNN and LSTM archi-
tectures to provide more accurate representa-
tions. We further propose a new dataset for
brand value extraction, with a very challenging
task on zero-shot extraction. We have tested
our approach, through extensive experiments,
and shown that it outperforms state-of-the-art
models in brand name discovery.

1 Introduction

Brand name plays a very important role in influenc-
ing customers’ behaviour (Chovanová et al., 2015;
Shahzad et al., 2014). Typically, as customers are
aware of the brand, they can deduce knowledge
about other product attributes. Let us take the ex-
ample of the toy shown in Figure 1. The brand
of this product is “Gentle Monster”. By know-
ing the brand, customers would have some kind
of associations, like this toy would be of “a soft
and smooth wood”, have “bright colors”, and con-
tain “small pieces which is suitable for older kids".
So, when shopping for toys, they would pick a
particular brand based on the attributes they find
important. Such correlations between brands and

Figure 1: An example of a product description.

product attributes make it crucial for e-commerce
applications to accurately extract brand names from
product descriptions.

Retrieving brand names is addressed in the liter-
ature within the general problem of attribute-value
extraction from product descriptions (Kovelamudi
et al., 2011; Vandic et al., 2012; Ghani et al., 2006;
Kozareva et al., 2016; Zheng et al., 2018; Xu et al.,
2019). Early approaches rely on rule-based tech-
niques which use domain-specific knowledge to
identify attributes and values (Kovelamudi et al.,
2011; Vandic et al., 2012; Ghani et al., 2006). Such
approaches adopt a closed world assumption requir-
ing the possible set of values to be known before-
hand by mean of dictionaries or hand-crafted rules.
Consequently, they are not suitable for discovering
unseen values such as newly emerging brands. To
tackle this problem, most recent approaches model
the extraction task as sequence tagging (Kozareva
et al., 2016; Zheng et al., 2018; Xu et al., 2019)
and solve it using deep learning models such as
BiLSTM enhanced by Conditional Random Field
(CRF) and Attention layers. These new approaches
achieve promising results, however, they limit the
representation of their data to word embeddings
which can capture context but penalizes generaliz-
ability to new brands.

In this paper, we propose to use character level
embeddings in sequence tagging models for dis-
covering brand names. In addition to word embed-
dings, character level embeddings were employed

161

in Named Entity Recognition (NER) tasks (Lam-
ple et al., 2016) to handle out-of-vocabulary words.
The problem of unseen words is particularly em-
phasized in brands because of sub-branding, brand
fragmentation, or simply emerging businesses. Un-
seen brand names can be completely new, like in
brand fragmentation where new brands share the
same parent brand maintaining minimal links be-
tween the new and the existing identities. For ex-
ample, “Audi” and “Porsche” do not have any sim-
ilarity although they have the same parent brand

“Volkswagen”. By contrast, sub-branding would
maintain stronger links between existing brands
and the new generated ones, which can be reflected
by similarities in brand names. Examples include

“Uber” and “UberPool”, “McDonalds” and “Mc-
Cafe”, or “Samsung” and “Samsung Evo”. Thus,
the use of character level embedding is crucial for
capturing variations in brand names and the occur-
rence of unseen brands.

We summarize the main contributions of this
work as follows:

1. We propose OpenBrand, a BiLSTM-CRF-
Attention model that combines word embed-
dings with character level word embeddings.
In contrast to previous approaches, we learn
character level embeddings based on CNN
and LSTM architectures to obtain specific rep-
resentations of our data.

2. We provide a large real world dataset1 fo-
cusing on brand names to have a thorough
analysis of the impact of character level em-
beddings. We experimentally show that our
dataset is challenging on brand name extrac-
tion, especially those zero-shot brand values.

3. We empirically demonstrate significant im-
provements in F1 score over several state-
of-the-art baselines on brand name extrac-
tion. Additionally, we show that OpenBrand
guarantees a better generalizability over new
brands and deals more effectively with com-
pound brand names.

2 Problem Statement

In this section, we formally define the problem
of open brand value extraction. Given a product
title, represented as an unstructured text data, and a

1Data is available at https://github.com/
kassemsabeh/open-brand.

Input Kids Adult Families Gentle Monster Wooden Blocks Toys
Output O O O B-Brand I-Brand O O O

Table 1: Example of an input/output {B,I,O} tag se-
quence for the brand of a product description.

target attribute (eg. brand), our goal is to extract the
appropriate values for the corresponding attribute
from the product title. In this context, we want to
discover new values that have not been encountered
before. We formalize the attribute-value extraction
as per the following definition:

Definition Given a product title X . The title
X is represented as a sequence of tokens Xt =
{x1, ..., xT }, where T is the sequence length. Con-
sider a target attribute A. Attribute-value extrac-
tion automatically identifies a sub-sequence of to-
kens from Xt as applicable attribute-value pair.
Av = {xi, xi+1, ..., xk}, for 1 ≤ i ≤ k ≤ T .

For example, consider the title for the product
given in the example of Figure 1:

X = "Wooden Stacking Board Games 54 Pieces
for Kids Adult and Families, Gentle Monster
Wooden Blocks Toys for Toddlers, Colored Build-
ing Blocks - 6 Colors 2 Dice."

The tokenization of X yields: Xt =
{x1, x2, ..., x25} = {"Wooden", "Stacking",
"Board", .., "Dice"}, where T = 25. For the target
attribute: A = {"Brand"}. We want to extract:
Brand = {x12, x13} = {"Gentle", "Monster"}.

In order to identify these sub-sequences, the se-
quence of tokens Xt need to be tagged to capture
sequential and positional information. For this pur-
pose, we adopt the sequence tagging model and
associate a tag from a given tag-set to the sequence
of input tokensXt. We experimented with different
tagging strategies and, inline with previous work
in the literature (Xu et al., 2019), we found that the
{B,I,O} tagging scheme produced the best results,
where "B", "I", and "O" represent the beginning,
inside, and outside of an attribute, respectively. (A
sequence of "O" tags corresponds to the absence
of an attribute). Table 1 shows an input/output
example of the {B,I,O} tagging strategy.

3 OpenBrand Model

To address the open brand value extraction prob-
lem, we propose a BiLSTM-CRF-Attention model
with character level embeddings. Figure 2 shows

162

Word

Char

Gentle

LSTM

LSTM

Self-Attention Mechanism

B I O O

Word

Char

Monster

LSTM

LSTM

Word

Char

Wooden

LSTM

LSTM

Word

Char

Blocks

LSTM

LSTM

Embedding
Layer

Contextual
Layer

CRF Layer

Figure 2: OpenBrand Architecture: BiLSTM-CRF-
Attention with character level representations.

our OpenBrand model architecture, which is com-
posed of three main layers: an embedding layer
that encodes the input sequence, a contextual layer
that captures complex relationships among the in-
put sequence, and an output layer that produces the
output labels.

3.1 Embedding Layer

In the embedding layer, we map every word in
the product description into a d-dimensional em-
bedding vector. The embeddings of the words are
obtained by concatenating the word embeddings
and character level embeddings. Word embeddings
are obtained from the pre-trained GloVe (Penning-
ton et al., 2014) word representations, which are
trained over large unlabeled corpus. Pre-trained
word embeddings, such as GloVe and Word2Vec
(Mikolov et al., 2013), offer a single representation
for each word, which is not useful in the case where
words have different meanings depending on the
context. To allow our model to learn different repre-
sentations of embeddings depending on the context,
we learn and generate different representations of
tokens in the input sequence. For this reason, the
weights of our embedding layer are considered to
be learnable parameters and not fixed.

An important distinction of our approach, com-
pared to previous work on attribute-value extrac-
tion, is that we learn character level features in
our model. For character level embeddings, we use
two different architectures: CNN-based and LSTM-
based character level representations. Learning
character level embeddings has the advantage of
learning task-specific representations. Convolu-
tional Neural Networks (CNN) are designed to
discover position-invariant features and they are
highly effective in extracting morphological infor-

mation (ex. prefix or suffix of words) (Chiu and
Nichols, 2016). On the other hand, LSTMs are
capable of encoding long sequences, and are thus
capable of extracting position dependent charac-
ter features. These features are crucial to model
the relationships between words and their charac-
ters. Given a token of our input sequence xt, the
embedding layer maps xt in to the vector:

et = [wt; ct],

where wt and ct are the word and character level
representations of xt, respectively. The embed-
ding representation of the whole input sequence
Xt would be {e1, e2, ..., eT }. Figure 3 illustrates
the two architectures used to encode the character
representations. These character representations
are then concatenated with the word embeddings
and fed as input to our contextual layer.

3.2 Contextual Layer
The contextual layer captures contextualized rep-
resentations for every word in the input sequence.
In our model, the input sequence to the contextual
layer is the concatenation of the character level rep-
resentations and word embeddings, both mapped
by the underlying embedding layer. In this stage,
we employ a BiLSTM contextual layer followed
by a self-attention layer.

Long Short Term Memory Networks (Hochreiter
and Schmidhuber, 1997) address the vanishing gra-
dient problems of Recurrent Neural Networks and
are thus capable of modeling long-term dependen-
cies between tokens in a sequence. Bidirectional
LSTM (BiLSTM) can capture both past and fu-
ture time steps jointly by using two LSTM layers
to produce both forward and backwards states, re-
spectively. Given the input et (embedding of a
token xt), the hidden vector representations from
the backward and forward LSTMs (

−→
ht and

←−
ht) is:

ht = ∆([
−→
ht ;
←−
ht])

where ∆ denotes a non-linear transformation. The
hidden representation of the whole input sequence
Xt is Ht = {h1, h2,, hT }.

In reality, not all hidden states generated by the
BiLSTM layer are equally important for the label-
ing decisions. A mechanism that allows the output
layer to be aware of the important features of the
sequence can improve the prediction model. This
is exactly what attention does. Attention mecha-
nisms have achieved great success in Natural Lan-
guage Processing (NLP) and were first introduced

163

F O RPadding Padding

Character
Embedding

Convolution

Max Pooling

Char
Representation

(a) CNN-based character level representation.

F O R

LSTM LSTM LSTM

LSTM LSTM LSTM

Character
Embedding

BiLSTM
Encoder

Char
Representation

(b) LSTM-based character level representation.

Figure 3: Architecture of character level encoders.

in the Neural Machine Translation task (Bahdanau
et al., 2015). In the contextual layer, we use a
self-attention mechanism to highlight important
concepts in the sequence rather than focusing on
everything. The model learns to attend to the im-
portant parts of the input states based on the output
produced so far. We first compute the similarity
between all hidden states representations to obtain
an attention matrix A ∈ RT×T where

αt,t′ = σ(wαgt,t′ + bα)

is the element of matrix A representing the mutual
interaction between hidden states ht and ht′ . σ is
the element-wise sigmoid function, and

gt,t′ = tanh(W1ht +W2ht′ + bg)

where W1, W2, wα are trainable attention matrices,
and bg, bα are trainable biases. The contextualized
hidden states can be computed as

h̃t =
T∑

t′=1

αt,t′ · ht′

The contextualized hidden state of the whole
input sequence Xt is H̃t = {h̃1, h̃2, ...h̃T }.

3.3 CRF Layer
In sequence labeling tasks, it is important to con-
sider the dependencies between output tags in a
neighborhood. Conditional Random Fields (CRF)
allow us to capture the correlation between labels
and model their sequence jointly. For example, if
we already know the tag of a token is I, then this
increases the probability of the next token to be I or
O, rather than being B. We feed the contextualized
hidden states H̃t = {h̃1, h̃2, ...h̃T } to our output
CRF layer to get the sequence of labels with high-
est probabilities. The joint probability distribution

of a tag y given the hidden state h̃t and previous
tag yt−1 is given by

Pr(y|x;ψ) ∝
T∏

t=1

exp

(
K∑

k=1

ψkfk(yt−1, yt, h̃t)

)

where ψk is the corresponding learnable weight,
fk is the feature function, and K is the number of
features. The final output label is the label with the
highest conditional probability, given as

y∗ = argmaxyPr(yi|xi;ψ)

where y∗ ∈ {B, I,O} is the output tag.

In Section 5.2, we will study in detail the
effect of the attention and CRF layers on the
discovery of brands in comparison with the
embeddings layer.

4 Experimental Setup

This section presents the experimental settings of
our empirical approach for comparing state-of-the-
art models on the task of brand value extraction.

4.1 Dataset
To evaluate the effectiveness of OpenBrand, we
have collected a dataset that contains information
about products from Amazon. Our dataset is de-
rived from a public product collection - the Amazon
Review Dataset (Ni et al., 2019) 2. The categories
of the collected dataset contained a large amount
of overlapping brands, which might bias the results
of the experiments. Thus, we have selected a sub-
set to have a diverse set of brands with minimal
overlapping across categories. We also processed

2https://nijianmo.github.io/amazon/
index.html

164

Category Train Val Test
Grocery & Gourmet Food 15679 2239 4479
Toys & Games 44314 6330 12660
Sports & Outdoors 37951 5421 10842
Electronics 33512 4787 9574
Automotive 45132 6447 12894
Total 176588 25224 50449

Table 2: Statistics of AZ-base dataset with five cate-
gories.

the dataset to handle noise, and removed samples
with empty values. This led to a dataset comprising
over 250k product titles with more than 50k unique
values, which we refer to as AZ-base dataset in
our experiments. The AZ-base dataset contains in-
formation about products in five main categories:
Grocery & Gourmet Food, Toys & Games, Sports
& Outdoors, Electronics and Automotive. We ran-
domly sample 70% of the data for training, 10%
for validation, and 20% for testing. Table 2 shows
the statistical details of the AZ-base dataset.

To further examine the generalization ability of
our model, we divide the AZ-base dataset into an-
other training and test split with no overlapping
brand values. In other words, none of the values
in the test set are encountered during training. We
refer to this data split as AZ-zero-shot, as it is de-
signed for evaluating zero-shot extraction. The test
set of AZ-zero-shot contains more than 8k new and
unique brand values.

In addition, we have also chosen another subset
of products from our collected data with another set
of categories. The purpose of this dataset is to test
the models capabilities in detecting brand values
across different category domains. The dataset
contains information about products in three new
categories as shown in Table 3. We refer to this
dataset as AZ-new-cat, as it is designed to evaluate
the model on a new set of product categories.

4.2 Models Under Comparison

We implemented and compared three state-of-the-
art baseline models on attribute-value extraction.

BiLSTM (Hochreiter and Schmidhuber, 1997)
which uses word embeddings from pretrained
GloVe (Pennington et al., 2014) for word level rep-
resentation, then applies BiLSTM to produce the
contextual embeddings.

BiLSTM-CRF (Huang et al., 2015) which ex-
tends the BiLSTM model by adding a CRF layer

Category Samples
Clothing, Shoes & Jewelry 85068
Pet Supplies 10868
Cell Phones & Accessories 78564
Total 174500

Table 3: Number of samples in AZ-new-cat dataset.

on top to model the tagging decisions jointly. This
model is considered state-of-the-art sequence tag-
ging model for NER.

OpenTag (Zheng et al., 2018) which adds a self
attention mechanism between the contextual BiL-
STM layer and the CRF decoding layer. OpenTag
is considered the pioneer sequence tagging model
for attribute-value extraction.

We compare the above baseline models with the
OpenBrand models we proposed in Section 3.

OpenBrand-LSTM In this approach, character
level information is obtained by applying a BiL-
STM encoder on the sequence of characters in each
word. This character level information is used in
combination with word-level embeddings as input
to the BiLSTM-CRF-Attention model.

OpenBrand-CNN This approach is similar to
the above model, but CNNs are used instead of
LSTMs to encode character level information in
the word sequences.

We use precision P , recall R and F1 score as
evaluation metrics based on the number of true
positives (TP), false positives (FP), and false nega-
tives (FN). We use Exact Match criteria (Rajpurkar
et al., 2016), in our evaluation, with either full or
no credit. The implementation details are provided
in the Appendix.

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2× P ×R

P +R

5 Results and Discussion

We conducted a series of experiments on AZ-base,
AZ-zero-shot, and AZ-new-cat datasets under vari-
ous settings to evaluate the performance of Open-
Brand.

5.1 Baseline Performance Comparison
In the first experiment, we compare the perfor-
mance of OpenBrand with the three state-of-the-art
baselines mentioned in Section 4.2 for identify-
ing brand values from product descriptions. Table

165

Category Models P R F1

Grocery
& Gourmet Food

BiLSTM 70.4 65.9 68.1
BiLSTM-CRF 74.9 66.0 70.2
OpenTag 76.0 65.4 70.3
OpenBrand-LSTM 75.9 77.5 71.8
OpenBrand-CNN 77.5 75.4 76.4

Toys & Games

BiLSTM 73.7 69.1 71.3
BiLSTM-CRF 78.9 70.5 74.5
OpenTag 79.1 70.3 74.5
OpenBrand-LSTM 80.2 72.4 76.1
OpenBrand-CNN 81.3 72.0 76.4

Sports & Outdoors

BiLSTM 80.3 75.8 78.0
BiLSTM-CRF 84.1 75.4 79.5
OpenTag 84.9 75.0 79.6
OpenBrand-LSTM 85.7 76.8 81.0
OpenBrand-CNN 86.1 77.3 81.5

Electronics

BiLSTM 86.2 80.4 83.2
BiLSTM-CRF 87.8 81.5 84.5
OpenTag 89.2 79.6 84.2
OpenBrand-LSTM 89.1 80.8 84.8
OpenBrand-CNN 89.7 80.5 84.9

Automotive

BiLSTM 88.5 84.3 86.4
BiLSTM-CRF 90.9 85.0 87.9
OpenTag 91.6 84.6 87.9
OpenBrand-LSTM 91.7 85.0 88.2
OpenBrand-CNN 91.8 85.4 88.5

Table 4: Performance comparison between different
models on AZ-base dataset.

4 reports the comparison results of our two mod-
els (OpenBrand-LSTM and OpenBrand-CNN) and
three baselines across all categories in the AZ-base
dataset. From these evaluation results, we can ob-
serve that our models substantially outperform the
other compared models in all categories. Open-
Brand with LSTM character level and CNN char-
acter level embeddings are consistently ranked the
best over all competing baselines. The overall im-
provement in F1 score is up to 6.1% as compared to
OpenTag. The main reason for this result is that our
model learns both character and word embeddings
during training, thus allowing to learn more effec-
tive contextual embeddings that are more suitable
for the task of extracting brand values.

5.2 Impact of Character level Representations

To understand the effect of character level repre-
sentations on brand-value extraction, we extend all
baseline models with character level embeddings
and test them on the AZ-base dataset. Table 5
shows the average F1 score of baseline models on
the AZ-base dataset after adding character level
representations. The results show that character
level embeddings significantly improve the overall

Model Base LSTM-char CNN-char
BiLSTM 78.56 79.71 79.73
BiLSTM-CRF 80.37 81.11 81.52
OpenTag 80.51 81.62 81.85

Table 5: Effect of character embeddings on the perfor-
mance of the models (F1 score).

performances of all models. An interesting obser-
vation is that character level embeddings improve
the model much more effectively than CRF or atten-
tion layers. For example, and as shown in the last
two rows of Table 5, adding a CNN-representation
to a BiLSTM-CRF model improves the model by
1.15%, while adding an attention layer only im-
proves the model by 0.14%.

The experiments also show that using either
CNN-char or LSTM-char both lead to an improve-
ment with comparable overall F1 score. However,
CNNs have less training complexity as compared to
LSTM models under similar experimental settings.
In our experiments, the average training time of
models with LSTM-char increased by 59% relative
to the baseline BiLSTM-CRF-Att model, while it
only increased by 22% with CNN-char, as detailed
in Table 6. CNN-char also produces better per-
formances than LSTM-char as shown in Table 5.
We conclude that CNN character representations
are preferable to LSTM based representations for
brand-value extraction.

Model
Average Training Time
per Epoch (seconds)

Difference (∆%)

BiLSTM-CRF-Att 63 0
+LSTM-char 100 +59%
+CNN-char 77 +22%

Table 6: Average training time of our BiLSTM-CRF-Att
models computed on a TPU.

5.3 Discovering New Brand Values

We conduct zero-shot extraction experiment to eval-
uate the generalization ability of our models on
unseen brand values. Table 7 reports the zero-shot
extraction results. It can be seen that our model
achieves better performance than OpenTag on un-
seen data. This is because our model can leverage
the sub-sequence level similarities in brand names
between the train set and test set, through the char-
acter level embeddings. However, it is clear that
the overall performance of all models is worse as
compared to the results in Table 4, which is inline

166

Model P R F1
OpenTag 53.80 33.82 41.53
OpenBrand-LSTM 56.17 35.14 43.23
OpenBrand-CNN 55.61 35.46 43.44

Table 7: Zero-shot extraction results on AZ-zero-shot
dataset.

with our expectations as there are no training sam-
ples for the zero-shot brand values. This indicates
that it is truly a difficult zero-shot extraction task.

To further examine the ability of OpenBrand in
discovering brand values in new categories, we
train the models on the AZ-base dataset, and test
them on the AZ-new-cat dataset introduced in Sec-
tion 4.1. Table 8 reports the results across three
different categories in the AZ-new-cat dataset. It is
clear that OpenBrand achieves much better perfor-
mance with gains up to 2.7% in F1 score as com-
pared to OpenTag. This indicates that our model
has good generalization and is able to transfer to
other domains. Also, the results are much better
than zero-shot extractions. This is because some
data in the training set are semantically related to
the brand values in AZ-new-cat and thus they pro-
vide hints that guide the extraction. For example,
many of the brands in Cell Phones & Accessories
category (eg. Samsung Galaxy) are sub-brands of
products in Electronics category (eg. Samsung).

Category Models P R F1

Clothing, shoes,
& Jewelry

BiLSTM 52.6 44.3 48.1
BiLSTM-CRF 58.5 42.2 49.0
OpenTag 60.3 43.5 50.5
OpenBrand-LSTM 63.8 44.7 52.6
OpenBrand-CNN 64.5 45.2 53.2

Pet Supplies

BiLSTM 49.1 39.4 43.7
BiLSTM-CRF 55.0 37.3 44.5
OpenTag 53.9 38.9 45.2
OpenBrand-LSTM 57.3 39.8 47.0
OpenBrand-CNN 58.2 38.5 46.3

Cell Phones
& Accessories

BiLSTM 81.2 63.8 71.5
BiLSTM-CRF 80.1 68.0 73.5
OpenTag 78.3 67.4 72.4
OpenBrand-LSTM 83.3 70.7 76.5
OpenBrand-CNN 85.2 67.8 75.5

Table 8: Performance comparison between models on
the AZ-new-cat dataset.

5.4 Impact of Brand Entities

We also conducted experiments to explore the rela-
tionship between the number of entities that consti-

1 2 3 4 or More
Number of Entities

60

65

70

75

80

85

90

95

100

F1
 S
co
re
 %

87
.7

74
.3

67
.6

61
.0

88
.3

75
.6

70
.0

63
.7

88
.1

76
.7

71
.2

65
.1

OpenTag OpenBrand-LSTM OpenBrand-CNN

Figure 4: Impact of number of entities on the model
performance.

tute the brand and the performance of the models.
Since we use Exact Match criteria in our evalua-
tions, detecting brand values with more than one
entity becomes very challenging in general. We
divide the test set of our AZ-base dataset into four
subsets according to the number of entities inside
a brand (see Figure 4). While OpenTag achieves
good overall F1 performance with brand values
consisting of single entities (88%), it is much worse
on brand values with three or more entities (67%
and 61% respectively). OpenBrand, on the other
hand, still performs well even on brands with two
or more entities (71% and 65% respectively).

5.5 Discussion

Our experimental results show that, for the task of
extracting brand values, OpenBrand outperforms
baseline approaches by a significant margin. Be-
sides the general F1 score, the gains can be seen
in both precision and recall which go up to 2.2%
and 11.5%, respectively. This means that character
embeddings do not only help discover more brand
values but they also improve the accuracy of the
extracted information. Furthermore, the gains in
recall are also high for the AZ-new-cat and AZ-
zero-shot datasets, reaching 3.3% and 1.46% of
improvement respectively. Thus, OpenBrand per-
forms particularly well for unseen data which con-
firms our initial claim that character embeddings
enhance model generalizability.

Another important finding of our study is that the
performance of OpenBrand depends on the product
category. We can observe that, for the Automo-
tive category, the gain in precision is 0.2% while
it goes up to 2.2% for the Toys & Games category.
This is mainly due to an ambiguity problem in the
product descriptions of the Automotive category.

167

Some product descriptions might contain values
of other brands other than the one that needs to be
detected. Let us take the following product descrip-
tion: “Honda Shadow 750 Aero Cobra Saddlebag
Guards Supports". This is about a “Saddlebag
Guards Supports" that is compatible for “Honda"
cars. The brand of this product is “Cobra" but the
presence of “Honda" in the description can be con-
fusing for the model leading to wrong extractions.

We additionally observe that compound brand
values are best handled by OpenBrand. This is
due to the fact that the combination of character
and word embeddings contributes to more mean-
ingful representations. The results also show that
OpenBrand-LSTM tends to perform worse, as com-
pared to OpenBrand-CNN. This is inline with prior
observations (Bradbury et al., 2017) that LSTM can
be difficult to apply on long sequences of input.

6 Related Work

There has been significant research on the task of
attribute-value extraction from product descriptions
(Wong et al., 2009). Initial approaches (Vandic
et al., 2012) formulated the problem as a classifica-
tion task relying on supervised learning techniques.
(Ghani et al., 2006) use a Naive Bayes classifier to
extract values that correspond to a predefined set
of product attributes. (Putthividhya and Hu, 2011)
focus on annotating brands in product listings of ap-
parel products on eBay. (Kovelamudi et al., 2011)
propose a domain independent supervised system
that can automatically discover product attributes
from user reviews using Wikipedia. Similarly,
(Ling and Weld, 2012) propose an automatic la-
beling process of entities by making use of anchor
links from Wikipedia text. Other approaches ex-
ploited unsupervised learning techniques like (Shin-
zato and Sekine, 2013) in their task of extracting
attribute-values from e-commerce product pages.
Following a similar line, (Charron et al., 2016) use
consumer patterns to create annotations for data-
driven products. (Bing et al., 2016) focus on the
discovery of hidden patterns in costumer reviews to
improve attribute-value extraction. The above ap-
proaches provide promising results, however they
poorly handle the discovery of new values due to
their closed world assumption.

The most recent approaches (Kozareva et al.,
2016; Zheng et al., 2018; Xu et al., 2019) make
instead an open world assumption using sequence
tagging models, similarly to NER tasks (Ma and

Hovy, 2016; Huang et al., 2015). (Kozareva et al.,
2016) use a BiLSTM-CRF model to tag several
product attributes for brands and models with hand-
crafted features. (Zheng et al., 2018) develop an
end-to-end tagging model utilizing BiLSTM and
CRF without using any dictionary or hand-crafted
features. After that, (Xu et al., 2019) adopted only
one global set of BIO tags for any attributes to
scale up the semantic representation models of
product titles. In this context, (Karamanolakis et al.,
2020) proposed a taxonomy aware knowledge ex-
traction model that takes advantage of the hierarchi-
cal relationships between product categories. The
latest approaches extend the open world assump-
tion also to attributes and use question answering
(QA) models (Wang et al., 2020) to scale to a larger
number of attributes. Sequence tagging approaches
are the most relevant to our work since extracting
brand names does not require scalability. How-
ever, these models did not exploit character level
embeddings which are crucial for improving gener-
alizability. In our work, we enhance such models
using different granularities of embeddings.

7 Conclusion

In this paper we have addressed the problem of
extracting brand values from product descriptions.
Previous state-of-the-art sequence tagging meth-
ods faced the challenge of discovering new val-
ues that have not been encountered before. To
tackle this issue we proposed OpenBrand, a novel
attribute-value extraction model with the integra-
tion of character level representations to improve
generalizability. We presented experiments on real-
world datasets in different categories which show
that OpenBrand outperforms state-of-the-art ap-
proaches and baselines. By exploiting character
level embeddings, OpenBrand is capable of learn-
ing accurate representations to discover new brand
values. Our experiments also show that CNN based
representations outperform LSTM based represen-
tations in both performance and computation.

A natural extension of this work is to deal with
the problem of disambiguation discussed in Section
5.5. To this end, we need to have more training data
which helps understating the patterns in a better
way. Moreover, we need to extend the tagging
model to capture ambiguous product descriptions.
This extension can be very important when brand
values need to be extracted from other data sources
other than concise product descriptions.

168

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Lidong Bing, Tak-Lam Wong, and Wai Lam. 2016. Un-
supervised extraction of popular product attributes
from e-commerce web sites by considering customer
reviews. ACM Trans. Internet Technol., 16(2).

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2017. Quasi-recurrent neural net-
works. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Bruno Charron, Yu Hirate, David Purcell, and Martin
Rezk. 2016. Extracting semantic information for e-
commerce. In The Semantic Web – ISWC 2016, pages
273–290, Cham. Springer International Publishing.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Linguis-
tics, 4.

Henrieta Hrablik Chovanová, Aleksander Ivanovich Ko-
rshunov, and Dagmar Babčanová. 2015. Impact of
brand on consumer behavior. Procedia Economics
and Finance, 34:615–621. International Scientific
Conference: Business Economics and Management
(BEM2015).

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema,
and Andrew Fano. 2006. Text mining for prod-
uct attribute extraction. SIGKDD Explor. Newsl.,
8(1):41–48.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging.

Giannis Karamanolakis, Jun Ma, and Xin Luna Dong.
2020. TXtract: Taxonomy-aware knowledge extrac-
tion for thousands of product categories. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8489–8502, On-
line. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Sudheer Kovelamudi, Sethu Ramalingam, Arpit Sood,
and Vasudeva Varma. 2011. Domain independent

model for product attribute extraction from user re-
views using Wikipedia. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 1408–1412, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Zornitsa Kozareva, Qi Li, Ke Zhai, and Weiwei Guo.
2016. Recognizing salient entities in shopping
queries. In ACL.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, AAAI’12,
page 94–100. AAAI Press.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’13, page 3111–3119, Red Hook, NY, USA.
Curran Associates Inc.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Duangmanee (Pew) Putthividhya and Junling Hu. 2011.
Bootstrapped named entity recognition for product
attribute extraction. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP ’11, page 1557–1567, USA. As-
sociation for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for

169

machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Umer Shahzad, Salman Ahmad, Kashif Iqbal, Muham-
mad Nawaz, and Saqib Usman. 2014. Influence of
brand name on consumer choice & decision. IOSR
Journal of Business and Management, 16:72–76.

Keiji Shinzato and Satoshi Sekine. 2013. Unsupervised
extraction of attributes and their values from product
description. In Proceedings of the Sixth International
Joint Conference on Natural Language Processing,
pages 1339–1347, Nagoya, Japan. Asian Federation
of Natural Language Processing.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural net-
works from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Damir Vandic, Jan-Willem Dam, and Flavius Frasincar.
2012. Faceted product search powered by the seman-
tic web. Decision Support Systems, 53:425–437.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. In KDD

’20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pages 47–55. ACM.

Yuk Wah Wong, Dominic Widdows, Tom Lokovic, and
Kamal Nigam. 2009. Scalable attribute-value extrac-
tion from semi-structured text. In ICDM Workshop
on Large-scale Data Mining: Theory and Applica-
tions.

Huimin Xu, Wenting Wang, Xin Mao, Xinyu Jiang, and
Man Lan. 2019. Scaling up open tagging from tens
to thousands: Comprehension empowered attribute
value extraction from product title. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5214–5223, Florence,
Italy. Association for Computational Linguistics.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
KDD ’18, page 1049–1058, New York, NY, USA.
Association for Computing Machinery.

A Appendix

A.1 Implementation Details
Our models are implemented with Tensorflow3 and
Keras4, and they are trained using TPUs on the

3https://www.tensorflow.org/.
4https://keras.io/.

Hyper-parameter Value
LSTM Units {64, 128, 256}
Character Embedding Size {10, 30, 50, 100}
Window Size {3, 5, 10}
Number of Filters {10, 30, 50}
Trainable Parameters 36420

Table 9: Hyper-parameters for OpenBrand-CNN model.

Hyper-parameter Value
LSTM Units {64, 128, 256}
Character Embedding Size {10, 30, 50, 100}
Character LSTM Units {10, 30, 50, 100}
Trainable Parameters 526170

Table 10: Hyper-parameters for OpenBrand-LSTM
model.

cloud. We used the validation set of AZ-base to
select the optimal hyper-parameters of our model,
while the test set was used to report the final results.
During training, optimization is performed with
Adam optimizer (Kingma and Ba, 2015) using a
1e−3 initial learning rate. For all models, we em-
ployed pre-trained 100-dimensional word vectors
from GloVe (Pennington et al., 2014). All models
use a dropout layer (Srivastava et al., 2014) of size
0.3 both before and after the BiLSTM layer. The
minibatch size is fixed to 128. The BIO tagging
scheme is adopted. In the training process, we used
the loss score on the validation set to assess model
improvement. The models were trained for a to-
tal of 100 epochs, and early stopping was applied
if there was no improvement for a period of 10
epochs. The average training time for each epoch
was also recorded.

Tables 9 and 10 show the selected hyper-
parameters in the CNN-based and LSTM-based
models respectively, based on the performance on
the validation set. These include the character em-
beddings dimension. The tables also show the total
number of trainable parameters for each model.
The difference in number of trainable parameters
shows that CNNs have less training complexity as
compared to LSTM models under similar experi-
mental settings.

170

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 171 - 180
May 26, 2022 c©2022 Association for Computational Linguistics

Robust Product Classification with Instance-Dependent Noise

Huy Nguyen
Amazon.com, Inc.

Seattle, Washington, USA
nguynnq@amazon.com

Devashish Khatwani
Amazon.com, Inc.

Vancouver, British Columbia, Canada
khatwad@amazon.com

Abstract

Noisy labels in large E-commerce product data
(i.e., product items are placed into incorrect cat-
egories) are a critical issue for product catego-
rization task because they are unavoidable, non-
trivial to remove and degrade prediction perfor-
mance significantly. Training a product title
classification model which is robust to noisy la-
bels in the data is very important to make prod-
uct classification applications more practical.
In this paper, we study the impact of instance-
dependent noise to performance of product title
classification by comparing our data denoising
algorithm and different noise-resistance train-
ing algorithms which were designed to prevent
a classifier model from over-fitting to noise. We
develop a simple yet effective Deep Neural Net-
work for product title classification to use as a
base classifier. Along with recent methods of
stimulating instance-dependent noise, we pro-
pose a novel noise stimulation algorithm based
on product title similarity. Our experiments
cover multiple datasets, various noise methods
and different training solutions. Results un-
cover the limit of classification task when noise
rate is not negligible and data distribution is
highly skewed.

1 Introduction

Product classification is a quintessential E-
commerce machine learning problem in which
product items are placed into their respective cate-
gories. With recent advancements of Deep Learn-
ing, various unimodal (i.e., text only) and multi-
modal (e.g., text and image) models have been de-
veloped to predict larger numbers of items and cate-
gories with better accuracy (Gao et al., 2020; Chen
et al., 2021a; Brinkmann and Bizer, 2021). How-
ever, one of the fundamental assumptions behind
such models is the availability of large and high-
quality labeled datasets. Access to such datasets is
usually costly or infeasible in some settings. Large
product datasets usually suffer from annotation er-

rors, i.e., products are assigned to incorrect cat-
egories, partially due to complex category struc-
ture, confusing categories and similar titles. The
problem of noisy labels is even more severe when
product category distribution is highly imbalanced
with heavy-tail (Shen et al., 2012; Das et al., 2016).
Therefore, a text classifier which is robust to noisy
labels present in training data is critical for high-
performing product classification applications.

While machine learning in the presence of label
noise has been studied for decades, most of prior
studies experimented in computer vision domain
(Gu et al., 2021; Song et al., 2022), and only a
few research was conducted in text classification
(Jindal et al., 2019; Garg et al., 2021). Without
an annotated dataset with manually-identified label
noise, classical approaches for label noise stimula-
tion assume class-conditional noise (CCN) where
the probability of an item having label corrupted
depends on the original and noisy labels. With this
assumption, all products of “Men’s Watches” cat-
egory have the sample probability to be assigned
“Women’s Watches” label. This is not generally
correct. For instance, product titles having phrase
“men’s watches” are less likely mis-labeled. Re-
cent research addresses more general label noise,
i.e., instance-dependent noise (IDN), that an item
is mis-labeled with a probability depending on its
original label and features.

In this paper, we present a comprehensive study
on improving product title classification in the pres-
ence of IDN. We develop a simple yet effective
Deep Neural Network for text classification and
show that our model performs well on different
product title datasets ranging from small to medium
sizes, balanced to skewed distributions, and tens to
over a hundred categories. To generate noisy labels
for experiments, our first contribution is an IDN
stimulation algorithm which flips an item’s label
based on its similarity to items of other categories.
Noisy label data generated by our method is com-

171

pared with prior IDN stimulation methods for their
impact to model accuracy degradation. To make
the model robust to label noise, our second contri-
bution is a data augmentation method that reduces
noise rate and thus improves model’s accuracy. We
compare three state-of-the-art Deep Neural Net-
work training algorithms to train a classifier on
data with label noise generated by different meth-
ods. From experimental results we discuss lessons
learned for product title classification in produc-
tion. To the best of our knowledge, this work is
the first time that noise-resistance model training is
studied in E-commerce domain, which is our third
contribution.

2 Related Work

Automatic product categorization has been well
studied to address its challenges including large
number of items and categories, and hierarchical
categories structure (Gao et al., 2020; Chen et al.,
2021a; Brinkmann and Bizer, 2021). The large-
scale nature of product data leads to a critical issue
of noisy labels. For example, an E-commerce web-
site reported that 15% of product listings by sellers
have incorrect labels (Shen et al., 2012). Das et al.
(2016) attempted to use a latent topic model to
help manually inspect noisy categories and remove
incorrect samples. Our current study focuses on
fully automated methods for data denoising and
noise-resistance training to prevent models from
over-fitting to noisy samples.

Training Deep Neural Networks (DNN) with
noisy labels is challenging because DNN’s large
learning capacity make them highly susceptible
to over-fitting to noise (Arpit et al., 2017; Zhang
et al., 2021a). Early work stacked DNN with layers
to model noise-transition matrix assuming class-
conditional noise, i.e., noisy label ŷ only depends
on true label y but not on the input x (Jindal et al.,
2016; Patrini et al., 2017). Because noise tran-
sition matrix can be difficult to learn or not fea-
sible in real-world settings, other directions tar-
geted to selecting clean samples in each mini-batch
and use them to update DNN’s parameters (Jiang
et al., 2018; Malach and Shalev-Shwartz, 2017).
Among those, CoTeaching (Han et al., 2018) and
CoTeaching+ (Yu et al., 2019) showed the effective-
ness of cross-training two networks simultaneously
in that each network sends selective samples for the
other to learn. A more realistic assumption of noisy
labels is instance-dependent noise (IDN) in which

probability of noisy label ŷ depends on true label
y and input x (Chen et al., 2021b). Among state-
of-the-art work on IDN, Self-Evolution Average
Label – SEAL (Chen et al., 2021b) and Progressive
Label Correction – PLC (Zhang et al., 2021b) are
representatives of label refurbishment (Song et al.,
2022) that uses softmax output to assign soft labels
to training instances. We compare SEAL, PLC and
CoTeaching+ on training a product title classifier
with label noise.

3 Datasets

In this study, we employ 6 public datasets for prod-
uct classification. While some datasets have mul-
timodal inputs, e.g., product titles, descriptions,
images, we use only product title inputs and leave
other fields for a future work. This restriction may
prevent us from achieving the best possible per-
formance by incorporating other information-rich
inputs (Chen et al., 2021a). However, our main
motivation is to evaluate noise-resistance training
approaches. For each dataset, we filter-out cate-
gory labels with less than 10 samples, then apply
stratified random sampling to split 10% for test-
ing and 90% for training. We leave a study of
few-shot learning for product title classification for
future work. Hyper-parameters of models and train-
ing algorithms are fine-tuned within training sets
when needed. In experiments with noisy labels,
only training samples have label corrupted while
testing sets are unchanged. This assures a realis-
tic evaluation that model accuracies are measured
against ground-truth disregarding how the model
was trained. To measure skewness of data label
distribution, we calculate KL-divergence from the
actual category distribution to uniform distribution.
Data statistics are shown in Table 1.

• Flipkart1: the original set contains nearly
20,000 samples but over 200 category labels
are unqualified for modeling (e.g., those ei-
ther have too few samples or are considered
as Brand Name). Therefore we use 19,666
samples of top 28 categories.

• WDC dataset is WDC-25 Gold Standard for
Product Categorization (Primpeli et al., 2019).
We remove items with category label “not-
found” and keep 23,597 samples with 24 class
labels.

1www.kaggle.com/PromptCloudHQ/flipkart-products

172

Table 1: Summary of product title datasets

Dataset #cls #train #test KL
Flipkart 28 17,682 1,984 1.04
WDC 24 21,225 2,372 0.34
Retail 21 41,586 4,642 0.00
Pricerunner 10 31,773 3,538 0.03
Shopmania 147 282,095 31,437 1.49
Skroutz 12 214,346 23,824 1.10

• Retail dataset has 46,228 training samples
with item titles, descriptions, images and
category labels placed into 21 categories
(Elayanithottathil and Keuper, 2021). We do
not use their test data which does not have
category labels.

• Pricerunner, Shopmania, Skroutz datasets2

were collected from three online electronic
stores and product comparison platforms
(Akritidis et al., 2018, 2020).

As shown in Table 1, datasets Flipkart, Shopma-
nia and Skroutz are highly imbalanced with KL-
divergence greater than 1. Each of these datasets
has major classes with thousands of samples and
minor classes with tens of samples. WDC dataset
is moderately skewed having 24 classes with num-
ber of samples ranging from 10 to 4,753. Retail
and Pricerunner sets are the most balanced with
KL-divergence close to zero. Retail dataset has
roughly 2,200 samples per class while Pricerunner
has class samples in range (2000, 6000).

4 Base Model for Product Title
Categorization

We develop a product title classifier based on
LSTM-CNNs architecture proposed in (Ma and
Hovy, 2016). The network architecture is depicted
in Figure 1. Input encoding layer is a concate-
nation of word-embeddings (looking-up function
against GloVe pre-trained embeddings (Penning-
ton et al., 2014)) and character embeddings (out-
put of a Character-CNN layer). The sequence of
embedding vectors is passed to a Bidirectional Re-
current Neural Network of LSTM cells (Hochreiter
and Schmidhuber, 1997). Prediction is carried by
a dense layer whose input is last hidden state of
Bidirectional LSTM. The DNN is implemented

2www.kaggle.com/lakritidis/product-classification-and-
categorization

Table 2: Models’ macro F1 scores on product title data

Dataset LSTM-CNNs BERT-base
Flipkart 0.89 0.90
WDC 0.92 0.92
Retail 0.82 0.82
Pricerunner 0.96 0.98
Shopmania 0.83 0.87
Skroutz 0.96 0.98

in PyTorch (Paszke et al., 2017) and trained us-
ing Adam optimizer with Cross-entropy loss. For
experiments with different datasets, we use the
same set of hyper-parameters: Glove embedding
42B.300d, LSTM hidden size 100, character em-
bedding size 25 with 3 convolution heads of filter
sizes 2, 3, 4, learning rate 5e-4, clip gradient norm
greater than 5.0. Models are trained for 10 epoch
with batch size 16.

To evaluate our implementation, we compare
model performance with fine-tunning the pre-
trained BERT-base uncased language model (De-
vlin et al., 2019). Results on 6 datasets with clean
label are reported in Table 2.3 Our model performs
on par with BERT-base in small datasets Flipkart,
WDC, and Retail with macro F1 of less than 1
percentage point lower. For datasets Pricerunner
and Skroutz, both models return great performance
with BERT-base outperforming our model by 2
percentage points. Shopmania dataset observes
the largest performance difference when BERT
achieves F1 score 4 percentage points higher than
LSTM-CNNs. Good performance of LSTM-CNNs
gives us a strong base classifier which is much
faster to train than BERT-base (LSTM-CNNs has
approximately 6M of trainable parameters while it
is 110M for BERT). We will study the impact of
pre-training on noise-resistance in a future study.

5 Instance-Dependent Noise Stimulation

A common approach for automated IDN genera-
tion is to train one or a set of classifiers on clean
label data, and use such classifiers to generate noisy
labels for the whole dataset. Related studies can be
different on how to maintain a pool of classifiers,
e.g., different checkpoints of a single models or
different model architectures, and label placement
strategies, e.g., whether replacing clean label sam-
ples with noisy counterparts or allowing a sample

3Macro F1 score is a fair evaluation metric for imbalanced
data.

173

Figure 1: LSTM-CNNs architecture for product title classifier

Word-emb Char-CNN

LSTM-Cell LSTM-Cell LSTM-Cell

LSTM-Cell LSTM-Cell LSTM-Cell

Word-emb Char-CNN Word-emb Char-CNN

Fully-connected layer

…

…

…

Concatenation

Concatenation

Softmax layer

5S Materials

fastenal tape 108’

t a p e paddingpadding

…

Character embedding

Convolution

Max pooling

Character representation

Char-CNN

to have multiple copies with different labels. We
follow (Zhang et al., 2021b; Chen et al., 2021b)
to use replacement strategy which is considered a
more difficult setting. We implement four different
IDN algorithms, and adjust parameters to gener-
ate noisy label data with noise rates (i.e., ratio of
noisy label samples over data size) in two levels:
0.2 (low) and 0.4 (medium).
Last-epoch IDN: We train a base classifier for
10 epochs to obtain the network corresponding to
last epoch checkpoint. The trained network is ex-
ecuted on training data to obtain prediction con-
fidence score (i.e., output of softmax layer) for
every sample. Following the formula of noise type-
I described in (Zhang et al., 2021b), we corrupt
item category from the most confident label to the
second confident label. This method uses a noise
factor parameter to control noise rate, thus we run
different trials to probe the noise factors that give
us noise rates of interest.
Multi-epoch IDN: The base classifier is trained
for 10 epochs to obtain a sequence of networks cor-
responding to multiple epoch checkpoints. Each
sample is assigned a score as the average of predic-
tion probabilities assigned by network sequences
following the algorithm proposed in (Chen et al.,
2021b). Potential noisy label should have the
highest score among possible labels excluding the
ground truth. In particular, data instances are sorted
by scores of most likely corrupted labels, and r pro-
portion of top instances will have labels flipped to

obtain noise rate r.

Multi-model IDN: Similarly to multi-epoch IDN,
we train 5 different versions of the base classifier by
varying initial weights to get a network sequence,
each network corresponds to last epoch checkpoint
(i.e., epoch 10) of a training. Then we apply the
same algorithm as in multi-epoch IDN to calculate
noisy labels.

Similarity-based IDN: From our experience in
product data analyses, we hypothesize that hu-
man annotators, and thus machine learning mod-
els, may have difficulties in categorizing similar
items, e.g., “Tara Lifestyle Chhota Bheem Printed
Art Plastic Pencil Boxes” and “Starmark BTS Star
Art Polyester Pencil Box”. Our idea is to locate
highly similar items across categories and flip their
category labels.

To generate noisy labels, we first calculate tex-
tual similarity between items of different categories.
We implement two vector-based cosine similarity
computations. First, A SentenceTransformer model
(Reimers and Gurevych, 2019)4 is used to gener-
ate embeddings of product titles. Second, a Tf-Idf
model is learned from training set to generate Tf-
Idf vectors of input titles. For each pair of product
titles, we compare two cosine similarities calcu-
lated from sentence embedding vectors and Tf-Idf
vectors. The greater score of two methods is as-
signed as similarity score Sim of two inputs. For

4Pretrained model all-MiniLM-L12-v2

174

each item ic of category c, we record the maximal
similarity score Maxsim between it and every item
from another category c′ of category set C:
Maxsimc′(ic) = maxj(Sim(ic, j)) j ∈ c′
The sequence of maximal similarity scores of the

item is used as weight vector Ic for a multinominal
distribution from which we draw a noisy label ĉ
given the item.
Ic = {Maxsimc′(ic) ∀c′ ∈ C, c′ 6= c}.
ĉ ∼ Multinomial(Ic)
For all items, we assign their Maxsimĉ as rep-

resentative scores of their corrupted labels, and we
sort items by corrupted label scores from high to
low. Given noise rate r, we select top r proportion
of items to replace true labels by corrupted labels.

6 Experiments on Noisy Labels

6.1 Data Denoising by Corrupting Product
Titles

We propose a novel data denoising method that re-
duces noise ratio by relabeling a sample when its
prediction is certain. We say an input has certain
prediction when model prediction on both original
and corrupted inputs are the same. Our method
relies on an idea of critical information assumption,
i.e., we hypothesize that there are product titles
which provide too much information that model
does not need to use all words to predict their la-
bels. For such titles, if one or more words are
dropped, model should still predict the same label.
There have been different studies to extract part of
critical information from input to explain output of
prediction models (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Kokalj et al., 2021). Regarding
product title, leading words are considerately more
important than trailing words for recognizing prod-
uct category.5 Algorithm 1 is a simple heuristic to
drop words from a product title. Statement 2 makes
sure some right words are dropped even when an
input is less than 15 words.

We propose Algorithm 2 to denoise training data.
With clean data, model should achieves highly con-
fident predictions on training samples. Thus, we
reason that unconfident predictions on training sam-
ples (i.e., p ≤ 0.8) are likely due to noisy labels.
We note that in case of noisy training, input label
is not considered ground truth generally.

5A common template arranges title words in order of
Brand Name > Product > Key features > Size > Color >
Quantity (sellerengine.com/product-title-keyword-strategies-
for-new-products-on-amazon).

Algorithm 1 Drop words from a product title
1: Drop left words until dropped words have at

least 5 letters in total or less then 4 words re-
maining

2: Drop right words until dropped words have
at least 5 letters in total or less then 4 words
remaining

3: Drop right words while there are more than 15
words

Steps 3 and 4 update6 training samples while
step 5 removes samples which the model is unsure.
Our denoising algorithm reduces noise rate with a
trade-off of smaller training data. Their impact to
training data is shown in Table 3. For each dataset
and input noise rate, we average noise rate and data
size reductions after denoising the data corrputed
by different noise stimulations.

Algorithm 2 Denoise training data
1: Run pre-trained model M on training data D:
{Lo, Po} ← M(D) where Lo are predicted
label and Po are prediction probability

2: Run M on corrupted training data D̂ (i.e.,
drops words from titles): {Ld, Pd} ←M(D̂)

3: Assign predicted labels to samples where pre-
dictions are confident:

InputLabel← Lo if Po ≥ 0.8
4: Assign predicted labels to samples where pre-

dictions are certain:
InputLabel← Lo if Lo = Ld

5: Remove samples where predictions are nei-
ther certain nor confident: Lo 6= Ld and Po ≤
0.8 and Pd ≤ 0.8

6.2 Noise-Resistance Training Algorithms
In this study, we compare three training solu-
tions that were developed for data with noisy la-
bels: Self-Evolution Average Label – SEAL (Chen
et al., 2021b), Progressive Label Correction –
PLC (Zhang et al., 2021b) and CoTeaching+ – CTp
(Yu et al., 2019). The three training algorithms
work independently from the underlying models.

SEAL trains a model on multiple iterations.
In each iteration, SEAL optimizes model’s loss
against soft labels which are average predictions
over epochs of the previous iteration. PLC first

6For efficiency, our actual implementation only update a
sample when its input label is different from predicted label.
This condition is ignored in pseudo code for simplicity.

175

Table 3: Average reduction of noise rate and data size after denoising

Noise rate 0.2 Noise rate 0.4
Dataset Noise reduction Data reduction Noise reduction Data reduction
Flipkart 36% 4% 29% 11%
WDC 28% 3% 21% 8%
Retail 26% 8% 30% 17%
Pricerunner 48% 3% 43% 11%
Shopmania 50% 7% 43% 12%
Skroutz 44% 6% 33% 7%

Table 4: Models’ macro F1 scores on product title data with noisy labels. Highest scores are bold. API shows
average performance improvement compared to base classifier.

Noise rate 0.2 Noise rate 0.4
Last-epoch IDN

Dataset Base DeN SEAL PLC CTp Base DeN SEAL PLC CTp
Flipkart 0.74 0.82 0.81 0.78 0.81 0.55 0.67 0.69 0.62 0.66
WDC 0.86 0.86 0.88 0.87 0.88 0.68 0.71 0.71 0.73 0.77
Retail 0.72 0.76 0.78 0.78 0.78 0.59 0.66 0.70 0.66 0.71
Pricerunner 0.89 0.94 0.94 0.93 0.94 0.71 0.87 0.90 0.79 0.91
Shopmania 0.74 0.71 0.73 0.76 0.68 0.59 0.62 0.62 0.63 0.56
Skroutz 0.90 0.94 0.94 0.93 0.95 0.77 0.86 0.86 0.78 0.92
API - 3.7% 4.8% 4.2% 3.8% - 12.9% 15.3% 8.5% 16%

Multi-epoch IDN
Flipkart 0.73 0.73 0.74 0.75 0.75 0.61 0.59 0.64 0.62 0.63
WDC 0.81 0.82 0.83 0.83 0.82 0.65 0.66 0.66 0.65 0.68
Retail 0.79 0.80 0.79 0.79 0.80 0.73 0.73 0.76 0.74 0.76
Pricerunner 0.91 0.91 0.92 0.92 0.92 0.80 0.82 0.84 0.82 0.85
Shopmania 0.76 0.75 0.76 0.77 0.67 0.63 0.65 0.65 0.62 0.57
Skroutz 0.95 0.95 0.95 0.95 0.95 0.88 0.90 0.90 0.88 0.90
API - 0.2% 0.8% 1.3% -0.9% - 1% 3.5% 0.6% 1.8%

Multi-model IDN
Flipkart 0.72 0.74 0.75 0.74 0.75 0.57 0.61 0.64 0.61 0.63
WDC 0.82 0.83 0.83 0.82 0.83 0.65 0.65 0.67 0.66 0.67
Retail 0.78 0.79 0.80 0.79 0.79 0.70 0.73 0.76 0.73 0.74
Pricerunner 0.90 0.91 0.92 0.91 0.92 0.80 0.81 0.84 0.81 0.84
Shopmania 0.76 0.75 0.78 0.77 0.68 0.66 0.65 0.66 0.64 0.57
Skroutz 0.95 0.95 0.95 0.95 0.95 0.90 0.92 0.91 0.91 0.92
API - 0.8% 2.1% 1% -0.2% - 2.2% 5% 2% 2.1%

Similarity-based IDN
Flipkart 0.73 0.76 0.76 0.77 0.78 0.55 0.58 0.61 0.65 0.67
WDC 0.73 0.74 0.75 0.75 0.76 0.58 0.58 0.59 0.59 0.60
Retail 0.69 0.75 0.77 0.76 0.77 0.57 0.66 0.72 0.70 0.72
Pricerunner 0.86 0.91 0.93 0.92 0.93 0.72 0.83 0.85 0.82 0.86
Shopmania 0.70 0.70 0.71 0.73 0.65 0.57 0.59 0.57 0.59 0.50
Skroutz 0.84 0.89 0.85 0.84 0.88 0.68 0.76 0.72 0.69 0.76
API - 4.3% 4.8% 4.9% 4.7% - 8.6% 10.4% 10.2% 11.7%

176

Table 5: Models’ macro F1 scores averaged over different noise stimulations. Highest scores are bold.

Noise rate 0.2 Noise rate 0.4
Dataset Base DeN SEAL PLC CTp Base DeN SEAL PLC CTp
Flipkart 0.73 0.762 0.765 0.76 0.772 0.57 0.6125 0.645 0.625 0.647
WDC 0.805 0.812 0.822 0.817 0.822 0.64 0.65 0.6575 0.657 0.68
Retail 0.745 0.775 0.785 0.78 0.785 0.6475 0.695 0.735 0.707 0.732
Pricerunner 0.89 0.917 0.927 0.92 0.927 0.757 0.832 0.857 0.81 0.865
Shopmania 0.74 0.727 0.745 0.757 0.67 0.612 0.627 0.625 0.62 0.55
Skroutz 0.91 0.932 0.9225 0.917 0.932 0.807 0.86 0.8475 0.815 0.875

trains noisy label data normally for a number of
epochs, i.e., warm-up phase, with expectation that
model can learn from clean labels before over-fits
to noisy labels. Then PLC corrects input labels
after each epoch for cases that it yields a confi-
dence score above a threshold. CoTeaching+ is an
upgrade of CoTeaching paradigm that cross-trains
two models using only small-loss samples in each
mini-batch. CoTeaching+ further prevents the two
models from convergence by passing only samples
whose predictions disagree among small-loss data
to loss optimization step.

6.3 Experiment Results
Experimental results of individual models are
shown in Table 4. We first train the base classifier
directly on noisy label data and record Macro F1
score on column Base. We then denoise7 training
data before training the base classifier, and enter
performance into column DeN. Next columns re-
port F1 scores of models trained by noise-resistance
algorithms on noisy label data (i.e., not desnoised).

As expected, label noises degrade model perfor-
mance significantly. Noise rate 0.2 reduces per-
formance of base model from 5% (Skroutz) - 18%
(Flipkart), while the performance reduction is 17%
(Skroutz) to 46% (Flipkart) given noise rate 0.4.
Pricerunner and Skroutz have lowest performance
degradation which is reasonable because these two
datasets are the easiest (see Table 2).

Evaluating impact of different IDN methods,
similarity-based IDN degrades performance of
base classifier the most in comparison with other
IDN methods. Comparing performance of noise-
resistance training methods with base classifier, we
report average performance improvement (API)
over different datasets in percentage point. Noise-
resistance training methods have the most diffi-

7We run pre-trained model reported in column Base on
training data to collect prediction outputs as described in Al-
gorithm 2.

culty in improving multi-epoch and multi-model
IDNs. In particular, performance improvements are
at most 2% and 5% when multi-epoch and multi-
model IDN rates are 0.2 and 0.4 respectively. Such
noise-resistance training methods achieve much
higher performance improvements when noisy la-
bels are generated by other two IDN methods. Par-
ticularly, average performance improves are at least
4% and 8% when last-epoch and similarity-based
IDN rates are 0.2 and 0.4 respectively.

Denoising data before training show improve-
ments but performance improvements are lower
for multi-epoch and multi-model IDN’s than for
last-epoch and similarity-based IDN’s. Although
our data denoising implementation is basic, it helps
improve performance more than PLC in many set-
tings, e.g., higher API in last-epoch, multi-epoch
and multi-model IDN’s. This encourage us to ex-
plore more advanced classifiers for better noise
reduction results.

Table 5 summarizes the results by grouping
by dataset name then averaging over different
noise stimulation methods. It is shown that
CoTeaching+ performs better than other methods
in many datasets, e.g., 5 datasets with noise rate
0.2 and 4 datasets out of 6 with noise rate 0.4. DeN
performs worse than three noise-resistance training
methods despite a fact that noise rate was reduced
significantly as shown in Table 3. We hypothe-
size that regular training cannot recover from noisy
instances that denoising algorithm is unable to cor-
rect/remove.

Comparing different datasets, we observe that
Shopmania is the most difficult. Among denois-
ing and noise-resistance training algorithms, the
best approach could only improve performance by
4% and 7% when noise rate is 0.2 and 0.4 respec-
tively. CoTeaching+ even performed worse than
base classifier on this dataset. As shown in Table 1,
Shopmania is the largest dataset, has the most num-

177

Table 6: Models’ macro F1 scores on product title data
with noise rate 0.6. Scores are averaged over IDN meth-
ods.

Dataset Base CTp API (%)
Flipkart 0.41 0.45 10%
WDC 0.42 0.46 9%
Retail 0.52 0.60 15%
Pricerunner 0.51 0.54 6%
Shopmania 0.42 0.42 0%
Skroutz 0.58 0.64 10%

ber of classes and the most imbalanced distribution.
Regarding imbalanced data, noisy labels in a minor
class might be harder to address due to its small
number of instances.

Finally, prediction performance at high noise
rate 0.6 is briefly shown in Table 6. We only com-
pare base classifier to CoTeaching+ which is the
best performing approach in this setting. While
noise-resistance training algorithms do improve
performance, overall performance is low. In our
opinion, such a performance score is too low for
an product title classification application. Thus we
do not find any of the three training algorithms or
our denoising algorithm can work reasonably well
with high noise rate in product data.

6.4 Future Work

Data denoising algorithm opens new opportunities
for us to further improve product title classification
with noisy labels. We plan to improve data denois-
ing by several techniques: (1) run denoising algo-
rithm using a base model trained with small num-
ber of epochs to prevent over-fitting to noise, (2)
use more advanced base classifier, and transformer-
based model is a good candidate. Stacking data de-
noising and noise-resistance training is another ex-
tension, and we can approach this in two ways: (1)
data denoising provides less-noisy data for noise-
resistance training, (2) noise-resistance training
provides better base model to denoise data.

7 Conclusion

In this paper, we evaluate a denoising algorithm and
three training approaches for product title classifi-
cation with category labels corrupted by instance-
dependent noise. We introduce a new IDN stimula-
tion algorithm and compare with three IDN algo-
rithms from prior studies to explore model perfor-
mance on a wider range of noise type. Therefore

our study can evaluate model robustness to IDN
more reliably. Overall we find that CoTeaching+

achieves highest average improvement and be our
recommendation when applying to new product
data without prior knowledge of noise cause or true
distribution. SEAL can be a good method when we
have clean validation data to evaluate. However,
all methods studied in this paper have difficulties
to address noise in large scale data with highly im-
balanced class distribution, especially when noise
rate is high. For such extreme setting, applica-
tion of data denoising and noise-resistance training
algorithms could not yield to reasonable perfor-
mance for applying to production. For a future
work, we plan to combine multiple techniques in-
cluding transformer-based classifier as a more ad-
vanced model and stacking data denoising with
noise-resistance training.

References
Leonidas Akritidis, Athanasios Fevgas, and Panayiotis

Bozanis. 2018. Effective Products Categorization
with Importance Scores and Morphological Analysis
of the Titles. In 2018 IEEE 30th International Con-
ference on Tools with Artificial Intelligence (ICTAI),
pages 213–220.

Leonidas Akritidis, Athanasios Fevgas, Panayiotis Boza-
nis, and Christos Makris. 2020. A self-verifying clus-
tering approach to unsupervised matching of product
titles. Artificial Intelligence Review, pages 1–44.

Devansh Arpit, Stanis\law Jastrzundefinedbski, Nicolas
Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron
Courville, Yoshua Bengio, and Simon Lacoste-Julien.
2017. A Closer Look at Memorization in Deep Net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70, ICML’17,
pages 233–242. JMLR.org. Event-place: Sydney,
NSW, Australia.

Alexander Brinkmann and Christian Bizer. 2021. Im-
proving hierarchical product classification using
domain-specific language modelling. In Proceed-
ings of Workshop on Knowledge Management in e-
Commerce.

Lei Chen, Houwei Chou, Yandi Xia, and Hirokazu
Miyake. 2021a. Multimodal Item Categorization
Fully Based on Transformer. In Proceedings of The
4th Workshop on e-Commerce and NLP, pages 111–
115, Online. Association for Computational Linguis-
tics.

Pengfei Chen, Junjie Ye, Guangyong Chen, Jingwei
Zhao, and Pheng-Ann Heng. 2021b. Beyond Class-
Conditional Assumption: A Primary Attempt to Com-

178

bat Instance-Dependent Label Noise. In Proceedings
of the AAAI Conference on Artificial Intelligence.

Pradipto Das, Yandi Xia, Aaron Levine, Giuseppe
Di Fabbrizio, and Ankur Datta. 2016. Large-scale
taxonomy categorization for noisy product listings.
In 2016 IEEE International Conference on Big Data
(Big Data), pages 3885–3894.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Febin Sebastian Elayanithottathil and Janis Keuper.
2021. A Retail Product Categorisation Dataset.
_eprint: 2103.13864.

Dehong Gao, Wenjing Yang, Huiling Zhou, Yi Wei,
Y. Hu, and H. Wang. 2020. Deep Hierarchical Clas-
sification for Category Prediction in E-commerce
System. ArXiv, abs/2005.06692.

Siddhant Garg, Goutham Ramakrishnan, and Varun
Thumbe. 2021. Towards Robustness to Label Noise
in Text Classification via Noise Modeling. Proceed-
ings of the 30th ACM International Conference on
Information & Knowledge Management.

Keren Gu, Xander Masotto, Vandana Bachani, Balaji
Lakshminarayanan, Jack Nikodem, and Dong Yin.
2021. A Realistic Simulation Framework for Learn-
ing with Label Noise. ArXiv, abs/2107.11413.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. Advances in
neural information processing systems, 31.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780. Place: Cambridge, MA, USA Publisher: MIT
Press.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. 2018. MentorNet: Learning Data-
Driven Curriculum for Very Deep Neural Networks
on Corrupted Labels. In ICML.

Ishan Jindal, Matthew Nokleby, and Xuewen Chen.
2016. Learning deep networks from noisy labels
with dropout regularization. In Data Mining (ICDM),
2016 IEEE 16th International Conference on, pages
967–972. IEEE.

Ishan Jindal, Daniel Pressel, Brian Lester, and Matthew
Nokleby. 2019. An Effective Label Noise Model for
DNN Text Classification. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short
Papers), pages 3246–3256, Minneapolis, Minnesota.
Association for Computational Linguistics.

Enja Kokalj, Blaž Škrlj, Nada Lavrač, Senja Pollak, and
Marko Robnik-Šikonja. 2021. BERT meets Shapley:
Extending SHAP Explanations to Transformer-based
Classifiers. In Proceedings of the EACL Hackashop
on News Media Content Analysis and Automated
Report Generation, pages 16–21, Online. Association
for Computational Linguistics.

Scott M. Lundberg and Su-In Lee. 2017. A Unified
Approach to Interpreting Model Predictions. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, pages
4768–4777, Red Hook, NY, USA. Curran Associates
Inc. Event-place: Long Beach, California, USA.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Eran Malach and Shai Shalev-Shwartz. 2017. Decou-
pling "when to update" from "how to update". In
NIPS.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-
W.

Giorgio Patrini, Alessandro Rozza, Aditya Kr-
ishna Menon, Richard Nock, and Lizhen Qu. 2017.
Making deep neural networks robust to label noise: A
loss correction approach. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1944–1952.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019.
The WDC Training Dataset and Gold Standard for
Large-Scale Product Matching. In Companion Pro-
ceedings of The 2019 World Wide Web Conference,
WWW ’19, pages 381–386, New York, NY, USA.
Association for Computing Machinery. Event-place:
San Francisco, USA.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "Why Should I Trust You?": Ex-
plaining the Predictions of Any Classifier. In Pro-
ceedings of the 22nd ACM SIGKDD International

179

Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, USA, August 13-17, 2016,
pages 1135–1144.

Dan Shen, Jean-David Ruvini, and Badrul Sarwar. 2012.
Large-Scale Item Categorization for e-Commerce. In
Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management,
CIKM ’12, pages 595–604, New York, NY, USA.
Association for Computing Machinery. Event-place:
Maui, Hawaii, USA.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju
Shin, and Jae-Gil Lee. 2022. Learning from Noisy
Labels with Deep Neural Networks: A Survey. IEEE
Transactions on Neural Networks and Learning Sys-
tems.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor
Tsang, and Masashi Sugiyama. 2019. How does
disagreement help generalization against label cor-
ruption? In International Conference on Machine
Learning, pages 7164–7173. PMLR.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021a. Understanding
Deep Learning (Still) Requires Rethinking General-
ization. Commun. ACM, 64(3):107–115. Place: New
York, NY, USA Publisher: Association for Comput-
ing Machinery.

Yikai Zhang, Songzhu Zheng, Pengxiang Wu, Mayank
Goswami, and Chao Chen. 2021b. Learning with
Feature-Dependent Label Noise: A Progressive Ap-
proach. In ICLR.

180

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 181 - 190
May 26, 2022 c©2022 Association for Computational Linguistics

Structured Extraction of Terms and Conditions from German and English
Online Shops

Tobias Schamel
Technical University of Munich
tobias.schamel@tum.de

Daniel Braun
University of Twente

d.braun@utwente.nl

Florian Matthes
Technical University of Munich

matthes@tum.de

Abstract

The automated analysis of Terms and Con-
ditions has gained attention in recent years,
mainly due to its relevance to consumer pro-
tection. Well-structured data sets are the base
for every analysis. While content extraction,
in general, is a well-researched field and many
open source libraries are available, our evalu-
ation shows, that existing solutions cannot ex-
tract Terms and Conditions in sufficient quality,
mainly because of their special structure. In
this paper, we present an approach to extract
the content and hierarchy of Terms and Condi-
tions from German and English online shops.
Our evaluation shows, that the approach out-
performs the current state of the art. A python
implementation of the approach is made avail-
able under an open license.

1 Introduction

Terms and Conditions (T&Cs) of online shops are
rarely read and even more rarely understood (Bakos
et al., 2014), although we all still accept them. In
recent years, the automated analysis of T&Cs has
become an interesting field of research (Braun and
Matthes, 2021; Lippi et al., 2019). A structured ex-
traction of T&Cs from online shops is a necessary
prerequisite for such further processing in an NLP
pipeline.

Content extraction is a well-researched task and
numerous open source libraries are available. Exist-
ing approaches are predominantly designed for or
based on news articles and blog posts. In this paper,
we will show that the existing approaches are not
well-suited to deal with T&Cs, partially because of
the strict hierarchical structures that can be found
in such legal documents, which are not common in
other types of content such as news articles.

In this paper, we present a domain-specific
content extraction approach for T&Cs, that
combines both, Content Extraction and Hierarchy
Extraction, and an open source Python library

that implements this approach. needs to combine
both. Our evaluation shows that the library
outperforms general-purpose content extraction
approaches on T&Cs from German and English
online shops. The library is available on GitHub:
https://github.com/sebischair/
LowestCommonAncestorExtractor.

2 Related Work

The existing work on content extraction has been
mainly focused on news articles or generic con-
tent extraction, often based on the dataset of the
cleaneval competition (Baroni et al., 2008). To the
best of our knowledge, no work exists that specifi-
cally targets or is evaluated on T&Cs.

Gibson et al. (2007) described the process of
content extraction as a sequence labeling problem
on a document broken down into a sequence of
blocks. Each block needs to be classified as either
Content or NotContent. Kohlschütter et al. (2010)
work with a more detailed four-class separation.
Another approach is a Boundary Detection Method
where a heuristic needs to determine a Start- and
End-Block framing the whole content, i.e. every-
thing between Start- and End-Block is considered
Content whereas everything else is discarded as
NotContent. According to Jiménez et al. (2018),
the classification needs to take both HTML struc-
ture and the actual content into account. "Purely
text-based or purely HTML-based approaches do
not have perfect results."

Several approaches for classifying blocks as Con-
tent or NotContent can be found in the literature.

Kohlschütter et al. (2010) propose a classifica-
tion inspecting the text on a functional level using a
set of so-called shallow text features. Shallow text
features are statistical calculations on block-level
looking at domain and language independent fea-
tures like link density, the average sentence length,
the uppercase ratio, etc. Jiménez et al. (2018) in-
troduce an improvement to this algorithm by also

181

taking the HTML tree structure into account.
Pomikálek (2011) introduced a similar approach

using a low amount of features to determine the
likelihood of a block being Content or NotContent.
Uncertainties are dealt with within the next step,
which involves an analysis of the relative position
of a block in the HTML tree including the clas-
sification of its neighbors. This step is based on
the assumption that Content blocks are to be found
near other Content blocks (and vice versa).

Pasternack and Roth (2009) tried to solve the
task by finding a maximum subsequence in tok-
enized HTML documents, where each token is as-
signed a score determined by token-level classifiers.
Different classifiers like simply assigning prede-
fined scores to words and tags and more advanced
classifiers which combined Naive Bayes classifica-
tion with features of the surrounding tokens were
investigated.

There is a number of synonyms to the process
of "content extraction" (Gibson et al., 2007; Bar-
baresi, 2019) like boilerplate detection/removal
(Kohlschütter et al., 2010), template matching
(Sano et al., 2021) and cleaning (Lejeune and Zhu,
2018; Kilgarriff, 2007).

In addition to extracting the content, a (relatively
small) number of approaches also try to extract the
hierarchy of the content. According to Manabe and
Tajima (2015), the nested hierarchy of an HTML
document can contribute some information to hier-
archy extraction but does not necessarily coincide
with the actual hierarchical structure of an HTML
document. The HTML tags originally meant to
structure a document and indicate headings are of-
ten misused for SEO or not used at all.

Manabe and Tajima (2015) introduced a seg-
menting method extracting the hierarchical struc-
ture of HTML documents based on the differences
in the visual styles in hierarchical headings. They
defined a set of rules based on the way humans
read hierarchically structured content. According
to them, headings a characterized by more promi-
nent visual styles (the same on one level of hierar-
chy) preceding the blocks they describe.

Sano et al. (2021) used a similar approach with
only nine parameters. The parameters include the
number of child nodes, text length of nodes and the
styling of succeeding content.

1. headings have few child nodes
2. headings have a short text length

3. the width of headings is greater than their
height

4. the size of a heading is smaller than the size
of the following content block underneath it

3 Requirements

In order to derive requirements for the extraction of
T&Cs, we compared existing extractors and our ex-
pected results. In addition, we manually inspected
T&C pages to detect patterns and domain-specific
characteristics. The test data was sampled from
the data set by Braun and Matthes (2020) which
is available under the CC BY-SA 3.0 license on
GitHub1. We investigated the extraction results
of the T&Cs pages of 30 German and 20 English
online shops. 15% of the English sample had to
be adjusted, as the URL from the data-set did not
point to the actual T&Cs page.

3.1 Content Extraction

Through visual inspection of the T&Cs page and
the DOM tree, we identified some prevalent pat-
terns: While news articles are often interrupted by
references to similar articles and advertisements,
all cases examined in the sample of T&Cs pages
displayed the relevant legal document without any
interruptions on a rather simply structured page.
For T&Cs of German online shops, the content is
not always grouped within a single large paragraph
but often divided into multiple paragraphs, e.g.,
1. Allgemeine Geschäftsbedingungen (German for
general terms and conditions) and 2. Kundeninfor-
mation (customer information), where both contain
relevant information. Generally speaking, German
T&Cs tend to be more structured than their counter-
part in English online shops. In most of the cases,
the relevant content shared a common style (font
size and style) and could be found in the same depth
of the DOM tree. This same style was used in the
footer of the page in rare cases. Exceptions to these
observations are headlines and differently styled
withdrawal forms, which are contained in a number
of T&C pages. These withdrawal forms are often
comprised of underscores, blank spaces, and text.
A small number of T&C pages had content that
needed to be unfolded making and purely visual
approach insufficient, as parts of the relevant con-
tent are not seen without further interaction with
specific elements of the website.

1https://github.com/sebischair/
TC-Detection-Corpus/

182

3.1.1 Existing Solutions
We compared the content extraction performance
of three existing libraries on the data set. The ex-
traction results were quantified by classifying the
extraction quality for the following properties (qual-
ity sorted from correct to most severe error):

• content start: correct, too early, too late
• content end: correct, too late, too early
• main content: correct, missing content (links

& addresses), none-content (whole paragraphs
or sentences), missing & none-content

If the content start is detected earlier than it ac-
tually is, noise is added to the content, however, if
the content start is detected later than it actually is,
content is cut off and information lost. The latter is
the more severe error. For the end of the content,
the reverse is true.

The following three content extraction libraries
were tested:

Boilerpipe We compared three different extractors
implemented in Boilerpipe2:
ArticleExtractor The end of the main con-

tent was often identified too early, i.e.,
content towards the end of the pages was
cut off. This was often caused by ad-
dresses and other contact information.
Less frequently, ArticleExtractor also
had problems identifying the start of the
main content.

CanolaExtractor The CanolaExtractor was
trained on the KrdWrd Canola corpus3,
which is created from random webpages
across various domains (Stemle, 2009).
It recurrently extracted cookie informa-
tion or the footer of the web pages. The
main content was usually detected but
the extracted text was interrupted many
times. This occurred for some short para-
graphs, headings, addresses and with-
drawal forms.

LargestContentExtractor The LargestCon-
tentExtractor extracts a continuous piece
of content in all cases. This connected
part is not a single HTML node but a
consecutive series of HTML nodes. By
nature, the extraction performance for

2https://code.google.com/p/boilerpipe
3https://krdwrd.org/

the center of the extracted content is ex-
cellent. However, the performance on
the identification of the start and end of
the main content is the worst observed in
comparison with the other extractors.

JusText The performance of JusText4 Pomikálek
(2011) was similar to the results of the Boiler-
pipe CanolaExtractor. The main content was
usually detected but the extracted text was
interrupted, as JusText classified many head-
lines, addresses, and paragraphs containing
links as boilerplate.

Trafilatura Trafilatura5 performed best among
the investigated solutions. However, Trafi-
latura ignored some of the paragraph head-
lines. In addition, there were problems with
content that was not visible to a user without
unfolding them in the browser manually.

6 of 20 sampled web pages from the English sam-
ple were not extractable due to malformed HTML.
As small mistakes in the HTML structure are not
uncommon and are usually fixed by browsers ren-
dering them, this should not be the case. The pro-
posed solution should be robust when encountering
that type of problem. The detailed results can be
found in Tables 2 and 3.

3.1.2 Derived Requirements
Based on the identified patterns in the data and the
problems of the existing approaches, we derived
the following reuqirements for a domain-specific
content extraction approach for T&C:

1. extract (largest) continuous part of HTML
document

2. extract the content sharing a common style
and depth in HTML tree

3. extract the withdrawal form/information with
different style and different depth

4. extract address information
5. always extract both of the sections 1. Allge-

meine Geschäftsbedingungen (general terms
and conditions) and 2. Kundeninformation
(customer information) in German T&Cs

6. extract hidden content which needs to be un-
folded in the browser (e.g. by clicking an
expand button)

7. robust against malformed HTML
4https://code.google.com/archive/p/

justext/
5https://github.com/adbar/trafilatura

183

visual numericvisual & numeric
0

10

20

30

2 2

25

8

0

12

de
en

Figure 1: Occurrences of different hierarchy styles in
the German and English sample

3.2 Hierarchy Extraction

Data on the visual and HTML-based representa-
tions of the hierarchical structure of web pages
containing T&Cs were gathered in a manual re-
view. The results found in the English sample and
the German sample differed slightly. The following
hierarchy representation classes were defined:

Visual page is structured using visual separators
and different text styles

Numeric page is structured using a numeric
scheme (Arabic, Latin/Roman, alphabetic,
etc.)

Visual & Numeric a combination of both Visual
and Numeric elements are used to structure
the page

The analysis showed, that German shops were
much more likely to use a combination of Visual
& Numeric features to structure the content (see
Figure 1).

Based on our observations, we formulated the
following requirements:

1. extract subclauses grouped in their own para-
graph forming HTML tag (block elements)

2. detect numeration patterns (alphabetic, Ara-
bic, Latin/Roman, section sign, etc.)

3. extract styling (CSS) of titles to determine
associated content

4. ignore enumerations for the table of contents

4 Approach and Implementation

This section covers the approach we developed
based on the identified requirements and the de-
sign and implementation of the StructuredLegalEx-

traction library that implements the approach in
Python.

4.1 Architecture
The extraction library consists of two main com-
ponents described in Section 4.3 and Section 4.4
which serve to extract the content and the hierarchy
of a given T&C page. In addition, there is an aux-
iliary component that serves to download the web
page and one that transforms the HTML content
into a DOM tree which is by far more useful for
further processing. Another auxiliary component
is used to generate the target structure relying on
another auxiliary component to segment sentences.

At first, the content is downloaded using the
Downloader component. The downloaded content
is processed by the DOMParser to achieve the de-
sired DOM tree holding no more information than
those actually needed during later processing steps.
The ContentExtractor component is responsible
for detecting and extracting the main content of
the downloaded page based on the parsed DOM
tree. The HierarchyExtractor component uses the
main content node of the DOM tree to build its
hierarchy tree based on visual information (CSS
attached to DOM nodes) and numerical patterns in
the text. In the last step, the hierarchy tree needs
to be transformed to the target format by the Tar-
getFormat component, which uses the Sentence-
Segmenter component to tokenize and segment the
content.

4.2 Additional Technologies
Some generic tasks can be solved by using existing
solutions. The requirements and selected libraries
are presented in this section.

4.2.1 Web Page Download
In an effort to determine the main content of a web
page, the entire content must first be downloaded.
The following requirements have been identified:

• download full HTML file representing the
web page

• extract CSS style information on the content
• full XML Path Language (XPath) support to

navigate the dom tree

Selenium6 is a well-known library usually used
for website testing. By this, it allows full inter-
action with the website using X-Path by control-
ling a browser. This also allows us to use the

6https://github.com/SeleniumHQ/selenium/

184

browser’s HTML error correction when download-
ing the HTML. However, the find_by_xpath
(path) method does not support text elements.
Text can be extracted by accessing an element’s
.text attribute. Unfortunately, text segments
(complete text - direct and indirect children - under
the current node) cannot be mapped to the individ-
ual nodes so that one could track down which text
has which style. This will require another library.

An outstanding feature of selenium is its capa-
bility of extracting CSS style information. The
high number of visual represented hierarchies (see
Figure 1) makes this a crucial feature.

4.2.2 HTML Parser
As Selenium does not support text nodes in its X-
Path functionality, there is a need for a dedicated
parser with the following requirements:

• full XPath support to navigate the DOM tree
• XPath generation from DOM tree nodes

lxml7 an XML-parser offering dedicated HTML-
parsing functionality. Due to its full XPath support,
it also allows extracting all child nodes including
the text nodes of a DOM-node using the XPath
child::node(). The library also allows gener-
ating XPath for elements relative to a given parent
element which makes it possible to link it to other
libraries capable of XPath for style extraction (see
Section 4.2.1).

4.2.3 Sentence Segmentation and Tokenising
The content of the document needs to be segmented
into sentences which themselves need to be tok-
enized for the target format. This requires reliable
segmenting and tokenizing with respect to text ele-
ments like references to laws or address informa-
tion common in the domain of T&Cs.

According to Braun (2021), SoMaJo8 performed
best in the domain of T&Cs .

LangID9 is used, as SoMaJo requires knowledge
on the language of the text to segment and tokenize.
LangID’s multinomial naive Bayes model is trained
to determine a text’s language among 97 languages
including German and English (Lui et al., 2021).

4.3 Content Extraction
As described in Section 3, the main content of a
T&Cs page usually shares a common style. The

7https://github.com/lxml/lxml/
8https://github.com/tsproisl/SoMaJo/
9https://github.com/saffsd/langid.py

main content makes up for the largest visible con-
tent block most of the time. Therefore, the extrac-
tion approach can be built upon this knowledge.

In a first step, we determine the MCS (Most
Common Style) by traversing the DOM tree nodes
while collecting a mapping of styles to number
of characters. Different approaches to determine
and approximate the style of a given node were
investigated.

Naïve Style The first naïve approach is combin-
ing the HTML tag and all the attributes (incl.
CSS classes and ids). However, this is just
an approximation, as CSS style information is
passed to child nodes of the parents holding
them. This approach is rather efficient but less
accurate.

Naïve Style and Short Text Exclusion As navi-
gation bars and headlines consist of nodes
holding only one to two words, it can be
dangerous to include them when determining
the MCS, as nested navigation elements hold
large amounts of characters. Excluding short
text nodes (< 4 words) can solve that issue

Rendered Style Using Selenium allows the re-
trieval of the rendered style information.

It turned out, that the Naïve Style and Short Text
Exclusion’s approximation is almost as accurate as
the Rendered Style approach. Using the Naïve Style
and Short Text Exclusion approximation, we can
limit the time-intensive rendered style extraction
through Selenium to the actual main content for
hierarchy extraction (see Section 4.4). The number
of nodes for which the rendered style needs to be
extracted can be reduced by approximately 69% in
the German sample and by approximately 71% in
the English sample.

After the MCS is identified, the tree is traversed
to identify a node covering at least 85% (this thresh-
old is variable) of the characters of the MCS. Once
this node is identified, all descendants are classi-
fied as Content. This decision is justified by the
findings in Section 3: T&Cs are usually continu-
ous texts often structured into a container (e.g. a
<div>) by content management systems.

The selection of the right (domain-specific)
threshold is crucial for the success of this extrac-
tion algorithm. A threshold too low can result in
only a part of the main content being extracted; a
threshold too high can make it impossible to find a
node covering the given amount of MCS characters

185

and thereby triggering a fallback solution described
later. After investigating the MCS (Naïve Style and
Short Text Exclusion) coverage of the nodes hold-
ing the main content and the next largest child in
the German and English samples from Section 3,
the lower bound of the interval of possible thresh-
old values is found to be limited to approximately
83.65% by the English sample (lowest MCS cov-
erage of the next largest MCS coverage in a main
content’s child node). The upper bound of this
interval is defined by the lowest coverage of the
main content node above 83.65%, which can also
be found in the English sample with a value of ap-
proximately 91.01%. Therefore, the threshold is
set to 85%.

In some rare cases, the algorithm will not find
a node covering at least 85% of the MCS, as the
webpage does not use a dedicated container to hold
the main content. Instead, individual containers
for each of the paragraphs are placed as direct de-
scendants of the <body> node. By identifying the
longest subsequence containing the MCS, one can
most likely extract the main content while exclud-
ing boilerplate content like the navigation bar and
footer. This fallback solution provides much worse
results than the actual content extraction algorithm.

We call the extraction algorithm Lowest-
CommonAncestorExtractor

4.4 Hierarchy Extraction

The hierarchy extraction is based on the idea pre-
sented by Manabe and Tajima (2015). The visual
style of the text is used to identify headings and
their associated text blocks. In some cases, T&Cs
are also structured using enumerations or a combi-
nation of visual style and enumerations (see Figure
1). Thus, this information needs to be considered,
too. For the actual hierarchy extraction informa-
tion from both, the enumerations and the visual
styles, need to be taken into account in a rule-based
approach in order to produce accurate results. In-
formation from the DOM tree does not provide
reliable information on the hierarchy. Given the
data from Figure 1, the hierarchy extraction algo-
rithm will focus on visual features and use numeric
patterns for verification and adjustments.

In a first step, the DOM (sub-)tree identified as
the main content is converted to a list of content
blocks where each block has its own style. A block
is a sequence of characters ending with a forced
newline. This forced newline could be a

tag, the start or end of a paragraph (<p>), or any
other element with block as the standard level
for the display property. The style of a block
corresponds to the style that the majority of the
characters in it are part of (excluding the anchor
tag <a>).

The style attached to a block is determined by
extracting the rendered style retrieved through Se-
lenium. The style is defined by font-decorations,
font-weight, font-size, font-family and font-color.

For each of the blocks, possible enumeration
patterns are identified and attached to the blocks by
using the following regular expression:
\s[\(§]?(([IVXLivxl]{1,7})|
([0-9]{1,2})|[a-zA-Z])
([\.\-,:](([IVXLivxl]{1,7})|
([0-9]{1,2})|[a-zA-Z]))*[\-:\.)]?
\s

Arabic enumeration Arabic numbers are the
most common enumeration used in the do-
main of T&C structuring. They can easily be
extracted from a string and transformed into
an integer representation.

Roman enumeration Since in a few cases Roman
numerals were also used for numbering, these
must be converted into Arabic numerals. In
all investigated cases Roman numerals were
not bigger than 20. By limiting the allowed
Roman enumeration characters to I, V, X and
L, the risk of mixing up alphabetic and roman
enumeration can be reduced, as I would only
be used in alphabetic enumerations larger than
8.

Alphabetic enumeration As alphabetic enumera-
tion is only applicable for single characters,
there is no need for extensive conversion. Let-
ters are mapped to their position in the alpha-
bet.

Lists elements are automatically separated
into blocks, however, enumerations rendered
by the browsers when using tags are
not part of the textual content of the blocks.
Thus, the information about list enumerations
is attached to the block as regular enumeration
information.

The following assumptions by Manabe and
Tajima (2015) are used as a basis for the visual
hierarchy extraction:

1. headings appear at the beginning of the corre-
sponding blocks

186

2. headings are given prominent visual styles
3. headings of the same level share the same

visual style

A section’s start is identified by determining its
headline, i.e. a line with a different style than the
MCS identified during content extraction. A head-
line is only allowed a maximum of 10 words. The
section ends whenever the next line styled like the
current section’s headline occurs. The content in
between these two lines forms the provisionally
content of the upper headline. Each of the identi-
fied sections is then grouped into subsections using
the same algorithm (see Appendix, Algorithm 1)
until no more prominent style is visible in between
two headlines. Assuming, that no section is in-
terrupted by another section and later continued,
content in between two headlines, respectively the
last headline and the end of the main content, is
assumed to be the content of the upper headline.

Enumerations extracted during the conversion
to the block list are used to correct and validate
the existing hierarchy which was extracted visual
features. In the first step, the blocks assigned to
each of the visually separated sections are exam-
ined for possible numerical hierarchies. List enu-
merations are treated in a special way, as we allow
them to interrupt a section that is continued after
the list element blocks. Given that the section can
be divided into further subsections based on the
enumeration patterns found in the blocks, these
subsections are processed in the same way. After
the initial enumeration-based segmentation within
the nodes’ content blocks, all headlines on the same
level of the tree are checked for enumeration pat-
terns. If there are different enumeration patterns
on one level, the tree is modified in order to have
consistent enumeration.

An enumeration pattern is only considered if
there are at least two consecutive numberings of
that pattern whose numerical values reflect a valid
step. Invalid steps or enumeration patterns occur-
ring only once are most likely to be detected due
to an error in the enumeration detection and thus
ignored.

4.5 Target Format

The tree-like results from content and hierarchy
extraction are converted to JSON after being seg-
mented and tokenized.

too late too early correct

start 3 0 46
end 0 2 47

Table 1: Extraction performance for the Lowest-
CommonAncestorExtractor on the test set. 49 out of 50
web pages in the test set could be processed.

5 Evaluation

The performance of the developed algorithms is
evaluated in this section. Besides the sample used
to derive the requirements, there is also another
sample to evaluate the library to prelude overfitting.

5.1 Content Extraction

The content extraction algorithms were tested with
a focus on the correct identification of the start and
end of the content, as the center is always identified
correctly given the functionality of the previously
introduced LowestCommonAncestorExtractor with
NaïveStyle, ShortTextExclusion, and a threshold of
85%. The results of the evaluation are shown in
Table 1.

During the evaluation, the following three rea-
sons were identified as the main drivers of extrac-
tion errors: (1) threshold too high: Whenever the
threshold is too high for the page, the fallback al-
gorithm is triggered; (2) no container for main
content: Whenever the T&C page lacks a container
wrapping the whole main content, the fallback al-
gorithm is triggered; (3) use of different tags: The
NaïveStyle approach cannot handle the usage of
different tags rendering to the same actual style
used for the main content. If one of the tags is held
in its own container, as often is the case in lists,
only this container is extracted.

However, the LowestCommonAncestorExtractor
performed significantly better than the previously
examined extractors, as shown in Tables 2 and 3.

5.2 Hierarchy Extraction

The hierarchy extraction algorithm was, similar
to the content extraction, evaluated with the sam-
ple used to derive requirements and a test sample
created for the purpose of evaluation. Errors aris-
ing from a failed content extraction are ignored in
this section, as they provide no information on the
quality of the algorithm applied during hierarchy
extraction.

The algorithm showed good results (see Ap-
187

too late too early correct processing error

LowestCommonAncestorExtractor 1 3 45 1
Boilerpipe ArticleExtractor 16 4 24 6
Boilerpipe LargestContentExtractor 29 2 13 6
Boilerpipe CanolaExtractor 7 15 22 6
JusText 6 11 25 6
Trafilatura 5 2 37 6

Table 2: Performance of detecting the start of T&Cs (for “correct”, higher numbers are better, for all others, lower
numbers are better).

too late too early correct processing error

LowestCommonAncestorExtractor 3 2 44 1
Boilerpipe ArticleExtractor 23 13 8 6
Boilerpipe LargestContentExtractor 32 1 11 6
Boilerpipe CanolaExtractor 3 27 14 6
JusText 8 15 19 6
Trafilatura 5 4 35 6

Table 3: Performance of detecting the end of T&Cs (for “correct”, higher numbers are better, for all others, lower
numbers are better).

pendix A.2). In most cases, small extraction errors
can be found in the hierarchy. However, their im-
pact on the overall result can be described as minor.
A precise analysis of the sources of errors showed
the following reasons for erroneous hierarchy ex-
traction:

1. Use of bold text: Some pages used bold text
elements to highlight whole sections or just
some blocks. This can screw up the whole
result as the bold blocks might be identified
as headlines.

2. Wrong enumeration: A surprisingly large
amount of T&C pages contain errors in their
enumerations. As the algorithm requires a
strict sequence of numerations, this can lead
to problems in the hierarchy extraction.

3. Violation of the assumption "Sections are
not interrupted": The algorithms assume that
there is no more content of a section after one
of its subsections.

4. Use of tables: Whenever tables occurred on a
page (often in the context of shipping costs),
the algorithm separated each cell into its own
block resulting in a large number of blocks
with different styles. A high frequency of
numbers occurring in the table worsened the
results as the vast amount of detected enumer-
ation patterns triggered further adjustments to

the table.
5. Failed style extraction: In order to link the

custom DOM tree structure to the Selenium
tree, each DOM node is attached with its full
XPath. As some pages render elements after
a short time span, they may not be included
in the parsed DOM tree. At the time the al-
gorithm starts style extraction, new elements
can render and tackle the validity of the XPath
attached to the DOM node making the extract-
ing of visual features impossible.

6 Conclusion

We introduced a new content extraction algorithm
that performs better than existing solutions in its
specific domain of T&C web pages. Since the
algorithm is based on some domain-specific as-
sumptions, it is unclear how successful it would
operate on a generic web corpus. Further research
in the field could answer this question. Initial small
tests looked promising under the assumption that
the content of the page is not interrupted. The
style extraction, which is currently based on Se-
lenium can be considered the performance bottle-
neck, as retrieving certain CSS properties takes a
rather long time. One should look for a more ef-
ficient solution to extract the rendered style. In
addition, several content extraction threads can op-

188

erate in parallel. The general functionality of the
rule-based approach to hierarchy extraction could
be demonstrated. The general idea of Manabe and
Tajima (2015) was extended by an enumeration de-
tection due to the frequent usage of enumerations
to structure T&C pages. It is much more difficult
to achieve similar success rates in hierarchy extrac-
tion as with content extraction, due to the many
irregularities in visual representation. This is prob-
ably due to the fact that the operators of different
online shops often want to highlight very different
elements from the contract text visually. In cases
where such outliers do not occur in the visual repre-
sentation, hierarchy extraction yields good results.

Acknowledgements

The project was supported by funds of the Federal
Ministry for the Environment, Nature Conservation,
Nuclear Safety and Consumer Protection (BMUV)
based on a decision of the Parliament of the Federal
Republic of Germany via the Federal Office for
Agriculture and Food (BLE) under the innovation
support programme.

References
Yannis Bakos, Florencia Marotta-Wurgler, and David

Trossen. 2014. Does anyone read the fine print?
consumer attention to standard-form contracts. The
Journal of Legal Studies, 43:1–35.

Adrien Barbaresi. 2019. Generic web content extraction
with open-source software. In Proceedings of the
15th Conference on Natural Language Processing,
KONVENS 2019, Erlangen, Germany, October 9-11,
2019.

Marco Baroni, Francis Chantree, Adam Kilgarriff, and
Serge Sharoff. 2008. Cleaneval: A competition for
cleaning web pages.

Daniel Braun. 2021. Automatic Semantic Analysis,
Legal Assessment, and Summarization of Standard
Form Contracts. Ph.D. thesis, Technical University
of Munich.

Daniel Braun and Florian Matthes. 2020. Automatic de-
tection of terms and conditions in german and english
online shops. In 16th International Conference on
Web Information Systems and Technologies, WEBIST
2020. SciTePress.

Daniel Braun and Florian Matthes. 2021. NLP for con-
sumer protection: Battling illegal clauses in German
terms and conditions in online shopping. In Proceed-
ings of the 1st Workshop on NLP for Positive Impact,
pages 93–99, Online. Association for Computational
Linguistics.

John Gibson, Ben Wellner, and Susan Lubar. 2007.
Adaptive web-page content identification. pages 105–
112.

Francisco Viveros Jiménez, Miguel A. Sánchez-
Pérez, Helena Gómez-Adorno, J. Posadas-Durán,
G. Sidorov, and Alexander Gelbukh. 2018. Improv-
ing the boilerpipe algorithm for boilerplate removal
in news articles using html tree structure. Com-
putación y Sistemas, 22.

Adam Kilgarriff. 2007. Last words: Googleology is bad
science. Computational Linguistics, 33(1):147–151.

Christian Kohlschütter, Peter Fankhauser, and Wolfgang
Nejdl. 2010. Boilerplate detection using shallow text
features. pages 441–450.

Gaël Lejeune and Lichao Zhu. 2018. A new proposal
for evaluating web page cleaning tools. Computación
y Sistemas, 22.

Marco Lippi, Przemysław Pałka, Giuseppe Contissa,
Francesca Lagioia, Hans-Wolfgang Micklitz, Gio-
vanni Sartor, and Paolo Torroni. 2019. Claudette: an
automated detector of potentially unfair clauses in
online terms of service. Artificial Intelligence and
Law, 27(2):117–139.

Marco Lui, Timothy Baldwin, and Nicta Vrl. 2021.
Cross-domain feature selection for language iden-
tification.

Tomohiro Manabe and Keishi Tajima. 2015. Extract-
ing logical hierarchical structure of html documents
based on headings. Proceedings of the VLDB Endow-
ment, 8:1606–1617.

Jeff Pasternack and Dan Roth. 2009. Extracting arti-
cle text from the web with maximum subsequence
segmentation. pages 971–980.

Jan Pomikálek. 2011. Removing boilerplate and du-
plicate content from web corpora. Ph.D. thesis,
Masaryk University, Faculty of informatics, Brno,
Czech Republic.

Hiroyuki Sano, Shun Shiramatsu, Tadachika Ozono, and
Toramatsu Shintani. 2021. A web page segmentation
method based on page layouts and title blocks.

Egon Stemle. 2009. The krdwrd annotation framework
– gathering training data for sweeping web pages: the
canola corpus.

189

A Appendix

A.1 Hierarchy Extraction Algorithm

Algorithm 1: Extract hierarchy based on
headlines (recursive).

Input: List of blocks (blockList)
Result: Children of a Node
/* Determine headline style of

current level and gather all
headlines on this current level.
*/

headlineStyle← getNextHeadlineStyle(blockList);
headlineList← [];
for block in blockList do

if block.style = headlineStyle then
headlineList.append(block);

end
end
/* Create children list for current

node by adding the blocks
associated to the current node
and by extracting the lower
level nodes. */

children← [];
children.append(blockList[0 : headlineList[0].index];
for headline in headlineList do

cChildren←
extractHierarchy(blockList[(headline.index +
1) : headline.next.index];

children.append(Node(headline, cChildren));
end
return children;

A.2 Hierarchy Extraction
The deviations of the hierarchy extraction algo-
rithm from the expected results are determined
by assigning the following scores to the extracted
nodes:

• 0: each section with correct parent, correct
content, and correct title

• 0.4: wrong parent
• 0.5: wrong content
• 0.1: wrong title

As different T&C pages contain different amounts
of sections, the score is divided by the total amount
of sections identified by the algorithm. An error
score of 0 accounts for a perfect extraction.

The meaning of the brackets used in Tables 4
and 5 is the following:

x ∈ [a; b) | x ≥ a ∧ x < b

Error Score German English

0 12 5
(0; 0.05] 12 4
(0.05; 0.1] 1 1
(0.1; 0.15] 2 2
(0.15; 0.2] 1 0
(0.2; 0.3] 1 0
(0.3; 0.5] 1 1
(0.5; 1] 0 0
Failed 0 6

Table 4: Distribution of error scores for the hierarchy
extraction of the German and English requirements sam-
ple.

Error Score German English

0 8 9
(0; 0.05] 11 3
(0.05; 0.1] 1 2
(0.1; 0.15] 1 1
(0.15; 0.2] 1 2
(0.2; 0.3] 1 2
(0.3; 0.5] 5 1
(0.5; 1] 0 0
Failed 2 0

Table 5: Distribution of error scores for the hierarchy
extraction of the German and English test sample.

190

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 191 - 198
May 26, 2022 c©2022 Association for Computational Linguistics

“Does it come in black?”
CLIP-like models are zero-shot recommenders
Patrick John Chia∗

Coveo, Montreal
pchia@coveo.com

Jacopo Tagliabue
Coveo Labs, New York

jtagliabue@coveo.com

Federico Bianchi
Bocconi University, Milan

Ciro Greco
Coveo Labs, New York

Diogo Goncalves
Farfetch, Porto

Abstract

Product discovery is a crucial component for
online shopping. However, item-to-item recom-
mendations today do not allow users to explore
changes along selected dimensions: given a
query item, can a model suggest something
similar but in a different color? We consider
item recommendations of the comparative na-
ture (e.g. “something darker”) and show how
CLIP-based models can support this use case in
a zero-shot manner. Leveraging a large model
built for fashion, we introduce GradREC and
its industry potential, and offer a first rounded
assessment of its strength and weaknesses.

1 Introduction

Recommender systems (RSs) are one of the most
ubiquitous applications of machine learning (ML)
in e-commerce (Tsagkias et al., 2020), recently fea-
turing novel benchmarks and extensive use of deep
neural networks in item-to-item, user-to-item, and
comparison RSs (de Souza Pereira Moreira et al.,
2019; Chia et al., 2021; Tagliabue et al., 2021).
While details differ between neural architectures,
they all share the principle that products are rep-
resented as points in a latent space, learned from
user behavior, item meta-data or a combination
of both (Bianchi et al., 2021c; Yi et al., 2019).
Fig. 1 represents item-to-item recommendations
as movements in the product space: starting from
a query item – the white dress –, RSs help shop-
pers to move either around their current location, or
“jump” to a different one. Adding to the blooming
literature on substitute, complementary, popularity
and exploration-based RSs (Chen et al., 2020; Hao
et al., 2020; Ramachandran, 2020; Barraza-Urbina,
2017), this work presents GradREC, a new type of

∗* GradRECS started as a (failed) experiment by JT; PC
actually made it work, and he is the lead researcher on the
project. FB, CG and DC all contributed to the paper, pro-
viding support for modelling, industry context and domain
knowledge. PC and JT are the corresponding authors.

recommendation that introduces explicit direction-
ality into the mix, by allowing exploration in se-
lected directions through natural language: “some-
thing darker” will move the user from the white
dress to the grey dress. In particular, we summarize
our contributions as follows: First, we introduce
GradREC as a new type of recommendation ex-
perience and a technical contribution – to the best
of our knowledge, GradREC is the first zero-shot
approach for language-based comparative recom-
mendations, showing that CLIP-like (Radford et al.,
2021) models may enable recommendations to be
generated on the fly without the need of explic-
itly defined labels for training or behavioral data.
Second, we devise both qualitative and quantita-
tive evaluations to offer a first rounded assessment
of the strengths and weaknesses of our proposal,
and supplement our analysis with extensive visual
examples. Third, as part of our submission, we
release to the community our fine-tuned weights,
publish an interactive web-app for exploration, and
open source our code to help reproducing our find-
ings and building on them 1.

While we present our results as a preliminary
investigation into the untapped capabilities of CLIP
for retail, we do believe our methods to be interest-
ing to a broad set of practitioners: those exploring
recommendations for conversational and interac-
tive commerce, and those leveraging deep learning
for horizontally scalable SaaS products2. Finally,
while motivated by very practical concerns, this
work contains new insights on the topology of the
information encoded by over-parameterized neu-
ral networks, which could help our understanding
of the kind of regularities that these models learn
about our world.

1Artifacts are available at https://github.com/
patrickjohncyh/gradient-recs.

2As a context for this global market, Algolia and Bloom-
reach both raised more than USD200M in the last two years
(Techcrunch, 2021; Bloomreach, 2022), and Coveo raised
more than CAD200M with its IPO (Marotta, 2021).

191

Figure 1: Recommendation as movements in the la-
tent space, starting from a query item (red): substitute,
complementary and exploration-based strategies are de-
picted in orange, blue and violet; GradREC is in gray.

2 An Industry Perspective

The intersection of product recommendation and
natural language is a blooming research area: ad-
vances in neural NLP have been recently used
for content-based recommendations (Iqbal et al.,
2018), cold-start scenarios (Tagliabue et al., 2020),
language grounding (Bianchi et al., 2021b,a), and
explainable RSs (Chen et al., 2021). A relatively
new use case is provided by the growth in the mar-
ket of interactive technologies, as intelligent virtual
assistants (IVAs) are expected to handle recom-
mendations that increasingly encompass the ex-
pressiveness of natural language (Jannach et al.,
2021). While interaction is an opportunity, the
limited real estate available to display recommen-
dations is a constraint for IVAs (Lin et al., 2021):
since scrolling is limited, strategies for moving
from one product to another (as in Fig. 1) are cru-
cial for IVAs market penetration. In this work, we
consider recommendations which are of the com-
parative form: given an item of focus – in a chat,
a product page, etc. –, the shopper makes use of
natural language queries to retrieve a second item
(e.g. “shorter“, “darker”, etc.), related to the first
but different along the specified attribute. While
state-of-the-art IVAs can already provide very sim-
ple recommendations through language (Amazon,
2022), we are the first to suggest the existence of
an entire new dimension and depth to mimic the
interactions typical of a real-life shopping experi-
ence.

When thinking about applying this method in
a multi-tenant SaaS context, it is worth noting
how small are the assumptions GradREC actually
makes about the underlying inventory: while in
the case of FashionCLIP and its dataset it is
true that products often contain information about

an attribute’s intensity (e.g. “knee-length shorts”),
the relationship between them is not explicitly en-
coded, yet it is inferred by GradREC. Moreover,
when applying these models across new catalogs,
there is no guarantee descriptions would be as rich,
or even using the same lexicon to describe the same
attribute (“bermudas” vs “knee-length”). These
considerations further highlight the strength of us-
ing a latent space derived from a general and flexi-
ble multi-modal model, and the non-trivial nature
of extracting comparative recommendations.

3 Related Work

Our work sits at the intersection of various recent
technical advances in latent space manipulation
and iterative IR. Many recent works explore la-
tent space manipulation of Generative Adversar-
ial Networks (GANs) for purposes of fine-grained
image editing (Shen et al., 2020; Patashnik et al.,
2021); Jahanian et al. (2020) also studied latent
space traversal in GANs to measure GAN general-
ization. We extend this line of research by provid-
ing a clear e-commerce use case, a focus shift from
generative modeling to recommendation, and new
insights on CLIP-based representations.

The idea of iterative search refinement using
comparative information and attribute ranking is
not new (Kovashka et al., 2012; Yu and Grau-
man, 2015). However, previous work sit in the
standard fully supervised “learning-to-rank” tra-
dition. Conversely, our approach operates in a
zero-shot fashion by using both CLIP retrieval and
CLIP representations to generate suggestions on-
the-fly. Finally, our work builds on top of the re-
cent wave of contrastive-based methods for rep-
resentational learning: while latent product rep-
resentations have been extensively studied from
multiple angles (Bianchi et al., 2020; Xu et al.,
2020), CLIP-like models are still very new in this
domain: GradREC leverages the space learned by
FashionCLIP, a fashion-fine tuning of the origi-
nal CLIP (Chia et al., 2022).

4 Gradient Recs

4.1 Overview
GradREC, builds upon the multi-modal space in-
duced by FashionCLIP. GradREC aims to tra-
verse the latent space such that the intensity of
an attribute of interest varies monotonically for
products along that path, allowing us to make fine-
grained recommendations that require compara-

192

tive knowledge. There are independently grounded
reasons to expect this method to work. First, we
have solid evidence that embedding spaces are able
to encode recognizable “concepts” (e.g. lexical
knowledge in word2vec (Mikolov et al., 2013),
facial expressions in GANs (Ding et al., 2018)).
Second, we perform an extensive evaluation of
the FashionCLIP product space, focusing on at-
tributes such as color and occasion: our qualitative
assessment (Section 4.2) verified that embeddings
are indeed often clustered, further suggesting that
movements in the “concept space” can be repre-
sented as paths in the latent space.

4.2 FashionCLIP exploration

As discussed in Section 4.1, there are pre-existing
theoretical reasons to think that embedding spaces
encode in their geometry interesting regularities.
In order to validate this hypothesis, we run visual
investigations on FashionCLIP space as seen in
Figure 2, which shows TSNE projections of prod-
uct image embeddings for four attributes: Pants
Length, Shirt Color, Heel Height and Occasion.
For each attribute, we retrieve products possessing
negative, neutral and positive attribute intensities.
Figure 2 demonstrates that the projected products
from the corresponding attribute intensities do in-
deed form meaningful clusters, suggesting that it is
possible to trace a path from one cluster to another
in the latent space.

Figure 2: Sample TSNE projections of product image
vectors: products are colored based on attribute strength.

4.3 Method

In what follows, we focus on the core task of gra-
dient recommendations3. Assuming a target in-
ventory of fashion products, a starting item and
a pair of natural language queries whose differ-
ence captures the comparative dimension of interest
(e.g. the difference between “dark red shirt” and
“red shirt” captures the dimension of “darker”4),
GradREC should return a new item in the “same
style” as the starting item, varying along the speci-
fied dimension; in particular, GradREC can lever-
age CLIP representations but has no access to la-
bels or co-purchasing data. Providing now a formal
description, we decompose our approach into two
components: a traversal function, Φ and a traver-
sal direction vector, vc.

Traversal Function: given a product t, repre-
sented in the CLIP space by either its L2 normal-
ized textual vector tt or image vector it, and some
attribute c we want to explore, our goal is to com-
pute a function Φ, such that given a starting point
vt and some vector vc, returns a new point vt+1

in the latent space that is increasing or decreas-
ing in strength of attribute c. Given the new posi-
tion vt+1, we use cosine-based k-nearest neighbors
(KNN(·, ·)) to retrieve suggested products: if we
iterate this process, we would travel along the di-
mension of attribute c, discovering products as we
move along. We define Φ as vector addition, with a
scale factor λ to control step size; additionally, we
use the mean of the current point’s nearest neigh-
bours (¯KNN(vt, k)) as a regularizing term. The
two terms are balanced by taking a convex combi-
nation of the direction vector and the regularizing
term. In our notation, v̂ refers to v normalized to
unit length. Note that all vectors are of dimension
512. Our definition is summarized in Eq.1:

vt+1 = Φ(vt,vc)

= vt + (1− ρ) · λv̂c

+ ρ ·KN̄N(vt, k)

(1)

Traversal Vector: the construction of vc relies
on two main ingredients. First, given a pair of

3We realize that a more ecological setting – such as IVA –
would require additional steps to handle stateful interactions:
those steps are however general open problems in IVA, whose
solution is independent of the interaction we model here.

4Different ecological settings may provide these queries
more or less explicitly; GradRECmay be used naturally in the
context of multi-turn systems such as IVAs, or, for example, as
support to standard manually defined facets for IR use cases,
such as product search.

193

Figure 3: A sample of the qualitative results obtained
by applying GradREC for four different attributes: the
intensity / strength of the attribute decreases from left
to right.

queries which semantically captures the attribute
c (“darker”), we use the zero-shot retrieval capa-
bilities of FashionCLIP to construct two small
datasets: one comprising the image embeddings
closest to the FashionCLIP encoding of the neu-
tral class (“a blue shirt”), and one from an exemplar
class for c (“a dark blue shirt”). We define the re-
trieved image vectors for the neutral and exemplar
prompts as In = {i1n...iMn } and Ie = {i1e...iNe }
respectively. Second, we adopt the channel impor-
tance measure from Wu et al. (2021) to determine
channels5 which encode the differences between
the neutral class and exemplar class. The method
measures the channel-wise Signal-to-Noise Ratio
(SNR) between the mean neutral class vector (i.e.
Īn) and the exemplar class vectors (i.e. {i1e...iNe }).
The intuition is that channels with high SNR corre-
spond to channels which encode the differences
between images from the neutral and exemplar
class, and hence the attribute c. Our implemen-
tation departs from theirs by retaining the sign of
the differences for each channel. Finally, to ob-
tain vc, we normalize the vector formed by the
channel-wise SNR values6.

5 Experiments

To investigate GradREC strengths and weakness,
we offer a preliminary assessment of its capabilities
over important fashion dimensions, such as product
discovery.

5Each channel corresponds to one of the 512 dimensions
of an embedding.

6We refer the reader to Wu et al. (2021) for the original
discussion.

5.1 Dataset and Pre-trained Space

Our pre-trained space is FashionCLIP, an adap-
tation of CLIP obtained by fine-tuning the orig-
inal embeddings over fashion products provided
by Farfetch, a world leading platform for online
luxury fashion shopping. The dataset comprises
of over 800k fashion products across dozens of
item types and more than 3k brands. In addi-
tion to a standard product image over white back-
ground, the dataset contains natural language de-
scriptions of the stylistic properties (e.g., “cotton-
blend”, “high waist”, “belt loops”) and categorical
information (e.g. “layered track shorts”) of prod-
ucts7. FashionCLIP shares the same architec-
ture as Radford et al. (2021), i.e. a multi-modal
model comprising an image and a text encoder.
We refer to Chia et al. (2022) for details on train-
ing and retrieval / classification capabilities: since
FashionCLIP has independent value in the in-
dustry, GradREC does not require any specific pre-
training.

5.2 Qualitative Analysis

We consider four different attributes of interest:
shirt color luminance, heel height, trouser length
and trouser cutting. For each attribute, we tra-
verse the latent space between both extremes of
the attribute of interest and present the results in
Fig. 3 for visual validation. We observe that the
products retrieved form a monotonic change in the
attribute’s strength that aligns well with human in-
tuition: i.e. t-shirts in the first row do indeed follow
a gradient going from lighter to darker shades of
blue. It is interesting to note that the latent space of
FashionCLIP appears to encode and organize
these geometric and physical regularities despite
not having been trained to do so explicitly, point-
ing to further questions about what and how these
self-supervised models learn.

5.3 Quantitative Analysis

We quantitatively assess GradREC by measuring
its efficiency in product discovery along an attribute
of interest, to verify that the path it discovers is se-
mantically meaningful. We generate three datasets
(N = 100) using FashionCLIP retrieval capa-
bilities to represent products from the negative, neu-

7FashionCLIP weights and training code will be re-
leased with the original publication. At the moment of writing
this paper, the original training dataset is scheduled to be
released as well: please check https://github.com/
Farfetch for updates.

194

tral and positive intensities of an attribute8. For
example, to generate datasets for shirt color lumi-
nance we would issue the following queries – “dark
blue polo shirt”, “blue polo shirt”, “light blue polo
shirt” – to FashionCLIP and retrieve N prod-
ucts for each query. In Figure 4 we visualize a
sample of the products retrieved for each of the
above queries.

'$5.�%/8(�
32/2�6+,57

%/8(�32/2�
6+,57

/,*+7�%/8(�
32/2�6+,57

� 48(5< 5(75,(9('�352'8&76

Figure 4: Products retrieved for queries on a spectrum
of intensity.

We apply GradREC, starting a traversal from a
negative product in the direction of neutral intensity
products, simulating product discovery by logging
the top k = 10 unseen products found at each step.
We then compute the intersection cardinality of the
three datasets along the simulated trajectory with
a sliding window of 50 products: a model which
traverses a meaningful path should produce three
peaks, one for each level of intensity. As a baseline,
we use visual similarity in the CLIP image-space
(KNN over image embeddings) and simulate the
product discovery trajectory as traversing the list
of nearest neighbors of the same seed product in
the order of increasing distance.

In Figure 5 we see the result of applying our
analysis to the discovery path for luminance of blue
polo shirts. We observe that GradREC explores
well this path as seen by its three distinct modes of
intersected products, where each peak for light blue,
blue and dark blue respectively, corresponds to the
correct order of decreasing luminance. Conversely,
we see that visual similarity fails to produce a simi-
lar product discovery pattern as GradREC, which
spans a wider range of the luminance spectrum. In
fact, visual similarity struggles to discover products
from blue and light blue, highlighting the merits of
the directionality induced by GradREC (Appendix
A.2).

8The exact definitions of negative and positive are relative;
We are more concerned here with capturing the opposing
extremes of an attribute’s spectrum i.e. dark and light.

Figure 5: Quantitative analysis comparing GradREC to
Visual Similiarty on product discovery for the attribute
color luminance of blue shirts.

5.4 Limitations & Future Work

While GradREC performances are encouraging
– especially when considering that no attribute
has been explicitly taught –, limitations highlight
several areas of improvement. First, the perfor-
mance of the model is sensitive to the quality of
the retrieval phase. For example, to construct
vc for trouser length, using queries “shorts” and
“pants” yielded better performance than “shorts”
and “bermudas”. Second, our definition of Φ is not
optimal: as we traverse the image space, the cosine
distance between our position and all the products
increases, suggesting that we are not traversing the
latent manifold in the most efficient way. Third,
while we observe that GradREC moves in a se-
mantically meaningful direction, it does not, nor
is it currently designed to, provide guarantees on
the monotonicity of the products it returns along
the path. Finally, GradREC does not account for
uncertainty and thus does not possess a confidence
measure for its recommendations: while we may
be confident in its ability with geometric and phys-
ical concepts, and less so for more abstract notions
(e.g. “for colder weather”), it is hard to know a
priori what GradREC does not know.

6 Conclusion

We introduced GradREC, a zero-shot approach
for comparative recommendations, that showed
promising results in our initial investigations.
While further evaluation – especially, involving rel-
evance judgments by humans – is needed to fully
assess GradREC capabilities, we do believe that
our work provides preliminary but novel insights
into innovative application of large models in im-
portant industry use-cases.

195

References
Amazon. 2022. Style by Alexa.

Andrea Barraza-Urbina. 2017. The exploration-
exploitation trade-off in interactive recommender sys-
tems. In Proceedings of the Eleventh ACM Confer-
ence on Recommender Systems, RecSys ’17, page
431–435, New York, NY, USA. Association for Com-
puting Machinery.

Federico Bianchi, Ciro Greco, and Jacopo Tagliabue.
2021a. Language in a (search) box: Grounding lan-
guage learning in real-world human-machine inter-
action. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4409–4415, Online. Association for
Computational Linguistics.

Federico Bianchi, J. Tagliabue, Bingqing Yu, Luca
Bigon, and Ciro Greco. 2020. Fantastic embeddings
and how to align them: Zero-shot inference in a multi-
shop scenario. ArXiv, abs/2007.14906.

Federico Bianchi, Jacopo Tagliabue, and Bingqing Yu.
2021b. Query2Prod2Vec: Grounded word embed-
dings for eCommerce. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 154–
162, Online. Association for Computational Linguis-
tics.

Federico Bianchi, Bingqing Yu, and Jacopo Tagliabue.
2021c. BERT goes shopping: Comparing distribu-
tional models for product representations. In Pro-
ceedings of The 4th Workshop on e-Commerce and
NLP, pages 1–12, Online. Association for Computa-
tional Linguistics.

Bloomreach. 2022. With $175 million in funding,
bloomreach is authoring the next chapter of e-
commerce.

Hanxiong Chen, Xu Chen, Shaoyun Shi, and Yongfeng
Zhang. 2021. Generate natural language explana-
tions for recommendation. CoRR, abs/2101.03392.

Tong Chen, Hongzhi Yin, Guanhua Ye, Zi Huang, Yang
Wang, and Meng Wang. 2020. Try This Instead:
Personalized and Interpretable Substitute Recommen-
dation, page 891–900. Association for Computing
Machinery, New York, NY, USA.

Patrick John Chia, Giuseppe Attanasio, Federico
Bianchi, Silvia Terragni, Ana Rita Magalhães, Diogo
Goncalves, Ciro Greco, and Jacopo Tagliabue. 2022.
Fashionclip: Connecting language and images for
product representations.

Patrick John Chia, Bingqin Yu, and Jacopo Tagliabue.
2021. Are you sure?: Preliminary insights from
scaling product comparisons to multiple shops. In
SIGIR eCom 2021.

Gabriel de Souza Pereira Moreira, D. Jannach, and Adil-
son Marques da Cunha. 2019. On the importance of
news content representation in hybrid neural session-
based recommender systems. In INRA@RecSys.

Hui Ding, Kumar Sricharan, and Rama Chellappa. 2018.
Exprgan: Facial expression editing with controllable
expression intensity. AAAI.

Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Chris-
tos Faloutsos, Yizhou Sun, and Wei Wang. 2020. P-
companion: A principled framework for diversified
complementary product recommendation. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management, CIKM
’20, page 2517–2524, New York, NY, USA. Associa-
tion for Computing Machinery.

Murium Iqbal, Adair Kovac, and Kamelia Aryafar. 2018.
A multimodal recommender system for large-scale
assortment generation in e-commerce. In The SI-
GIR 2018 Workshop On eCommerce co-located with
the 41st International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 2018), Ann Arbor, Michigan, USA, July 12,
2018, volume 2319 of CEUR Workshop Proceedings.
CEUR-WS.org.

Ali Jahanian, Lucy Chai, and Phillip Isola. 2020. On
the "steerability" of generative adversarial networks.
In International Conference on Learning Representa-
tions.

Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and
Li Chen. 2021. A survey on conversational recom-
mender systems. ACM Comput. Surv., 54(5).

Adriana Kovashka, Devi Parikh, and Kristen Grauman.
2012. Whittlesearch: Image Search with Relative
Attribute Feedback. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue
Liu, Heng Ji, Yang Liu, and Premkumar Natarajan.
2021. Personalized entity resolution with dynamic
heterogeneous KnowledgeGraph representations. In
Proceedings of The 4th Workshop on e-Commerce
and NLP, pages 38–48, Online. Association for Com-
putational Linguistics.

Stefanie Marotta. 2021. Canada’s latest tech public
debut swings amid soft ipos.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel
Cohen-Or, and Dani Lischinski. 2021. Styleclip:
Text-driven manipulation of stylegan imagery. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 2085–2094.

196

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In ICML.

Lakshmi Ramachandran. 2020. Behavior-Based Pop-
ularity Ranking on Amazon Video, page 564–565.
Association for Computing Machinery, New York,
NY, USA.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou.
2020. Interpreting the latent space of gans for seman-
tic face editing. In CVPR.

Jacopo Tagliabue, Ciro Greco, Jean-Francis Roy, Fed-
erico Bianchi, Giovanni Cassani, Bingqing Yu, and
Patrick John Chia. 2021. Sigir 2021 e-commerce
workshop data challenge. In SIGIR eCom 2021.

Jacopo Tagliabue, Bingqing Yu, and Federico Bianchi.
2020. The Embeddings That Came in From the Cold:
Improving Vectors for New and Rare Products with
Content-Based Inference, page 577–578. Association
for Computing Machinery, New York, NY, USA.

Techcrunch. 2021. Search api startup algolia raises
$150 million at $2.25 billion valuation.

Manos Tsagkias, Tracy Holloway King, Surya
Kallumadi, Vanessa Murdock, and Maarten de Ri-
jke. 2020. Challenges and research opportunities in
ecommerce search and recommendations. In SIGIR
Forum, volume 54.

Zongze Wu, Dani Lischinski, and Eli Shechtman. 2021.
Stylespace analysis: Disentangled controls for style-
gan image generation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 12863–12872. Com-
puter Vision Foundation / IEEE.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Ku-
mar, and Kannan Achan. 2020. Product Knowledge
Graph Embedding for E-Commerce, page 672–680.
Association for Computing Machinery, New York,
NY, USA.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan
Cheng, Lukasz Heldt, Aditee Ajit Kumthekar, Zhe
Zhao, Li Wei, and Ed Chi, editors. 2019. Sampling-
Bias-Corrected Neural Modeling for Large Corpus
Item Recommendations.

A. Yu and K. Grauman. 2015. Just noticeable differ-
ences in visual attributes. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 2416–
2424, Los Alamitos, CA, USA. IEEE Computer So-
ciety.

A Appendix

A.1 A worked-out traversal example
Fig. 6 showcases an example of successful traversal
when using the methods in Section 4.3 applied to

skirt length. In particular, we can see the query
item, an intermediate one and a final one, along
the path of products that was traced (the path of
products are denoted by × markers, and the order
of observation/direction of traversal is denoted by
the darker to lighter hue). Note that a simple visual
similarity search would have moved us from the
first query item to a nearby region.

Figure 6: TSNE Projection of 3 ranges of skirt lengths
and the traversed product path by GradREC along the
attribute skirt length as shown by × markers (dark to
light denotes direction of traversal). Corresponding
product images along the traversed path are visualized.

A.2 Additional Experiments

We ran our product discovery analysis for the at-
tribute heel height and report the result in Fig. 7.

A similar pattern as Fig. 5 emerges with
GradREC having three peaks and Visual Similarity
struggling to discover “high heel”. Unlike Fig. 5,
however, we observe a lower cardinality of inter-
section for GradREC and “women’s high heels”,
since GradREC preserves the style of the seed
product (red colored shoes, in this example) while
the products retrieved by “women’s high heels” are
of varying color.

We also provide additional qualitative examples
in Fig. 8. We observe GradREC working across
colors, in different product sortals (e.g., Dress),
and having the ability to preserve visual style (e.g.,
Denim).

In Fig. 9, we instead give an example of the limi-
tations of GradREC. Indeed, we see a failure mode
where GradREC, while increasing the strength of

197

Figure 7: Product discovery analysis for heel height.

7�6+,57�
&2/25

/80,1$1&(
�5('�

'5(66�
&2/25�

/80,1$1&(�
�%/8(�

75286(5�
/(1*7+
�'(1,0�

,17(16,7<

Figure 8: Extra qualitative examples.

formality correctly, is however unable to preserve
the visual style of the footwear correctly. As we
have highlighted in Section 5.4, GradREC perfor-
mance is sensitive to the initial dataset retrieval per-
formance: in this instance, the query “formal shoes”
retrieves predominantly black, leather dress-shoes,
thereby steering the traversal in that direction.

)227:($5�
)250$/,7<

,17(16,7<

Figure 9: Failure mode of GradREC for formality at-
tribute. While formality is appropriately increased, the
product changes visual appearance from pink to black.

198

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 199 - 209
May 26, 2022 c©2022 Association for Computational Linguistics

Clause Topic Classification in German and English Standard Form
Contracts

Daniel Braun
University of Twente

Department of High-tech Business
and Entrepreneurship

d.braun@utwente.nl

Florian Matthes
Technical University of Munich

Department of Informatics
matthes@tum.de

Abstract

So-called standard form contracts, i.e. con-
tracts that are drafted unilaterally by one party,
like terms and conditions of online shops or
terms of services of social networks, are cor-
nerstones of our modern economy. Their pro-
cessing is, therefore, of significant practical
value. Often, the sheer size of these contracts
allows the drafting party to hide unfavourable
terms from the other party. In this paper, we
compare different approaches for automatically
classifying the topics of clauses in standard
form contracts, based on a data-set of more
than 6,000 clauses from more than 170 con-
tracts, which we collected from German and
English online shops and annotated based on a
taxonomy of clause topics, that we developed
together with legal experts. We will show that,
in our comparison of seven approaches, from
simple keyword matching to transformer lan-
guage models, BERT performed best with an
F1-score of up to 0.91, however much simpler
and computationally cheaper models like lo-
gistic regression also achieved similarly good
results of up to 0.87.

1 Introduction

So-called standard form contracts, i.e. contracts
that are drafted unilaterally by one party of the con-
tract, usually a company, like terms and conditions
of online shops or terms of services of social net-
works, are cornerstones of our modern economy.
While the concept of a contract that is completely
decided upon by one party might seem unfair and
inherently flawed, its existence is a necessity in our
modern economy. It would simply not be possible
for companies like Amazon, Facebook or Google,
to negotiate individual contract terms with each of
their customers.

It is largely acknowledged, that most consumers
do not read such contracts before buying something
online or registering for a service. The actual share
of consumers that regularly read such contracts

ranges from as little as 3.5% (Plaut and Bartlett III,
2012) to 9% (Braun, 2021) in the literature. In
acknowledgement of this fact, lawmakers around
the world have tightly restricted the provisions that
can be made by standard form contracts in a bid to
protect consumers. This makes them an interesting
subject for different Natural Language Processing
(NLP) tasks, because they have a high economical
and therefore practical relevance, but are still some-
what restricted with regard to their content. In this
work, we use contracts that have been drafted under
the jurisdiction of the European Union (EU). Many
of the regulations applying to standard form con-
tracts in this jurisdiction originate from the Council
Directive 93/13/EEC of 5 April 1993 on unfair
terms in consumer contracts.

While standard form contracts are relevant in
almost all kinds of business-to-consumer transac-
tions, like banking, insurances, and data process-
ing, we here focus on Terms and Conditions (T&C)
from online shops for three reasons: They have
high economical relevance, they are publicly avail-
able in large quantities on the internet in a machine-
readable format, and they are among the contracts
which are least likely to be read, compared to a
contract for life insurance, for example.

Being able to automatically classify the topics of
clauses in T&C could help consumers to find rele-
vant regulations faster and make more informed de-
cisions, but it could also support legal professionals,
like lawyers specialising in consumer protection
law, in their work.

2 Related Work

Contract review is one of the main commercial ap-
plications of NLP in the legal domain (Dale, 2019).
Unlike standard form contracts, “normal” contracts,
i.e. contracts that have been negotiated by all con-
tracting parties, allow for more variation and are
less regulated, especially in business-to-business
contexts. Therefore, building a taxonomy of clause

199

topics and performing topic classification (i.e. a
supervised approach), would be less suitable for
such contracts.

For reasons of data availability, most research
projects use publicly available contracts, which
happen to be standard form contracts, like T&C
from online shops, Terms of Services (ToS) from
online platforms, and, since the introduction of
the General Data Protection Regulation (GDPR) in
the EU, one particular focus has been on privacy
policies. Although, legally, it is not settled whether
they have a contractual status or not (Raysman and
Brown, 2010), from an NLP perspective, they can
be treated as a special variety of standard form
contracts.

Most of the existing research on the analysis of
standard form contracts is focusing on automat-
ically finding void clauses. The CLAUDETTE
project (Lippi et al., 2019), for example, focuses
on finding so-called “unfair clauses”, which are
void under EU legislation, in ToS from large online
platforms like Facebook or Netflix. Later, they also
applied their approach to privacy policies (Liepina
et al., 2019). Similarly, Braun and Matthes (2021)
focus on finding void clauses in T&C from online
shops by using a fine-tuned BERT model, in earlier
work, they summarised specific aspects of T&C us-
ing an abstractive summarisation approach (Braun
et al., 2017). In comparison to these works, which
try to make a fully automated decision on the va-
lidity of clauses, the classification of clause topics
could be used to support humans in the decision-
making process, by helping them to find relevant
clauses faster.

In the area of privacy policies, approaches are
more diverse. Ravichander et al. (2019), for exam-
ple, presented a Q&A system that can answer user
questions about privacy policies. Binary assess-
ments in classes like valid or void are less desirable
in the domain of privacy policies where, especially
before the introduction of the GDPR, much of what
was legally allowed was still undesired by users.

3 Taxonomy

For a topic classification approach, i.e., a super-
vised approach, rather than an unsupervised topic
modelling approach, a taxonomy of clause topics
is needed. At first, this might seem like a limita-
tion of the approach, because, in theory, a contract
can regulate arbitrary aspects. In practice, how-
ever, standard form contracts underly strong lim-

itations, because, under EU jurisdiction, clauses
that are “unexpected” are automatically void under
the Unfair Contract Terms Directive (93/13/EEC).
Therefore, if a taxonomy is extensive enough, the
information that a clause is not covered by one of
the topics in the taxonomy is already important in-
formation in itself, because it means that the clause
is very likely void.

To build such an extensive taxonomy for T&C
from online shops, we used contract templates from
legal literature (Sommer and von Stumm, 2017;
Fingerhut, 2009) and industry associations (IHK
Munich and Upper Bavaria, 2020; Schirmbacher,
2018), as well as a commercial T&C generator1

and analysed which topics are present in these tem-
plates, because they are used by many online shops.

For each of these sources, two legal experts
with experience in consumer protection law went
through the templates and annotated each clause
with one or more fitting topic and zero or more
fitting subtopic label(s). In the end, the topic la-
bels from the different annotators were aligned
by the authors. By the combination of the above-
described sources, we derived a taxonomy of 22
classes (topics) and 36 sub-classes (subtopics). The
differentiation between topics and subtopics was
mainly based on the structure of the sources, i.e.
the organisation in sections and subsections in the
templates. A topic, for example, could be “deliv-
ery” and subtopics could be the delivery time or
the delivery costs.

To get an estimate of how extensive our taxon-
omy is, we used it to manually annotate more than
6.000 clauses from real T&C (see section 4). Of
these more than 6,000 clauses, the taxonomy was
able to cover 90.08%. The remaining clauses (336)
fell into only two classes: 285 clauses contained
information regarding vouchers and gift cards, and
51 clauses contained information about codes of
conduct. We added both classes to the taxonomy.
The final taxonomy, therefore, consists of 23 labels
for topics and 37 labels for subtopics. All labels in
the taxonomy are shown in Table 2.

4 Corpus

Since no corpus of topic-annotated clauses from
T&C existed, we had to build our own corpus.
For this, we parsed the list of merchants from two
German price comparison websites (“Idealo”2 and

1https://www.trustedshops.com
2www.idealo.de

200

“Geizhals”3) that also offer a localised version of
their respective websites in English, targeted to the
British market4. On these websites, shop opera-
tors manually report the URLs to their T&C, which
we extracted with a web-crawler. We randomly se-
lected 142 German T&C and 30 English T&C from
these pages. Each clause from these contracts was
subsequently copied into an Excel file, in which
each row contains one clause. In addition to the
text of the clause itself, each row contains a unique
id, an id for the contract the clause belongs to, (if
existing) the title of the superordinate paragraph
and (if existing) the title of the clause.

4.1 Size

The corpus we built consists of 5,020 German
clauses and 1,040 English clauses. In both lan-
guages, a contract, therefore, consists of roughly
35 clauses on average. All German clauses to-
gether consist of 351,903 words, which is an av-
erage of 2,478 words per contract (see Table 1).
The English corpus contains 55,392 words which
equals to an average of 1,846 words per contract.
This means German clauses are, on average, sig-
nificantly longer than English ones. 5,013 clauses
(or 99.9% of all clauses) in the German corpus
have a paragraph or clause title (or both), which we
can use for the topic classification. In the English
corpus, that is the case for 989 clauses or 95.1%.

4.2 Annotation

Each clause of both corpora was labelled with its
topics and subtopics according to the taxonomy
described in Section 3. First, each clause was la-
belled by a student using only the classes from the
first level (topics) of the taxonomy. Then, where
applicable, classes from the second level of the tax-
onomy (subtopics) were added. In a second step,
this process was repeated by the authors, i.e., each
clause was again first labelled with classes from the
first level and then, where applicable, with classes
from the second level. A clause can be labelled
with more than one topic and subtopic. A clause
can also be assigned to a topic without necessarily
having to be assigned to a subtopic of it (but not
the other way round). An example of such a clause
from the corpus is “The warranty is subject to the
relevant statutory provisions.”, which is assigned
the topic warranty, but not to one of its subtopics.

3www.geizhals.de
4www.idealo.co.uk, www.skinflint.co.uk

Cases where the two annotators disagreed, were
presented to (and finally decided by) consumer pro-
tection lawyers with many years of experience in
advising consumers. The inter-annotator agree-
ment was relatively high at 87%, i.e., only 13%
of all clauses had to be decided by the lawyers.
In this way, four people together spend more than
100 hours and generated more than 24,000 labels,
which were consolidated into two corpora, one for
each language, with 11,777 labels in total. The dis-
tribution of topics and subtopics is shown in Table
2.

The annotation also revealed local differences,
e.g., almost none of the English contracts contained
a model withdrawal form, the only two that did
contain such a form were from companies based
in Germany, while many German contracts con-
tained one. On the other hand, clauses about loyalty
schemes were almost non-existing in German con-
tracts and far more popular in the English corpus.
It is worth reminding that our English data set was
collected specifically from a UK perspective, i.e.,
the shops are either based in the UK or specifically
targeted at the UK market. English contracts from
other markets, like the USA or Australia, would
most likely look very different. Since the T&C we
annotated are protected by copyright law, we are,
unfortunately, not able to publish the corpus.

5 Approaches

We compared seven different approaches to the
classification of clause topics in standard form con-
tracts from German and English online shops: Rule-
based keyword matching, Logistic Regression,
Random Forest, Multilayer Perceptron (MLP),
Long short-term memory (LSTM), and Bidirec-
tional Encoder Representations from Transformers
(BERT). In the following sections, we will shortly
introduce how we used the different approaches.
For each of the approaches, we trained two clas-
sifiers, one which only classifies topics and one
which only classifies the subtopics. Experiments
we conducted with joint classification models, i.e.,
models that classify topics and subtopics at the
same time turned out to decrease the classification
quality for both, topics and subtopics.

We split both corpora into a training (80%) and a
test (20%) set, using scikit-multilearn (Szymański
and Kajdanowicz, 2017) to make sure the repre-
sentation of labels is balanced between the training
and the test set and reflects the original distribution.

201

contracts clauses words ∅ clauses/contract ∅ words/contract
German 142 5,020 351,903 35 2,478
English 30 1,040 1,846 34 1,846

Table 1: Statistics on the German and English corpus

For the stochastic approaches, we performed a grid
search with a k-fold cross-validation on the train-
ing data to find the optimal parameters for each
approach.

Our initial hypothesis, based on similar research,
was, that with increasing complexity of the models,
the performance would also increase, i.e. we ex-
pected BERT to perform best, followed by LSTM,
MLP, and the “classic” ML approaches.

5.1 Rule-based

As a baseline, we first developed a rule-based clas-
sification approach. We used a simple keyword-
matching approach. For each topic and subtopic in
the taxonomy, we asked the consumer protection
lawyers to provide a list of keywords that are dis-
tinctive for the topic/subtopic. The list can contain
independent keywords (OR), keywords that should
appear together (AND), and keywords that should
not appear (together) (NOT).

We pre-processed the clauses using SoMaJo
(Proisl and Uhrig, 2016) to split the clauses into
sentences and the sentences into tokens. After-
wards, we lemmatised all tokens using the Stanford
Lemmatizer (Manning et al., 2014) for English
and the Mate tools Lemmatizer (Björkelund et al.,
2010) for German before applying the rules. In
German, we noticed that lemmatisation (but also
stemming) face big challenges, especially in the le-
gal domain, when it comes to compound nouns, i.e.,
nouns that are combined to create new nouns, like
“Vertragspartner” (contractual partner) is a combina-
tion of “Vertrag” (contract) and “Partner” (partner).
Compound nouns can be inflected internally (“Ver-
tragspartner”), and splitting them into their con-
stituents is not trivial. A “Druckerzeugnis” (printed
matter) could, for example, lexically speaking ei-
ther be a “Druck-Erzeugnis” (print - matter) or
a “Drucker-Zeugnis” (printer - certificate). While
there are existing approaches on how to automat-
ically split compound words into their respective
parts (e.g., by Baroni et al. (2002), Koehn and
Knight (2003), Daiber et al. (2015), Sugisaki and
Tuggener (2018), and Weller-Di Marco (2017)),
the problem is far from being trivial and is not yet

addressed in our implementation.

5.2 Logistic Regression

Second, we trained a logistic regression classi-
fier, which we implemented using Scikit-learn (Pe-
dregosa et al., 2011). As input, we used a Tf–idf
vector representation of the concatenation of clause
text and titles. Before transforming the clauses into
these vectors, we removed stopwords using “Stop-
words ISO”5. Since logistic regression does not in-
herently support multi-label classification, we used
a “one-vs-the-rest” approach. Instead of training
one classifier, we train one classifier for each class,
which performs a binary classification against all
remaining classes and combined all results to de-
cide which labels are predicted for a given input.

We grid search with a 10-fold cross-validation
on the training data to find the best parameter for
the regularisation strength for the classification of
topics. We performed multiple iterations on both
languages to narrow down the search space. In Ger-
man, we achieved the best results with C = 1, 000
and in English with C = 45, 000. The values are
rather high for both languages but especially for
the smaller English data-set. Since C is the inverse
of the regulator (1/λ), a high value for C means a
low value for λ and hence poses the risk of over-
fitting. We performed the same procedure for the
classification of subtopics and found that C = 100
performed best in both languages, which is signifi-
cantly lower and therefore less prone to overfitting.

5.3 Random Forest

Logistic regression is computationally efficient and
generalises well, and is, therefore, a good baseline.
However, its inability for “real” multi-label clas-
sification is a drawback in our use case. Decision
trees do inherently support multi-label classifica-
tion and also are inherently explainable. However,
they are not as efficient as logistic regression and
are more prone to overfitting. Instead of training
just one decision tree, we use a random forest ap-
proach, where multiple independent randomised

5https://github.com/stopwords-iso/
stopwords-iso

202

Label DE EN Total
age 38 5 43
applicability 253 33 286
applicableLaw 137 23 160
arbitration 155 13 168
changes 13 12 25
codeOfConduct 55 1 56
conclusionOfContract (cOc) 800 146 946
cOc:binding 328 39 367
cOc:changeOfOrder 58 6 64
cOc:definition 103 4 107
cOc:restrictions 42 7 49
cOc:steps 256 58 314
cOc:withdrawal 95 20 115
delivery 839 164 1003
delivery:brokenPackaging 134 10 144
delivery:costs 247 57 304
delivery:customs 43 6 49
delivery:destination 96 16 112
delivery:methods 160 17 177
delivery:partial 32 5 37
delivery:time 143 41 184
description 86 30 116
disposal 51 16 67
intellectualProperty 45 24 69
language 124 11 135
liability 439 140 579
party 157 21 178
payment 898 112 1010
payment:fee 50 3 53
payment:late 48 1 49
payment:loyalty 7 22 29
payment:methods 435 53 488
payment:restraint 46 1 47
payment:vouchers 301 14 315
personalData 213 49 262
personalData:cookies 6 3 9
personalData:duration 8 1 9
personalData:information 48 12 60
personalData:reason 50 11 61
personalData:update 7 4 11
personalData:usage 57 16 73
placeOfJurisdiction 117 19 136
prices 158 56 214
prices:currency 17 13 30
prices:vat 119 24 143
retentionOfTitle 222 13 235
severability 42 12 54
textStorage 152 11 163
warranty 540 25 565
warranty:options 69 5 74
warranty:period 155 10 165
withdrawal 484 202 686
withdrawal:compensation 94 27 121
withdrawal:effects 97 12 109
withdrawal:exclusion 100 27 127
withdrawal:form 131 37 168
withdrawal:model 41 2 43
withdrawal:period 126 40 166
withdrawal:shippingCosts 118 43 161
withdrawal:shippingMethod 74 13 87
Total lvl 1 6018 1138 7156
Total lvl 2 3941 680 4621

Table 2: Distribution of topic and subtopic labels among
the German (DE) and English (EN) corpus

decision trees are trained, and a majority vote is
used for classification. As input, we again used
Tf-idf vectors.

We again performed a grid search with stratified
10-fold cross-validation on the training data to find
the best performing values for the parameters: num-
ber of estimators (i.e., the numbers of trees), the
maximum depth of the trees, the minimum number
of samples per internal node that is needed for a
split, and the minimum number of samples per leaf.
As usual, we performed several iterations to narrow
down the search space before, in the final iteration,
we found the following values to perform best. In
German: number of estimators = 2,000, maximum
depth = ∞, samples per node = 2, samples per
leaf = 1 and in English: number of estimators =
1,000, maximum depth = 100, samples per node =
2, samples per leaf = 1.

5.4 Neural Networks
For the different approaches using neural networks,
we also evaluated different input encodings, namely
different kinds of word embeddings. To train
domain-specific embeddings, we used a larger cor-
pus than the one described in Section 4, because the
data does not have to be annotated. We collected
the corpus in the same way as the other corpus from
the price comparison websites, however, it is more
than 30-times bigger, consisting of 5,412 contracts,
4,869 in German and 543 in English.

We used the following embeddings:

• German

– Word2Vec embeddings with 300 dimen-
sions based on the German Wikipedia6

– GloVe embeddings with 300 dimensions
based on the German Wikipedia7

– Word2Vec embeddings with 300 dimen-
sions we trained from scratch on the
above described corpus of T&C

• English

– Word2Vec embeddings with 300 dimen-
sions based on the Google News Corpus
(Mikolov et al., 2013)

– GloVe embeddings with 300 dimensions
based on Wikipedia and Gigawords 5
(Pennington et al., 2014)

6https://gitlab.com/deepset-ai/
open-source/word2vec-embeddings-de

7https://gitlab.com/deepset-ai/
open-source/glove-embeddings-de

203

– Word2Vec embeddings with 300 dimen-
sions we trained from scratch on the
above described corpus of T&C

Training neural networks is computationally
much more expensive than, e.g., logistic regression
and at the same time depends on more parameters.
To manage the increasing complexity, we changed
our approach for the parameter optimisation by
reducing the 10-fold cross-validation to a 5-fold
cross-validation. Additionally, we fixed parameters
that always performed best or almost best, indepen-
dent from other parameters, as early as possible
in order to reduce the search space and converge
faster to a local optimum.

5.4.1 MLP
The hyper-parameters we optimised of the MLP
were the number of layers, the number of neurons
per layer, the dropout, the batch size and the num-
ber of epochs. The results of the hyper-parameter
studies can be found in Appendix A.

5.4.2 LSTM
For the LSTM network we optimised the sequence
length, the number of LSTM layers and the number
of neurons in them, the number of dense layers and
the number of neurons in them, the dropout, the
batch size, and the number of epochs. The best
performing parameters we found for the topic and
subtopic classification can be found in Appendix
A.

5.5 BERT

Finally, we evaluate an approach using a trans-
former model for the clause topic classification,
more specifically, the BERT language model (De-
vlin et al., 2019). We used the HuggingFace trans-
formers library (Wolf et al., 2019) to fine-tune the
pre-trained language models and implement the
classification.

For English, we used the “bert-base-uncased”
pre-trained model, provided by the original authors
Devlin et al. (2019). The model, which is trained
on lower case English texts, has 12 hidden layers
with a size of 768, 12 attention heads per attention
layer, and 110 million parameters. For German,
we used the “bert-base-german-cased” model from
Chan et al. (2020). It is trained on cased German
texts and, like the original model, has 12 hidden
layers with a size of 768, 12 attention heads per
attention layer, and 110 million parameters.

The original BERT language model was trained
on the English Wikipedia and the BookCorpus by
Zhu et al. (2015), which consists of 11,038 fiction
books that are available for free on the internet.
The German language model we are using was pre-
trained on a more diverse set of sources, among
which are the German Wikipedia and a web corpus
gathered by Suárez et al. (2019), which account for
more than 90% of the data the model was trained
on. However, the model was also trained on the
Open Legal Data set from Ostendorff et al. (2020),
which consists of more than 100,000 German court
decisions. We also briefly evaluated a multilingual
approach with the Multilingual Universal Sentence
Encoder transformer model, which was used by
Braun and Matthes (2020) for the multilingual au-
tomated detection of T&C, however, first tests on
German and English were not promising, so we did
not follow through on the approach.

We used our training data to fine-tune both lan-
guage models, the English and the German, for
the topic classification task. In order to find the
best hyper-parameters, we split 20% off the train-
ing data as validation set. We started our search
with the values suggested in the original BERT pa-
per: batch size 16 or 32, learning rate 5e-5, 3e-5
or 2e-5, and 2, 3 or 4 epochs (Devlin et al., 2019).
However, the authors also note that the optimal
hyper-parameters are task-specific and that small
data sets (which they define as less than 100,000
labels) are more sensitive to the choice of parame-
ters than larger ones. For our data sets and task, we
found a smaller batch size with a slightly higher
number of epochs to work better than the suggested
parameters in both languages. We found a batch
size of eight and a learning rate of 5e-5 to perform
best for the topic and subtopic classification in both
languages. In German, eight epochs performed best
for the topic classification and six for the subtopic
classification. In English, six epochs for the topic
classification and 21 epochs for the subtopic classi-
fication performed best. All other parameters were
kept equal to the original pre-trained model.

6 Evaluation

Our baseline approach of using keywords achieved
an F1-score of 0.78 in German for topic classifi-
cation and 0.64 for subtopic classification. The
performance in English was worse with an F1-
score of 0.72 for topics and 0.46 for subtopics.
We noticed that, in German, the list of keywords

204

Approach A P R F1
BERT 0.84 0.93 0.89 0.91
Log. Regression 0.77 0.95 0.80 0.87
Random Forest 0.73 0.97 0.72 0.83
MLP 0.75 0.89 0.74 0.81
LSTM 0.73 0.90 0.72 0.80
Rule-based 0.64 0.77 0.80 0.78

(a) German

Approach A P R F1
BERT 0.79 0.89 0.82 0.85
Log. Regression 0.71 0.88 0.73 0.80
LSTM 0.72 0.80 0.74 0.77
MLP 0.72 0.79 0.73 0.76
Rule-based 0.57 0.76 0.69 0.72
Random Forest 0.57 0.88 0.58 0.70

(b) English

Table 3: Best clause topic classification results for each approach, ordered by F1-score (A = accuracy, P = precision,
R = recall, F1 = F1-score)

Approach A P R F1
BERT 0.79 0.89 0.83 0.86
Log. Regression 0.75 0.91 0.78 0.84
Random Forest 0.68 0.91 0.67 0.77
MLP 0.73 0.86 0.66 0.75
LSTM 0.69 0.85 0.63 0.72
Rule-based 0.47 0.74 0.56 0.64

(a) German

Approach A P R F1
BERT 0.68 0.79 0.68 0.73
MLP 0.67 0.76 0.66 0.71
LSTM 0.67 0.78 0.65 0.70
Log. Regression 0.54 0.80 0.59 0.68
Random Forest 0.44 0.85 0.43 0.57
Rule-based 0.28 0.39 0.49 0.43

(b) English

Table 4: Best clause subtopic classification results for each approach, ordered by F1-score (A = accuracy, P =
precision, R = recall, F1 = F1-score)

mostly consisted of domain-specific compound
nouns, like “Widerrufsrecht” (right of withdrawal)
or “Gefahrenübergang” (transfer of risk), which
are very distinctive for their respective topics and
make the classification relatively easy.

This is also a possible explanation for why the
logistic regression classifier, with Tf-idf vectors
as input, performed so well on the German cor-
pus. With an F1-score of 0.87 for topics and 0.84
for subtopics, it was only surpassed by the BERT
model. All other approaches performed compara-
ble to each other in German, with F1-scores be-
tween 0.8 and 0.83 for topic classification and 0.72
to 0.77 for the subtopic classification (see Table 3
and 4).

In English, the picture was less clear, with logis-
tic regression still performing best for topic classi-
fication (F1-score 0.80) but being surpassed by the
neural network approaches for subtopic classifica-
tion. However, the clear overall winner, with the
best performance on both languages and classifica-
tion levels was BERT, which scored up to 0.91.

For the approaches we evaluated with different
inputs, i.e. the MLP and LSTM, the values in Table
3 and 4 represent the best results achieved. There
was no clear pattern visible of which word embed-
ding model performs best. All of them achieved

comparable results and no one performed best or
worse in all settings.

7 Transferability

Due to their practical relevance and availability, we
focused on T&C from online shops in this paper.
However, there is no reason why the same technol-
ogy could not be applied to other types of standard
form contracts, e.g. from banks and insurances. At
the same time, the taxonomy we developed and
the models we trained have a component that is
specific to online shopping, broken packaging, for
example, is a topic, that is not relevant for banking.

To get an idea of how domain-specific the taxon-
omy and the models are, we annotated the T&C of
three of the largest German banks (Commerzbank,
Deutsche Bank, and Sparkassen) in the same way
described in Section 4.2: first, a student, then au-
thors annotated the all clauses of the contracts in-
dependently with their topics and subtopics, then
conflicting labels were resolved by the team of ex-
perts. We used the taxonomy described in Section
3 for the classification, however, we added a class
“n.a.” to mark clauses that cover a topic that is not
represented by any of the classes in the taxonomy.

The three contracts consist of 214 clauses, about
71 clauses per contract, and 13,681 words, an aver-

205

Topic #clauses
applicability 3
applicableLaw 3
arbitration 2
changes 5
liability 9
n.a. 143
payment 14
placeOfJurisdiction 6
prices 1
withdrawal 27

Table 5: Topics of clauses in the general business condi-
tions of banks

age of 2,478 words per contract. The contracts from
the online shops, in comparison, consisted of an
average of 35 clauses per contract. The 214 clauses
consist of 13,681 words, which equals 4,560 words
per contract. The fact that the banking contracts
contain much more clauses per contract already
suggests, that our taxonomy will, most likely, not
be able to cover all of them.

The annotation process confirmed this assump-
tion. Of the 214 clauses, only 71 (or 33%) are
concerned with a topic that is covered by our taxon-
omy (see Table 5). The other clauses are concerned
with a wide range of banking specific topics, from
deposit protection funds to banking confidentiality.
This means that, even if we would correctly classify
all the other clauses, we could never achieve a re-
call above 0.33. We can already conclude, that the
taxonomy we developed can not simply be applied
to other types of standard form contracts without
adaption.

Since the taxonomy is still able to cover one-
third of the banking contracts, we wanted to test
how well the classifiers we trained would perform
on this data set. Therefore, we took the best per-
forming topic classifier, i.e., the BERT model, and
applied it to the new corpus. The evaluation of
the results is shown in Table 6. We can see that
for some of the topics, e.g., applicability, applica-
bleLaw, arbitration, and changes, the performance
is very good, even tough our model has never seen
this type of contract before.

8 Conclusion

In this paper, we compared different approaches
to classify the topics of clauses in standard form
contracts from online shops, based on a taxonomy

Topic P R F1
applicability 0.60 1.00 0.75
applicableLaw 1.00 1.00 1.00
arbitration 1.00 1.00 1.00
changes 1.00 0.83 0.91
liability 0.41 1.00 0.58
payment 0.16 1.00 0.28
placeOfJurisdiction 0.00 0.00 0.00
prices 0.00 0.00 0.00
withdrawal 0.54 1.00 0.70
TOTAL 0.28 0.97 0.43

Table 6: BERT clause topic classification results on the
banking corpus

of clause topics and subtopics we developed and
a bilingual corpus of more than 6,000 clauses we
gathered and annotated. Our evaluation showed,
that our initial hypothesis, that the model perfor-
mance would increase with complexity, did not
hold.

While BERT did indeed perform best for both
languages, the much simpler logistic regression ap-
proach showed the second-best performance. Con-
sidering the computational time and power that is
needed to not only train the more complex model
but also during inference of the labels, the simple
logistic regression approach might for some practi-
cal application be the better choice.

We were surprised to find that multilingual ap-
proaches, using the German and English data to-
gether, did not seem to bring any improvements for
this task, even though earlier work in the legal do-
main, e.g. by Niklaus et al. (2021) and Braun and
Matthes (2020), have shown that multilingual mod-
els can improve performance. This aspect needs
further investigation.

While the taxonomy we developed and the mod-
els we trained are domain-specific for eCommerce,
first tests suggest that the approaches can be trans-
ferred to other types of standard form contracts and
that event the models can partially be transferred to
other domains, at least for more “technical” clauses
concerning the contract itself. This could apply to
all types of consumer standard form contract within
a highly regulated domain, like insurances, hous-
ing, and employment, and is something we would
like to investigate further in the future.

206

Acknowledgements

The project was supported by funds of the Federal
Ministry for the Environment, Nature Conservation,
Nuclear Safety and Consumer Protection (BMUV)
based on a decision of the Parliament of the Federal
Republic of Germany via the Federal Office for
Agriculture and Food (BLE) under the innovation
support programme.

References
Marco Baroni, Johannes Matiasek, and Harald Trost.

2002. Predicting the components of german nominal
compounds. In ECAI 2002: 15th European Confer-
ence on Artificial Intelligence, pages 470–474.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntactic
and semantic dependency parser. In Coling 2010:
Demonstrations, pages 33–36, Beijing, China. Coling
2010 Organizing Committee.

Daniel Braun. 2021. Automated Semantic Analysis,
Legal Assessment, and Summarization of Standard
Form Contracts. Dissertation, Technische Universität
München, München.

Daniel Braun and Florian Matthes. 2020. Automatic de-
tection of terms and conditions in german and english
online shops. In Proceedings of the 16th Interna-
tional Conference on Web Information Systems and
Technologies - WEBIST,, pages 233–237. INSTICC,
SciTePress.

Daniel Braun and Florian Matthes. 2021. NLP for con-
sumer protection: Battling illegal clauses in German
terms and conditions in online shopping. In Proceed-
ings of the 1st Workshop on NLP for Positive Impact,
pages 93–99, Online. Association for Computational
Linguistics.

Daniel Braun, Elena Scepankova, Patrick Holl, and Flo-
rian Matthes. 2017. SaToS: Assessing and summaris-
ing terms of services from German webshops. In
Proceedings of the 10th International Conference on
Natural Language Generation, pages 223–227, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Branden Chan, Stefan Schweter, and Timo Möller.
2020. German’s next language model. arXiv preprint
arXiv:2010.10906.

Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and
Stella Frank. 2015. Splitting compounds by semantic
analogy. In Proceedings of the 1st Deep Machine
Translation Workshop, pages 20–28, Praha, Czechia.
ÚFAL MFF UK.

Robert Dale. 2019. Law and word order: Nlp
in legal tech. Natural Language Engineering,
25(1):211–217.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Michael Fingerhut. 2009. 7. Teil: Allgemeine Geschäfts-
bedingungen, 12th edition edition. Carl Heymanns
Verlag.

IHK Munich and Upper Bavaria. 2020. Allge-
meine Geschäftsbedingungen für einen Web-
shop. https://www.ihk-muenchen.
de/ihk/documents/Recht-Steuern/
Vertragsrecht/AGB-Webshop_2020.
docx. Last accessed 2020-07-09.

Philipp Koehn and Kevin Knight. 2003. Empirical meth-
ods for compound splitting. In Proceedings of the
Tenth Conference on European Chapter of the As-
sociation for Computational Linguistics - Volume 1,
EACL ’03, pages 187–193, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ruta Liepina, Giuseppe Contissa, Kasper Drazewski,
Francesca Lagioia, Marco Lippi, Hans-Wolfgang
Micklitz, Przemysław Pałka, Giovanni Sartor, and
Paolo Torroni. 2019. Gdpr privacy policies in
claudette: Challenges of omission, context and mul-
tilingualism. In Proceedings of the Third Workshop
on Automated Semantic Analysis of Information in
Legal Texts co-located with the 17th International
Conference on Artificial Intelligence and Law (ICAIL
2019).

Marco Lippi, Przemysław Pałka, Giuseppe Contissa,
Francesca Lagioia, Hans-Wolfgang Micklitz, Gio-
vanni Sartor, and Paolo Torroni. 2019. Claudette: an
automated detector of potentially unfair clauses in
online terms of service. Artificial Intelligence and
Law, 27(2):117–139.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Joel Niklaus, Ilias Chalkidis, and Matthias Stürmer.
2021. Swiss-judgment-prediction: A multilingual le-
gal judgment prediction benchmark. In Proceedings

207

of the Natural Legal Language Processing Workshop
2021, pages 19–35, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Malte Ostendorff, Till Blume, and Saskia Ostendorff.
2020. Towards an open platform for legal informa-
tion. arXiv preprint arXiv:2005.13342.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Victoria C Plaut and Robert P Bartlett III. 2012. Blind
consent? a social psychological investigation of non-
readership of click-through agreements. Law and
human behavior, 36(4):293.

Thomas Proisl and Peter Uhrig. 2016. SoMaJo: State-
of-the-art tokenization for German web and social
media texts. In Proceedings of the 10th Web as Cor-
pus Workshop, pages 57–62, Berlin. Association for
Computational Linguistics.

Abhilasha Ravichander, Alan W Black, Shomir Wilson,
Thomas Norton, and Norman Sadeh. 2019. Question
answering for privacy policies: Combining compu-
tational and legal perspectives. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4947–4958, Hong Kong,
China. Association for Computational Linguistics.

Richard Raysman and Peter Brown. 2010. Contractual
nature of online policies remains unsettled. New York
Law Journal, 10.

Martin Schirmbacher. 2018. Allge-
meine geschäftsbedingungen (online-
shop). https://www.bevh.org/
fileadmin/content/01_leistungen/
rechtshilfen/muster-agb/
muster-agb-internetshop-2018.pdf.
Last accessed 2020-07-10.

Barbara Sommer and Ferdinans von Stumm. 2017. Fern-
absatz von waren und dienstleistungen. In Wolfgang
Weitnauer and Tilman Mueller-Stöfen, editors, Beck-
śches Formularbuch IT-Recht, 4 edition, chapter J,
pages 715–761. C. H. Beck Verlag, Munich.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous pipeline for process-
ing huge corpora on medium to low resource infras-
tructures. In 7th Workshop on the Challenges in the
Management of Large Corpora (CMLC-7). Leibniz-
Institut für Deutsche Sprache.

Kyoko Sugisaki and Don Tuggener. 2018. German com-
pound splitting using the compound productivity of
morphemes. In 14th Conference on Natural Lan-
guage Processing-KONVENS 2018, pages 141–147.
Austrian Academy of Sciences Press.

P. Szymański and T. Kajdanowicz. 2017. A scikit-based
Python environment for performing multi-label clas-
sification. ArXiv e-prints.

Marion Weller-Di Marco. 2017. Simple compound split-
ting for German. In Proceedings of the 13th Work-
shop on Multiword Expressions (MWE 2017), pages
161–166, Valencia, Spain. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

A Appendix: Model Parameters

See Table 7 to 10, activation function for all was
tanh and optimiser adam.

208

Language Input Layers Neurons Dropout Batch Epochs
T&C 2 200, 200 0.4 100 500
Word2Vec 3 200, 150, 200 0.4 100 300German
GloVe 1 110 0.3 200 200
T&C 2 200, 150 0.2 20 300
Word2Vec 3 200, 150, 200 0.3 100 500English
GloVe 3 100, 200, 100 0.2 50 400

Table 7: Hyper-parameters used for the topic classification with the Multilayer Perceptron on different inputs

Language Input Layers Neurons Dropout Batch Epochs
T&C 1 150 0.3 500 400
Word2Vec 3 100, 200, 100 0.4 300 500German
GloVe 1 80 0.3 300 500
T&C 1 150 0.3 500 400
Word2Vec 3 100, 200, 100 0.4 150 300English
GloVe 3 200, 150, 200 0.3 150 400

Table 8: Hyper-parameters used for the subtopic classification with the Multilayer Perceptron on different Inputs

La
ng

.

In
pu

t

Se
qu

.
Le

ng
th

LS
TM

La
ye

rs

Ne
ur

on
s

De
ns

e
La

ye
rs

Ne
ur

on
s

Dr
op

ou
t

Ba
tc

h

Ep
oc

hs

T&C 35 1 300 2 200, 50 0.3 300 30
W2V 50 1 300 1 50 0.3 40 30DE
GloVe 50 1 300 1 50 0.3 40 13
T&C 100 1 300 2 200, 50 0.3 150 100
W2V 40 1 45 0 0.6 10 50EN
GloVe 65 1 200 1 65 0.7 15 100

Table 9: Hyper-parameters used for the topic classification with the LSTM on different inputs

La
ng

.

In
pu

t

Se
qu

.
Le

ng
th

LS
TM

La
ye

rs

Ne
ur

on
s

De
ns

e
La

ye
rs

Ne
ur

on
s

Dr
op

ou
t

Ba
tc

h

Ep
oc

hs

T&C 35 1 250 1 50 0.4 15 20
W2V 45 1 200 1 50 0.4 15 20DE
GloVe 45 1 105 1 50 0.3 15 10
T&C 45 1 200 1 50 0.3 20 15
W2V 50 1 250 1 50 0.4 25 25EN
GloVe 40 1 150 1 50 0.3 15 10

Table 10: Hyper-parameters used for the subtopic classification with the LSTM on different inputs

209

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 210 - 216
May 26, 2022 c©2022 Association for Computational Linguistics

Investigating the Generative Approach for Question Answering in
E-Commerce

Kalyani Roy1, Vineeth Kumar Balapanuru1, Tapas Nayak2∗ and Pawan Goyal1
1Indian Institute of Technology Kharagpur, India

2TCS Research, India
kroy@iitkgp.ac.in, Vineethkumar6001@gmail.com
tnk02.05@gmail.com, pawang@cse.iitkgp.ac.in

Abstract

Many e-commerce websites provide Product-
related Question Answering (PQA) platform
where potential customers can ask questions re-
lated to a product, and other consumers can post
an answer to that question based on their experi-
ence. Recently, there has been a growing inter-
est in providing automated responses to product
questions. In this paper, we investigate the suit-
ability of the generative approach for PQA. We
use state-of-the-art generative models proposed
by Deng et al. (2020) and Lu et al. (2020) for
this purpose. On closer examination, we find
several drawbacks in this approach: (1) input
reviews are not always utilized significantly
for answer generation, (2) the performance of
the models is abysmal while answering the nu-
merical questions, (3) many of the generated
answers contain phrases like “I do not know”
which are taken from the reference answer in
training data, and these answers do not con-
vey any information to the customer. Although
these approaches achieve a high ROUGE score,
it does not reflect upon these shortcomings of
the generated answers. We hope that our analy-
sis will lead to more rigorous PQA approaches,
and future research will focus on addressing
these shortcomings in PQA.

1 Introduction

With the increase in e-commerce shopping,
customer-generated product queries are also grow-
ing. Manually answering the questions in real-time
is infeasible, and also some questions go unan-
swered for an extended period. It is necessary to
answer the user queries in the e-commerce busi-
ness automatically. The user reviews are a vast
source of information with diverse opinions, and
they can be used to answer user queries. Earlier
works on product question answering (PQA) focus
on retrieval-based approaches and binary answer

∗ This work was carried out while author was a postdoc-
toral researcher at IIT Kharagpur.

prediction tasks. McAuley and Yang (2016); Fan
et al. (2019); Yu and Lam (2018) aim to predict
the answer as “yes/no” based on the relevant re-
views, customer ratings, aspects in the reviews, etc.
Retrieval-based approaches try to find the most rel-
evant review snippet as the answer (Chen et al.,
2019a) and use a ranked list of review snippets as
the response for a given question (Yu et al., 2018).
With the success of machine translation (Sutskever
et al., 2014) and summarization (See et al., 2017),
the PQA approaches are shifting towards natu-
ral answer generation from relevant product re-
views (Gao et al., 2019; Chen et al., 2019b; Deng
et al., 2020; Lu et al., 2020; Gao et al., 2021). In
this work, we analyse the answer generated from
state-of-the-art generative models OAAG(Deng
et al., 2020) and CHIME(Lu et al., 2020) in detail
beyond their traditional scores on popular metrics
such as ROUGE (Lin, 2004). We find that despite
achieving a good score on these metrics, generated
answers have several drawbacks that can lead to
user dissatisfaction.

2 A State-of-the-art Generative PQA
Model

2.1 PQA Dataset
The Amazon Question Answering
dataset (McAuley and Yang, 2016) contains
around 1.4 million questions from different
categories with multiple customer-written answers
and opinion labels, such as positive, negative, and
neutral. The Amazon Product Review dataset (Ni
et al., 2019; He and McAuley, 2016) includes
users’ reviews along with a rating of the product
given by the same user. The Product ID is used to
align the question with its reviews.

2.2 PQA Models
We use Opinion-aware Answer Generation
(OAAG) model (Deng et al., 2020) and Cross-
passage Hierarchical Memory Network (CHIME)

210

model (Lu et al., 2020) for our analysis. Following
the generative approach, these two models achieve
state-of-the-art performance on the Amazon Ques-
tion Answering dataset. There are thousands of
products in each category in the Amazon Product
Review dataset, and each product has thousands
of reviews. All the reviews may not be relevant
for a particular query, and therefore, to answer a
product-related question, models need to filter out
the irrelevant reviews first. OAAG and CHIME
use the BM25 algorithm to retrieve and rank all the
review snippets of a product, and the top k relevant
snippets (we use top 10 reviews snippets) for that
question are taken as the premise of the answer.

2.2.1 OAAG Model
Upon retrieving the relevant reviews, OAAG uses
an encoder-decoder model for answer genera-
tion. OAAG encodes the question and each re-
view corresponding to that question using a Bi-
LSTM (Hochreiter and Schmidhuber, 1997) net-
work. They apply a co-attention mechanism over
these encodings to get the question and review
representations. They utilize the ratings of the re-
trieved reviews to mine the general opinion about
the question using the attention mechanism. Fi-
nally, they employ a multi-view pointer-generator
network that copies words from the question as
well as from the reviews and fuses the opin-
ion by re-weighting the attention scores of the
words in reviews to generate an opinionated an-
swer. They report ROUGE-based scores to com-
pare the model performance against the previous
approaches (Chen et al., 2019b; Gao et al., 2019).

2.2.2 CHIME Model
CHIME uses a transformer-based encoder-decoder
model to generate the response. It extends pre-
trained XLNet (Yang et al., 2019) with an auxil-
iary memory module that consists of two compo-
nents: the context memory, and the answer memory.
Given a question withK review passages, it creates
K training instances, each consisting of the ques-
tion, a review passage, and the reference answer.
Each training instance is fed into an XLNet encoder
to get the hidden representations that are used to
update the two memories. The context memory
mechanism sequentially reads the review passages
and gathers the cross-passage evidences to identify
the most prominent opinion in reviews. The an-
swer memory works as a buffer to gradually refine
the generated answers after reading each (question,

review passage) pair. After reading the last review,
the answer memory is fed to the decoder to get a
final response.

3 Research Questions

We empirically analyse the OAAG model with dy-
namic fusion and CHIME model to answer the
following research questions:
RQ1 : Are the retrieved review snippets signifi-
cantly utilized for generating the answers?
RQ2 : Is the model performing similarly for a het-
erogeneous group of questions?
RQ3 : Is the generative model biased towards more
frequently occurring phrases?
RQ4 : Can ROUGE capture the correctness of
generated answers?

4 Experiments

We use two product categories, namely,
Home&Kitchen and Sports&Outdoors for
our analysis from the dataset mentioned in
Section 2.1 after combining the question-answer
and review dataset with the Product IDs. We will
denote the two categories as Home and Sports,
respectively. We use the same data split from
OAAG1 to retrain the models. Since there is no
validation dataset, we take the 10% of the train
data as validation data. Table A.1 in the Appendix
shows the details of training, validation, and test
split. We keep all the hyper-parameters the same
as the OAAG and CHIME. We train all the OAAG
models for 20 epochs and CHIME models for 3
epochs, and the model that performs the best on the
validation set is used to evaluate the test set. We
evaluate the model with ROUGE metric and report
the F1 scores for ROUGE-1 (R1) and ROUGE-L
(RL), which measure the word overlap and the
longest common sequence between the reference
answer and the generated answer, respectively. We
obtain the ROUGE scores using rouge-score 2

package.

5 Analysis & Discussion

5.1 Answer to RQ1 (Utilization of retrieved
review for generating the answers)

Both the models use the BM25 algorithm to re-
trieve relevant reviews using the questions in the
test dataset. We refer to this test setting as BM25Q.

1https://github.com/dengyang17/OAAG
2https://pypi.org/project/rouge-score/

211

For answering RQ1, at inference time, we replace
these reviews with four sets of review snippets: (i)
TrainA: We use BM25 to find the closest question
to the test question in the train data, and we take
the answer of it as the generated answer. (ii) Ran-
domOD: We randomly choose the review snippets
from any other product of that category except the
product for which the question is asked. (iii) Ran-
domID: We randomly select review snippets from
the review sentences of that particular product. (iv)
BM25QA: We retrieve the review snippets using
the BM25 algorithm that uses the question and ref-
erence answer in the test dataset.

OAAG uses the opinion along with the reviews.
We also select the opinion of the corresponding
review sentence while replacing the reviews. Both
the models utilize the top 10 reviews for training
and evaluation.

Sports Home
R1 RL R1 RL

TrainA 13.01 10.13 14.36 11.35

OAAG

BM25Q 15.01 11.99 14.44 11.91
RandomOD 14.25 11.38 14.04 11.53
RandomID 14.71 11.69 14.42 11.85
BM25QA 15.09 11.97 14.53 11.93

CHIME

BM25Q 18.53 13.19 18.99 13.84
RandomOD 18.10 12.87 17.83 13.11
RandomID 17.95 12.81 17.98 13.17
BM25QA 17.99 12.84 17.85 13.11

Table 1: Performance of the OAAG and CHIME models
with various sets of review snippets.

Table 1 shows the result of this experiment. The
TrainA does not utilize either of the models to gen-
erate the answer. It shows the answer from the
most similar train question, and its performance
is competitive with other methods, especially in
Home. In both the categories, the performance of
both the models is almost similar in RandomOD
and RandomID. RandomID shows marginally bet-
ter performance than RandomOD for OAAG. For
CHIME, BM25Q performs the best in both cate-
gories. For OAAG, BM25QA performs the best
in Home while in Sports, BM25QA performs the
best in R1, and BM25Q performs the best in RL,
but the difference is minute. The results are quite
surprising: the performance of the models is very
similar when the answers are generated with ran-
dom reviews vs. when the answers are generated
with the reviews obtained from BM25. Hence, it
is not clear if the model is effectively utilizing the
retrieved review snippets.

5.2 Answer to RQ2 (Models’ performance on
heterogeneous questions)

Different types of questions are asked on the Ama-
zon product page like numerical, “yes/no”, descrip-
tive. The generative model may not be suitable for
answering all kinds of questions. So, we categorize
the questions as template-based and descriptive.

Sports Home
R1 RL R1 RL

OAAG
Template 13.15 10.99 12.38 10.33
Descriptive 15.67 12.34 15.11 12.21

CHIME
Template 16.72 12.79 17.68 13.67
Descriptive 19.17 13.33 19.37 13.89

Table 2: Performance of OAAG and CHIME models on
template-based, descriptive categories of questions.

For template-based questions, the answer can
be yes or no without any explanation. We filter
the questions where the answer starts with ‘yes’,
‘yeah’, ‘no’, ‘nope’ and mark these as template-
based questions. Both categories contain ∼75%
descriptive questions. Table 2 summarizes the re-
sult of the template-based and generative questions.
Both models’ performance in descriptive questions
is better than the template-based questions.

Furthermore, we categorized the questions into
numerical and non-numerical questions. We con-
sider a question to be numerical if there are num-
bers in the question or in the reference answer. The
test datasets of both the categories have ∼19% nu-
merical questions. The OAAG model performs
better in answering non-numerical questions, while
CHIME performs better in answering numerical
questions. Although the ROUGE scores are close
in numerical and non-numerical questions for both
the models, on analyzing the numerical answers,
we find that the words in generated and reference
answers might match, but the numbers generally
do not match. 3 We present some examples of nu-
merical questions with their answers in Table A.4
of Appendix.

5.3 Answer to RQ3 (Bias in model)

We observe that some phrases are frequently oc-
curring in the reference answers as well as in the
generated answers. We find that in the training data
of both categories,∼2.4% of the reference answers

3We manually check 400 numerical question answers for
OAAG, and only 2 answers turn out to be correct. We check
100 random numerical question answers for CHIME, but none
are correct.

212

start with the phrase “I don’t think so”, but 12.29%
of responses in Sports and 35.64% responses in
Home begin with this phrase. This ∼2.4% repeti-
tion of the same phrase in the training data makes
the generative model biased towards this phrase.

Sports Home
R1 RL R1 RL

OAAG
BM25Q 15.01 11.99 14.44 11.91
BM25Q-IDK 14.87 11.71 16.16 12.73

CHIME
BM25Q 18.53 13.19 18.99 13.84
BM25Q-IDK 18.50 13.21 19.44 14.12

Table 3: Performance of OAAG and CHIME models
when trained with and without phrases that are not mean-
ingful (IDK phrases).

Many of the reference answers in the training
data contain “I don’t know”, “I have no idea”, “I
can’t say”. These kinds of answers do not give
any meaningful information to the user. Together,
we denote these phrases as IDK. On analysis of
the dataset, we find that in Sports, there are 3.04%,
2.9%, and 6.9% IDK phrases in train dataset an-
swers, test dataset answers, and generated answers,
respectively. In Home, the answers in the train and
test dataset contain 3.64% and 3.60% IDK phrases,
respectively, but 16.31% of the answers are gener-
ated as IDK phrases. So, in the generated answers,
the appearance of IDK phrases has increased by
three to five folds which clearly shows that the
model is biased towards these frequent phrases.

To see the effect of these phrases on the mod-
els, we remove the questions from the training
dataset which have IDK in their reference answer 4

and retrain the models. We denote this model as
BM25Q-IDK. Table 3 shows the result of BM25Q,
the model trained on the original training data, and
BM25Q-IDK. Home had 16.31% and Sports had
only 6.9% IDK phrases, and consequently, when
the IDK phrases are removed, it has more im-
pact on Home which drops the bias towards these
phrases and improves the ROUGE score, whereas,
in Sports, BM25Q and BM25Q-IDK have close
ROUGE scores due to lesser IDK phrases in the
generated answer.

5.4 Answer to RQ4 (Correctness of generated
response)

For answering RQ4, we look into the generated re-
sponse with high R1 scores and check their correct-

4Phrases such as “I don’t think so” can be considered as
valid reference answers. Therefore, we do not remove it from
the training data.

Question is this box made of polypropylene? can pho-
tos and mementos be safely stored in it ?

Ref. Ans. i can’t comment on the material it is made
of, but the top does not stay on tight. it is
not a decent storage container for anything
requiring a top or to be airtight.

OAAG. it says ”made in china” on the bottom of the
box . it says ”made in china” on the bottom
of the box . hope that helps . (26.22)

CHIME. yes, it is polypropylene and can be stored in
the box if you want to store them in a safe
environment that is not toxic to you and/or
your pets or food they will be exposed (27.77)

Question What is the width at the base?
Ref. Ans. Width across the bottom/base is approxi-

mately 3 inches.
OAAG. The width of the top of the base is about 1.5

inches . the base of the pitcher is 9 inches. the
top of the pitcher is about 1.5 inche.’ (25.00)

CHIME. itś about 12 " wide at the base and about 10.5
inches deep (26.08)

Table 4: Examples of generated answers with high R1
score, but having incorrect answer. The R1 score is
mentioned within the parenthesis.

ness with respect to the reference answer. In OAAG
model, 15.36% predictions in Home and 13.34%
predictions in Sports have R1 score above 20. We
manually analyse the reference and generated an-
swers of randomly chosen 100 question-answers
with a high ROUGE score (> 20), and we find that
54% are answered incorrectly. In CHIME model,
46.87% predictions in Home and 46.15% predic-
tions in Sports have R1 score above 20 and 56% of
100 randomly chosen question-answer pairs (whose
ROUGE score > 20) turn out to be incorrect.

Table 4 shows two examples where the gener-
ated responses result in high R1 scores, but the
answers are incorrect. Both models predict irrele-
vant answers in the first question, and the predicted
dimension is incorrect in the second question. It
shows that it is not possible to infer from ROUGE
scores if the generated answer is accurate to the
reference answer, i.e., the word count overlap is
not an indicator of an accurate answer. We show
some more cases with high R1 scores in Tables
A.2 and A.3 in the Appendix.

6 Conclusion

In this paper, we extensively analyze the generative
approach of question-answering in e-commerce
using a state-of-the-art OAAG model (Deng et al.,
2020) and CHIME model (Lu et al., 2020). We find
many shortcomings which need to be addressed for
a reliable PQA system. We try to address four re-

213

search questions related to the generative approach
for PQA, such as how the models utilize the re-
views, how it performs on diverse question types,
whether it is biased toward frequent phrases in train-
ing data, and the correctness of the generated re-
sponse. We hope that our analysis will lead to more
rigorous PQA research.

References
Long Chen, Ziyu Guan, Wei Zhao, Wanqing Zhao, Xi-

aopeng Wang, Zhou Zhao, and Huan Sun. 2019a.
Answer identification from product reviews for user
questions by multi-task attentive networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence.

Shiqian Chen, Chenliang Li, Feng Ji, Wei Zhou, and
Haiqing Chen. 2019b. Review-driven answer genera-
tion for product-related questions in e-commerce. In
Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining.

Yang Deng, Wenxuan Zhang, and Wai Lam. 2020.
Opinion-aware answer generation for review-driven
question answering in e-commerce. In Proceedings
of the 29th ACM International Conference on Infor-
mation & Knowledge Management.

Miao Fan, Chao Feng, Mingming Sun, Ping Li, and
Haifeng Wang. 2019. Reading customer reviews to
answer product-related questions. In Proceedings
of the 2019 SIAM International Conference on Data
Mining.

Shen Gao, Xiuying Chen, Z. Ren, Dongyan Zhao, and
Rui Yan. 2021. Meaningful answer generation of
e-commerce question-answering. ACM Transactions
on Information Systems.

Shen Gao, Zhaochun Ren, Yihong Zhao, Dongyan Zhao,
Dawei Yin, and Rui Yan. 2019. Product-aware an-
swer generation in e-commerce question-answering.
In Proceedings of the 12th ACM International Con-
ference on Web Search and Data Mining.

Ruining He and Julian J. McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Pro-
ceedings of the 25th International Conference on
World Wide Web.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out. Association for Computational
Linguistics.

Junru Lu, Gabriele Pergola, Lin Gui, Binyang Li, and
Yulan He. 2020. CHIME: Cross-passage hierarchi-
cal memory network for generative review question

answering. In Proceedings of the 28th International
Conference on Computational Linguistics.

Julian McAuley and Alex Yang. 2016. Addressing com-
plex and subjective product-related queries with cus-
tomer reviews. In Proceedings of the 25th Interna-
tional Conference on World Wide Web.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Jus-
tifying recommendations using distantly-labeled re-
views and fine-grained aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’14.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Qian Yu and Wai Lam. 2018. Review-aware answer
prediction for product-related questions incorporat-
ing aspects. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data
Mining.

Qian Yu, Wai Lam, and Zihao Wang. 2018. Respond-
ing E-commerce product questions via exploiting QA
collections and reviews. In Proceedings of the 27th
International Conference on Computational Linguis-
tics.

214

A Appendix

A.1 Dataset Statistics

We downloaded the dataset from
the Github repository of OAAG
(https://github.com/dengyang17/OAAG). We
use the same data split, but as there were no
validation dataset, we use 10% train data as
validation data. The deails of training, validation,
and test split is shown in Table A.1.

Sports Home
Train 40, 517 73, 118
Validation 4, 502 8, 125
Test 5, 001 9, 026

Table A.1: Dataset statistics.

Question: does the sight come with batteries ? if not
what batteries do i need to buy ?

Ref. Ans.: the sight did come with a battery , but if
needed it would be a cr2032 .

Gen. Ans.: no , it does not come with a batteries . you
need to buy a separate batteries . it ’s a great
scope for the money but it ’s not worth it .
(31.82)

Question: is it lined ?
Ref. Ans.: it does n’t have a liner in it , but still makes

for a very nice light winter coat ...
Gen. Ans.: no , it is not lined . it is a very nice jacket and

i do n’t think it ’s too big for it . it ’s a great
deal . (22.22)

Question: does the bottle sweat ? and , does the straw
have a cover ?

Ref. Ans.: does it sweat ? a little . not hardcore . just
a little condensation on the bottom . and the
straw does n’t have a cover ...

Gen. Ans.: no , it does not have a sweat straw . it is a
very good straw and i have n’t had any issues
with it . i have n’t had any issues with it .
(24.62)

Question: is it wood ?
Ref. Ans.: it is gorgeous , and yes it is wood
Gen. Ans.: no it is not wood . it ’s a very nice piece of

furniture . i would n’t buy it again . it ’s a
very nice piece of furniture . (22.22)

Question: how many watt ?
Ref. Ans.: i do n’t know but i am disappointed in mine .

i wanted it to keep my coffee hot but it only
keeps it warm .

Gen. Ans.: i do n’t know , but i do n’t know if it does n’t
work for me . i ’ve had mine for over a year
and it works great . (39.29)

Table A.2: Examples of answers generated by the
OAAG model with high R1 scores. The R1 scores are
within the parenthesis.

A.2 Generated Answers with High R1 Score

Table A.2 and Table A.3 shows some examples
where the generated answers have a high (> 20)

Question: will it melt or bubble in the microwave ?
Ref. Ans.: it never has with me and i have a high power

microwave. really love to freeze in them. no
ice buildup in them .

Gen. Ans.: i have not tried it in the microwave but it does
melt and bubble a little when you press on.
(32.55)

Question: does this actually comes with storage box as
shown which is not in description ?

Ref. Ans.: mine did not come with a storage box. and,
it was not a very good knife. it grinds rather
than cuts.

Gen. Ans.: yes, it comes with a storage box as shown in
picture.it is very easy to use and easy to take
apart and put back together (38.29)

Question: does it have an attachment to clean windows?
Ref. Ans.: there is a wider flat piece that you could use

on windows... it works nicely .
Gen. Ans.: no, it does not have an attachment to clean

windows but you can use a hose to do so if
you need to clean them with water or some-
thing similar like that in your kitchen .(20.40)

Question: could i have a red one ?
Ref. Ans.: they do come in red, white and cream colors.

whoever you buy it from, email them right af-
ter you place your order so you have a better
chance of getting red .

Gen. Ans.: i don’t know if you can get a red one but it
is a great product and is easy to use with any
size pasta or sauce you want to make in your
kitchen . (27.27)

Question: is the under side a refrigerator as well or just
storage ?

Ref. Ans.: its a storage not a refrigerator you can only
store cups or water bottles .

Gen. Ans.: it’s a refrigerator, but you can put it in the
freezer or in your car to cool off water and
then use it for storage .(35.00)

Table A.3: Examples of answers generated by the
CHIME model with high R1 scores. The R1 scores
are within the parenthesis.

R1 score. In Table A.2, in the first and the second
example, the generated answers are exactly the
opposite of the reference answers. In the third
example, the question was about sweating of the
bottle and straw cover, but the answer does not
address any of these. In the fourth example, the
answer is ambivalent. The last example contains a
frequently occurring phrase “I don’t know” with a
very high R1 score.

Similarly, in the case of Table A.3, the second
and the fifth examples have high R1 scores, but
the generated answers are exactly opposite of the
reference answers. In the first question, the model
wrongly predicts that it would melt and bubble up a
little in the microwave, and in the third question, it
predicts an entirely different answer. The response
to the fourth question is "I don’t know,” which is a
frequently occurring phrase.

215

Question: why do the dimensions say 2′′ when the description says 3′′ ? is the thickness of the mattress 3 inches or 2 ?
Ref. Ans.: 3′′ .. seems amazon just copy and pasted from the other products in the line-up .
OAAG: the thickness of the mattress is 3′′ and the 3′′ 3′′ is the same as the picture of the mattress . it is a very nice

pillow .
CHIME: it’s 3 " and 2.5 inches thick.i love this bed and it is perfect for my son who sleeps on his bed with no problem
Question: what is the width and length of the rubbermaid 5576 slide and stack ?
Ref. Ans.: the outside measurements are : 14 in . wide by 20 in . long . the inside of the basket is 123/4 in . wide by

163/4 to 181/2 in . long ...
OAAG: it ’s about 14′′ long by 12′′ wide by 12′′ deep by 4′′ high . hope that helps . i am very happy with this

purchase .
CHIME: the dimensions of the slide and stack are 11.5 inches wide by 8.5 inches deep by 7.75 inch tall.
Question: how big of a pot can you put on it , 12′′ ?
Ref. Ans.: the cooking top measures 10.5′′ × 10.5′′ . the burner is an 8′′ diameter circle . a 12′′ pot would extend over

the control panel if it were centered .
OAAG: i have n’t measured it , but i do n’t think it would be too big to fit in a pot . i use it for that purpose and it

works great .
CHIME: it’s 12 inches long and 12 inches wide and about 2 inches deep at the bottom of the pans.
Question: what is the exact weight of it and how strong is the pocket clip ?
Ref. Ans.: it ’s about 3 oz . and it ’s just as strong as any other clip i ’ve seen
OAAG: it ’s about 7.5′′ long . it ’s a great knife . it ’s a great deal . it ’s a great knife and i love it . it ’s a great deal .
CHIME: i’m not sure about the exact weight but it is very light and is very easy to use with ease .
Question: does this fit a 2 year old ?
Ref. Ans.: it fit my two year old who has a pretty normal size head . the multiple thicknesses of pads that are included

really make it a great long term helmet !
OAAG: yes it will , it ’s a very tight fit . i do n’t think it would be too big for a 2′′ 2′′ . it ’s a great helmet .
CHIME: i bought this for my son and he loves it so much he bought another one for his 2 year-bean .

Table A.4: Examples of numerical questions with their reference answer and the answer generated by OAAG and
CHIME models.

A.3 Examples of Numerical Questions
We present some examples of numerical questions
with their answers in Table A.4. In the first exam-
ple, the generated answer is right, but none of the
answers are correct for the rest of the questions.

216

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 217 - 223
May 26, 2022 c©2022 Association for Computational Linguistics

Utilizing Cross-Modal Contrastive Learning to Improve Item
Categorization BERT Model

Lei Chen∗, Hou Wei Chou∗

Rakuten Institute of Technology
Boston, MA, USA

{lei.a.chen,houwei.chou}@rakuten.com

Abstract

Item categorization (IC) is a core natural lan-
guage processing (NLP) task in e-commerce.
As a special text classification task, fine-tuning
pre-trained models, e.g., BERT, has become
a main stream solution. To improve IC per-
formance further, other product metadata, e.g.,
product images, have been used. Although mul-
timodal IC (MIC) systems show higher perfor-
mance, expanding from processing text to more
resource-demanding images brings large engi-
neering impacts and hinders the deployment of
such dual-input MIC systems. In this paper, we
proposed a new way of using product images to
improve text-only IC model: leveraging cross-
modal signals between products’ titles and as-
sociated images to adapt BERT models in a
self-supervised learning (SSL) way. Our experi-
ments on the three genres in the public Amazon
product dataset show that the proposed method
generates improved prediction accuracy and
macro-F1 values than simply using the original
BERT. Moreover, the proposed method is able
to keep using existing text-only IC inference
implementation and shows a resource advan-
tage than the deployment of a dual-input MIC
system.

1 Introduction

Item categorization (IC) is a core natural language
processing (NLP) technology in e-commerce.
Since millions types of products are provided in
e-commerce markets, it is important to map these
products to their locations in a product category
tree efficiently and accurately so that buyers can
easily find their interested products. Therefore, IC
models with a high accuracy are needed for the
success of e-commerce business. In spite that IC
shares the same setup as a text classification task, it
possesses its unique aspects, including (a) handling
a large number of prediction labels, (b) a severe
long-tailed distribution of labels, and (c) noisy raw

∗Equal contributor

inputs due to the fact that these inputs are gener-
ally provided by merchants in a heterogeneous way.
These unique aspects make IC be a challenging
task in practice.

Fine-tuning pre-trained models, e.g., BERT (De-
vlin et al., 2019), has become a main stream ap-
proach on building high-performance NLP appli-
cations. When using this paradigm to build IC
models, is there any way to achieve an even higher
performance? This is the first research question
we tackled in this paper. One approach to improv-
ing IC models that generally use products’ text ti-
tles alone is utilizing products’ images. Previously,
multimodal IC models using both text and image in-
puts have been actively investigated and applied in
practice. However, such dual-input multimodal IC
models bring more burden to the operation. Com-
paring to handling text data, the resource needed for
storing/transferring/processing image data is much
higher. For industry-scaled IC systems, adding
image processing in its inference stage is costly.
Is there any other way to get benefits by utilizing
products’ associated images but not paying such a
high cost? This is the second research question we
focused in this paper.

To tackle these two questions, inspired by
(Zhang et al., 2020; Fang et al., 2020), we propose
a solution of running a cross-modal contrastive
learning, a special self-supervised learning (SSL),
between products’ images and text titles, to adapt
pre-trained models to fit the IC task domain better.
Then, the adapted pre-trained models will be used
to build IC models using the fine-tuning paradigm.
Moreover, by using the cross-modal SSL train-
ing, images can be used to improve text-based pre-
trained models in the model training stage and a
series of costly changes/operations in the inference
stage can be avoided.

217

2 Related works

Fine-tuning pre-trained models has been becoming
a main stream method for building high quality IC
systems. For example, in a recent data challenge
for building multimodal IC systems, which was
organized in the SIGIR’20 e-commerce workshop1,
fine-tuning BERT models (Devlin et al., 2019) has
been used by most of the participants (Bi et al.,
2020; Chordia and Vijay Kumar, 2020; Chou et al.,
2020).

In order to improve IC performance, one direc-
tion has been exploring utilizing more metadata
associated with products. (Zahavy et al., 2016) is a
seminal work where multi-label classification using
both titles and images was conducted on products
listed on the Walmart.com website. They used
a convolutional neural network (CNN) to extract
representations from both titles and images, and
designed several policies to fuse the outputs of the
two models. This led to improved performance
over individual models separately. In the SIGIR’20
multimodal IC data challenge, different text-image
fusion methods have been explored. Roughly in
order of increasing complexity, the methods in-
cluded simple decision-level late fusion (Bi et al.,
2020), highway network (Chou et al., 2020), and
co-attention (Chordia and Vijay Kumar, 2020).
By reviewing the experiment results from several
teams, we can observe that (a) dual-input IC mod-
els show higher performance than any uni-modal
IC model, (b) performance gains brought by us-
ing images are limited but not neglectable. When
considering IC performance’s profound impacts on
e-commerce business values, including products’
visual information is necessary.

Contrastive learning (CL) has been found to
be an effective self-supervised learning (SSL) ap-
proach for training high-quality representations.
For example, in computer vision, SimCLR (Chen
et al., 2020) uses the consistence between an an-
chor image and its transformed version and the
in-consistence between the anchor and other in-
stances in a batch (negative instances) to guide
learning visual representations. Without using la-
bels, it achieves visual representations with a qual-
ity on par or even higher than the ones trained based
on traditional supervised learning. Inspired by the
success of SimCLR in computer vision, CL-based
text representation learning has been a hot research

1https://sigir-ecom.github.io/
ecom2020/data-task.html

topic in NLP. Both SimCSE (Gao et al., 2021) and
(Liu et al., 2021) used dropout operations existing
in Transformer architecture (Vaswani et al., 2017)
to be an effective text augmentation way and ob-
tained effective text representations.

The SSL idea has been tried in the NLP domain
for further improving BERT models. For exam-
ple, (Fang et al., 2020) proposed using SSL to
improve the pre-trained BERT model prior to run-
ning down-stream NLP tasks, e.g., various tasks
in the GLUE benchmark test. When generating
augmented instances for providing positive pairs, a
back-translation method is used. The CL setup was
based on MoCo architecture by using a momen-
tum mechanism (He et al., 2020). (Su et al., 2021)
also used the SSL to improve pre-trained BERT
model for more accurate relation extraction (RE)
task. When doing text augmentation, it considered
the RE task’s unique property and proposed a task-
specific augmentation method. In these two works,
SSL training was found to be useful for improving
follow-up fine-tuning tasks’ performance.

Regarding the SSL methods being used, an in-
teresting trend is considering cross-modal signals.
(Zhang et al., 2020) proposed Contrastive VIsual
Representation Learning from Text (ConVIRT)
model to use text descriptions associated with med-
ical images to help training more accurate medical
image representations. Note that in the medical
image domain, the annotated image data size is
much limited, in a contrast, medical text notes are
more adequate. (Radford et al., 2021) is a sem-
inal work from OpenAI. By using a massive set
of image-text pairs, about 350 million, CLIP used
a simple cross-modal contrastive learning to pre-
train a quite powerful vision-language joint model.
The trained model shows many impressive applica-
tions, like superior performance on many zero-shot
image classification tasks.

3 Model

Figure 1 depicts our proposed model in a concise
way. From a pre-trained BERT model, denoted
as BERTorigin, a self-supervised learning (SSL) is
applied to further adapt the BERTorigin fitting to
the fine-tuning task better. When selecting the data
set used in the SSL step, note that due to the self-
supervised nature, we don’t need human-annotated
labels. Then, the adapted BERT is used to initialize
the BERT model (serving as a textual feature en-
coder) in the fine-tuning stage. The final IC model,

218

consisting of BERT and a linear classifier on top of
it, is learned jointly by using a cross-entropy loss
on the fine-tuning data set.

BERT_origin BERTInitializeSSL

Classifier

Fine-tune Data
{X,Y}

SSL Data
{X}

Figure 1: Self-Supervised Learning (SSL) is applied
to improve pre-trained BERT, BERTorigin, for fitting
the fine-tuning task better. Then, a conventional fine-
tuning is conducted to jointly update both BERT (for
representation learning) and classifier training.

3.1 SSL SimCSE

BERT (using
varying
dropout)

Red bull energy drink

Arab Coffee, 12-oz can

Lipton tea

Pull

Push Push

Figure 2: An illustration showing how SimCSE works.
Note that we only show contrastive pairs, i.e., both
positive and negative, to the top product "red bull energy
drink".

For a text title xt, we obtain a text representation
t with a BERT encoder ft(, d) where d is a dropout
mask, and a projection function gt, which uses a
simple multiple layer perception (MLP) structure.

t = gt(ft(xt, d)) (1)

To obtain a positive pair, SimCSE just runs the
same text title throughout the Transformer encoder
pipeline with a different dropout mask d+.

t+ = gt(ft(xt, d
+)) (2)

For ith text title, the training objective of Sim-
CSE is like:

Lti = −log
exp(sim(ti, t

+
i)/τ)∑N,j ̸=i

j=1 exp(sim(ti, tj)/τ)
(3)

for a mini-batch of N text titles, where sim() rep-
resents a similarity computation and τ is a tem-
perature parameter. The total loss computed by
SimCSE is an average among all text titles

LsimCSE =
N∑

i=1

Lti/N (4)

in the mini-batch.
As shown in Figure 2, the top title serves as an

anchor and is sent to a BERT model twice to ob-
tain two similar but varying text representations
because of using varying dropout masks. The aug-
mented version serves as a positive pair to the an-
chor while other two titles in the batch serve as neg-
ative pairs. Through using an infoNCE loss (Oord
et al., 2018), BERT encoder is changed to pull posi-
tive pairs closer while pushing negative pairs away.
Clearly, without any supervision, BERT encoder
can be further adapted to provide a representation
better fitting to the SSL data set.

3.2 SSL ConVIRT
In the SSL SimCSE method, both positive and neg-
ative pairs are from the text domain. Inspired by the
cross-modal contrastive learning in (Zhang et al.,
2020), we use product images that co-exist with
text titles to provide self-supervision signals.

Regarding the visual encoder used to process
product images to visual representation vectors, we
choose a newly emerging encoder based on Trans-
former like BERT model. In recent years, Trans-
former based visual models have become popular
(Han et al., 2020). Among the many visual Trans-
former models, we selected the ViT model (Doso-
vitskiy et al., 2020), which is a pure Transformer
that is applied directly on an image’s P × P patch
sequence. In the implementation, it follows the
original Transformer’s design as much as possible.
ViT utilizes the standard Transformer’s encoder
part as an image classification feature extractor
and adds a MLP head to determine the image la-
bels. The ViT model is pre-trained using a super-
vised learning task on a massive image data set.
The size of the supervised training data set im-
pacts ViT performance significantly. When using
Google’s in-house JFT 300M image set, ViT can
reach a performance superior to other competitive
ResNet (He et al., 2016) models. After convert-
ing a product image to P × P patches, ViT con-
verts these patches to visual tokens. After adding
a special [CLS] visual token to represent the en-
tire image, the M = P × P + 1 long sequence

219

is fed into a ViT model to output an encoding as
v = (v0, v1, v2, ...vM), where M = P × P .

For a product i with a text title xt and an image
xv, we obtain its visual representation by running
through a visual processing pipeline including a
ViT image encoder fv and a projection layer gv,
which is also an MLP.

v = gv(fv(xv)) (5)

Based on text and image representations, we
compute a contrastive loss from text to image di-
rection (denoted as t→ v).

Lt→v
i = −log exp(sim(ti,vi)/τ)∑N,j ̸=i

j=1 exp(sim(ti,vj)/τ)
(6)

Similarly, a contrastive loss from the other direc-
tion, image to text (denoted as v → t), can be
computed as

Lv→t
i = −log exp(sim(vi, ti)/τ)∑N,j ̸=i

j=1 exp(sim(vi, tj)/τ)
(7)

LConV IRT =
N∑

i=1

(αLt→v
i +(1−α)Lv→t

i)/N (8)

where α is a hyper-paramter to control two con-
trastive losses in the range [0,1].

As shown in Figure 3, for the anchor with a text
title as “red bull drink", we use its corresponding
product image to be a positive pair. Images from
other in-batch products serve as negative pairs. By
using the ConVIRT objective, we can adapt both
BERT and ViT encoders to better fit the SSL data
set. Note that in a contrast to (Zhang et al., 2020),
our goal is on using the adapted BERT on text
domain in the follow-up fine-tuning task.

Pull

Push Push
ViT

Red bull energy drink

BERT

Figure 3: An illustration of ConVIRT. Note that we only
showed text→image direction.

Figure 4: Example titles and images from Amazon Re-
view Dataset

4 Experiment

4.1 Setup
Data set: The experimental data consisted of prod-
ucts from Amazon Review Dataset (McAuley et al.,
2015; He and McAuley, 2016), focusing on three
major product categories, i.e., Automotive, Beauty,
and Electronics. Each product contains a text title
and a product image that is downloaded from Ama-
zon website from a set of associated images. Fig-
ure 4 provides some concrete examples. Our task,
a multi-class classification problem, is to predict
product categories from their titles. More details
of the experimental data are shown in Table 1.

Root genre # Class # Data Len. (ave.)
Automotive 953 200,907 9.91
Beauty 229 199,757 10.26
Electronics 500 107,947 14.88

Table 1: Statistics of the data obtained from Amazon
Review Dataset, including the number of labels, the
number of instances, and average lengths of text titles

Models: We built IC models by following the
paradigm of fine-tuning pre-trained models. Three
different pre-trained models were compared.

• origin: using the origin English BERT base
model2.

• SSL SimCSE: the origin BERT model is
adapted by using the SimCSE SSL method
described in Section 3.1.

• SSL ConVIRT: the origin BERT model is
adapted by using the ConVIRT SSL method
described in Section 3.2. Note that we used
ViT-L-163 16 means that we used 16 × 16
patches when feeding images.

2https://huggingface.co/
bert-base-uncased

3https://github.com/asyml/
vision-transformer-pytorch

220

Implementation details: For each root genre,
from entire data set, we allocate 50% instances
for SSL training while keep the remaining 50%
instances for fine-tuning, i.e., 30% for Train, 10%
for Dev and 10% for Testing. To test model per-
formance on different sizes of fine-tuning data, we
then incremental increased fine-tuning set from 5%,
10%, 25%, 50%, 75%, and 100% on the Train set
(containing 30% of the entire data size). The fine-
tuned IC classifiers were tested on the entire Test-
ing set. Our primary evaluation metric is accuracy.
In addition, to make sure all labels can be properly
detected, we also evaluate macro-F1 metric. Our
models are implemented in PyTorch using 4 GPUs
for training and evaluation. At SSL stage, for each
dataset, we use the AdamW optimizer (Loshchilov
and Hutter, 2017) with an initial learning rate of
1e−5 and weight decay of 1e−8. Different from
(Zhang et al., 2020), We use Vit as vision encoder
and give more weights (higher α) on text-to-image
contrastive loss. We set τ=0.1, α=0.75 and train 50
epochs for ConVIRT. The Transformer encoders
are followed by a mean-pooling layer and a projec-
tion layer with an output dimension d = 768. At
the fine-tuning stage, we use Adam optimizer with
an initial learning rate of 5e−5, and a weight decay
of 1e−8 for 30 epochs. A fixed batch size of 32 is
used on both stages.

4.2 Result

Table 2 reports on accuracy metrics on the three
genres. We compared the three fine-tuning
methods, including (a) routine fine-tuning us-
ing BERTorigin, (b) fine-tuning on the BERT
self-supervised by using the SimCSE method on
texts only, and (c) fine-tuning on the BERT self-
supervised by using the ConVIRT method on both
texts and product images. We incrementally in-
creased fine-tuning portions from 5% to 100% of
the Train set. Comparing with method (a), both
methods using SSL methods show performance
gains in most of cases. Between the two SSL meth-
ods, we found that using cross-modal contrastive
learning is more effective, especially when fine-
tuning portion is low. Success of a SSL method
depends on effectiveness of augmentation opera-
tion. Compared to the dropout used in SimCSE,
the cross-modal CL losses in ConVIRT may be
more genuine and powerful. This is also suggested
by recent success of using cross-modal contrastive
signals, such as (Radford et al., 2021).

Genre FT% origin SimCSE ConVIRT
Beauty 5 0.526 0.525 0.599

10 0.577 0.577 0.623
25 0.618 0.616 0.633
50 0.642 0.643 0.663
75 0.659 0.659 0.670

100 0.661 0.669 0.676
Auto. 5 0.473 0.499 0.563

10 0.563 0.574 0.617
25 0.648 0.646 0.668
50 0.685 0.690 0.697
75 0.702 0.709 0.712

100 0.718 0.720 0.721
Elec. 5 0.319 0.344 0.483

10 0.428 0.441 0.533
25 0.539 0.533 0.581
50 0.575 0.583 0.601
75 0.599 0.604 0.619

100 0.615 0.618 0.626

Table 2: Accuracy by fine-tuning BERT models from
(a) origin, (b) intra-modal self-supervised by using Sim-
CSE, and (c) cross-modal self-supervised by using Con-
VIRT on three genres. The underline shows that BERT
after SSL cannot show further performance gains. The
bold fonts suggest that BERT after SSL can bring fur-
ther performance gains.

Figure 5 plots macro-F1 values on the two la-
bel groups. Based on instance sizes belonging to
class labels, we divide all of the labels into two
categories, head (labels contain 80% of instances)
and tail (labels only contain 20% of instances). We
observed ConVIRT SSL training helps on improve
F − 1 on both head and tail labels. However, Sim-
CSE SSL training does not show noticeable F -1
increases comparing to the baseline of using origin
BERT. On tail labels, the gains brought by SSL
are quite consistent no matter how large portion
of data was used in fine-tuning. This shows that
SSL benefit to mitigate long-tailed issue in the item
classification task.

5 Discussion

With the success of pre-trained models like
BERT (Devlin et al., 2019) on many NLP tasks,
fine-tuning BERT models has become an leading
approach. To further improve fine-tuned IC model
performance, inspired by related works (Fang et al.,
2020), self-supervised learning (SSL) is used to
adapt original BERT models to better match with
the IC task. Regarding the SSL method, we com-

221

Figure 5: On head class labels (#instance ≥ 80%)
and tail class labels (#instance ≤ 20%), we measured
macro-F1 on the three methods, i.e., (a) fine-tuning on
BERTorigin, (b) intra-modal self-supervised using Sim-
CSE, and (c) cross-modal self-supervised using Con-
VIRT.

pared two approaches. The first approach is un-
supervised SimCSE (Gao et al., 2021) that only
uses text titles. The SimCSE provided a simple but
effective way to generate semantically similar pairs
(positive) by feeding the same product title into a
BERT model with varying dropout masks. Using
other titles in the mini-batch to be negative pairs,
the BERT model can be adjusted by minimizing the
infoNCE loss (Oord et al., 2018). To improve SSL
further, we proposed using the cross-modal con-
trastive learning to utilize product images to bring
additional modeling power to improve our text rep-
resentations. Following (Zhang et al., 2020), for a
product title, we use its associated product image
to be a positive pair while other products’ images

to be negative pairs. The same cross-modal com-
putation was also applied on a product image to
provide contrastive signal from the other direction.

Our experiments on the three genres in the Ama-
zon Review Dataset show that both SSL enriched
BERT models have higher fine-tuning performance.
Between the two SSL methods, the SSL using Con-
VIRT method is more effective. Moreover, this new
way of utilizing images means that we only need
process images during the model training stage and
can only deploy text-only BERT (enriched by Con-
VIRT SSL training) in our inference stage. This
will dramatically reduce engineering and computa-
tion costs compared to the method of deploying a
dual-input MIC systems.

One limitation of our research is that we only
explored the SimCSE method when using unla-
beled text data. It is possible that other semi-
supervised learning methods like UDA (Xie et al.,
2019) may help on improving the final fine-tuning
performance. We will leave the exploration on
more semi-supervised learning methods in future.
In addition, there are several directions to extend
the current work in the future, including (1) improv-
ing contrastive learning based SSL, for example
using nearest neighbor to get better positive pairs
similar to (Li et al., 2021), and (2) improving our
algorithms to better address training set bias such
as high label noise and very imbalanced data set in
real IC data.

References
Ye Bi, Shuo Wang, and Zhongrui Fan. 2020. A Multi-

modal Late Fusion Model for E-Commerce Product
Classification. arXiv preprint arXiv:2008.06179.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

V. Chordia and B.G. Vijay Kumar. 2020. Large Scale
Multimodal Classification Using an Ensemble of
Transformer Models and Co-Attention. In Proc. SI-
GIR’20 e-Com workshop.

H. Chou, Y.H. Lee, L. Chen, Y. Xia, and W.T. Chen.
2020. CBB-FE, CamemBERT and BiT Feature Ex-
traction for Multimodal Product Classification and
Retrieval. In Proc. SIGIR’20 e-Com workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language

222

Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, and Sylvain Gelly. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. CERT: Contrastive
self-supervised learning for language understanding.
arXiv preprint arXiv:2005.12766.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, and Yixing Xu. 2020. A Survey on Vi-
sual Transformer. arXiv preprint arXiv:2012.12556.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of
the 25th international conference on world wide web,
pages 507–517.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui,
Wanli Ouyang, Jing Shao, Fengwei Yu, and Jun-
jie Yan. 2021. Supervision exists everywhere: A
data efficient contrastive language-image pre-training
paradigm. arXiv preprint arXiv:2110.05208.

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1442–1459, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on
research and development in information retrieval,
pages 43–52.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Peng Su, Yifan Peng, and K Vijay-Shanker. 2021. Im-
proving bert model using contrastive learning for
biomedical relation extraction. In Proceedings of the
20th Workshop on Biomedical Language Processing,
pages 1–10.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, \Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30:5998–6008.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. 2019. Unsupervised data aug-
mentation for consistency training. arXiv preprint
arXiv:1904.12848.

Tom Zahavy, Alessandro Magnani, Abhinandan Krish-
nan, and Shie Mannor. 2016. Is a picture worth a
thousand words? A Deep Multi-Modal Fusion Ar-
chitecture for Product Classification in e-commerce.
arXiv preprint arXiv:1611.09534.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christo-
pher D Manning, and Curtis P Langlotz. 2020.
Contrastive learning of medical visual representa-
tions from paired images and text. arXiv preprint
arXiv:2010.00747.

223

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 224 - 233
May 26, 2022 c©2022 Association for Computational Linguistics

Towards Generalizable Semantic Product Search by Text Similarity
Pre-training on Search Click Logs

Zheng Liu, Wei Zhang, Yan Chen, Weiyi Sun, Michael Du, Benjamin Schroeder
Wayfair LLC

4 Copley Place, Boston, MA USA 02116
{zliu2,wzhang5,ychen4,wsun1,tdu1,beschroeder}@wayfair.com

Abstract

Recently, semantic search has been success-
fully applied to e-commerce product search
and the learned semantic space(s) for query and
product encoding are expected to generalize to
unseen queries or products. Yet, whether gener-
alization can conveniently emerge has not been
thoroughly studied in the domain thus far. In
this paper, we examine several general-domain
and domain-specific pre-trained Roberta vari-
ants and discover that general-domain fine-
tuning does not help generalization, which
aligns with the discovery of prior art. Proper
domain-specific fine-tuning with clickstream
data can lead to better model generalization,
based on a bucketed analysis of a publicly avail-
able manual annotated query-product pair data.

1 Introduction

Semantic Search has been widely studied recently
as a promising competitor to token-based inverted
index search that had dominated information re-
trieval (IR) and question answering (QA) for
decades. However, in e-commerce product search,
the quality of the learned embedding space is not
well understood, especially on the quality of gen-
eralization to unseen queries, unseen products, or
even unseen query-product pairs. The generaliza-
tion is particularly interesting and important be-
cause in Wayfair 80% of queries are new in the
monthly basis, and new products are added every-
day. In this paper, we will investigate the gen-
eralization issue by seeking answers to the two
following questions:

1. How well does the learned space generalize to
unseen queries/products/query-product com-
binations?

2. Are we able to improve generalization by pre-
training, and how?

Arguably, some pre-trained models, especially
the ones pre-trained with domain-specific click-

stream data, may outperform the others on gener-
alization. To validate the hypothesis, we train two-
tower semantic search models using three different
categories of base models for comparison: not pre-
trained (Roberta-base (Liu et al., 2019), Roberta-
large), general-domain pre-trained with text sim-
ilarity (SimCSE (Gao et al., 2021)) and domain-
specific pre-trained with text similarity (SimCSE
that are continuously pre-trained with clickstream
data).

To observe how the models perform, we take a
publicly available product search dataset (Chen
et al., 2022) and partition the data into buck-
ets according to whether the query/product/query-
product pairs have been visited during training. By
comparing the performance of the above models,
we observe that query representations may have
been insufficiently learned during two-tower se-
mantic search fine-tuning as opposed to product
representations, and the model variant which is pre-
trained on query-query text similarity has a visible
impact on models’ generalization power.

This paper is organized as follows: 1) we first in-
troduce related work, then 2) explain the proposed
pre-training approach, and finally 3) discuss results
and analysis.

2 Related Work

Semantic search in product search Recently,
semantic search has been explored in e-commerce
product search (Nigam et al., 2019; Huang et al.,
2020; Zhang et al., 2020; Li et al., 2021), in which
queries and products are embedded as vectors
through representation learning and search is then
conducted in the vector space. These implementa-
tions generally follow a two-tower approach: one
group of stacked neural network layers, usually
referred to as “tower”, processes the query, and an-
other tower processes the product. This approach
is favored in production due to its ability of de-
coupling query and product embedding process, so

224

that products can be embedded offline and search
can be accelerated in real-time services. In search
systems, the semantic search is usually used as
candidate generators focusing on core-relevance,
and often followed by dedicated ranking layers that
capture other e-commerce attributes such as price,
popularity, quality, etc. The two tower model of
this work is described in Section 3.5.

Generalization for two-tower neural models
Deep Passage retrieval has become a popular ap-
proach recently for IR. In Question Answering,
Lewis et al. (2021) observed that when using the
two-tower approach for relevant passage retrieval
stage, deep learning models tend to memorize train-
ing instances and perform substantially worse on
unseen questions or unseen answers. They argued
the generalization on questions is the major is-
sue, which is similar to our observation in product
search. Mao et al. (2021) tried to address the is-
sue by explicitly retrieving question-related texts
as query expansions and showed improvements on
model generalization to unseen question/answers,
yet we take the route of query similarity learning by
using automatically mined query pairs from prod-
uct co-click behaviors.

Pre-training for Neural Retrieval Chang et al.
(2020) pre-trained neural retrieval-based QA mod-
els with carefully designed synthetic tasks, fol-
lowed by Guu et al. (2020) with a knowledge-
augmented training task and Sachan et al. (2021)
with combining ICT and masked salient spans train-
ing. Oğuz et al. (2021) instead enhanced train-
ing with domain-matching Reddit post comment
pairs to pre-train a dense retrieval model and also
observed positive influences to open domain QA.
Differently, our approach explores the clickstream
graph structure instead of mining additional data.

Text Representations Learning Our approach
closely relates to the graph node embeddings within
texts (Mikolov et al., 2013) or the linked graphs
(Hamilton et al., 2017) rather than node embed-
dings that involve node relation types (Bordes et al.,
2013) or graphical neural networks that aggregate
neighbouring nodes in a parametric fashion (Li
et al., 2016; Kipf and Welling, 2016). Recently,
noisy contrastive learning has enjoyed significant
success (Gao et al., 2021) for regularizing text
encoders, and shows that such encoders can ef-
fectively serve as a starting point for downstream
task fine-tuning. In retrieval tasks, Gao and Callan

(2021) pre-trained text encoders with synthetic pas-
sage similarity tasks using noisy contrastive loss,
assuming that in Wikipedia two adjacent passages
in the same article are similar in semantics rather
than those from two different articles. In contrast,
in product search, we assume two queries leading
to the same product browse, or two products pur-
chased under the same query, are similar.

3 Approach

This section describes how models are pre-trained,
fine-tuned, and evaluated on clickstream data. Sec-
tion 3.1 sets up preliminaries and math notations
for the product search problem; Section 3.2, 3.3 and
3.4 describe three different pre-training approaches;
Section 3.5 discusses how the model is fine-tuned
and evaluated in the product search problem.

3.1 Preliminaries
A click graph is denoted as G = {V,E}where V is
the set of nodes either being a query q or a product
p which is the concatenation of title, brand name,
and class name 1. An edge E connecting q and p
suggests a customer showed interest to product p
when searching with query q.

The core of semantic search is to learn query
and product representations. Intuitively, a good
representation that generalizes may put similar con-
cepts (p or q) closer in the semantic space, while
dissimilar ones further apart.

There are three node type combinations (p, p),
(q, q), and (p, q), the last of which is the goal of se-
mantic search. Arguably, learning solely on (p, q)
may cause generalization issue when (p, p) and
(q, q) relations can not be implicitly learned from
(p, q) objective. To verify if this hypothesis holds
in our semantic search problem, we design three
pre-training tasks to warm up Transformers: the
(q, q) pre-training task, the (p, p) pre-training task,
and the (q, q) and (p, p) pre-training task. Afte
pre-training, we fine-tune the model on the (p, q)
learning objective. In the remaining of this sec-
tion, we describe the three pre-training and the
fine-tuning approaches.

3.2 Query Similarity Learning
qq Model If two queries q1 and q2 link to the
same product p in graph G, we regard (q1, q2) as

1A product can have multiple class names with hierarchical
structure (e.g. class “sofa” belongs to class “living room
furniture”). Here we used the high level product class name
(e.g. “living room furniture”).

225

first query second query relation score
girls study desk outdoor shed Entirely different intents 0

bathroom window curtains short curtains bedroom Similar (not entail/co-intent) 1
52 inch ceiling fan with light Ceiling fans with lights Entailment 2

Fishing storage Fishing tackle storage Same intent 3

Table 1: Query similarity manual annotation samples. Note that first and second query is order-sensitive. However,
as similarity strength, we disregard directionality.

one co-clicked query pair. After collecting the
pairs, we use them to fine-tune a SimCSE-large
(Gao et al., 2021) model to obtain a model we call
qq model.

Pair Sampling We follow the 3 steps below to
mine pairs: 1) sample q1 by P (q), the query dis-
tribution obtained from data; 2) for q1, we collect
top-K popular products p1, ...pK by frequency, and
uniformly sample one product p from them 2, and
3) at last, for p, we collect all its related queries
and sample one query as q2 uniformly. We repeat
this process N times to obtain N pairs where N is
set to 1 million.

Training We train the model with a noisy con-
trastive learning objective as in (Gao et al., 2021)
with default settings. We train the model with 3
epochs. We fine-tune on top of the unsupervised
SimCSE-large model and observe the additive ef-
fect of open-domain and domain-specific learning.

Similarity Evaluation To evaluate the query rep-
resentation, we invite 3 domain experts to annotate
the degree of query pairs into 4 relation types: not
related (0), similar but not entail (1), entailment
(2) and identical (3), where the number represents
the semantic strengths, the higher the more related
they are. A total of 1056 random query pairs are
extracted from click sessions and the relation types
are evenly distributed. The inter-annotator agree-
ment was 90% after 2 rounds of annotation and
curation. A sample of the annotation data is shown
in Table 1.

We calculate vector cosine between two queries
as similarity score, and compare it to the ground-
truth by Spearman Rank Correlation with signif-
icant tests. The result is shown in Table 2. As
we can see, the model fine-tuned with co-click data
achieves the best performance. Surprisingly, “Ours-
unsup” learning noisy contrastive loss by masking

2“Uniformly” as a reasonably simple yet arguably effec-
tive approach to mitigate exposure bias without complex user
behavior modeling

Model SP (P-value)
Roberta-large 0.287 (1.8e-21)
SimCSE-large-unsup 0.467 (2.9 e-58)
SimCSE-large-sup 0.426 (7.9e-48)
Ours-unsup 0.458 (2.2e-48)
Ours-sup (co-click) 0.546 (5.8e-82)

Table 2: Comparison of different Models’s Spearman
Rank Correlation on representation evaluation data.
SimCSE–large-unsup is the representation learned un-
supervisedly with noisy contrastive loss; SimCSE-large-
sup is subsequently learned from supervised text en-
tailment data. In our settings, the definition of unsup
and sup changed a bit: Ours-unsup is the model learned
with unsupervised objective (masked language mod-
eling) with noisy contrastive loss, where Ours-sup is
learned from query co-click data described in section
3.2.

a single query twice and learning their similarities
(similar to SimCSE-unsup with open-domain texts),
does not lead to a better performance on query
pairs, suggesting that the key of query similarity
learning is to capture rich domain-specific text sim-
ilarity knowledge rather than text robustness and
regularity in semantic space. This message encour-
ages us to further extend it to product similarity
learning (this time, without manual evaluation).

3.3 Product Similarity Learning

pp Model The product representation learning
is performed similarly to the query representa-
tion learning. We start from SimCSE-large-unsup
model, and fine-tune (p, p) pairs that are obtained
from the process similar to the sampling approach
in section 3.2 with the role of query and product
swapped. The created 1 million pairs are used to
fine-tune the SimCSE model and obtain a model
dubbed pp model. Different from qq model, we
did not obtain manual annotation data for pp, thus
we let the model train 2 epochs until convergence.

226

3.4 A Combined Model

qq+pp Model In this approach, we sequentially
pre-trained the model with both (q, q) data and
(p, p) data, to examine the additive effect where
a model is fine-tuned with both query similarities
and product similarities. We take the qq model
and continue to pretrain it with the above (p, p)
data until convergence, and obtain a model called
qq+pp. Indeed, we may risk catastrophic forget-
ting since arguably the (p, p) pairs may overwrite
the captured (q, q) information. Although we have
observed such forgetting to happen, its effect is
mild at best.

3.5 Fine-tuning for Semantic Search

pq Learning After pre-training, the semantic
search model was fine-tuned on product search
tasks: given a search query, the task is to retrieve a
list of relevant products from the product catalog.
Specifically, both queries and products were rep-
resented as vectors in the same latent space, and
products were retrieved according to cosine simi-
larities w.r.t. the queries.

As shown in figure 1, we adopted a two tower
approach to fine-tune the semantic search model:
a user tower embeds search queries into vectors,
while a product tower embeds product information
(e.g. product name, product brand name, product
class name) into vectors. The two towers share the
same tokenizer and transformer model. We took
the last hidden layer’s CLS token representation
and L2-normalized it as the final output embedding
vector. Then, the relevance score was calculated as
the cosine similarity between search query embed-
ding and product embedding vectors.

Search Term

CLS token

Embedding v

User Tower

cosine(v, w)

Transformer Tokenizer

Transformer

Tokens (first 10)

Product Tower

Brand name Class nameProduct name

shared

shared

L2 Normalization

CLS token

Embedding w

Transformer Tokenizer

Transformer

Tokens (first 20)

L2 Normalization

Figure 1: Structure of semantic search models on prod-
uct search tasks

To train the model, we adopted the contrastive
framework and utilized the cross-entropy objec-

tive with in-batch negatives (Chen et al., 2020). In
each mini-batch, we sampled n semantically rele-
vant (query, product) pairs D = {(qi, pi)}ni=1, and
calculated the training objective for the i’th pair
(qi, pi) as:

li = −
cos(f(qi), g(pi))

τ
+ log

n∑

j=1

e
cos(f(qi),g(pj))

τ

(1)
f , g represent the user and product tower respec-
tively. τ is a temperature hyperparameter. All
layers of Transformer models are fine-tuned in the
product search task.

Data In the experiment, (q, p) pairs are collected
from click graph G. As show in table 3, each search
query and its resulted add-to-cart products (if any)
are constructed as semantically relevant (query,
product) pairs. The training dataset contains 31M
pairs from 2019 and 2020 records of a e-commerce
search engine, and the dev dataset contains 100k
pairs randomly sampled from 2021. We evaluated
model’s performance on the WANDS dataset (Chen
et al., 2022), which is a human annotated dataset
for evaluating product search relevance. It contains
(query, product) pairs with relevance labels anno-
tated by humans in three different levels: relevant,
partially relevant, and irrelevant. Table 4 shows
details about the training, dev and test dataset.

Training and Evaluation 6 different Roberta
variations are fine-tuned in this experiment. They
are Roberta base, Roberta large (Liu et al., 2019),
unsupervised SimCSE based on Roberta large (Gao
et al., 2021), and three in-house pretrained models
based on the SimCSE model using query-query,
product-product, and query-query plus product-
product similarity data respectively.

All of the models have the same training setup.
For each model, we ran 4 epochs on the training
dataset with mini-batch size of 256. Model check-
points were saved every 6000 mini-batches, for the
purpose of model selection. Adam optimizer with
learning rate of 1e−5 was used to train the model.
The temperature hyperparameter was set as 0.07.

In model selection, for each model we select the
best performing checkpoint on the dev dataset to
be the final trained model. The evaluation metric is
the top-k retrieval accuracy, defined as the ratio of
(query, product) pairs for which the top-k retrieved
products of the query contains the corresponding
product. The retrieval space for dev dataset is the
unique products in dev dataset.

227

query product
rose gold wing chair alyka adonis wingback chair, red barrel studior, accent chairs
led lights strip lights doynton strip light, the holiday aisle, under cabinet lighting
sun shelter messina aluminum patio gazebo, sojag, canopies & gazebos

Table 3: Example of semantically relevant (query, product) pairs

train dev test
total pairs 32M 100K 234K
unique queries 9.5M 76K 483
unique products 2.1M 88K 43K
unique pairs 21M 99K 234K

Table 4: Dataset summary. Train and dev datasets are
collected from historical browsing contexts; the test
dataset (WANDS) is a human annotated dataset for eval-
uating product search relevance (Chen et al., 2022).

To evaluate the final trained model, we calcu-
lated nDCG@k scores on the WANDS dataset. The
ground truth relevance score is derived from human
annotation labels: relevant is 1, partial relevant is
0.5, and irrelevant is 0.

For both the retrieval accuracy and nDCG scores,
we set k = 50, which roughly equals to the num-
ber of products shown on the first page of search
results.

4 Results

We evaluated the models’ performance on the
WANDS dataset. As noted in Table 4, this dataset
contains 234k annotated (query, product) pairs. We
further expand this dataset exhaustively to 20.6M
pairs so that it contain every possible combina-
tion of unique query and unique product from the
WANDS dataset. If a (query, product) pair is not
annotated, we assume its relevance score is 0. Then,
we assign these (query, product) pairs into different
buckets, according to whether the query, the prod-
uct, or the (query, product) pair exists in the train-
ing data or not. Details about bucket assignments
are shown in Table 5. Finally, for each bucket, we
calculate the averaged per-query nDCG@50 score.

RQ1: How well does the learned semantic
space generalize? Table 5 shows each model’s
nDCG@50 scores on different buckets of the
WANDS dataset. The "seen" bucket has much
higher nDCG scores than the "unseen" bucket, in-
dicating a large opportunity area of generalization
for all models. By looking further into the amor-
tized unseen sub-buckets, it shows that queries and

products follow very different generalization be-
haviors. For example, the queries seen in the train-
ing data (q+, bucket 4, 5) usually performs bet-
ter than the unseen queries (q-, bucket 6, 7). Yet
counter-intuitively, the products seen in training
under-perform the unseen ones (bucket 4 vs 5, 6
vs 7), which is against the common understanding
where seen products may perform better than un-
seen ones. Arguably, this difference between query
and products can be naively explained as products
being relatively well learned compared to queries.
We will revisit this point in analysis by graphical
evidence.

RQ2: Are we able to improve generalization by
pretraining? In Table 4, two domain-pretrained
models (the qq model, and the qq+pp model)
achieved top-two overall scores, showing the effec-
tiveness of domain-specific pretraining approach.
This, again, suggests the importance of query repre-
sentation learning. Also, the SimCSE-large model
performs worse than the Roberta-large model, sug-
gesting that not all general-domain pretrainings are
beneficial for domain-specific tasks, which may
be due to the fact that the task of semantic search
relies on asymmetric query-product relation en-
coding more than symmetric point-wise similarity.
In contrast to SimCSE-large, the domain-specific
query-query pretraining may have served the pur-
pose of injecting domain knowledge mined from
graph structure into text encoders, rather than a
means for representation regularization, and such
consistent improvement may have opportunity to
be further improved given its moderate improve-
ments over other models. Last, the Roberta-large
model outperforms the Roberta-base model as ex-
pected due to a larger model capacity, yet the ca-
pacity for memorization is a draw between the two,
based on the numbers in bucket 2.

5 Analysis

To understand why queries and products follow
different generalization pattern in terms of nDCG
scores observed in RQ1, we further analyzed the

228

Unseen sub-buckets
Bucket index 1 2 3 4 5 6 7
Bucket name Overall Seen Unseen q+, p+ q+, p- q-, p+ q-, p-
Bucket ratio 100% 0.03% 99.9% 29.87% 31.60% 18.72% 19.79%
Roberta base 0.7812 0.9335 0.7722 0.7539 0.7894 0.6962 0.7249
Roberta large 0.7830 0.9337 0.7730 0.7511 0.7893 0.6942* 0.7177
SimCSE large 0.7775* 0.9315 0.7679* 0.7491 0.7875 0.6884* 0.7179*
Query-query (qq) pretrain 0.7866 0.9351 0.7760 0.7477* 0.7918 0.7057 0.7276
Product-product (pp) pretrain 0.7802* 0.9351 0.7700* 0.7460* 0.7875 0.7003 0.7201
qq+pp pretrain 0.7845 0.9319 0.7747 0.7489 0.7886 0.7006 0.7270

Table 5: nDCG@50 of fine-tuned models on product search tasks, evaluated by the WANDS dataset. The model
names indicate the base model before fine-tuning. The “overal” bucket contains all (query, product) pairs in the
testing dataset, the “seen” bucket contains (query, product) pairs from the testing dataset that also exist in the
training dataset, and the “unseen” bucket contains (query, product) pairs from testing dataset that does not exist
in the training dataset. The “unseen” bucket is further split into four different sub-buckets, according to whether
the specific query or product exists in the training dataset or not. “q” represents query, “p” represents product; “+”
represents existing in the training dataset, “-” represents not existing in the training dataset. Bucket ratio represents
the size of current bucket with respect to the entire test dataset. In nDCG scores, “*” indicates that number is
statistically smaller than that column’s largest (bold-faced) number, tested by one-side t-test with 0.05 p-value.
nDCG results at other k’s are presented in the Appendix A.

query-product cosine score distribution for differ-
ent buckets. To make distribution comparison fair
across buckets, in each bucket we only keep a sub-
set of (query, product) pairs that are annotated as
"partial relevance". The model we used to generate
the cosine score distributions is the SimCSE-large
model that is first qq-pretrained and then pq fine-
tuned on click graph data, the best model according
to Table 5.

First, the models perform better on seen query-
product combinations than unseen combinations
(the query and the product has been individually
seen in training, but not the combination). The
bucket 2 from Figure 2 shows a well learned co-
sine score distribution for seen query-product pairs,
and the scores concentrate around a high similarity
range around 0.65. In contrast, for bucket 4, al-
though queries and products are individually seen
by the models during training, the combination
is novel to them, and it increases the models’ un-
certainty, which is demonstrated by a significant
similarity score spread-out accompanied by a shift
to a lower median around 0.3. In general, the fig-
ure shows the difficulty of generalization of deep
learning-based semantic search models on even the
simpler task of dealing with unseen combinations.
This suggests the generalization may be beyond
the discussion of learning representations for an
individual query or product, and rather about the
geometry of the semantic space to properly main-

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Bucket 4
Bucket 2

Figure 2: Query-product cosine score distribution for
different buckets. The model is firstly pretrained by
query-query similarity data, then fine-tuned in the prod-
uct search task. Bucket 2 represent (query, product)
pairs already seen by the model in training. In bucket
4, both query and product are seen, but the combination
is not seen by the model in training. Bucket 2’s mean
cosine score (0.6253) is significantly higher than bucket
4 (0.3562).

tain the distance between seen and unseen texts
after semantic search as asymmetric embedding
learning that “disturbs” a well-defined text repre-
sentation space to encode text rankings.

Second, as shown in Figure 3, the visibility of
queries and products in training data poses opposite
impacts to a model’s behavior.

1) For seen products, comparing the curves of
229

0.0 0.2 0.4 0.6 0.8
Cosine score

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

Bucket 4
Bucket 5
Bucket 6

Figure 3: Query-product cosine score distribution for
bucket 4, 5 and 6. Their mean cosine scores are 0.3562,
0.3655, and 0.3556 respectively. In bucket 4, both query
and product are seen, but the combination is not seen
by the model in training. In bucket 5, only the query
is seen by the model in training. In bucket 6, only the
product is seen by the model in training.

bucket 5 and 4, 1) counter-intuitively, we observe
that 4 have a lower peak of around 0.25 as opposed
to that of bucket 5 of around 0.3, which suggests
that seen products have been “attracted” to seen
queries in the training data, thus leading to a bi-
ased product representation. Yet, unseen products
do not get to go through such an attraction pro-
cess, and the representation may have maintained
a neutral and generalize-able status in semantic
space, leading to an overall higher and concen-
trated peak of 5 as opposed to a flat and lower peak
of 4. This phenomenon might have suggested that
a large semantic space may be over-parameterized
that separately adjusting an individual product’s
representation without affecting its geometrically
closer neighbours may have become easy. Thus, an
un-generalizable learning in generalizable models
might have happened.

2) For seen queries, however, by comparing the
cures of bucket 6 and 4 (the same as 7 and 5), we
found that queries that have been seen in the train-
ing data lead to better semantic similarity with prod-
ucts in general than unseen queries, demonstrated
by the distribution mass of the blue curve towards
a higher similarity range than the green curve. The
green line’s peak being extended towards the lower
cosine score range demonstrates that the represen-
tation of seen queries may have improved instead
of overfit. In other words, this may also suggest
that query representation may have not been fully
learned. From Table 5 we can also observe a simi-

lar hint that query-query pre-trained model is the
most effective at improving semantic search perfor-
mance from product ranking’s perspective. In stark
contrast to seen products being overfit, seen queries
gets to be learned and improved during semantic
search’s pq learning process.

By comparing the above two cases, we have seen
that queries may have learned slower than products
in semantic search. The reason may be due to
the fact that queries are usually much richer and
more diverse (we have tens of times more unique
queries than unique products), requiring a text en-
coder to observe way more cases for a query to
learn representation well; whereas products are
relatively fewer, well-formed and limited in diver-
sity in product search. However, for a company
that has billions of products in inventory, this ob-
servation may not hold true. Yet, the observation
indeed resonates with that of question answering
and web search, which suggests learning general-
izable semantic search through improving query
representation learning may still be a promising
direction to follow.

6 Conclusions and Future Work

This paper examines the encoder generalization
problem in the setting of semantic product search.
We observe that query representation learning still
is the bottle neck compared to the product represen-
tation learning under the semantic search training
objective, the problem of which is surfaced by the
superior performance of the domain-specific query
pair pre-trained encoder model. We also surpris-
ingly found that large, general-domain and unsuper-
visedly regularized Roberta variants such as Sim-
CSE do not guarantee superior performance com-
pared to Roberta-base or large, which may have
suggested that semantic search is an asymmetric
relationship learning task rather than symmetric,
similarity learning task, since the semantic space
has to encode much more complex relations (e.g.
node priorities in a list) beyond point-wise similar-
ity.

Although being a proof of concept, the proposed
pre-training approach could start the conversation
about how to properly pre-train encoders for se-
mantic product search, and the results suggest that
the knowledge hidden in the click graph can be
better explored by defining proper training tasks,
either transforming the task into a sequential task
learning setting or a multi-task setting. In the fu-

230

ture, a transfer learning setting that leverage richer
domain knowledge and semantic structures from
relevant sources such as class and class taxonomy
of queries may be promising. Also, data augmen-
tation to enhance query representation learning, or
novel learning curriculum/objective/regularization
that can help balance query and product learning in
the semantic search objective may also be valuable
for exploration.

Acknowledgements

The authors would like to acknowledge previous
and current members of the Wayfair Search and
Recs team for full support on this research: Shujian
Liu, Archi Mitra, John Castillo, Pooja Ranawade,
John Murray, Avanti Patil, Zhilin Chen, Jeremy
Myrland, and Matt Herman. We would also love to
thank the suggestions and comments from review-
ers to improve this paper.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training tasks
for embedding-based large-scale retrieval. CoRR,
abs/2002.03932.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Yan Chen, Shujian Liu, Zheng Liu, Weiyi Sun, Linas
Baltrunas, and Benjamin Schroeder. 2022. Wands:
Dataset for product search relevance assessment. In
Proceedings of the 44th European Conference on
Information Retrieval.

Luyu Gao and Jamie Callan. 2021. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. CoRR, abs/2108.05540.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanab-
han, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2553–2561.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel.
2021. Question and answer test-train overlap in open-
domain question answering datasets. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1000–1008.

Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang,
Xiaoyi Zeng, Xiao-Ming Wu, and Qianli Ma. 2021.
Embedding-based product retrieval in taobao search.
In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, pages
3181–3189.

Yujia Li, Richard Zemel, Marc Brockschmidt, and
Daniel Tarlow. 2016. Gated graph sequence neural
networks. In Proceedings of ICLR’16.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Generation-augmented retrieval for open-
domain question answering. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 4089–4100, Online. As-
sociation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lak-
shman, Weitian Ding, Ankit Shingavi, Choon Hui
Teo, Hao Gu, and Bing Yin. 2019. Semantic product
search. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 2876–2885.

231

Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Wen-tau Yih,
Sonal Gupta, et al. 2021. Domain-matched pre-
training tasks for dense retrieval. arXiv preprint
arXiv:2107.13602.

Devendra Sachan, Mostofa Patwary, Mohammad
Shoeybi, Neel Kant, Wei Ping, William L. Hamil-
ton, and Bryan Catanzaro. 2021. End-to-end training
of neural retrievers for open-domain question answer-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6648–6662, Online. Association for Computational
Linguistics.

Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang,
Yunjiang Jiang, Yun Xiao, Weipeng Yan, and Wen-
Yun Yang. 2020. Towards personalized and semantic
retrieval: An end-to-end solution for e-commerce
search via embedding learning. In Proceedings of
the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2407–2416.

A Appendix: Additional nDCG scores of
product search performance

Extending the results of Table 5, this section
showed three more k values to the nDCG per-
formance of fine-tuned models on product search
tasks. Table 6 shows nDCG@1, Table 7 shows
nDCG@20, and Table 8 shows nDCG@100.

The results from nDCG@20 and nDCG@100
are consistent with nDCG@50, such that the qq
model achieves the best performance on both seen
and unseen (query, product) pair segments. How-
ever, in nDCG@1 the Roberta-large model per-
forms the best. This reveals that information gained
from domain-specific pre-training makes it more
difficult for the model to optimize the highest rel-
evance score range; however, it helps the model
to produce a generally better ranked list. Since
semantic search models are usually used as candi-
date generators and followed by dedicated ranking
models, the nDCG@1 performance is not as im-
portant as nDCG@50 or nDCG@100, and thus we
still think domain-specific pre-training is a suitable
approach to improve encoders’ performance.

232

Unseen sub-buckets
Bucket name Overall Seen Unseen q+, p+ q+, p- q-, p+ q-, p-

Roberta base 0.7845 0.8858 0.7793 0.7988 0.8061 0.7204 0.7446
Roberta large 0.7969 0.9032 0.7892 0.7811 0.807 0.7231 0.746
SimCSE large 0.7876 0.8829 0.7793 0.7862 0.8019 0.7124 0.7554
Query-query (qq) pretrain 0.7919 0.9032 0.7816 0.7736 0.8123 0.746 0.7742
Product-product (pp) pretrain 0.7949 0.9017 0.7886 0.787 0.812 0.7272 0.7433
qq+pp pretrain 0.7764 0.8916 0.7712 0.771 0.8123 0.7164 0.7392

Table 6: nDCG@1 of fine-tuned models on product search tasks. Please refer to Table 5 for notation definitions.

Unseen sub-buckets
Bucket name Overall Seen Unseen q+, p+ q+, p- q-, p+ q-, p-

Roberta base 0.7884 0.921 0.7807 0.7686 0.8053 0.7012 0.7269
Roberta large 0.7888 0.9203 0.7809 0.7641 0.8023 0.7051 0.7216
SimCSE large 0.7818 0.9183 0.7739 0.7631 0.7978 0.6941 0.7223
Query-query (qq) pretrain 0.7914 0.9229 0.7829 0.7607 0.8009 0.7165 0.7316
Product-product (pp) pretrain 0.7863 0.9221 0.7771 0.7598 0.7988 0.7072 0.7288
qq+pp pretrain 0.7877 0.9188 0.78 0.7628 0.8007 0.7151 0.7298

Table 7: nDCG@20 of fine-tuned models on product search tasks. Please refer to Table 5 for notation definitions.

Unseen sub-buckets
Bucket name Overall Seen Unseen q+, p+ q+, p- q-, p+ q-, p-

Roberta base 0.7681 0.9386 0.7593 0.7603 0.7887 0.7138 0.7321
Roberta large 0.7678 0.9392 0.7583 0.7539 0.7842 0.7102 0.7284
SimCSE large 0.7643 0.9372 0.7545 0.7525 0.7834 0.7059 0.7279
Query-query (qq) pretrain 0.7721 0.9407 0.7624 0.7523 0.7913 0.7229 0.7334
Product-product (pp) pretrain 0.7664 0.9406 0.7571 0.7529 0.7846 0.7157 0.7308
qq+pp pretrain 0.7703 0.9377 0.7609 0.7539 0.789 0.7199 0.7315

Table 8: nDCG@100 of fine-tuned models on product search tasks. Please refer to Table 5 for notation definitions.

233

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 234 - 243
May 26, 2022 c©2022 Association for Computational Linguistics

Can Pretrained Language Models Generate Persuasive, Faithful, and
Informative Ad Text for Product Descriptions?

Fajri Koto1 Jey Han Lau1 Timothy Baldwin1,2

1The University of Melbourne
2MBZUAI

ffajri@student.unimelb.edu.au, jeyhan.lau@gmail.com, tb@ldwin.net

Abstract

For any e-commerce service, persuasive, faith-
ful, and informative product descriptions can
attract shoppers and improve sales. While not
all sellers are capable of providing such in-
teresting descriptions, a language generation
system can be a source of such descriptions
at scale, and potentially assist sellers to im-
prove their product descriptions. Most previ-
ous work has addressed this task based on sta-
tistical approaches (Wang et al., 2017), lim-
ited attributes such as titles (Chen et al., 2019;
Chan et al., 2020), and focused on only one
product type (Wang et al., 2017; Munigala
et al., 2018; Hong et al., 2021). In this pa-
per, we jointly train image features and 10
text attributes across 23 diverse product types,
with two different target text types with differ-
ent writing styles: bullet points and paragraph
descriptions. Our findings suggest that mul-
timodal training with modern pretrained lan-
guage models can generate fluent and persua-
sive advertisements, but are less faithful and
informative, especially out of domain.

1 Introduction

Generative pretrained language models such as
GPT-2 (Radford et al., 2019), T5 (Raffel et al.,
2020), and BART (Lewis et al., 2020a) have led
to impressive gains in language generation appli-
cations beyond machine translation, such as story
geneneration (Fan et al., 2018; Goldfarb-Tarrant
et al., 2020), summarization (Zhang et al., 2020;
Qi et al., 2020), and dialogue systems (Ham et al.,
2020). Although such transformer-based language
models (Vaswani et al., 2017) are capable of gener-
ating fluent texts through a sequence-to-sequence
framework, they still suffer from unfaithfulness and
factuality issues (Maynez et al., 2020; Wang et al.,
2020; Moradi et al., 2021).

In this paper, we comprehensively discuss the
utility of modern pretrained language models over
an ad text generation task for product descriptions,

Philadelphia, Pennsylvania - Skyline
with Comcast Tower - Abstract
(Cream) 99520 (10x15 Wood Wall
Sign, Wall Decor Ready to Hang)
Measures 10x15 inches
Holes in corners, ready for hanging,
Printed in the USA, sustainable birch
Perfect for your home, office, or a gift

TITLE: Lantern Press Philadelphia - Skyline with
Comcast Tower
PART NUMBER: LANT-99520-10x15W
MODEL NUMBER: LANT-99520-10x15W
CATEGORY: HOME
COLOR: Multi
BRAND: Lantern Press
SIZE: 10 x 15 Wood Sign
CLASSIFICATION: base_product
WEIGHT: 13.0
KEYWORD: Decor wooden sign wall decoration

BULLET POINTS PARAGRAPH DESCRIPTION

This original high-quality wood print from Lantern
Press boasts sharp detail and vivid imagery of
Philadelphia, Pennsylvania - Skyline with Comcast
Tower - Abstract (Cream) 99520 (10x15 Wood Wall
Sign, Wall Decor Ready to Hang). Product measures
10 x 15 inches 100% Printed in America, "Grade A"
sustainable birch Holes in corners, ready for tacker
sign to be hung Wood print will ship in a sturdy box,
protected in a water-proof sleeve. Lantern Press is a
dynamic art company that specializes in the world's
leading imagery.

Figure 1: Top: Input consisting of an image and tex-
tual attributes of a product. Bottom: Two target texts:
bullet points and a paragraph description

with a focus on faithfulness, persuasiveness, and
informativeness. While previous work has been
limited to short ad generation tasks conditioned on
titles (Chen et al., 2019; Chan et al., 2020), and
used traditional neural models (Munigala et al.,
2018; Zhang et al., 2019a) or statistical approaches
(Wang et al., 2017), we focus on a data-to-text gen-
eration approach to product description generation
for an English e-commerce service. Specifically,
we explore various textual attributes and images
as the input, and generate two types of product
descriptions: (1) bullet points, and (2) paragraph
descriptions (see Figure 1). Bullet points provide a
list of key information regarding a product, while
paragraph descriptions are made up of sentences
structured into a coherent narrative.

We argue there are two underlying motivations
for the ad text generation task, especially for prod-
uct descriptions. Application-wise, the utility is
to improve the seller experience for e-commerce
services when registering a new product. The gen-
erated descriptions can reduce the need for man-
ual data entry, and potentially improve sales due
to better descriptions (in terms of attractiveness,
structure, and persuasiveness). Research-wise, ad

234

text generation is an under-studied task, and ar-
guably a good proxy for persuasive text generation
(Wei et al., 2016; Rehbein, 2019; Luu et al., 2019;
El Baff et al., 2020).

While previous work has discussed ad text gen-
eration of e-commerce service for a few product
types such as fashion (Munigala et al., 2018), com-
puters (Wang et al., 2017), and house decor (Hong
et al., 2021), in this work, we use twenty diverse
product types and an additional three product types
for out-of-domain prediction. With this setting, we
aim to study model generalization and robustness
over in-domain and out-of-domain test sets.

To summarize our contributions: (1) we study
the application of modern pretrained language mod-
els based on data-to-text generation for product de-
scription in an e-commerce service; (2) we explore
multimodal training by incorporating image fea-
tures for ad generation and perform automatic and
manual evaluation; (3) we study model robustness
for out-of-domain prediction; and (4) we conduct
analysis of attributes that significantly contribute
to ad text generation.

2 Related Work

Data-to-text generation is the task of translating a
semi-structured table to natural text, and has been
applied in different real-world scenarios, such as
weather forecasting reports (Liang et al., 2009),
sport (Puduppully et al., 2019), health-care descrip-
tions (Hasan and Farri, 2019), and biographies
(Wang et al., 2020). While the goal of most pre-
vious tasks is to generate descriptive text, there
are few studies (Wang et al., 2017) on data-to-text
generation for the advertisement domain, and the
work that has been done has tended to focus exclu-
sively on the product type of computer and be based
on pre-neural statistical approaches and template-
based techniques.

Previous work has mostly used titles of e-
commerce products to generate short ads in Chi-
nese (Chen et al., 2019; Chan et al., 2020) and En-
glish (Munigala et al., 2018; Kanungo et al., 2021).
Similarly, Zhang et al. (2019a) generate a product
description for Chinese e-commerce, conditioned
on the title and a small number of attributes (with
an average length of six words).1 In this work, we
comprehensively study product description genera-
tion in English based on ten diverse attributes (à la
a data-to-text scheme, with the average number of

1These attributes are not clearly described in the paper.

Attributes Coverage #words |Vocab|
(%) max µ σ

TITLE 100 95 15.7 6.22 193,649
PRODUCT TYPE 100 1 1 0 20
CLASSIFICATION 100 1 1 0 3
BRAND 99.49 17 1.58 0.88 46, 552
KEYWORD 92.17 958 32.32 55.72 292,372
COLOR 80.19 32 1.44 1.01 18,839
SIZE 69.96 16 1.82 1.44 15,187
MODEL NUMBER 33.75 9 1.15 0.52 67,215
PART NUMBER 47.64 12 1.08 0.41 91,084
WEIGHT 20.76 1 1 0 1,786

BULLET POINTS 100 766 86.8 67.9 225,784
PARAGRAPH DESC. 100 516 90.9 72.9 472,711

Table 1: Statistics of attributes. For BULLET
POINTS, the average number of bullets in the overall
dataset is 5.

Component % of novel n-grams

A B 1 2 3 4

10 attr. BP 86.7 96.3 98.1 98.7
10 attr. PD 85.1 93.7 95.2 95.9
BP PD 66.2 86.9 90.9 92.7

Table 2: Abstractiveness of BULLET POINTS (BP)
and PARAGRAPH DESCRIPTIONS (DP) based on
novel n-gram overlap. “10 attr.” means the concate-
natenation of all attributes, and values in the table are
calculated relative to component B.

concatenated attributes being 64 words in Table 1)
that incorporates joint training over images of the
product.

3 Data Construction

We use 200,000 e-commerce products spanning 20
different product types as described in Figure 2.
For copyright reasons we are not able to release
this data to the public. This dataset is randomly
split into 180K/10K/10K training, development
and test instances, respectively. We also create
an Xtreme test set (4,266 samples) in which we fil-
ter out test samples that have overlapping descrip-
tions with the training data. Lastly, we addition-
ally use three different product types as an out-of-
domain test set, comprising 1,000 products of each
of the three produce types: SAREE, COMPUTER,
and CELLULAR_PHONE. In total, there are three
different test sets: (1) main; (2) Xtreme; and (3)
out-of-domain.

In Table 1, we show the overall statis-
tics of ten product atttributes and two tar-
get texts: BULLET POINTS and PARAGRAPH

235

0

10000

20000

30000

40000

50000

Sh
irt

Ho
m

e
W

ire
le

ss
 D

ev
ice

Sw
ea

te
r

Be
d

an
d

ba
th

O
ut

do
or

 re
cr

ea
tio

n
Sp

or
tin

g
go

od
s

Ki
tc

he
n

Dr
es

s

Ha
t

Sh
oe

s
Ph

on
e

Ac
ce

ss
or

y
Fa

sh
io

n
ru

ng
Ho

m
e

fu
rn

itu
re

O
ut

er
we

ar
Pa

nt
s

Ap
pa

re
l

Au
to

 A
cc

es
so

ry
O

ut
do

or
 liv

in
g

Ar
t S

up
lie

s
Sa

re
e

Co
m

pu
te

r
Ce

llu
la

r P
ho

ne

Figure 2: Distribution of 20 product types in the main dataset and 3 additional product types from the out-of-
domain test set. The main and additional data is in English, and gathered from different regions (countries).

DESCRIPTIONS. The selection of product at-
tributes is based on a minimum coverage of 20%
in the dataset. Overall, the five attributes with the
highest coverage are TITLE, PRODUCT TYPE,
CLASSIFICATION, BRAND, and KEYWORD.2

The average length of BULLET POINTS and
PARAGRAPH DESCRIPTIONS is 87 and 91, re-
spectively, significantly longer than most previous
work except Wang et al. (2017) who focused on
the product type of computer and tested only pre-
neural statistical approaches (see Table 3).

To understand the abstractiveness of our dataset,
in Table 2 we show the percentage of novel n-
grams in BULLET POINTS and PARAGRAPH
DESCRIPTIONS. Overall, we observe that the
two target texts are highly abstractive, with more
than 85% of novel n-grams, computed relative to
the concatenated attributes. We also found that
there is a high proportion of novel n-grams between
the two target texts.3 We suspect, though, that the
low lexical overlap between the two text types in
this task might not be attributed to paraphrasing or
lexical choice, but rather to content selection.

2CLASSIFICATION means other categories such as base
product or different variation.

3We also note that no previous work reported on the ab-
stractiveness of their data.

Work Lang. Product #words of #words of
Types source (µ) target (µ)

Zhang et al. (2019a) ZH N/A 18 25
Chan et al. (2020) ZH N/A 18 22
Hong et al. (2021) ZH 1 N/A 76
Wang et al. (2017) EN 1 N/A 117
Munigala et al. (2018) EN 1 6 18
Kanungo et al. (2021) EN 1 19 6
This work EN 23 64 87 & 91

Table 3: Dataset comparison between our work and pre-
vious work

4 Model

Problem Formulation. As discussed in Sec-
tion 3, a product in our dataset consists of up
to ten attributes {a1, a2, a3, ..., a10}, one image
I , and two target texts {t1, t2}. The goal of
this work is to learn a function that estimates
the probabilities P (t1|a1, a2, a3, ..., a10, I) and
P (t2|a1, a2, a3, ..., a10, I).

Architecture. This work relies on pretrained
language models such as BERT (Devlin et al.,
2019), T5 (Raffel et al., 2020), and BART (Lewis
et al., 2020a). To perform data-to-text generation,
we formulate a structured input based on special
tokens that are randomly initialized before the fine-
tuning. The textual input is the concatenation of
each attribute preceded by each corresponding spe-
cial token (see Figure 3).

To accommodate multimodal training, we fol-
236

low Xing et al. (2021) in extracting n Regions of
Interest (RoIs) (i.e. bounding boxes) of the image
using detectron2, a pretrained masked R-CNN
(He et al., 2017).4 Formally, an Image I is chun-
ked by detectron2 into {RoI1,RoI2, ...,RoIn}.
We obtained a fixed-size latent representation
of each RoI based on intermediate features of
detectron2 (ResNet-101 (He et al., 2016)). To
align the embedding size with pretrained language
models we use a linear layer. Similar to the textual
input, we also introduce a special token [IMAGE]
that is concatenated at the beginning of the input.

For the target texts, we introduce special tokens
[BULLET POINTS] and [DESCRIPTION] as
the start token. Specifically, for bullet points, we
concatenate all points with token <q> as the sep-
arator. Finally, for the encoder-decoder, we use
BERT-base with raw decoder following (Liu and
Lapata, 2019), BART-base, and T5-base, and train
the model with standard cross-entropy loss.

5 Experiments

5.1 Set-Up
We experiment in three settings: (1) training with
the text input only; (2) training with the image
features only; and (3) multimodal training incorpo-
rating both text and image features, as depicted in
Figure 3. For the text features, we encode the text
using the three pretrained LMs of BERT, BART,
and T5, while for the other two we only experi-
mented with BART because of its higher perfor-
mance in the first experiment. For image feature ex-
traction, we experimented with {10, 20, 30, 40, 50}
RoIs, and tuned based on the development set. We
report results of 50 and 20 RoIs for the second and
third experiment, respectively.

For TITLE, KEYWORD, and other attributes, we
set the maximum token length to 30, 100, and 10
based on the statistics in Table 1. This results in a
maximum token length of 220 for the source text
(including the special tokens). For the two target
texts, we set the maximum token length to 250, and
train them separately. Our preliminary experiments
show that performing multi-task training (i.e. using
both target texts at the same time) performs worse
than single-task training.

We use the huggingface PyTorch framework
(Wolf et al., 2020) for our experiments with three
pretrained language models: BERT-base5 (Devlin

4https://github.com/facebookresearch/detectron2
5bart-base-uncased

et al., 2019), T5-base6 (Raffel et al., 2020), and
BART-base7 (Lewis et al., 2020a). All experiments
are run on 4×V100 16GB GPUs.

For the BERT model, we follow Liu and Lap-
ata (2019) in adding a randomly-initialized trans-
former decoder (layers = 6, hidden size = 768,
feed-forward = 2,048, and heads = 8) on top
of BERT, and train it for 200K steps. We
use the Adam optimizer and learning rate lr
= 2e−3 × min(step−0.5, step × 20, 000−1.5) and
0.1×min(step−0.5, step× 10, 000−1.5) for BERT
and the transformer decoder, respectively. We use
a warmup of 20,000, a dropout of 0.2, a batch size
total of 200 (10 × 4 GPUs × gradient accumula-
tion of 5), and save checkpoints every 10,000 steps.
We compute ROUGE scores (R1) to pick the best
checkpoint based on the development set.

For T5 and BART, we train them for 30 epochs
(around 20K steps) with an initial learning rate of
1e−4 (Adam optimizer). We use a total batch size
of 300 (15 × 4 GPUs × gradient accumulation of
5), a warmup of 10% of total steps, and save check-
points for every 1,000 steps. We also compute
ROUGE scores (R1) to pick the best checkpoint
based on the development set.

5.2 Evaluation

As discussed in Section 3, we use three differ-
ent test sets: main, Xtreme, and out-of-domain.
For automatic evaluation, we use ROUGE-1/2/L
(Lin, 2004), BLEU-4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and BERTScore
(Zhang et al., 2019b). For BERTScore we compute
the F1 score using roberta-large (layer 17)
as recommended by Zhang et al. (2019b).

For manual evaluation, we first obtain 50 ran-
dom samples for each of the three test sets, en-
suring there is no overlap between the main and
Xtreme test sets. We hire four expert workers with
Master degree qualifications to annotate four de-
scriptions for each product: (1) gold; (2) BART;
(3) BART+image; and (4) image only. The total
number of annotations is 2 workers × 4 models ×
150 samples × 2 descriptions = 2,400 annotations.
One worker was asked to work on either bullet
points or paragraph descriptions, and was paid $50.

There are five aspects that are manually eval-
uated by our workers: (1) Fluency: the descrip-
tion is fluent and grammatically correct; (2) At-

6t5-base
7facebook/bart-base

237

[TITLE] text [PART NUMBER] text [MODEL NUMBER] text
[CATEGORY] text [COLOR] text [BRAND] text [SIZE]
text [CLASSIFICATION] text [WEIGHT] text [KEYWORD] text

RoI1 RoI2 RoI3 ... RoI20

Text

Token embedding (TE)Masked R-CNNTE

Linear Layer

ENCODER

DECODER

target1: [BULLET POINTS] item1 <q> item2 <q> itemn </s>
target2: [DESCRIPTION] text </s>

ImageText

[IMAGE]

Figure 3: Model architecture used in this work.

Model Main Test Xtreme Test Out-of-domain Test Avg.
R-1 R-2 R-L B-4 M BS R-1 R-2 R-L B-4 M BS R-1 R-2 R-L B-4 M BS

BULLET POINTS

BERT 51.8 40.7 50.6 32.6 25.0 88.7 35.1 20.7 33.5 15.6 14.1 85.5 11.9 2.4 11.1 1.5 3.3 80.5 33.6
T5 45.4 34.7 44.1 30.6 28.9 87.4 28.2 30 31.1 13.4 13.3 83.4 12.6 4.2 10.8 2.3 4.4 79.2 32.4
BART 58.9 48.5 57.7 43.5 38.5 90.7 39.8 24.8 38.1 20.8 19.6 86.5 17.5 6.1 16.5 3.0 5.0 81.5 38.7

Image only 43.4 30.9 32.3 27.5 25.3 87.3 27.6 13.5 26.1 11.4 11.6 83.8 9.9 0.7 9.0 0.8 2.9 79.4 29.1
BART+Image 59.3 48.9 58.1 43.7 38.6 90.8 40.1 24.9 38.4 21.0 19.7 86.6 17.5 5.9 16.4 2.8 4.9 81.4 38.8

PARAGRAPH DESCRIPTIONS

BERT 41.0 30.1 35.5 24.2 19.4 86.4 27.5 15 21.4 10.9 10.5 83.3 10.9 1.5 7.2 0.9 2.5 79.6 28.2
T5 40.7 31.9 36.7 28.6 29.3 85.8 23.8 14.2 19.8 11.5 12.6 81.2 10.8 4.4 9.1 2.2 4.6 77.8 29.2
BART 54.8 45.1 50.1 40.2 37.7 90.1 36.1 22.6 29.5 18.3 18.2 85.9 16.5 5.6 12.0 2.8 5.5 81.1 36.2

Image only 41.1 29.4 35.4 26.6 25.6 86.9 24.7 10.9 18.2 9.1 10.1 83.1 12.2 0.8 7.4 0.8 3.3 79.9 28.1
BART+Image 54.9 45.3 50.3 40.4 37.9 90.2 35.8 22.4 29.3 18.3 18.0 85.8 17.2 5.6 12.3 2.7 5.6 81.5 36.3

Table 4: Main experimental results of automatic metrics. R-1, R-2, R-L, B-4, M, and BS are ROUGE-1, ROUGE-2,
and ROUGE-3, BLEU-4, METEOR, and BERTScore, respectively.

tractiveness: the description is interesting and eye-
catching; (3) Persuasive words: the description
uses persuasive words or phrases; (4) Faithfulness:
information in the description is captured by the
image and the attributes; and (5) Informativeness:
the description is informative and complete relative
to the available attributes. Except for the third as-
pect which is binary (yes/no), we use a slider scale
with values between 0–100 for all aspects.

In manual evaluation, workers were presented
the product image and list of text attributes with
four different descriptions. The four descriptions
are shuffled, so the model information of each de-
scription is not apparent to the worker. Workers
were asked to carefully read each description, and
then asked to put the evaluation scores in the avail-
able field.

5.3 Results

Table 4 shows the experimental results based
on the automatic metrics. Overall, we ob-
serve similar trends for both BULLET POINTS
and PARAGRAPH DESCRIPTIONS, namely that
BART is substantially better than T5 and BERT
across the three test sets. Using only image features
for generating both ad text types yields a compa-
rable score to T5, but tends to be lower for almost
all test sets and metrics. The multimodal training
(i.e. “BART+image”) slightly improves BART per-
formance for the main test set, but achieves mixed
results for the Xtreme and out-of-domain test sets
with both BULLET POINTS and PARAGRAPH
DESCRIPTIONS. We also observe that Xtreme
and the out-of-domain test sets are harder, with
high performance gaps, relative to the main test set.

238

Model Main Test Xtreme Test Out-of-domain Test Avg.
Flu. Att. Per. Fa. Inf. Flu. Att. Per. Fa. Inf. Flu. Att. Per. Fa. Inf.

BULLET POINTS

Gold 0.62 0.59 0.77 0.54 0.52 0.58 0.56 0.74 0.57 0.55 0.62 0.58 0.51 0.59 0.60 0.59
Image only 0.63 0.61 0.82 0.43 0.43 0.65 0.61 0.87 0.43 0.44 0.64 0.56 0.74 0.13 0.27 0.53
BART 0.63 0.59 0.78 0.56 0.53 0.61 0.58 0.64 0.58 0.56 0.48 0.42 0.27 0.53 0.52 0.55
BART+image 0.66 0.63 0.79 0.58 0.56 0.64 0.62 0.72 0.57 0.54 0.44 0.42 0.30 0.55 0.54 0.57

PARAGRAPH DESCRIPTIONS

Gold 0.82 0.52 0.29 0.60 0.48 0.74 0.46 0.31 0.53 0.47 0.84 0.49 0.18 0.52 0.48 0.44
Image only 0.77 0.43 0.29 0.42 0.38 0.81 0.43 0.34 0.43 0.41 0.74 0.25 0.20 0.17 0.16 0.33
BART 0.82 0.53 0.31 0.62 0.50 0.74 0.50 0.21 0.60 0.53 0.69 0.39 0.16 0.53 0.42 0.44
BART+image 0.81 0.53 0.33 0.60 0.51 0.76 0.52 0.23 0.59 0.53 0.71 0.41 0.15 0.56 0.41 0.45

Table 5: The primary experimental results for manual evaluation. Flu., Att., Per., Fa., and Inf. denote Fluency, At-
tractiveness, Persuasiveness, Faithfulness, and Informativeness, respectively. The presented scores are the average
of two annotations. Entries in bold refer to the best overall score (excluding Gold texts).

Aspects BULLET POINTS DESCRIPTION

Fluency 0.51 0.50
Attractiveness 0.50 0.42
Persuasiveness 0.39 0.32
Faithfulness 0.51 0.41
Informativeness 0.34 0.45

Table 6: Pearson correlation scores between two an-
notators in manual evaluation. For persuasiveness we
present the Kappa score.

For example, in BULLET POINTS, ROUGE-1 of
BART drops substantially by −19.1 and −41.4 in
the Xtreme and out-of-domain test sets, resp., im-
plying that the model does not generalize well to
different test sets.

In Table 6 we show the inter-annotator agree-
ment of manual evaluation in the form of Pearson
correlation for fluency, attractiveness, faithfulness,
and informativeness; and the Kappa score for per-
suasiveness. Overall, we found that annotators have
moderate correlation and agreement. In Table 5,
scores of the Gold text can be interpreted as the up-
per bound of the manual evaluation. Note that for
faithfulness and informativeness, these aspects are
only evaluated based on the ten selected attributes.

For the main and Xtreme test sets in Table 5,
most models generate fluent, attractive, persua-
sive, faithful, and informative texts for BULLET
POINTS and PARAGRAPH DESCRIPTIONS,
relative to the performance of the gold texts.
When using only image features (the “image only”
model), the model’s faithfulness and informative-
ness decrease markedly, indicating the importance
of textual attributes for this task. BART and

BART+image models yield comparable results
with the gold texts, with slightly better faithfulness
and informativeness.8

For the out-of-domain test set, we observe that
the human evaluation performance over the three
models (Image only, BART, and BART+image) is
generally lower than the gold text. Interestingly, we
find that the “image only” model generates fluent
and persuasive texts, but with substantially low
faithfulness and informativeness. It is also worth
mentioning that the BART model’s performance is
not as good as for the main test set, which indicates
the out-of-domain challenge in applying models in
real world scenarios.

In addition, we calculated the average perfor-
mance of the manual evaluation, and found that the
BART+image model performs best for both target
texts. These results are in line with the averaged
automatic evaluation scores in Table 4.

Based on the manual evaluation results in Ta-
ble 5, the relatively low faithfulness scores for the
gold texts (around 0.5–0.6) suggests that they con-
tain new information that is not found in the in-
put attributes. Although this means the gold texts
are not faithful, they are likely to be still factu-
ally correct, as they are written by the product
sellers (Maynez et al., 2020). Taking the faithful-
ness scores of the gold texts as the upper bound,
we could conclude that the BART models are per-
forming as well as they could (seeing that they are
trained on not very faithful target texts in the first
place). Ultimately, our results in this task high-

8These results are to be expected in the manual evaluation,
since both aspects are only examined based on the ten selected
attributes.

239

TITLE: Yosoo Digital Clock Portable
Electronic Bell with Backlight LCD Screen
Display Alarm Clock Car Desk Table
Decoration Clock(Pink)
PART NUMBER: Yosoo6wkf82orh7
CATEGORY: HOME
BRAND: Yosoo
CLASSIFICATION: base_product
WEIGHT: 43.0
KEYWORD: LCD Digital Clock, Digital
Alarm Clock, Portable Digital Clock,Table
Desk Digital Clock, Digital Clock

Gold:
Large LCD screen for an easy and accurate reading of time
Display the current time, week clearly, with alarm function and
snooze function
Press the light button at the back of the clock, the backlight will
bright 3 seconds or so, convenient for you to read time at night
Built with a clip and stand, you can put it on your desk or table
Light weight and compact size, multi-colors are available. A good
choice to improve concept of punctuality

Delivery Time 10-15 Days
Return Range 30 Days
If you have any questions, please feel free to contact us and we
will get back to you within 24 hours.
The clock is made of high-quality materials, durable and easy to
clean.

This digital clock is made of high quality materials, durable and easy
to clean.
The clock is equipped with backlight LCD screen display, which is
very convenient to read.
It can be used in bedroom, living room, kitchen, office, etc. It is also a
good gift for your family and friends.
If you have any questions, please feel free to contact us and we will
reply you within 24 hours.

TITLE: LJSWG Men's Oklahoma Flag
Oklahoma National T-shirt Asphalt L
CATEGORY: SHIRT
COLOR: Asphalt
BRAND: LJSWG
SIZE: Large
CLASSIFICATION: base_product
KEYWORD: Personalised Cheap Men Tee
Casual Cotton, Girls Games Plus Size Clothing
Captain America: Civil War AKON, Oklahoma
City

PARAGRAPH DESCRIPTION

Men's Oklahoma Flag Oklahoma National Custom Text, ID, Name Or
Message On High Quality Hanes Cotton T-Shirts. 100% Preshrunk
Cotton Takes The Worry Away From Shrunk-age. Seamless Rib At
Neck And Collar. Double-needle Stitching For Dorabiltiy. This Classic
Crew Neckline T-shirtis Is Great For Every Occasion And Situation.The
Design Is Printed With Advanced Printing Technology. It Is Printed
With A Water-soluble And Eco-friendly Ink.Trendy, Brightly Colored
Graphics. A Unique Gift Idea For A Friend Or Family Member.

100% Soft Cotton Fabric With A Soft Touch And Quality Printing
Techniques.It Will Never Fade, Peel Or Crack And Can Be Machine
Washed & Ironed.This Customized T Shirt Will Be The Best And
Sincere Gift For Your Family,friends And Team.

Oklahoma Flag Oklahoma National T-shirt. Art Heat Press Print On
Front. Wash Inside Out In Cold Water, Hand Dry Recommended. Most
Of Our Designs Are Available In Men`s Sizes.Please Check Our Store
For All Other Varieties.

BULLET POINTS

BART:

BART + image:

Gold:

BART:

BART + image:

Figure 4: Example of generated BULLET POINTS and PARAGRAPH DESCRIPTIONS.

lighted the fact that our current human faithful-
ness evaluation does not always capture factuality,
prompting further questions on how we can assess
this dimension, which we leave for future work.

Figure 4 depicts some example outputs of
the BART models for BULLET POINTS and
PARAGRAPH DESCRIPTIONS. The first exam-
ple shows that the prediction of the BART+image
model contains better content than the BART text-
only model, with a description of the LCD screen
and usage examples. Similarly in the second ex-
ample, the BART+image model generates more
specific content for the t-shirt product by mention-
ing Flag Oklahoma National.

6 Analysis

Which attributes contribute to ad generation?
To answer this question, we performed an ab-
lation study using the BART models. We de-
code both BULLET POINTS and PARAGRAPH
DESCRIPTIONS using different numbers of at-

tributes as context, and report the average auto-
matic performance in Table 7.

We observe there are three prominent at-
tributes for this task — TITLE, BRAND, and
KEYWORD — for both BULLET POINTS and
PARAGRAPH DESCRIPTIONS. Interestingly, us-
ing only TITLE can produce 32.98 and 29.93
average performance, and adding KEYWORD to
the input boosts performance by 11.05 and
10.57, for BULLET POINTS and PARAGRAPH
DESCRIPTIONS, respectively.

7 Discussion and Conclusion

In this work, we described the first attempt at mul-
timodal training for ad generation by incorporating
image representations and text embeddings as in-
put. We found that multimodal training yields the
best performance in terms of overall scores in the
both automatic and manual evaluation. We observe
that modern pretrained language models can gener-
ate fluent advertisements, but are less faithful and

240

Attributes (#Attr) BULLET POINTS PARAGRAPH DESCRIPTIONS

Avg. ∆ Avg. ∆

TITLE (1) 32.98 32.98 29.93 29.93
prev. + PRODUCT TYPE (2) 34.53 1.55 31.38 1.45
prev. + CLASSIFICATION (3) 34.53 0.00 31.38 0.00
prev. + BRAND (4) 39.75 5.22 39.33 7.95
prev. + KEYWORD (5) 50.80 11.05 49.90 10.57
prev. + COLOR (6) 51.63 0.83 50.15 0.25
prev. + SIZE (7) 53.15 1.52 51.03 0.88
prev. + PART NUMBER (8) 55.12 1.97 52.32 1.28
prev. + MODEL NUMBER (9) 56.30 1.18 52.77 0.45
prev. + WEIGHT (10) 56.30 0.00 52.77 0.00

Table 7: Ablation study on the main test set using BART by incrementally adding different attributes. Avg means
the average score of ROUGE-1, ROUGE-2, ROUGE-L, BLEU-4, METEOR, and BERTScore. ∆ means the
difference score between the given and previous row. The bold entries are the top-3 highest ∆ scores.

informative, especially in out-of-domain settings.
Can pretrained language models generate per-

suasive, faithful, and informative ad text for prod-
uct descriptions? The answer to this question is
yes to a certain extent, particularly for in-domain
scenarios. And although the BART models have
similar human faithfulness performance to the gold
texts, we believe that it does not necessarily imply
that they are factually correct and further validation
is necessary. One way forward may be to allow hu-
man judges to have access to some external knowl-
edge (e.g. search engines or product catalogues),
which will help them assess the factuality of the
generated texts.

Furthermore, since the product descriptions in
our e-commerce dataset might introduce new in-
formation, retrieval augmented generation (Lewis
et al., 2020b; Kim et al., 2020; Shuster et al., 2021)
is one potential direction for future work. This
is because information on some products is likely
to be available on the Internet, and incorporating
it into the generation model could potentially im-
prove the resulting ad text.

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Zhangming Chan, Yuchi Zhang, Xiuying Chen, Shen
Gao, Zhiqiang Zhang, Dongyan Zhao, and Rui Yan.
2020. Selection and generation: Learning towards

multi-product advertisement post generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3818–3829, Online. Association for Computa-
tional Linguistics.

Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia
Yang, Jingren Zhou, and Jie Tang. 2019. Towards
knowledge-based personalized product description
generation in e-commerce. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 3040–
3050.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Roxanne El Baff, Henning Wachsmuth, Khalid
Al Khatib, and Benno Stein. 2020. Analyzing the
Persuasive Effect of Style in News Editorial Argu-
mentation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3154–3160, Online. Association for Computa-
tional Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4319–4338, Online. Associa-
tion for Computational Linguistics.

241

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang,
and Kee-Eung Kim. 2020. End-to-end neural
pipeline for goal-oriented dialogue systems using
GPT-2. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 583–592, Online. Association for Com-
putational Linguistics.

Sadid A Hasan and Oladimeji Farri. 2019. Clini-
cal natural language processing with deep learning.
In Data Science for Healthcare, pages 147–171.
Springer.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask R-CNN. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 2961–2969.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
770–778.

Yunsen Hong, Hui Li, Yanghua Xiao, Ryan McBride,
and Chen Lin. 2021. SILVER: Generating persua-
sive Chinese product pitch. In PAKDD (2), pages
652–663. Springer.

Yashal Shakti Kanungo, Sumit Negi, and Aruna Ra-
jan. 2021. Ad headline generation using self-critical
masked language model. In Proceedings of the
2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies: Industry Papers,
pages 263–271, Online. Association for Computa-
tional Linguistics.

Jihyeok Kim, Seungtaek Choi, Reinald Kim Amplayo,
and Seung-won Hwang. 2020. Retrieval-augmented
controllable review generation. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 2284–2295, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020b. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. Advances
in Neural Information Processing Systems, 33:9459–
9474.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99, Suntec, Sin-
gapore. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Kelvin Luu, Chenhao Tan, and Noah A. Smith. 2019.
Measuring online debaters’ persuasive skill from
text over time. Transactions of the Association for
Computational Linguistics, 7:537–550.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Pooya Moradi, Nishant Kambhatla, and Anoop Sarkar.
2021. Measuring and improving faithfulness of at-
tention in neural machine translation. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 2791–2802, Online. Associa-
tion for Computational Linguistics.

Vitobha Munigala, Abhijit Mishra, Srikanth G Tamil-
selvam, Shreya Khare, Riddhiman Dasgupta, and
Anush Sankaran. 2018. Persuaide! an adaptive per-
suasive text generation system for fashion domain.
In Companion Proceedings of the The Web Confer-
ence 2018, pages 335–342.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with entity modeling. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2023–2035, Florence, Italy. Association for Compu-
tational Linguistics.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming

242

Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-SequencePre-training. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2401–2410, Online. Associa-
tion for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Ines Rehbein. 2019. On the role of discourse relations
in persuasive texts. In Proceedings of the 13th Lin-
guistic Annotation Workshop, pages 144–154, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784–3803, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Jinpeng Wang, Yutai Hou, Jing Liu, Yunbo Cao, and
Chin-Yew Lin. 2017. A statistical framework for
product description generation. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 187–192, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu,
and Changyou Chen. 2020. Towards faithful neural
table-to-text generation with content-matching con-
straints. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1072–1086, Online. Association for Computa-
tional Linguistics.

Zhongyu Wei, Yang Liu, and Yi Li. 2016. Is this post
persuasive? ranking argumentative comments in on-
line forum. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 195–200, Berlin,
Germany. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Yiran Xing, Zai Shi, Zhao Meng, Gerhard Lakemeyer,
Yunpu Ma, and Roger Wattenhofer. 2021. KM-
BART: Knowledge enhanced multimodal BART for
visual commonsense generation. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 525–535, Online.
Association for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In ICML 2020: 37th International Conference on
Machine Learning, volume 1, pages 11328–11339.

Tao Zhang, Jin Zhang, Chengfu Huo, and Weijun Ren.
2019a. Automatic generation of pattern-controlled
product description in e-commerce. In The World
Wide Web Conference, pages 2355–2365.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019b. BERTScore:
Evaluating text generation with BERT. In Interna-
tional Conference on Learning Representations.

243

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 244 - 249
May 26, 2022 c©2022 Association for Computational Linguistics

A Simple Baseline for Domain Adaptation in End to End ASR Systems
Using Synthetic Data

Raviraj Joshi
Flipkart, Bengaluru

raviraj.j@flipkart.com

Anupam Singh
Flipkart, Bengaluru

anupam.s@flipkart.com

Abstract

Automatic Speech Recognition(ASR) has been
dominated by deep learning-based end-to-end
speech recognition models. These approaches
require large amounts of labeled data in the
form of audio-text pairs. Moreover, these mod-
els are more susceptible to domain shift as com-
pared to traditional models. It is common prac-
tice to train generic ASR models and then adapt
them to target domains using comparatively
smaller data sets. We consider a more extreme
case of domain adaptation where text-only cor-
pus is available. In this work, we propose a
simple baseline technique for domain adapta-
tion in end-to-end speech recognition models.
We convert the text-only corpus to audio data
using single speaker Text to Speech (TTS) en-
gine. The parallel data in the target domain
is then used to fine-tune the final dense layer
of generic ASR models. We show that single
speaker synthetic TTS data coupled with final
dense layer only fine-tuning provides reason-
able improvements in word error rates. We
use text data from address and e-commerce
search domains to show the effectiveness of
our low-cost baseline approach on CTC and
attention-based models.

1 Introduction

End-to-end speech recognition models simplify
the speech recognition process by folding multi-
ple components into a single model. These models
directly convert the speech utterance into the spo-
ken text (He et al., 2019). The major end-to-end
architectures include CTC-based, attention-based,
and transducer-based approaches (Graves et al.,
2013; Graves, 2012; Chan et al., 2015). These all
neural approaches are competitive in terms of per-
formance however they require a large amount of
supervised data to achieve generalization. A model
trained on a single application domain doesn’t work
well on other target domains. Examples of such
applications domains include e-commerce, voice

search, medical, etc. Since it is not feasible to
prepare supervised data for all the application do-
mains, it is common to train models on large out
of domain corpus followed by a small amount of
in-domain finetuning (Bell et al., 2020). However,
this approach still requires the availability of small
labeled data. In the most basic form, the unla-
belled text data from the target domain can be used
to build domain-specific language models (LMs).
The domain LMs are combined with the end-to-end
ASR model using shallow fusion (Kannan et al.,
2018; Shan et al., 2019; Meng et al., 2021). This
approach has limited benefits since the main ASR
model is not tuned to the target domain. Another
popular technique is to prepare synthetic data us-
ing a Text to Speech (TTS) system and the target
domain text data (Sim et al., 2019). This requires a
sophisticated multi-speaker TTS system followed
by the addition of representative noise to make the
data usable. The idea is to make synthetic data
as close as the real-world data. However, this ap-
proach is prone to overfitting as the synthetic data
does not exactly resemble real-world noisy condi-
tions. Different fine-tuning approaches have been
explored using synthetic data to alleviate the over-
fitting problem.

In this work, we are concerned with domain
adaptation techniques when a text-only corpus
from the target domain is available (Gao et al.,
2021). We present a simple baseline approach us-
ing single speaker synthetic TTS data followed by
final dense layer only fine-tuning. The synthetic
data is created using a single speaker TTS system
which is commonly available and also easier to
build in-house. The data is not subjected to any
noise and is directly used to fine-tune the neural
network. Although such single speaker data is easy
to build it is not usable for the training of end-
to-end networks. We, therefore, propose dense-
only fine-tuning for effective fine-tuning. The ap-
proach solely relies on final dense layer fine-tuning

244

to avoid over-fitting on single speaker and acoustic
conditions. We refer to the dense layer project-
ing the intermediate embedding onto vocabulary
space as the final dense layer. Since the acoustic
encoder of the neural network is frozen, the net-
work only learns about the linguistic characteristic
of the target domain. Similar approaches have been
explored in literature where only the decoder part
of the neural network is fine-tuned. However, this
approach is not applicable to CTC-based neural
networks (Graves et al., 2006) which do not follow
an encoder-decoder architecture. We present our
approach in the context of CTC and Listen-Attend-
Spell (LAS) based neural network architectures.
For LAS-based network, we also compare dense
only and decoder only fine-tuning. We consider
the text from address (for delivery of e-commerce
products) domain and voice search (of e-commerce
products) domain (Joshi and Kannan, 2021) for
fine-tuning the model trained on a generic multi-
domain dataset. Although encoder only fine-tuning
has been widely studied in the literature (Mimura
et al., 2018), this is the first work to exploit dense-
only fine-tuning which is more relevant to the CTC-
based systems. Moreover, we demonstrate a way
to build an ASR system for the Address domain
which is not explored in the literature.

2 Related Work

Our work is at the intersection of data augmenta-
tion using the TTS system and domain adaptation.
In this section, we review the recent work in these
two areas. The synthetic data generated using the
TTS system was used to improve the recognition
of out of vocabulary (OOV) words in (Zheng et al.,
2021). Both synthetic data containing OOV words
and original data were used together to train the
best RNN-T model. Encoder freezing and elastic
weight consolidation were further shown to provide
extra benefits. Similarly, (Peyser et al., 2019) used
a TTS system to generate numeric training data
and improve the ASR performance on the out of
vocabulary numeric sequences. The importance of
data augmentation over semi-supervised learning
was shown in (Laptev et al., 2020). In this work,
the TTS system was trained on the same supervised
ASR data set and used to generate synthesized sam-
ples on a wider set. The work also highlights the im-
portance of multi-speaker TTS systems and noise
addition to build usable systems. Other data aug-
mentation techniques like spec augment (Park et al.,

2019) were shown to be complementary with TTS
based augmentation in (Rossenbach et al., 2020).
Effective training strategies for using synthetic data
were proposed in (Fazel et al., 2021). In order to
avoid catastrophic forgetting, multi-stage training
was used. The encoder layers were frozen in the
initial stage followed by full fine-tuning in later
stages. An elastic penalty was also added to the
loss function so to avoid large deviation in learned
parameters.

Similar approaches have been proposed for do-
main adaptation as well with a bais towards fine-
tuning based transfer learning approaches. An
LSTM-based domain classifier was trained to se-
lect an appropriate domain adapted language model
in (Liu et al., 2021). The corresponding domain-
specific language model was used for second pass
re-scoring. The transfer learning approaches for
domain adaptation and cross-language adaptation
were evaluated in (Huang et al., 2020). They com-
pare the fine-tuning of the pre-trained QuartzNet
model with the corresponding model trained from
scratch. They concluded that large pre-trained mod-
els performed better than small pre-trained models
and the models trained from scratch. Another form
of transfer learning involves partial fine-tuning of
the model instead of the entire model. The decoder
only fine-tuning for domain adaptation in Listen-
Attend-Spell (LAS) based model was evaluated in
(Ueno et al., 2018). The model is first trained on
the source domain followed by decoder only fine-
tuning on the target domain. The partial fine-tuning
is shown to work better than the full fine-tuning
and from the models trained from scratch. An adap-
tation technique specific to RNN-T networks using
text-only data was proposed in (Pylkkönen et al.,
2021). The prediction network of RNN-T is viewed
as a neural language model and is adapted using
text-only corpus while keeping the encoder and
joint network fixed. Another approach for adapting
RNN-T network using text-only data was proposed
in (Li et al., 2020). The fine-tuning of prediction
and the joint network was performed using syn-
thetic TTS domain-specific data. Partial fine-tuning
was shown to work better than full fine-tuning ap-
proaches. These works mainly used RNNT-based
systems and employ a multi-context multi-speaker
TTS system. In this work, we use a single speaker
TTS system with a focus on CTC and attention-
based models. Moreover, we focus on dense only
fine-tuning instead of decoder fine-tuning studied

245

in these works.

3 Methodology

The flow of our process is depicted in Figure 1.
We follow a simple pre-training and fine-tuning
approach. The model is first trained on general
out-of-domain data. The target domain text data
is converted into audio using a single speaker TTS
engine. The synthetic samples are then used to
fine-tune the final dense layers of ASR models. We
consider two model types i.e CTC based models
and Attention-based models. The model architec-
ture and TTS system description are provided in
the following sub-sections.

3.1 Model Architecture

We consider CTC and attention-based ASR models
which follow the same pre-processing steps (Joshi
and Kannan, 2021). The audio is segmented into
20ms chunks with an overlap of 10ms. Log-mel
features are computed and provided as input to the
model. Standard spec-augment is used for time
and frequency masking of the spectrograms (Park
et al., 2019). An 80-dimensional log mel feature is
computed per time step. Three consecutive features
are stacked to give a final feature of size 240. The
output vocabulary size consists of sub-word units
of size 5000. The sentence piece library is used to
train the subword model using the generic out-of-
domain data (Kudo, 2018).

The CTC-based model consists of a series of
stacked LSTM layers followed by a final dense
layer projecting the hidden vectors onto the vocab-
ulary space. The LSTM consists of 700 units at all
levels. A total of 12 LSTM layers are present with
a final dense layer of size 700 x 5001. The final
vocabulary element is reserved for the blank token.
The CTC loss function is used to train the model.

The attention-based model follows a transformer
LAS architecture. It consists of 10 encoder layers
and 2 decoder layers. All the layers are standard
transformer blocks. The internal model dimension
is 512 units and the feed-forward dimension is 2048
units. Each block has 4 attention heads with 1024
units each. The final dense layer on the decoder
side has a size of 512 x 5000. The same generic
vocabulary is used for all the experiments. This
sequence to sequence model is trained using the
cross-entropy loss function.

A single speaker TTS system is used to gen-
erate the synthetic data. The system is based

Figure 1: Domain Adaptation Process

on Tacotron2 architecture (Shen et al., 2018)
and a Clarinet (Ping et al., 2018) based vocoder.
The Tacotron2 sub-system converts a sequence
of phonemes to a mel-spectrogram. The gener-
ated mel-spectrogram is converted into a time-
domain using a Clarinet-style vocoder. In-house
single speaker studio recordings are used to train
this model. Both Hindi and English queries were
recorded using the voice of the same artist and
the text was represented in Devnagari script. The
TTS system could therefore be used to convert both
English and Hindi text to audio.

3.2 Dataset Details
The train data consists of a multi-domain generic
audio corpus and two domain-specific synthetic
data sets. The generic data consists of crowd-
sourced read speech corpus. It consists of around 4
million samples amounting to 6500 hours of data.
The domain-specific data were synthetically cre-
ated using a single speaker TTS engine. The two
domains under consideration are the voice search
domain and address domain. The search domain
corresponds to the Flipkart e-commerce product
search domain. The address domain corresponds
to the pan India delivery address. Both the do-
mains contain around 3 million samples which are
approximately 4000 hours of data for VS domain
and 5000 for the address domain. The address
domain queries are longer as compared to voice
search queries. All the datasets consist of queries
in both English and Hindi. All the text is repre-
sented in the Devanagari script. The test data was
real-world domain-specific data recorded on the
Flipkart application. The test data is multi-speaker

246

Model Test WER Test WER +
LM Rescoring

N-Best WER

LAS-Gen 25.31 22.18 13.71
LAS-Dense 16.25 15.55 7.6

LAS-Decoder 13.65 13.36 5.82
CTC-Gen 31.84 25.58 13.83

CTC-Dense 20.32 17.66 8.24

Table 1: Word Error Rate(WER) for different model variations using Voice Search Domain. The N-Best WER
indicates the best WER in the top N=10 beams.

Model Test WER Test WER +
LM Rescoring

N-Best WER

LAS-Gen 39.42 31.62 25.35
LAS-Dense 22.57 16.38 11.01

LAS-Decoder 18.96 12.54 8.17
CTC-Gen 31.08 22.81 19.74

CTC-Dense 22.43 15.42 12.15

Table 2: Word Error Rate(WER) for different model variations using Address Domain. The N-Best WER indicates
the best WER in the top N=10 beams.

data recorded in a noisy environment and it is very
different than the single speaker TTS data recorded
in noise-free studio settings. The test audio data
was manually transcribed by the operations team.
The voice search test data consisted of 25000 ex-
amples and address test data had 7000 examples.
Except for linguistic overlap, the synthetic train
and real test datasets represent completely different
environments, and hence improvements reported
in this work are not dependent on the quality of the
TTS system as long as it is a single speaker.

4 Results

In this work, we evaluate dense only fine-tuning
baseline for CTC and attention-based models. The
domain adaptation approach is presented on two
datasets from voice search and address domain.
The word error rates(WER) is used to compare the
different approaches. The WER is word-level Lev-
enshtein distance between ground truth text and
output text. The results for voice search domain
and address domain are shown in Table 1 and Table
2 respectively. The models are first trained on the
generic multi-domain dataset and represented as
CTC-Gen and LAS-Gen. These pre-trained models
are then fine-tuned single speaker synthetic dataset.
We show that dense only fine-tuning provides con-
siderable improvement in accuracy while at the
same time avoiding over-fitting on single speaker

data. The dense-finetuned models are referred to
as CTC-Dense and LAS-Dense. We also evaluate
decoder-only fine-tuning for LAS models termed
as LAS-Decoder. We report WER with and with-
out external language model rescoring. A kenLM
based language model is trained using text tran-
scripts for both the domains individually. The N-
Best WER is computed by picking the best beam
from the top N=10 beam elements.

The results show that LAS-Dense provides
around 30% relative improvement in WER over
LAS-Gen for VS domain and around 50% relative
improvement for the address domain. The LAS-
Decoder further improves the results by 14% for
VS domain and 23% for the address domain. Simi-
larly, CTC-Dense provides an improvement of 30%
and 32% for VS and address domain respectively
over CTC-Gen. Note that the WER of LAS-Gen
evaluated on address domain is considerably high
as compared to VS domain. Moreover, this sim-
ple fine-tuning and LM-rescoring provides high
improvements in WER. This shows that the text
distribution of address data is very different from
the initial multi-domain data. Also, the variety of
named entities is very high in address data as com-
pared to VS data. Overall we show that dense only
fine-tuning can provide us a reasonable baseline
for domain adaptation. For encoder-decoder ar-
chitectures, decoder fine-tuning serves as a better
option. This is expected as the encoder part can

247

also be seen as the acoustic network is frozen and
the decoder network which can be seen as a contex-
tual language model is fine-tuned. For CTC-based
networks, we observe that extending fine-tuning
to even a single lower LSTM layer results in over-
fitting and degradation in performance. Therefore
for CTC networks dense only fine-tuning is the
optimal approach to avoid over-fitting.

5 Conclusion

In conclusion, we demonstrate a simple baseline ap-
proach for domain adaptation using a text-only cor-
pus from the target domain. We show that the final
dense layer only fine-tuning using single speaker
TTS data provides considerable improvements over
the generic model. The results are shown on two
different domains of voice search and address do-
main. For both CTC and attention-based models
we show that dense-only fine-tuning is a reason-
able approach for domain adaptation. Although the
technique is more relevant to CTC-based models it
can also be used with encoder-decoder type mod-
els. For encoder-decoder models, the decoder only
fine-tuning performs better.

References
Peter Bell, Joachim Fainberg, Ondrej Klejch, Jinyu Li,

Steve Renals, and Pawel Swietojanski. 2020. Adap-
tation algorithms for neural network-based speech
recognition: An overview. IEEE Open Journal of
Signal Processing, 2:33–66.

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol
Vinyals. 2015. Listen, attend and spell. arXiv
preprint arXiv:1508.01211.

Amin Fazel, Wei Yang, Yulan Liu, Roberto Barra-
Chicote, Yixiong Meng, Roland Maas, and Jasha
Droppo. 2021. Synthasr: Unlocking synthetic
data for speech recognition. arXiv preprint
arXiv:2106.07803.

Changfeng Gao, Gaofeng Cheng, Runyan Yang, Han
Zhu, Pengyuan Zhang, and Yonghong Yan. 2021.
Pre-training transformer decoder for end-to-end asr
model with unpaired text data. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6543–6547.
IEEE.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data

with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. Ieee.

Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian
McGraw, Raziel Alvarez, Ding Zhao, David Rybach,
Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al.
2019. Streaming end-to-end speech recognition for
mobile devices. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6381–6385. IEEE.

Jocelyn Huang, Oleksii Kuchaiev, Patrick O’Neill, Vi-
taly Lavrukhin, Jason Li, Adriana Flores, Georg Kuc-
sko, and Boris Ginsburg. 2020. Cross-language trans-
fer learning, continuous learning, and domain adap-
tation for end-to-end automatic speech recognition.
arXiv preprint arXiv:2005.04290.

Raviraj Joshi and Venkateshan Kannan. 2021. Atten-
tion based end to end speech recognition for voice
search in hindi and english. In Forum for Information
Retrieval Evaluation, pages 107–113.

Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N
Sainath, Zhijeng Chen, and Rohit Prabhavalkar. 2018.
An analysis of incorporating an external language
model into a sequence-to-sequence model. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5828.
IEEE.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75.

Aleksandr Laptev, Roman Korostik, Aleksey Svischev,
Andrei Andrusenko, Ivan Medennikov, and Sergey
Rybin. 2020. You do not need more data: Improving
end-to-end speech recognition by text-to-speech data
augmentation. In 2020 13th International Congress
on Image and Signal Processing, BioMedical Engi-
neering and Informatics (CISP-BMEI), pages 439–
444. IEEE.

Jinyu Li, Rui Zhao, Zhong Meng, Yanqing Liu,
Wenning Wei, Sarangarajan Parthasarathy, Vadim
Mazalov, Zhenghao Wang, Lei He, Sheng Zhao,
et al. 2020. Developing rnn-t models surpassing
high-performance hybrid models with customization
capability. arXiv preprint arXiv:2007.15188.

Linda Liu, Yile Gu, Aditya Gourav, Ankur Gandhe,
Shashank Kalmane, Denis Filimonov, Ariya Rastrow,
and Ivan Bulyko. 2021. Domain-aware neural lan-
guage models for speech recognition. In ICASSP

248

2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
7373–7377. IEEE.

Zhong Meng, Sarangarajan Parthasarathy, Eric Sun,
Yashesh Gaur, Naoyuki Kanda, Liang Lu, Xie Chen,
Rui Zhao, Jinyu Li, and Yifan Gong. 2021. Inter-
nal language model estimation for domain-adaptive
end-to-end speech recognition. In 2021 IEEE Spo-
ken Language Technology Workshop (SLT), pages
243–250. IEEE.

Masato Mimura, Sei Ueno, Hirofumi Inaguma, Shin-
suke Sakai, and Tatsuya Kawahara. 2018. Leveraging
sequence-to-sequence speech synthesis for enhanc-
ing acoustic-to-word speech recognition. In 2018
IEEE Spoken Language Technology Workshop (SLT),
pages 477–484. IEEE.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Cal Peyser, Hao Zhang, Tara N Sainath, and Zelin
Wu. 2019. Improving performance of end-to-
end asr on numeric sequences. arXiv preprint
arXiv:1907.01372.

Wei Ping, Kainan Peng, and Jitong Chen. 2018. Clar-
inet: Parallel wave generation in end-to-end text-to-
speech. arXiv preprint arXiv:1807.07281.

Janne Pylkkönen, Antti Ukkonen, Juho Kilpikoski,
Samu Tamminen, and Hannes Heikinheimo.
2021. Fast text-only domain adaptation of rnn-
transducer prediction network. arXiv preprint
arXiv:2104.11127.

Nick Rossenbach, Albert Zeyer, Ralf Schlüter, and
Hermann Ney. 2020. Generating synthetic audio
data for attention-based speech recognition systems.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7069–7073. IEEE.

Changhao Shan, Chao Weng, Guangsen Wang, Dan
Su, Min Luo, Dong Yu, and Lei Xie. 2019. Compo-
nent fusion: Learning replaceable language model
component for end-to-end speech recognition system.
In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5361–5635. IEEE.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
et al. 2018. Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4779–4783.
IEEE.

Khe Chai Sim, Françoise Beaufays, Arnaud Benard,
Dhruv Guliani, Andreas Kabel, Nikhil Khare, Tamar
Lucassen, Petr Zadrazil, Harry Zhang, Leif Johnson,
et al. 2019. Personalization of end-to-end speech
recognition on mobile devices for named entities. In
2019 IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), pages 23–30. IEEE.

Sei Ueno, Takafumi Moriya, Masato Mimura, Shinsuke
Sakai, Yusuke Shinohara, Yoshikazu Yamaguchi,
Yushi Aono, and Tatsuya Kawahara. 2018. Encoder
transfer for attention-based acoustic-to-word speech
recognition. In INTERSPEECH, pages 2424–2428.

Xianrui Zheng, Yulan Liu, Deniz Gunceler, and Daniel
Willett. 2021. Using synthetic audio to improve the
recognition of out-of-vocabulary words in end-to-end
asr systems. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5674–5678. IEEE.

249

Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 250 - 262
May 26, 2022 c©2022 Association for Computational Linguistics

Lot or Not: Identifying Multi-Quantity Offerings in E-Commerce

Gal Lavee
eBay Research

glavee@ebay.com

Ido Guy
Ben-Gurion University of the Negev

idoguy@acm.org

Abstract

The term lot in e-commerce is defined to mean
an offering that contains a collection of mul-
tiple identical items for sale. In a large on-
line marketplace, lot offerings play an impor-
tant role, allowing buyers and sellers to set
price levels to optimally balance supply and
demand needs. In spite of their central role,
e-commerce platforms often struggle to iden-
tify lot offerings, since explicit lot status iden-
tification is frequently not provided by sellers.
The ability to identify lot offerings plays a key
role in many fundamental e-commerce tasks,
from matching offerings to catalog products,
through ranking e-commerce search results, to
providing effective pricing guidance. In this
work, we seek to determine the lot status (and
lot size) of each offering, in order to facilitate
an improved buyer experience, while reducing
the friction for sellers posting new offerings.
We demonstrate experimentally the ability to
accurately classify offerings as lots and pre-
dict their lot size using only the offer title, by
adapting state-of-the-art natural language tech-
niques to the lot identification problem.

1 Introduction

The term lot has its origins in the world of live
auctions, where it describes the atomic unit for sale.
Each such lot usually has an associated multiplicity
(or lot size). In global e-commerce marketplaces,
the variety of products for sale is several orders of
magnitude larger than that of live auctions. In this
latter setting, the atomic unit for sale is referred to
as an offering or listing , and does not usually have
an associated multiplicity (i.e., only one object is
for sale). Thus, in the e-commerce setting, the term
lot (or lot offering) is redefined to describe those
offerings that contain a collection of multiple iden-
tical items. That is, not every offering is a lot. We
further define the term lot size as the multiplicity
of identical items in the collection for sale.

We adopt the definition for a lot offering given
by eBay in its guidelines1 to sellers:

A "lot" is a group of similar or identical
items that are sold together to one buyer

Amazon uses a similar definition for the related
term multi-packs.2

Lots, or multi-packs, are distinguished from
bundle offerings, which contain multiple distinct
(rather than identical) items (Tzaban et al., 2020).

The ability to list lot offerings provides great
flexibility to sellers. One reason for this is that
many products come from the manufacturer as lots
(e.g., a box of pencils). Another reason is that lot
offerings provide the seller an additional degree
of freedom (the lot size), in addition to price, to
maximize marketplace value by adapting to the
demand of the market for their particular product.

Online marketplaces strive to distinguish be-
tween lot and non-lot offerings for several reasons.
The first reason is to enable discovery of lot offer-
ings as first class citizens in the electronic market-
place. That is, a local retail entrepreneur may be
looking for lots of products independent of what
the actual product happens to be, seeking to gain
profit by buying lots and reselling the component
items individually.

Another important scenario is allowing price-per-
unit comparison in aggregate. E-Commerce buyers,
seeking the best value, may be willing to consider
purchasing a larger quantity of a product in return
for a per-unit discount. Consider the offerings for
protective masks depicted in Figure 1. Without
detecting and considering the lot size of these com-
parable offerings, it is difficult for a customer to
recognize that some offers cost much more on a
per unit basis.

1https://www.ebay.com/pages/cn/help/
sell/contextual/lots.html

2https://tinyurl.com/y6kej274

250

Figure 1: A comparison of lot offerings for protec-
tive masks across 3 e-commerce sites: ebay.com,
amazon.com, and walmart.com The price per unit
varies across these offerings from $0.40 to $5.00.

This work is motivated to automatically detect
lot offerings, but a critical reader may ask, why
not ask the sellers to explicitly designate their lot
offerings (and provide an explicit lot size)? In fact,
such an option does exist on many e-commerce
platforms. eBay3 , for example, has a standalone
interface for sellers to input lot entries. Unfortu-
nately, the adoption of this feature among the seller
population is quite low. While sellers often have
an incentive to clearly designate their offering as a
lot, in practice interfaces to specify structured lot
metadata are difficult to navigate. These interfaces
are often unfamiliar to sellers and not standardized
across marketplaces. This issue becomes more
acute when sellers upload their offerings in (of-
ten large) batches, using a non-visual interface, to
multiple marketplaces.

Rather than mark the offering as a lot explicitly,
a common practice of many e-commerce sellers is
to declare the lot status (and lot size) in the offering
title using natural language. Since the title field ex-
ists across all e-commerce platforms and is promi-
nently displayed to potential buyers, sellers can
apply this technique to convey important offering
information (such as lot status and size), without
needing to understand the nuance of any particular
marketplace interface, as well as its own terminol-
ogy and attribute definitions. Table 1 illustrates
example titles of lot offerings, which were not ex-
plicitly designated as lot offerings by the sellers.
The examples in the table demonstrate the diversity
of offerings that contain lots and the unique and
colorful language of jargon and abbreviations to
specify the lot status (and lot size) of the offering.

In this work, we seek to determine the lot status
(and lot size) of each offering, in order to facil-

3https://pages.ebay.com/sell/lots/

itate the scenarios enumerated above for buyers,
while reducing the friction for sellers. Although
e-commerce offerings contain multiple sources of
information (e.g. images, descriptions, etc.) our
methods focus exclusively on the offering title.
The first reason for this is the presence of pow-
erful natural language cues for lot status and size.
This is anecdotally demonstrated in Table 1. An-
other reason is broad applicability: while many
offerings are incomplete to some degree, with lack-
ing or altogether-missing attributes (Ghani et al.,
2006), descriptions (Novgorodov et al., 2019) and
images (Goswami et al., 2012), the vast majority
of offerings contain a valid title. We show exper-
imentally that methods based on recent advances
in natural language processing, but adapted to the
problem of lot identification, are able to achieve
high-performance on our tasks of interest.

Our main contributions can be summarized as
follows:

• We introduce the first comprehensive study of
lot identification in e-commerce.

• We release a dataset with nearly 20,000 offering
titles across multiple categories, each labeled
with lot status and lot size.

• We propose an adaptation of the naive regres-
sion approach to lot-size prediction, based on
binary sequence models, which achieves high
accuracy on this task.

• We empirically evaluate the performance of our
proposed approach across several e-commerce
domains and compare performance of several
state-of-the-art methods.

2 Related Work

In this work, we apply a variety of natural language
processing methods to offering titles to address the
lot identification task. Accordingly, we review re-
lated work in two areas: research related to lots or
multipacks in electronic commerce, and text repre-
sentation and classification approaches relevant to
our task.

2.1 Lots in E-Commerce
Despite their central role in online marketplaces,
the current literature on lots or multipacks is very
sparse. In a study from 1996, Lindskog and Lund-
gren (Lindskog and Lundgren, 1996) examined the
use of multipacks in 41 physical stores in the UK

251

Table 1: Examples of lot offering titles. The lot size (highlighted for emphasis) is often included somewhere in the
title in sometimes colorful shorthand.

Lot Size Title Category

3 Lot of 3 Vtg. 1974 ENESCO IMPORT Rustic Metal Sculptures Wagon Telephone MailBox Collectibles
5 5 PACKETS EPIL-STOP PERFECT FINISH NEUTRALIZING AFTER WASH FREE SHIPPING USA NEW Health & Beauty
20,000 Antique German Doubled Baked Ceramic Bricks 20000 pcs Antiques
1000 (1000) CD Disc Jewel Case Bin Divider Cards - 5-5/8"x6" - White HEAVY DUTY 30mil Music
2 Genuine OEM 2 Pack Canon PG-220 Black PGI-220BK Ink Tank NEW Computers/Tablets & Networking
22 ALL BRAND NEW...LOT OF 22 KIDS GIFT ITEMS Toys & Hobbies
50 Varian 1210-2046 Analytichem Bond Elut box of 50 SEALED BOX Business & Industrial
28 LOT 28x 459512-002 375863-010 HP 146GB 3G SAS 10K SFF 2.5" HDD HARD DRIVE NR Computers/Tablets & Networking
2 Pier 1 Curtain Panels (set of 2) gold, burgundy, green with geo design 84" long Home & Garden

and Sweden. They discussed the different bene-
fits, mostly related to production costs, packaging,
storage, distribution, and increased sales due to
the discounted prices. In their work on matching
offerings to catalog products, Shah et al. (Shah
et al., 2018) note that lots make data ambiguous,
since, for example, “a number in a product de-
scription could refer to a lot quantity or variation
of product edition”. They state that such product
offerings exhibit another level of complexity and
require special treatment or a separate model to
identify, but do not further explore this task. Zentes
et al. (Zentes et al., 2017) mention multipacks as
one of the main strategies for price reductions, but
do not further characterize it compared to other
promotion approaches, such as coupons or price
packs.

A key research challenge in the e-commerce do-
main is the extraction of structured key-value at-
tributes, such as brand, model, size, or color, from
the titles of products or offerings.Techniques to
approach this general problem vary from using
attribute-specific gazetteers to applying sequence
labeling for named entity recognition, as well as
applying ideas from search and question answer-
ing (Ghani et al., 2006; More, 2016; Putthividhya
and Hu, 2011; Xu et al., 2019; Wang et al., 2020).
The lot identification task could be modeled as the
extraction of a binary attribute. One of the main
studies in the area mentions “package quantity” as
an example attribute (More, 2016), but does not
further explore its extraction.

Related areas of study in the commerce litera-
ture are “bundling” (Adams and Yellen, 1976; Han-
son and Martin, 1990; Yadav, 1994; Tzaban et al.,
2020), tying together multiple distinct products,
and “price packs” (Kwok and Uncles, 2005; Tellis,
1998), which are monetary promotions that offer
savings by combining multiple items.

2.2 Text Representation and Classification

The literature on representation and classification
of text data spans many disciplines and several
decades. For a recent general survey on text clas-
sification the reader is referred to (Kowsari et al.,
2019). Specific applications of these methods in-
clude document retrieval (Schütze et al., 2008), doc-
ument categorization (Sebastiani, 2002) , question
answering (Rajpurkar et al., 2018), and sentiment
analysis (et al., 2002). The research area of text
representation is devoted to methods for encoding
a passage of text data in a machine-interpretable
way. Most methods involve tokenization (Manning
et al., 2014), breaking up a document into a col-
lection of substrings, often corresponding to the
words or word combinations in the document.

Word embedding has been an area of study
that produces models, such as word2vec (Le and
Mikolov, 2014; Mikolov et al., 2013), which in-
clude a distributed representation of words as part
of their learned output. Other popular embed-
ding models include dependency-based embed-
ding (Levy and Goldberg, 2014) and GloVe (Pen-
nington et al., 2014).

Language Modeling considers the problem of
predicting unseen texts from context. Early lan-
guage models were based on word and n-gram
frequency (Jelinek and Mercer, 1980; Katz, 1987).
Neural language modeling (Bengio et al., 2000)
uses fully connected neural nets to predict the next
word in a sentence. Other works propose models
that use word-embedding resemblance in a similar
setup (Le and Mikolov, 2014; Mikolov et al., 2013).
Language models applying recurrent neural archi-
tectures are proposed in (Graves, 2013) (RNN) and
(Merity et al., 2018a) (LSTM). These approaches
also learn word embeddings as a component of
their network architecture. A more recent architec-
ture for language modeling that has gained much
popularity is the transformer (Vaswani et al., 2017),

252

which uses neural attention mechanism instead of
recurrence to encode the relevant context. BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) is a variant of a
transformer, which allows bi-directional training
by masking random words in the training set, rather
than trying to predict the next word in a sequence.

The upper layer output of language models, such
as transformers and recurrent networks, can be used
as a sentence embedding. This leads to the idea
of fine-tuning (Howard and Ruder, 2018). The
idea is to train large models in domains where a
large volume of text data exists (e.g. Wikipedia).
The parameters in the lower layers of the resulting
models are then frozen and the upper layers are
trained in a specialized domain where only a small
amount of data is available (e.g., travel tips). The
resulting model yields a useful representation of
text in the specialized domain, without having to
collect vast amounts of data.

3 Datasets

Recall from our discussion in the introduction,
many lot offerings are not explicitly designated
as lots by the seller, and thus this explicit signal
cannot be relied upon. As such, we employed hu-
man agents to manually label offerings sampled at
random.

We collected a number of examples of lot and
non-lot offering titles from across several cate-
gories on eBay, one of the world’s largest online
marketplaces. The label was acquired by allowing
a human evaluator to look at the entire offering
page, which includes the title, but also additional
structured information on the offering attributes
and possibly an image and description. The evalua-
tor then provided the lot-size label for each offering
under consideration.

3.1 Lot Dataset

Table 2 describes the datasets used in our experi-
ments. Each dataset is named for the category of
e-commerce from which the offering title examples
are taken. The Heterogeneous dataset is the largest
dataset and contains examples from a number of
different e-commerce categories. For the categories
we considered, the lot class was severely underrep-
resented in the labeled data. Thus, we create a
balanced evaluation set, containing roughly equal
numbers of lot and non-lot offerings.

Table 2: Datasets

Category Training Size

Health & Beauty 4,370 (40.7% Lots)
Business & Industrial 1,754 (38.8% Lots)
Heterogeneous 18,742 (14.5% Lots)

Figure 2: Distribution of lot size across categories.
The distribution displays a classic power-law behavior
across all categories (note the log scale in the axes.)

3.2 Lot Characteristics

We present additional empirical analysis of lot of-
ferings in e-commerce with the hope of providing
additional insight into their properties. To this end,
we used the offerings explicitly designated as lots
by the seller. While this is a noisier signal, it allows
us to analyze many millions of offerings.

Figure 2 displays the the lot-size distribution of
these same offerings, across several categories. The
figure shows that the majority of lot offerings have
a small lot size. In fact, the distribution displays a
classic power-law behavior (note the log scale in
the axes.)

To provide a sense of how titles of lot offerings
differ from title of non-lot offerings, we set out
to explore the most characterizing terms of lot ti-
tles versus non-lot titles. To this end, we used
Kullback-Leibler (KL) divergence, which is a non-
symmetric distance measure between two given
distributions (Berger and Lafferty, 1999). Specifi-
cally, we calculated the unigrams and bigrams that
contribute the most to the KL divergence between
the language model of the lot titles versus the lan-
guage model of the non-lot titles in our dataset.
Table 3 presents the results. It can be seen that the
top unigrams and bigrams represent diverse lan-
guage, with very substantial differences between
their occurrence in lot versus non-lot titles. As we
will later show, due to this diverse language, a rule-

253

Table 3: Most distinctive unigrams and bigrams accord-
ing to KL divergence over a sample of 4 million lot ver-
sus 4 Million non-lot titles. xxnum is a special token
added by the tokenizer ahead of any numeric quantity.
In addition, the portion of lot titles containing the un-
igram/bigram and the non-lot titles containing the uni-
gram/bigram are presented.

Unigram %lot %non-lot Bigram %lot %non-lot

lot 35.30% 2.73% of xxnum 25.39% 2.18%
of 31.62% 7.32% lot of 21.23% 1.27%
xxnum 90.04% 66.30% lot xxnum 4.21% 0.38%
pcs 8.51% 1.21% " lot 3.09% 0.16%
x 15.00% 5.48% pack of 2.64% 0.16%
pack 5.80% 0.98% - pcs 1.38% 0.01%
) 14.86% 8.93% (pack 1.97% 0.05%
& 11.25% 6.14% (xxnum 7.67% 3.20%
(14.79% 9.37% - xxnum 15.54% 10.48%
set 7.19% 3.44% set of 3.13% 0.71%

based approach using regular expressions is not
effective enough, and more advanced supervised
approaches are required.

4 Methods

In this section, we formalize our research problem,
and propose an approach for identifying lot offer-
ings and lot size. In order to conserve space and
focus the discussion, we defer the details of our
novel tokenization (Section A.1) , training proce-
dure (Section A.2), and model architectures (Sec-
tion A.3) to the appendix.

4.1 Problem Definition
We formalize two variants of the lot classification
task. Both accept only the offering title as input
and are distinguished by their output.

1. Binary Classification – the decision function
determines whether the title represents a lot
offering or not. That is, are multiple identical
items for sale in this offering?

2. Lot Size Prediction - in this, more challenging,
formulation, the decision function outputs the
lot size, the number of identical products for
sale in the offering described by the title. This
is a generalization of the first formulation, as
non-lot offerings will have a lot-size of one.

4.2 Identifying Lot Offerings
The problem definition above suggests using natu-
ral language processing techniques that given offer-
ing titles would output either the classification or
the lot size prediction. However, in this work we

Table 4: Binary Accuracy across datasets. * indicates
statistical significance at 0.05 level.

Health&Beauty Business&Industrial Heterogeneous

RegExp_FC 0.600 0.696 0.544
NGram_FC 0.843 0.845 0.815
FastText_FC 0.845 0.861 0.785
LSTM_Basic_SZ 0.889 0.881 0.872
ENC_LSTM_BIN 0.889 0.928 0.917
ENC_LSTM_SZ 0.915 0.897 0.898
TRANS_ENC_SZ 0.944* 0.933 0.945*

propose several innovations specifically tailored to
the problem of identifying lot offerings.

4.2.1 Lot size prediction as sequence labeling
While the lot size prediction problem is ostensibly
a regression problem in that its output is a quan-
tity, lot sizes are positive (more accurately ≥ 2),
integer-valued, and distributed across a wide range
of possible values (see Figure 2). Further, our de-
fined business objective is exact lot-size accuracy.
That is, an error in predicted lot-size of magnitude
1 should have equal cost to an error of magnitude
100 (which is very different from common regres-
sion objectives like squared error). We also note
that, the lot-size information is very often present
in the offer title exactly, and can (often) be made
to be contained in a single token with sufficiently
clever tokenization (see above).

For these reasons, rather than formalize the lot-
size prediction problem as a naïve regression, with
continuous output, we propose formalizing the ap-
proach as a sequence labeling problem. That is, the
model output is a sequence of binary predictions.
Each decision in the output sequence corresponds
to a token in the input sequence, and encodes the
probability that the corresponding token describes
the lot size of the offering. Note that this objective
is different from the eventual goal we measure in
our experiments of predicting the lot size. We de-
scribe how to convert a per-token binary prediction
to a lot-size prediction in Section A.3.2.

5 Experiments and Results

In our empirical evaluation, we examine the perfor-
mance of the various model architectures described
in Section A.3 on the lot classification problem vari-
ants defined in Section 4.1: Binary Classification
and Lot Size Prediction.

To this end, we consider the following metrics:

1. Binary Accuracy (BAcc) - The number of times
a title was classified Lot/ Not Lot correctly as a
fraction of the evaluation set.

254

Table 5: Lot Size Accuracy across datasets. * indicates
statistical significance at 0.05 level.

Health
& Beauty

Business
& Industrial

Heterogeneous

LSTM_Basic_SZ 0.870 0.820 0.845
ENC_LSTM_SZ 0.905 0.840 0.874
TRANS_ENC_SZ 0.932* 0.892* 0.922*

2. Lot Size Accuracy (LAcc) - The number of
times the lot size was predicted (exactly) cor-
rectly as a fraction of the evaluation set.

When considering Binary Accuracy, we evalu-
ate the Binary Classification Model architectures
as well as the Binary Sequence Model architec-
tures, which, as previously described, can be post-
processed in a straightforward manner to yield a
binary classification decision. We further evaluate
the accuracy of the binary sequence model archi-
tectures in the Lot Size Prediction Problem. Recall
that we approach this problem as a token classifi-
cation problem. The token with the highest score
is parsed for a numeric quantity, and this quantity
is considered the predicted lot size. In this formu-
lation, small errors in the lot size prediction are
weighted equally to large errors. We computed
statistical significance using a two-proportion z-
test (Sprinthall and Fisk, 1990), with a significance
level of 0.05.

Table 4 examines binary accuracy of the various
models across the datasets, while Table 5 examines
the lot size accuracy of the relevant models.

Examining Tables 4 and 5, we observe that the
TRANS_ENC_SZ model achieves the best perfor-
mance across all datasets. This may be because
for this family of tasks, the transformer encoder
architecture, which only considers word ordering
indirectly, is more appropriate than the recurrent
encoder architecture (ENC_LSTM_SZ), which ex-
plicitly models the word ordering. In other words,
local word structure is more important than global
word structure for this class of problem.

Furthermore, the results indicate that the
pre-trained class of models (TRANS_ENC_SZ,
ENC_LSTM_BIN, ENC_LSTM_SZ) leverage
their indirect access to much larger general-
purpose datasets to achieve better performance
than models that were trained “from scratch” with
random weight initialization. We can also observe
that modeling the binary task directly does not
improve binary performance and in fact, 3 of the

top 4 performers on the Lot Classification task are
sequence models, whose output is post-processed
to reach a binary decision. This indicates that the
value of the additional information (the lot size)
and structure used during training the sequence
model outweighs the cost of additional complexity
incurred by expanding the decision space.

Another, somewhat surprising, result is that lot
size prediction accuracy for all sequence models is
quite close in magnitude to the binary classification
accuracy (e.g., 0.932 compared to 0.944 for the
Health and Beauty dataset and TRANS_ENC_SZ
model). Thus, the models are able to predict the
precise lot size correctly almost exactly as well as
they are able to classify the offer as Lot or Not.

Generalizing from the results a bit, we ob-
serve that a large improvement is gained by
modeling all n-grams (NGram_FC) and/or sub-
words (FastText_FC) over a simple collection
of heuristic features (RegExp_FC). A smaller
additional gain is made by using a recurrent ar-
chitecture to explicitly model the temporal dy-
namics of the offer title (LSTM_Basic_SZ). Fi-
nally, an additional gain is achieved by introduc-
ing pre-trained high-capacity encoder architectures
(ENC_LSTM_SZ, TRANS_ENC_SZ).

5.1 Complexity vs Accuracy

An additional analysis we carried out considers
the complexity–accuracy tradeoff that exists in the
models we considered. The reader of Section A.3
will no doubt observe that some of the architec-
tures are significantly more complex than others.
The more complex models generally achieve better
quantitative performance in our empirical evalua-
tion. However, how much of this complexity is
needed is an important practical question, as of-
ten very complicated models are difficult to deploy
and maintain in a production environment. In such
cases, if a simpler model only slightly underper-
forms the more complicated model, in many cases
it is preferred. To quantify this question of “bang
for the buck” we plot the BAcc metric of experi-
ments with different architectures against the “com-
plexity” of the method as measured by the number
of learnable parameters in the architecture.4 Fig-
ure 3 shows a plot of this tradeoff across several

4This method is not without faults, e.g., fastText uses a
hashmap of 1M vectors to represent all possible sub-words,
so technically has 300 (embedding size) times 1M learnable
parameters, even though much fewer are updated in practice
during training.

255

Figure 3: Comparing model complexity and binary ac-
curacy on the Health and Beauty dataset.

different training runs of different architectures on
the Health & Beauty dataset (similar relative per-
formance is observed on other datasets.)

The plot accentuates the benefit of the relatively
simple LSTM architecture, LSTM_Basic_SZ.
This architecture, while among those with the least
learnable parameters, achieves performance (on
both the binary and size prediction tasks) within
10% of the leading approach, while performing
better than several other approaches with more pa-
rameters. Further, this architecture is much more
flexible to augmentation as it does not rely on
any pre-training. Thus, for a practical produc-
tion scenario, which emphasizes “bang for buck”,
LSTM_Basic_SZ may be preferable to the other
more complex alternatives.

5.2 Error Analysis

To gain additional insights into the performance,
we present examples where the model disagrees
with the ground truth labels in Figure 4. We fo-
cus on three types of such disagreements. “false
positive” disagreements occur when an offering
title is labeled as a lot incorrectly by the model.
Examining the top rows of the figure, we observe
that these types of mistakes often occur on titles
that include phrases and language often associated
with lot offerings. In many cases, using only the
title information, a human evaluator may tend to
agree with the model. Thus, we conjecture that
these kinds of mistakes are largely due to the gap
between the information available to the model and
information available to the human labelers (which
includes multiple modalities such as offering im-
age, description, and more).

“False negative” mistakes occur when the model
incorrectly labels an offering title as “not a lot”.

True Class Title
False Positives

Not Lot
ODORLESS GARLIC 500MG BLOOD CIRCULATION CARDIO

HEART CARE 120 TABLETS 4
︸︷︷︸
0.99

BOTTLES

Not Lot
APRIL CORNELL Set of 4

︸︷︷︸
0.76

Quilted Placemats Cottage Floral 15 in Square NWOT

False Negatives

Lot Vintage Crystal Candleholders 2
︸︷︷︸
0.45

Pc Set Votive Tapers Holiday Gift Housewarming

Lot 40
︸︷︷︸
0.31

Count: 20
︸︷︷︸
0.24

Dram Green Medicine, Craft, RX, Pill Bottles: Reversible Lids

Size Prediction Errors

Lot Lot of Binaca Breath Strips 5
︸︷︷︸
0.88

Packs of 24
︸︷︷︸
0.90

Strips Cool Peppermint

Lot 12
︸︷︷︸
0.55

Tek Soft Toothbrushes with 12
︸︷︷︸
0.24

Toothbrush Covers (4
︸︷︷︸
0.91

Pack x 3
︸︷︷︸
0.93

) NEW

Figure 4: Error Analysis. indicates the lot-size token
for each Lot title. indicates the most likely lot-size
tokens according to the model. The model score as-
sociated with each token is indicated below the token
(when non-negligible).

As Figure 4 demonstrates, the model often detects
the “lot-size token” with non-negligible probability.
However, this probability does not rise above the
threshold needed to classify the offer as a lot. We
used a threshold of 0.5 for this purpose, but this
hyper-parameter can be tuned lower in order to
correctly classify the examples in the figure. This
type of tuning represents an opportunity to trade
off false positive errors for false negative errors, as
appropriate for the particular business scenario.

The third type of mistake we consider is “size
prediction error”. This type of error occurs when
the model correctly identified an offering as a lot,
but gets the lot size wrong. Examining the figure
we can observe that this type of error occurs when
the offer title is very complex, and specifically con-
tains many numbers. It may be possible to detect
this situation by considering the relative scores of
different tokens.

We present the different types of errors for anal-
ysis, however, one should note that the different
types do not occur with the same frequency. In our
evaluation, false negative errors were more com-
mon then the other error types. Specifically, in the
Heterogeneous test set, the top performing model
had 36 false positive, 71 false negatives, and 7 size
prediction errors (out of 2,082 test examples).

5.3 Impact of Tokenization

Tables 4 and 5 show that TRANS_ENC_SZ outper-
forms all baseline architectures over all datasets.
In additional experiments (not described), we ob-

256

Table 6: Lot size prediction accuracy over the heteroge-
neous dataset across different architecture depths and
tokenization methods. Boldfaced results are statisti-
cally tied best models at significance level of 0.05.

Number of layers Simple Tokenization BPE tokenization

6 0.937 0.901
12 0.930 0.918
24 0.928 0.909

served that this architecture also outperforms the
original BERT model (Devlin et al., 2019) pre-
trained on orders of magnitude more documents.
One reason for this performance gap is the dif-
ference in tokenization. TRANS_ENC_SZ uses
the custom tokenization described in Section A.1,
while the original BERT tokenization is based on a
trainable WordPiece tokenizer (Al., 2016), which
uses sub-word level tokens. However, a confound-
ing factor could be that the corpus used to train
our model, a collection of 10 Million English lan-
guage e-commerce titles (about 150M words), is
more appropriate for our task than BERT’s corpus
of general natural language (∼ 3B words).

To isolate the impact of the choice of tokenizer,
we pre-trained language models with different tok-
enization variants: 1) the "Simple" tokenization is
a plain rule-based tokenization that splits on punc-
tuation and white spaces (see Section A.1); 2) the
"BPE" tokenization is a "BERT-style" byte-pair-
encoding scheme that tokenizes text into sub-word
tokens based on the frequency statistics of bytes
in a corpus. We also hypothesized that the depth
(number of layers) of the language model is related
to the performance of a tokenization approach. To
evaluate this hypothesis we varied the number of
layers along with the tokenizer.

Table 6 shows the result of this comparison for
lot size prediction accuracy on the Heterogeneous
dataset. Simple tokenization outperforms BPE tok-
enization by statistically significant margins. No-
tably, the depth of the transformer language model
does not play a role, with all network depths achiev-
ing similar performance.

We conjecture that the reason for this perfor-
mance increase is that sub-word tokenization is
inappropriate for the lot classification task (at least
for English text), as the important tokens are usu-
ally discovered by simple rules, and complex tok-
enization schemes, such as BPE, without this fore-
knowledge of the application, can potentially break
an important “lot-size token” into multiple tokens,

making a successful lot-size prediction impossible.
The table also shows that a “shallow” 6-layer

transformer with Simple tokenization can perform
just as well as much deeper models for this task.
This combination is also more efficient computa-
tionally, due to the fewer tokens and layers.

6 Conclusions and Future Work

In this work, we consider the task of identifying
lots, e-commerce offerings that contain multiple
identical items. This application has the potential
to improve the online e-commerce experience for
millions of users. In our experiments, we apply
a number of state-of-the-art natural language pro-
cessing approaches to analyze the offering titles.
We show that binary sequence models, which are
aimed at identifying the lot-size token within the
title, are especially effective for achieving high ac-
curacy on both Lot Classification and Prediction
tasks across multiple e-commerce domains.

Our models reach high performance based on
title only, which is an advantage since almost all
offers contain a valid title (as opposed to image,
description, or key-value attributes). That said, the
ability to detect lot offerings can potentially be fur-
ther improved by using additional signals available
for each offering beyond its title. The offer’s price
may also help achieve a further performance gain.

The methods developed herein rely on the avail-
ability of data to perform effectively. A large
amount of unlabeled domain title data is necessary
to build the language model, and a smaller amount
of labeled data is required to fine-tune the model
to the lot identification task. In other areas, where
such data is available, specifically e-commerce data
in languages other than English, we conjecture that
this approach can generalize well.

Finally, the methods developed for analyzing ti-
tles in the pursuit of lot identification are useful in
other problems that arise in the curation of a large
and heterogeneous e-commerce catalog, including
matching offerings to products and enabling prod-
uct search.

References
William James Adams and Janet L Yellen. 1976. Com-

modity bundling and the burden of monopoly. The
quarterly journal of economics, pages 475–498.

Yonghui Wu Et Al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation.

257

Yoshua Bengio. 2012. Practical recommendations for
gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437–478.
Springer.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2000. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

Adam Berger and John Lafferty. 1999. Information re-
trieval as statistical translation. In Proc. of SIGIR,
pages 222–229.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Bo Pang et al. 2002. Thumbs up? sentiment classifica-
tion using machine learning techniques. In Proceed-
ings of EMNLP, pages 79–86.

Thomas Wolf et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema,
and Andrew Fano. 2006. Text mining for product
attribute extraction. ACM SIGKDD Explorations
Newsletter, 8(1):41–48.

Anjan Goswami, Sung H Chung, Naren Chittar, and
Atiq Islam. 2012. Assessing product image quality
for online shopping. In Image Quality and System
Performance IX.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. ArXiv, abs/1308.0850.

Ward Hanson and R Kipp Martin. 1990. Optimal bun-
dle pricing. Management Science, 36(2):155–174.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8).

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the ACL, Melbourne, Australia.

Fred Jelinek and Robert L. Mercer. 1980. Interpolated
estimation of Markov source parameters from sparse
data. In Edzard S. Gelsema and Laveen N. Kanal,
editors, Proceedings, Workshop on Pattern Recog-
nition in Practice, pages 381–397. North Holland,
Amsterdam.

M. Jimenez, C. Maxime, Y. Le Traon, and M. Pa-
padakis. 2018. On the impact of tokenizer and pa-
rameters on n-gram based code analysis. In 2018
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME).

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Trans. Acoustics, Speech,
and Signal Processing, 35:400–401.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICLR.

Kowsari, Jafari Meimandi, Heidarysafa, Mendu,
Barnes, and Brown. 2019. Text classification algo-
rithms: A survey. Information, 10(4):150.

Simon Kwok and Mark Uncles. 2005. Sales promotion
effectiveness: the impact of consumer differences at
an ethnic-group level. Journal of Product & Brand
Management, 14(3).

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers).

Johan Lindskog and Jessica Lundgren. 1996. Multi-
pack - a growing packaging concept. an analysis of
the market, the distributions/handling & cost.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2017. Sgdr: Stochas-
tic gradient descent with warm restarts. In Proc. of
ICLR.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proc. of ACL, pages 55–60.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018a. Regularizing and optimizing lstm
language models. In International Conference on
Learning Representations.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018b. Regularizing and optimizing lstm
language models. In International Conference on
Learning Representations.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space.

258

Ajinkya More. 2016. Attribute extraction from
product titles in ecommerce. arXiv preprint,
abs/1608.04670.

Slava Novgorodov, Ido Guy, Guy Elad, and Kira Radin-
sky. 2019. Generating product descriptions from
user reviews. In Proc. of WWW, pages 1354–1364.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Duangmanee Pew Putthividhya and Junling Hu. 2011.
Bootstrapped named entity recognition for product
attribute extraction. In Proc. of EMNLP.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers).

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval. In Proceedings of the international com-
munication of association for computing machinery
conference, volume 4.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR), 34(1):1–47.

Kashif Shah, Selcuk Kopru, and Jean David Ruvini.
2018. Neural network based extreme classification
and similarity models for product matching. In Proc.
of NAACL:HLT.

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV).

Richard C Sprinthall and Stephen T Fisk. 1990. Basic
statistical analysis. Prentice Hall Englewood Cliffs,
NJ.

Gerard J Tellis. 1998. Advertising and sales promotion
strategy. Prentice Hall.

Hen Tzaban, Ido Guy, Asnat Greenstein-Messica,
Arnon Dagan, Lior Rokach, and Bracha Shapira.
2020. Product bundle identification using semi-
supervised learning. In Proc. of SIGIR, page
791–800.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sang-
hai, D. Sivakumar, Bin Shu, Zac Yu, and Jon El-
sas. 2020. Learning to Extract Attribute Value from
Product via Question Answering: A Multi-Task Ap-
proach, page 47–55. Association for Computing Ma-
chinery, New York, NY, USA.

Huimin Xu, Wenting Wang, Xin Mao, Xinyu Jiang, and
Man Lan. 2019. Scaling up open tagging from tens
to thousands: Comprehension empowered attribute
value extraction from product title. In Proc. of ACL,
pages 5214–5223, Florence, Italy. Association for
Computational Linguistics.

Manjit S Yadav. 1994. How buyers evaluate prod-
uct bundles: A model of anchoring and adjustment.
Journal of Consumer Research, 21(2):342–353.

Joachim Zentes, Dirk Morschett, and Hanna Schramm-
Klein. 2017. Pricing. In Strategic Retail Manage-
ment, pages 279–306. Springer.

A Appendix

A.1 Tokenization

An important preprocessing step in many natural
language processing approaches is tokenization,
transforming the raw text input into an ordered
sequence of discrete tokens (often mapped to a
finite-size dictionary). The choice of tokenization
method can have significant impact on results in
the downstream task (Jimenez et al., 2018). Specif-
ically, applying tokenization that is catered to the
downstream task may improve the overall perfor-
mance. We therefore devise a unique tokenization
scheme tailored to our scenario, processing offer-
ing titles in a general e-commerce marketplace.
These titles (see Table 1) contain their own set of
rules and idiosyncrasies, and can be quite different
than English natural language text. As such, us-
ing general-purpose English language tokenization
may be less desirable.

To understand our tokenization approach con-
sider the following example title corresponding to
a lot offering:

BOBBIN WINDER TIRE (2pk) Brother PC8895 ...

Clearly the numerical tokens are important to
separate, but as the example illustrates, many num-
bers appear in lot offering titles that have nothing
to do with the lot size, usually model numbers or
various specification quantities. Further, the lot
quantity often appears in important context, such
as adjacent to specific punctuation (e.g., within
parentheses) or close to one or more context tokens
(e.g. Lot of or pcs). These may or may not be
separated by a whitespace token.

To deal with these phenomena, we developed
several unique approaches to tokenization. First,
we separate all punctuation into its own token.
Then, we separate tokens with a numeric prefix

259

into two separate tokens. Finally, we add a spe-
cial token to indicate a numeric quantity. Note that
this special token is added only when another to-
ken contains just digit characters. Thus, the token
pc8895, for example, would not trigger a special
token. This token does not replace the original nu-
meric quantity, but rather is added next to it. This
strategy is designed to allow generalizing from pat-
terns often seen in offering titles.

With the application of such principles, the title
above may be tokenized as follows:

bobbin | winder | tire | (|
xxnum | 2 | pk |) | brother | pc8895

where xxnum is the special token adding numer-
ical context. Note that, in the example, the token
pc8895 is not split, as it does not begin with a
digit character.

A.2 Techniques for Training Lot Models

Before describing specific neural architectures, we
discuss key techniques that we applied in training
our models that helped achieve the performance
reported in the experiments section. While not all
techniques are applicable to all model architectures,
they play a key role in allowing our models to be
trained to high performance.

A.2.1 Dynamic Learning Rates
We use a stochastic gradient descent variant (specif-
ically, Adam (Kingma and Ba, 2015)) to optimize
the parameters of the model architectures consid-
ered in this paper. Following (Bengio, 2012) , we
employ several techniques to determine good val-
ues for the learning-rate parameter. The first of
these is using differential learning rates, i.e. each
parameter layer has a different learning rate. An-
other innovation that yields improved results is
working with cyclical learning rates (Smith, 2017)
combined with "cycle restarts" (Loshchilov and
Hutter, 2017). That is, at the beginning of each
epoch the learning rate is relatively large and be-
gins to decay with each update. Another technique
we employ is an interactive approach to finding
the base learning rate called The Learning Rate
Finder (Smith, 2017), a technique in which several
batches of training are run with increasing learning
rate, until the training error begins to increase. The
process described above for training our models is
interactive, and based on the performance of the
network on such metrics as training and validation
error.

Table 7: Techniques used by our different models.

Model
Dynamic Pre- Fine

Tokenization
Learning Rate Training Tuning

RegExp_FC 3 7 7 7

NGram_FC 3 7 7 3

FastText_FC 3 7 7 3

ENC_LSTM_BIN 3 3 3 3

LSTM_Basic_SZ 3 7 7 3

ENC_LSTM_SZ 3 3 3 3

TRANS_ENC_SZ 3 3 7 3

A.2.2 Pre-Training and Fine Tuning
A well-accepted practice for improving the perfor-
mance of neural models for natural language is the
use of pre-trained language models (Howard and
Ruder, 2018). These models are often quite large
in terms of the number of parameters they contain,
as well as the amount of training data they were
trained on. Given a supervised text classification
task, especially one where the amount of labeled
training data is limited, we can use the language
model to generate a useful representation of the text.
This is often achieved by “chopping off” the top
layer of the language model and using the continu-
ous values of the activations in the second-to-last
layer as the representation of the text. Using this
representation, which is assumed to encode univer-
sal properties of word tokens, allows the primary
task to utilize significantly less data.

The technique known as Fine Tuning introduces
another step in this process. Essentially, the pre-
trained language model is used as a language model
on an additional corpus of text data, usually more
relevant to the task of interest than the original
corpus the model was pre-trained on (which is gen-
eral in nature). Once this step is complete, the
fine-tuned language model is used as before for the
primary supervised task. Fine-tuning is especially
useful when a large corpus of task-specific unla-
beled data is available alongside the (often small)
task-specific labeled data.

A.3 Model Architectures
We evaluated a number of different model architec-
tures for the two problems described in Section 4.1.
Each of the architectures, applied some subset of
the techniques described above. Table 7 specifies
the precise correspondence between models and
techniques applied.

The approaches can be divided into two logical
groups (1) binary classification models, and (2) bi-
nary sequence models. These groups are named

260

according to their output type. The former group
outputs a single quantity corresponding to the prob-
ability that a title corresponds to a lot offering. The
latter group outputs multiple quantities, each cor-
responding to a token in the input sentence. An
important note is that binary classification models
can only be used for the binary Lot Classification
task and cannot address the Lot Size Prediction
task. On the other hand, binary sequence models
can be used for both the Lot Size Prediction task
and the binary Lot Classification task.

A.3.1 Binary Classification Models
1. RegExp_FC – this model corresponds to a

naïve baseline for the Lot Classification task.
We represented the text as a set of binary
features. Each such feature corresponded to
whether we were able to match with a regular
expression designed to fit important patterns
pertaining to lots in the offering titles. For
example, one such regular expression was the
following : pack of \d+ (where \d+ repre-
sents one or more digit characters). We made
use of 15 such regular expressions. We fed this
representation into a fully-connected neural net-
work with a single hidden layer (size 300).

2. NGram_FC – here we represented the text as
a bag of n-grams (using n=2 or n=3). Each
n-gram corresponds to a binary feature (does
the n-gram appear in the title). Although the
space of possible n-grams is very large, in prac-
tice only a small sub-set appears. However,
in order to enable unseen n-grams and keep
the model size consistent, we used a hashmap
of size 1M to map between each n-gram and
its corresponding feature. That is, potentially
multiple n-grams will map to the same binary
feature, although such collisions rarely occur in
practice. For each title, only a few n-grams of
the many possible will be active. Thus, a sparse
vector of size 1M represents each title. This rep-
resentation was fed into a fully-connected neu-
ral network with one hidden layer (of size 300).
We applied the lot-specific tokenization and dy-
namic learning rate techniques when learning
the parameters of this architecture.

3. FastText_FC – in this model, we repre-
sented each word token as a vector of size 300,
which is computed as a sum of its sub-word
embeddings, which are learned separately. A
sub-word is essentially a sub-string that can

be constructed by only considering a subset of
the characters composing the token. Sub-word
information can be useful for generalizing to-
kens with similar roots that appear in different
forms (e.g. the tokens lot and lots). Since
there are many possible sub-words, as above
in the n-grams model, we used a hashtable of
size 2M to keep the model size fixed and al-
low generalization to sub-words that are unseen
during the training phase. Each title is repre-
sented as a simple average of its word tokens.
This representation was then processed by a
fully connected linear layer. The architecture
is equivalent to the fastText approach described
in (Bojanowski et al., 2017) , although we used
our own tokenization and training procedure.

4. ENC_LSTM_BIN – in this approach, we em-
ployed an LSTM-based encoder (specifically
we employed the bi-directional multi-layered
architecture described in (Merity et al., 2018b)),
which yields a representation of the text using
the sequence information explicitly. This ap-
proach uses pre-training a language model on a
large corpus of text (specifically, the WikiText
103 (Merity et al., 2016) dataset of English text)
and then fine-tuning the learned representation
on available e-commerce offering title data (not
necessarily those offerings with known lot la-
bels). We then attached a linear layer to the final
layer of this architecture (which is a concate-
nation of the representation at each token), and
trained the model on the available supervised
data, to obtain the final binary classification
model. We applied our own tokenization of the
text before pre-training. During training, we
made use of dynamic learning rate techniques
described in Section A.2.1.

A.3.2 Binary Sequence Models
As discussed in Section 4.2.1, we address the lot
size prediction problem with models that output a
sequence of binary decisions (one for each token
in the input). To obtain the final prediction from
such output, we apply the heuristic of choosing the
maximum output value (assuming it passes some
threshold) in the sequence and parsing the corre-
sponding input token for a quantity. If no such
token exists then the title does not represent a lot
offering (and the predicted lot size is 1).

1. LSTM_Basic_SZ – in this approach, we used
a basic LSTM model (Hochreiter and Schmid-

261

huber, 1997), which takes into account the to-
ken ordering. The LSTM learns its own embed-
ding for each word token. The final state vector
is processed by a linear layer that outputs a bi-
nary decision per token. This method makes
use of our custom tokenization (Section A.1)
and dynamic learning rate (Section A.2.1).

2. ENC_LSTM_SZ – in this approach, we used
the same encoder architecture as described for
ENC_LSTM_BIN above. That is, we applied
custom tokenization, pre-trained the encoder
component of the model on a large corpus of
general English text, and then fine-tuned us-
ing in-domain text data. However, instead of
a binary classification head, this architecture
attaches a binary sequence head on top of the
encoder, which provides a binary decision for
each of the tokens in the sequence.

3. TRANS_ENC_SZ – in this approach, we used
the well-known BERT (Devlin et al., 2019)
transformer architecture, and specifically its
RoBERTa variant(Liu et al., 2019). The innova-
tion of BERT over classical transformers is the
combination of multiple self-supervision tasks,
Masked Language Model and Next Sentence
Prediction when training the encoder. The ver-
sion we made use of is consistent with the com-
mon "base" architecture of BERT (et al., 2019),
which is composed of a 12-layer encoder with
768 hidden nodes and 12 attention heads per
layer, for a total of approx 132 million parame-
ters. The model uses our custom tokenization
scheme, which we believe is more appropri-
ate for our research problem. Our model is
pre-trained on 10 million English language e-
commerce offering titles. As the pre-training
is done on in-domain data, no additional fine-
tuning step was performed.

262

Author Index

Acriche, Yoni, 91

Bagheri Garakani, Alireza, 44, 63
Balapanuru, Vineeth Kumar, 210
Baldwin, Timothy, 234
Barlacchi, Gianni, 99, 111
Beygi, Sajjad, 68
Bianchi, Federico, 191
Bradley, Joseph, 151
Braun, Daniel, 181, 199
Brew, Chris, 151
Byrne, Bill, 99

Cervone, Alessandra, 68
Chang, Kevin, 80
Chen, Hao, 141
Chen, Hongshen, 8
Chen, Lei, 217
Chen, Wei-Te, 134
Chen, Xi, 151
Chen, Yan, 224
Chen, Yetian, 44
Cheng, Weiwei, 99, 111
Chia, Patrick John, 191
Chordia, Varnith, 20
Chou, Hou Wei, 217

Del Tredici, Marco, 99, 111
Deng, Jingyuan, 44, 63
Ding, Zhuoye, 8
Dong, Bo, 35
Du, Tianchuan, 224
Du, Zheng, 35
Dunn, Matthew T., 151

Fang, Yuejian, 8
Fazel-Zarandi, Maryam, 68
Fazeli Dehkordy, Siavash, 20
Fuchs, Gilad, 91

Gamper, Johann, 161
Gao, Vincent, 20
Gao, Yan, 44, 63
Gispert, Adrià de, 99, 111
Goncalves, Diogo, 191
Goyal, Pawan, 210
Greco, Ciro, 191
Guy, Ido, 250

Hashemi, Alireza, 35
Hazare, Akshay, 151
Hockey, Beth Ann, 151
Howell, Kristen, 151
Hua, Wen-Yu, 44

Jain, Saurabh, 49
Jonnalagadda, Siddhartha, 68
Joshi, Raviraj Bhuminand, 244

Kacimi, Mouna, 161
Kan, Min-Yen, 49
Kew, Tannon, 121
Khatwani, Devashish, 171
Kondadadi, Ravi, 29
Koto, Fajri, 234
Krishnan, Prakash, 68
Kumar, Anurendra, 80

Lau, Jey Han, 234
Lavee, Gal, 250
Li, Hua, 20
Liu, Hsien-Chi Toby, 58
Liu, Jia, 63
Liu, Yang, 20
Liu, Zheng, 224
Long, Bo, 8

Ma, Mian, 8
Matthes, Florian, 181, 199
Maurer, Andrew, 151
Miao, Yisong, 49
Mohanty, Ipsita, 1
Momma, Michinari, 44
Morabia, Keval, 80

Nayak, Tapas, 210
Nguyen, Huy V., 171
Nicolov, Nicolas, 29

Roy, Kalyani, 210

Sabeh, Kassem, 161
Schamel, Tobias Michael, 181
Schroeder, Benjamin, 224
Schwing, Alex, 80
Shen, Xiaoyu, 99, 111

263

Shido, Yusuke, 58
Shinzato, Keiji, 134
Singh, Anupam, 244
Sun, Hanbo, 35
Sun, Weiyi, 224
Sun, Yi, 44, 63
Sun, Yifei, 20

Tagliabue, Jacopo, 191
Teng, Yifei, 63

Umezawa, Keisuke, 58

Volk, Martin, 121

Wang, Jian, 151
Wang, William, 80
Wang, Yiyi, 35

Wang, Yunji, 35
Wang, Zeming, 8
Wei, Chao, 141
Widdows, Dominic, 151
Williams, Allen Mathew, 29

Xia, Yandi, 134

Yang, Fan, 44, 63

Zhang, Na, 20
Zhang, Wei, 224
Zhang, Weiru, 141
Zhu, Lvxing, 141
Zou, Yanyan, 8

264

