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Abstract

Deep neural network models are especially sus-
ceptible to noise in annotated labels. In the
real world, annotated data typically contains
noise caused by a variety of factors such as
task difficulty, annotator experience, and an-
notator bias. Label quality is critical for label
validation tasks; however, correcting for noise
by collecting more data is often costly. In this
paper, we propose a contrastive meta-learning
framework (CML) to address the challenges in-
troduced by noisy annotated data, specifically
in the context of natural language processing.
CML combines contrastive and meta learning
to improve the quality of text feature represen-
tations. Meta-learning is also used to generate
confidence scores to assess label quality. We
demonstrate that a model built on CML-filtered
data outperforms a model built on clean data.
Furthermore, we perform experiments on de-
identified commercial voice assistant datasets
and demonstrate that our model outperforms
several SOTA approaches.

1 Introduction

Deep neural networks’ remarkable capacity for rep-
resentation learning has resulted in performance
gains across a wide range of applications. The
majority of these gains are dependent on having
high-fidelity data; however, in practice, large-scale
datasets are frequently corrupted by noise caused
by a variety of factors such as task difficulty, an-
notator experience, and annotator bias. This is a
concern because training data with corrupted la-
bels can adversely affect the performance of deep
learning models. Collecting ground truth data to al-
leviate this problem, on the other hand, has proven
both time consuming and costly.

We can broadly enhance model performance on
corrupted labels by applying two approaches: im-
proving model robustness and improving quality
of feature representation. A number of existing
methods such as robust loss function based meth-
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ods (Wang et al., 2019a; Zhang and Sabuncu, 2018;
Ghosh et al., 2017), loss adjustment based meth-
ods (Ren et al., 2018; Zheng et al., 2021; Shu et al.,
2019), and sample selection based methods (Jiang
et al., 2018; Malach and Shalev-Shwartz, 2018;
Han et al., 2018), have been proposed to enhance
model robustness. In spite of these advances, these
methods are primarily concerned with computer
vision and lack quality assessment for feature rep-
resentation.

There are also several approaches to improving
the quality of existing feature representations. They
do not, however, specifically address the adverse
effects of noisy (corrupted) labels in the context of
natural language processing (NLP). (Chen et al.,
2020; Ghosh and Lan, 2021) proposed a contrastive
learning-based approach for improving feature rep-
resentation quality for computer vision (not NLP)
applications through augmentation steps in the fea-
ture learning process. (Gao et al., 2021) proposed a
contrastive learning-based approach to improving
the quality of sentence embedding. However, this
approach does not address the problems caused by
noise-corrupted labels.

In this paper, we propose a contrastive meta-
learning (CML) framework for simultaneously ad-
dressing the challenges introduced by corrupted la-
bels, in the context of NLP. Importantly, our frame-
work learns a confidence score for evaluating the
quality of annotations. In the real world, the work
of data annotators is typically evaluated against
ground truth data. The term "ground truth data"
refers to validated data labels that have been sub-
jected to multiple passes by data annotators and la-
belled using majority vote. (Namazifar et al., 2021).
We will hereafter refer to a dataset consisting of
ground truth labels as a "gold" dataset, contrasting
it with a "standard" dataset annotated by a single
data associate.

Collecting ground truth data ("gold" datasets) is
time consuming and expensive, and sometimes in-
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volves heavy engineering efforts (Sun et al., 2020).
The confidence score generated by our model of-
fers the potential to perform large-scale evaluations
of annotation tasks. Another application of the con-
fidence score generated by our model is to select
high-quality data from a noisy dataset.

To address the issue of corrupted labels, we em-
ploy meta learning, which combines meta data and
training data. Our meta data is comprised of a rel-
atively small number of ground truth labels. The
training data consists of unverified annotations (i.e.
corrupted labels). Our model also learns an explicit
loss-weight function while performing classifica-
tion, which predicts label confidence scores.

We utilized a meta learning approach (Shu et al.,
2019) as our meta module. The meta module is
concatenated with the classifier. The meta module
learns an explicit loss-weight function in a meta-
learning manner. We use the output loss of the
classifier as the input to the meta module. The
meta module learns confidence scores using a mul-
tilayer perceptron on the output loss of the classifier,
which reflects the quality of labels and can also im-
prove classifier performance. Each of our training
processes contains two steps. The first step consists
of using our training data to update the parameters
of the classifier, and the second step consists of
using our meta data to update the parameters of
the meta weight net. To improve the quality of
feature representations, we apply contrastive learn-
ing to a pretrained BERT model (Gao et al., 2021).
Contrastive learning aims to learn effective repre-
sentations by pulling semantically close neighbors
together and pushing apart non-neighbors. In or-
der to have semantically close neighbors, the same
sentence pass the pretrained encoder twice to pre-
dict the sentence itself with noise introduced by
standard dropout layer. In such way, we have two
embeddings generated from the same sentence but
with slight difference. These two embeddings are
“positive pair”.

As we mentioned above, current methods (Zheng
et al., 2021; Shu et al., 2019) designed to address
corrupted labels are mainly geared towards com-
puter vision applications. In addition, their moti-
vation is largely centered around label correction
or improving the performance of a classifier. In
contrast, in the NLP domain, researchers mainly
focus on improving the quality of embeddings or
learning representations of text data. Our proposed
framework unifies the advantages of current meth-
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ods and is suitable for NLP. We demonstrate that
CML not only addresses concerns stemming from
having corrupted labels, but also learns feature rep-
resentations from raw text data effectively.

Additionally, in real-world applications, we are
concerned with the quality of annotations. As such,
evaluating the work of annotators presents an im-
portant challenge. During the training process,
CML learns a confidence score for labels, which
can be used to evaluate annotators’ work online. In
other words, CML offers the potential for scaling
the work of data annotators. Furthermore, because
CML predicts a confidence score for labels, it can
be applied to a wide range of use cases. In many
instances only incorrectly labelled data is available
and collecting ground truth data is time-consuming
and costly. We can therefore use CML to filter
high-quality data for such problems, saving both
time and money.

To summarize, the main contributions of our
work are listed as follows:

* CML combines meta learning and contrastive
learning to address the corrupted label issue
and feature representation quality issue in tan-
dem.

CML predicts confidence score for annotated
labels which solves the problem of evaluating
annotators’ work at scale.

CML can be applied to filter high quality data
from raw annotations, which proves to be of
the same level of quality as the ground truth
data. It reduces costs associated with collect-
ing massive amounts of ground truth data for
downstream model development.

The remainder of this paper is organized as follows:
We introduce related work in section 2. We then
formalize the problem and present our proposed ap-
proach in section 3. Next, we present applications
and corresponding results of our experiments in
section 4 and 5. Finally, we present our conclusion
and propose future research directions.

2 Related Work

In this section, we discuss some of the related work
in contrastive learning and learning from corrupted
labels.

2.1 Learning from Corrupted Labels

Machine learning techniques (Liu et al., 2021,
2019; Dong et al., 2017, 2018; Wang et al., 2020,



2019b; Li et al., 2021; Dong et al., 2019) have
been widely applied on labeling tasks. With re-
spect to learning from corrupted labels, a variety
of methods have been proposed. Namely, (Zheng
et al., 2021) proposes a meta-learning framework
for re-weighting and correcting corrupted labels.
This method requires a clean dataset (without cor-
rupted labels) alongside a dataset with corrupted
labels. The focus of above paper is label correc-
tion. It provides an approach to predict a set of
weights in label space for each instance. We cannot
get a single weight score for each instance directly
by using this method. (Li et al., 2017) proposes
a distillation framework which uses metadata, in-
cluding a small clean dataset and label relations in
a knowledge graph to learn from corrupted labels.
However, in the real world setting, it is difficult
to collect sufficient and useful metadata. (Dong
et al., 2020) proposes a new loss function which
includes an importance weight for training instance.
This importance embedding serves the function of
finding important training instances. The impor-
tance embedding is trained during model training.
However, this method is not originally designed for
corrupted labels and can not make use of ground
truth data and corrupted labels in tandem, in the
training process. (Shu et al., 2019) proposes a meta
learning method to learn weight score to evaluate
label quality. Their approach focuses on corrupted
labels and addresses class imbalance issues. It
also learns an explicit loss-weight function, param-
eterized through a multi-layer perceptron during
meta-learning.

2.2 Learning Feature Representation

Feature representation quality is a critical factor
affecting deep neural network performance. One
research direction is contrastive learning. (Chen
et al., 2020) proposes a contrastive learning frame-
work which can improve feature representation
via contrastive loss with augmented data for com-
puter vision applications. (Ghosh and Lan, 2021)
demonstrates that initializing supervised robust
methods using representations learned through a
contrastive learning framework leads to signifi-
cantly improved performance with noisy labels.
(Kim et al., 2021) proposes a contrastive learn-
ing method that uses self-guidance to fine tune
BERT, which does not rely on sentence augmenta-
tion. (Fang et al., 2020) also fine tune a pretrained
language encoder like BERT. This approach uses
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back-translation as augmentation of input sentence.
(van den Oord et al., 2019) designs a contrastive
predictive coding method to extract representations
from high-dimensional data in a universal unsuper-
vised manner.

3 Approach

3.1 Problem Setting

In this paper, we propose a contrastive meta learn-
ing framework(CML). Basically, in learning with
corrupted labels, we assume that a small set of
data with clean labels and a large set of data with
noisy (corrupted) labels are needed (Zheng et al.,
2021). Usually due to scarcity and high cost of
generating ground truth labels, the relative size of
the clean dataset is much smaller than the noisy
one. Since a small training set tends to cause over-
fitting, utilizing a clean dataset alone may lead to
creating a model that does not generalize well. On
the other hand, training with noisy data is also not
a very desirable option since large high-capacity
models will fit and memorize the noise (Zhang
etal., 2017). Therefore, an effective way to over-
come the aforementioned challenges is to build
a framework which utilizes both noisy/corrupted
data and clean data. Our framework consists of
two modules: the main module and meta module.
The main module learns feature representations in
a contrastive manner and builds a predictive model.
At the same time, we also learn a meta module
which is a loss weight function. The meta module
tries to learn confidence scores for corresponding
labels. Our framework allows the main module and
meta module to learn from each other.

3.2 Framework

The CML framework (Figure 1) consists of two
modules: the main module and the meta module.
The main module adopts pre-trained BERT-base in
a contrastive manner followed by a dropout layer, a
hidden layer, and several fully connected layers to
map the input data into a semantic representation.
The last layer in the main module is a linear output
layer. The meta module is an MLP(multilayer per-
ceptron) network with only one hidden layer. The
activation function for all hidden layers is ReL.U.
The meta module utilizes a small set of clean data
to guide the training of all of its parameters.
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pretrained dropout masked BERT, followed by fully connected layers and meta weight net. In the first step, we
keep the meta weight net unchanged and only update weight of fine tuned layers. The second step is to feed meta
data (ground truth) to update meta weight net with main model’s predicted probability as input to meta weight net.
In addition, meta weight net learns an explicit loss-weight function to predict label confidence. We demonstrate
an example in the figure where contrastive learning takes automatic speech recognition(ASR text) to predict if the

recognition is capable to represent the speaker’s goal.

3.2.1 Main Module

We fine-tune simCSE framework (Gao et al., 2021)
for learning the text feature representation in a con-
trastive manner. A commonly used contrastive
learning setting is as follows, assume we have a
collection of paired sentences S = (x;,x;" ), where
x; and xj are semantically related. Then we can
use a base encoder F (- )(pre-trained BERT-base) to
encode each sentence x; as follows
Let e; and e represent the feature representation
of x; and X . The contrastive learning loss func-
tion is des1gned as:

Z—Zlo

where 7 is the temperature parameter and sim is
Tet

. . . . e. e
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e)/7)
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2

In above setting, simCSE let x;° = x;. Then
use e = F(x;") to represent the feature repre-
sentation of x; with random mask m for dropout.
The same sentence pass to the encoder twice with
different dropout masks m, n. The loss function is
defined as follows:

he")/T)
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J
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We utilize pre-trained simCSE to learn represen-
tations of the input sentence in our main module
for predicting labels.

exp (sim(e]"

3)

)
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3.2.2 Meta Module

Inspired by (Shu et al., 2019), we incorporate a
loss-weight function(a multilayer perceptron) into
our meta module. This module learns confidence
scores which can be used to evaluate the quality
of labels. When an input sentence passes the main
module, we have a loss computed using the pre-
dicted label and the original label. In the meta mod-
ule, we utilize a small set of clean data to learn a
confidence score from the output of the main mod-
ule. We initialize the parameters w of the main
module and parameters § of the meta module. In
general, our framework is an iterative procedure.
For each iteration, it mainly contains two steps.
The first step is to update the parameters w of the
main module as equation 4 indicated by feeding
biased training data.

1 < -
~ t+1 — t_ - L@razn t t+1
W) =w —as X > G(LI T (wh), 00

i=1

Vw 4

where Vy, is computed as follows

aLfrazn(w)

Vw = ow

5

|w:wt

The second step is to pass the clean data to update
the parameters 6 of meta module as equation 6
indicated.

gt —

¢ gL N OLT (WD)
0 _ﬁE;Tb:Q‘ (6)
After the learning process, we can predict confi-
dence scores for annotated labels by inference from
our trained model.



Algorithm 1 CML Learning Algorithm
Input: Biased training data S with batch size m,
Unbiased meta data S with batch size 7, max itera-
tions [
Parameter: Main module parameters w and meta
module parameters ¢
Output: Main module parameters w and meta
module parameters

1: Lett = 0.

2: while ¢ in range [0, I) do

3:  (z,y) + Sample Mini Batch (S,m)
4:  (xmeta ymeta)  Sample Mini Batch (S,n)
5. if Data comes from .S then
6: Fine-tune main module
7: update main module parameters w with
equation 4
8: else
9: update meta module parameters 6 with
equation 6
10:  end if
11: t=t+1
12: end while

13: return w, 6

4 Application

The confidence score obtained from CML’s out-
put has an important application for data labeling
services: measuring label quality at scale. In the
industrial setting, the quality of each annotator’s
work is measured by ground truth reference, which
is usually of limited quantity. Small volumes of
gold reference data could cause high variance in
assessing annotator’s performance. As such, it of-
ten requires complex procedures to find root cause
of quality issue. Error detection model is broadly
used in industry but remains a challenge due to
limited ground truth labels.

The confidence score from CML is a promising
attempt to solve the aforementioned challenges. In
particular we implement the following two applica-

tions:
4.1 Application 1

Use confidence scores to generate a quality metric
for each label, and shows that these scores manage
to distinguish the labels in different levels of quality.

4.2 Application 2

Use the data filtered by the confidence score to
build an error detection model and demonstrate
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Figure | Statistics | P value |
Figure 2 (a) 0.834 0.000
Figure 2 (b) 0.752 0.000

Table 1: Kolmogorov—Smirnov test results

that it will produce better results.

5 [Evaluation

This section shows the experiment results. We also
compare our method to state-of-the-art methods.

5.1 Dataset

In our experiment, we process and de-identify com-
mercial voice assistant dataset that assess goal suc-
cess rate(GSR). We evaluate the goal category task,
i.e. labeling a given utterance to a fixed taxonomy
of categories. Text ASR (automatic speech recogni-
tion) is used as the input feature. Data is collected
from both the standard and gold data. Because the
standard data only performs one pass on each task,
it contains some corrupted labels. Data collected
from the gold data can be conceived as "ground
truth" data. It will be the data source from which
we will generate synthetic data.

5.2 Application 1

In this experiment, we use synthetic data to show
that the confidence score produced by CML is ca-
pable to separate the incorrect label from correct
label at various noise level.

5.2.1 Synthetic data generation process

We generate synthetic data by flipping labels of
gold data with different noise ratios for the training
set with corrupted labels. Ambiguous labels are
generated by flipping label based on assuming that
the gold dataset is "correct”". The level of noise
is also varied between 0% and 20%. We generate
synthetic training data by flipping X% labels to
incorrect labels. When the flipping rate is 0, the
training data are all ground truth. For the test set,
we synthetically flip 50% data to incorrect labels.

5.2.2 Maetrics and graph explanations

Figure 2 illustrates the confidence scores for the test
dataset. The left figure represents the confidence
score learned by CML model with training data
containing 0% corrupted labels. The right figure
represents the confidence score result learned by
CML with training data containing 20% corrupted
labels. In Table 1, a Kolmogorov—Smirnov test
(Massey, 1951) shows the confidence scores from
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tains 30% noise (—e— Accuracy —— Precision
Recall —— F1 score)

the correct labels and the incorrect labels are from
different distributions in both scenarios, with the
test statistic showing a more extreme value in the
0% noisy label case. From Figure 2 we can see, our
learned confidence scores can differentiate correct
labels and incorrect labels clearly. In addition, the
noise ratio of training set negatively correlate with
the level of difference of the confidence scores.

5.3 Application 2

In this experiment, we use both synthetic data and
commercial voice assistant data to show that the
data filtered by the confidence score works better in
error prediction than the same model trained with
either the raw training data or the clean data alone.

5.3.1 Synthetic data generation

For the training set, we generate synthetic data
similarly as in application 1 by flipping labels of
gold data with different noise ratios. We generate
training data with 10%, 20%, 30%, 40% and 50%
noisy labels. For test set, we synthetically flip 50%
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labels to incorrect labels.

5.3.2 Experiment setup

The experiment is conducted with the following
steps: 1) In a classification task, we train CML to
learn the confidence score from the training set, i.e.
to predict the correct goal category. 2) We set a
threshold to filter good quality data based on the
learned confidence score (the threshold is treated
as a hyperparameter). 3) Using the filtered train-
ing data set, we train a separate BERT-based error
detection model. 4) We train the same error de-
tection model using only biased training data. 5)
We run the above two models on the same test set
and compare their performance. For model eval-
uation, commonly used metrics such as accuracy,
precision, recall, and F1 score are used.

5.3.3 Explain results

Table 2 shows the model performance. The result
obtained after CML filtered data outperforms the
result obtained using biased training data for all
metrics. In addition, based on the last two columns,
with the data filtering setup, we select most correct
labeled instances and very few incorrect instances.
Figure 3 indicates the sensitivity experiment result
of threshold for filtering. Figure 3 illustrates that
threshold is sensitive for all evaluation metrics.

5.3.4 Real data

We utilize data collected from standard dataset and
gold dataset for evaluation. Data collected from
standard dataset contains corrupted labels. We de-
sign two sets of experiments.



| Training set

| Accuracy | Precision | Recall | F1score | #Correct | #Incorrect

Biased training data with 50% noise 40.04 57.54 40.51 43.53 5000 5000
CML Filtered data 77.38 79.57 74.81 76.33 4664 902
Biased training data with 40% noise 68.60 73.27 65.01 67.13 6000 4000
CML Filtered data 79.76 81.13 77.50 | 77.98 5590 714
Biased training data with 30% noise 77.36 78.33 72.09 74.51 7000 3000
CML Filtered data 82.18 82.67 81.43 81.45 6509 537
Biased training data with 20% noise 80.64 82.61 78.68 80.01 8000 2000
CML Filtered data 82.98 83.30 82.26 82.17 7432 350
Biased training data with 10% noise 83.70 83.55 82.82 83.10 9000 1000
CML Filtered data 83.72 83.14 83.32 82.77 8353 162

Table 2: Experiment result for synthetic data: compare model built on full data with model built on selected data that
are filtered by CML. The number of correct and incorrect in the table stand for the volume of examples with correct
and incorrect labels respectively. For instance, 50% noise data contain 5000 correct labeled examples and 5000
incorrect labeled examples. Filtered by CML, we obtain 4664 correct labeled and 902 incorrect labeled examples

respectively.

5.3.5 Experiment setup

1) We sample data from the gold dataset (gold-1 of
size 3k, and gold-2 of size 6k) to be the unbiased
meta data, and sample data from standard dataset
(of size 100k) to be the noisy training data. We uti-
lize both of these datasets to train the CML model.
We filter the noisy training data by the confidence
score learned from CML model, and then build
two error detection models with gold-1 data and
the filtered data separately. At last we compare
the performance on a hold-out gold data set of size
Sk. This hold-out data set is used for all the eval-
uation cases. In a variant of this experiment, we
replicate the same process for gold-2. 2) This set of
experiment is designed to verify that CML achieves
better performance by ingesting small proportion
of gold data, compared to model trained on noisy
data alone. We sample data from gold dataset of
size 3k and sample standard(noisy) data of size
20k.

5.3.6 Experiment results

Comparing row 1 and 3 of Table 3, we demonstrate
that the model trained with filtered standard data
outperforms the model trained with gold data. This
is achieved when the size of noisy training data is
30 folds larger than that of gold data. Comparing
rowd 2 and 3, even though the size of the gold
data is doubled, the model’s performance is still
worse than the model trained with filtered standard
data. Comparing rowd 4 and 5, we demonstrate that
using CML with a noisy training set and small meta
data outperforms using noisy training set alone.
In the commercial setting, we hold a large
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| Trainingset | Accuracy | Precision | Recall | F1score |

gold1(3k) 79.42 78.78 78.64 | 78.70
gold2(6k) 80.72 80.02 7993 | 79.97
Filtered data 81.28 81.66 7944 | 80.53
Biased data 80.20 80.71 71.67 | 78.02
Biased+meta data |  81.82 81.16 81.82 | 81.25

Table 3: Experiment result for real data.
Filtered data: filter from the biased training data(100k).

amount of data with corrupted labels. Collecting
ground truth data is time consuming and expensive.
Based on the above experiment results, CML and
its applications provide a economic way to building
label error detection model.

5.4 Model Evaluation
5.4.1 Data set

For this set of experiment we want to verify the per-
formance of CML. We sample 3k examples from
gold dataset as meta data. We also sample 20k
examples from standard dataset as noisy training
data.

5.4.2 Experiment setting

We evaluate our proposed approach CML against
state-of-the-art methods(Shu et al., 2019; Han et al.,
2018) for learning with noisy labels. As we men-
tioned in Section 1, current state-of-the-art meth-
ods mainly focus on computer vision domain. We
revise the architecture of these two baselines by us-
ing pre-trained BERT-base as their main classifiers.
We also compare our approach with contrastive
learning benchmarks (Gao et al., 2021).



| Method [ Accuracy | Precision | Recall | F1 score |
MetaNet 82.54 82.25 80.79 81.51
simCSE 79.66 80.31 79.65 71.34
Co-teaching |  77.00 69.78 76.74 | 7273
CML(ours) 82.82 82.86 8258 | 82.71

Table 4: Experiment result for CML and baselines.
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Figure 4: Confusion matrix(goal category prediction
with CML)

5.4.3 Experiment results

From Table 4 we can see that our approach out-
performs the other three baselines. We not only
improve the quality of feature representation, but
also improve model performance under noisy label
scenario. We also render a confusion matrix for
our method as illustrated in Figure 4. As we can
see, the “Not Set” category does not perform good
since annotators would choose “Not set” category
when the category is ambiguous and they are not
sure the correct answer. For another example, for
“Timers” category, both recall and precision are
very high as a result of less ambiguity compared to
other categories.

6 Conclusion

In this paper, we propose a contrastive meta learn-
ing framework (CML) for estimating human la-
bel confidence scores and lowering data collection
costs. We use contrastive learning and meta learn-
ing to jointly address the main challenges of label
scarcity and poor feature representation. We de-
sign three sets of experiments with two application
settings and three state-of-the-art baseline models
to test the effectiveness of our proposed method.
Our experiments on a commercial voice assistant
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GSR dataset show that our method can predict a
reliable confidence score for annotations while also
effectively lowering the cost of ground truth data
collection. Moreover, our proposed method outper-
forms several SOTA approaches.
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