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Abstract

Noisy labels in large E-commerce product data
(i.e., product items are placed into incorrect cat-
egories) are a critical issue for product catego-
rization task because they are unavoidable, non-
trivial to remove and degrade prediction perfor-
mance significantly. Training a product title
classification model which is robust to noisy la-
bels in the data is very important to make prod-
uct classification applications more practical.
In this paper, we study the impact of instance-
dependent noise to performance of product title
classification by comparing our data denoising
algorithm and different noise-resistance train-
ing algorithms which were designed to prevent
a classifier model from over-fitting to noise. We
develop a simple yet effective Deep Neural Net-
work for product title classification to use as a
base classifier. Along with recent methods of
stimulating instance-dependent noise, we pro-
pose a novel noise stimulation algorithm based
on product title similarity. Our experiments
cover multiple datasets, various noise methods
and different training solutions. Results un-
cover the limit of classification task when noise
rate is not negligible and data distribution is
highly skewed.

1 Introduction

Product classification is a quintessential E-
commerce machine learning problem in which
product items are placed into their respective cate-
gories. With recent advancements of Deep Learn-
ing, various unimodal (i.e., text only) and multi-
modal (e.g., text and image) models have been de-
veloped to predict larger numbers of items and cate-
gories with better accuracy (Gao et al., 2020; Chen
et al., 2021a; Brinkmann and Bizer, 2021). How-
ever, one of the fundamental assumptions behind
such models is the availability of large and high-
quality labeled datasets. Access to such datasets is
usually costly or infeasible in some settings. Large
product datasets usually suffer from annotation er-
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rors, i.e., products are assigned to incorrect cat-
egories, partially due to complex category struc-
ture, confusing categories and similar titles. The
problem of noisy labels is even more severe when
product category distribution is highly imbalanced
with heavy-tail (Shen et al., 2012; Das et al., 2016).
Therefore, a text classifier which is robust to noisy
labels present in training data is critical for high-
performing product classification applications.

While machine learning in the presence of label
noise has been studied for decades, most of prior
studies experimented in computer vision domain
(Gu et al., 2021; Song et al., 2022), and only a
few research was conducted in text classification
(Jindal et al., 2019; Garg et al., 2021). Without
an annotated dataset with manually-identified label
noise, classical approaches for label noise stimula-
tion assume class-conditional noise (CCN) where
the probability of an item having label corrupted
depends on the original and noisy labels. With this
assumption, all products of “Men’s Watches” cat-
egory have the sample probability to be assigned
“Women’s Watches” label. This is not generally
correct. For instance, product titles having phrase
“men’s watches” are less likely mis-labeled. Re-
cent research addresses more general label noise,
i.e., instance-dependent noise (IDN), that an item
is mis-labeled with a probability depending on its
original label and features.

In this paper, we present a comprehensive study
on improving product title classification in the pres-
ence of IDN. We develop a simple yet effective
Deep Neural Network for text classification and
show that our model performs well on different
product title datasets ranging from small to medium
sizes, balanced to skewed distributions, and tens to
over a hundred categories. To generate noisy labels
for experiments, our first contribution is an IDN
stimulation algorithm which flips an item’s label
based on its similarity to items of other categories.
Noisy label data generated by our method is com-
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pared with prior IDN stimulation methods for their
impact to model accuracy degradation. To make
the model robust to label noise, our second contri-
bution is a data augmentation method that reduces
noise rate and thus improves model’s accuracy. We
compare three state-of-the-art Deep Neural Net-
work training algorithms to train a classifier on
data with label noise generated by different meth-
ods. From experimental results we discuss lessons
learned for product title classification in produc-
tion. To the best of our knowledge, this work is
the first time that noise-resistance model training is
studied in E-commerce domain, which is our third
contribution.

2 Related Work

Automatic product categorization has been well
studied to address its challenges including large
number of items and categories, and hierarchical
categories structure (Gao et al., 2020; Chen et al.,
2021a; Brinkmann and Bizer, 2021). The large-
scale nature of product data leads to a critical issue
of noisy labels. For example, an E-commerce web-
site reported that 15% of product listings by sellers
have incorrect labels (Shen et al., 2012). Das et al.
(2016) attempted to use a latent topic model to
help manually inspect noisy categories and remove
incorrect samples. Our current study focuses on
fully automated methods for data denoising and
noise-resistance training to prevent models from
over-fitting to noisy samples.

Training Deep Neural Networks (DNN) with
noisy labels is challenging because DNN'’s large
learning capacity make them highly susceptible
to over-fitting to noise (Arpit et al., 2017; Zhang
etal., 2021a). Early work stacked DNN with layers
to model noise-transition matrix assuming class-
conditional noise, i.e., noisy label g only depends
on true label y but not on the input = (Jindal et al.,
2016; Patrini et al., 2017). Because noise tran-
sition matrix can be difficult to learn or not fea-
sible in real-world settings, other directions tar-
geted to selecting clean samples in each mini-batch
and use them to update DNN’s parameters (Jiang
et al., 2018; Malach and Shalev-Shwartz, 2017).
Among those, CoTeaching (Han et al., 2018) and
CoTeaching™ (Yu et al., 2019) showed the effective-
ness of cross-training two networks simultaneously
in that each network sends selective samples for the
other to learn. A more realistic assumption of noisy
labels is instance-dependent noise (IDN) in which

probability of noisy label ¢ depends on true label
y and input x (Chen et al., 2021b). Among state-
of-the-art work on IDN, Self-Evolution Average
Label — SEAL (Chen et al., 2021b) and Progressive
Label Correction — PLC (Zhang et al., 2021b) are
representatives of label refurbishment (Song et al.,
2022) that uses softmax output to assign soft labels
to training instances. We compare SEAL, PLC and
CoTeaching™ on training a product title classifier
with label noise.

3 Datasets

In this study, we employ 6 public datasets for prod-
uct classification. While some datasets have mul-
timodal inputs, e.g., product titles, descriptions,
images, we use only product title inputs and leave
other fields for a future work. This restriction may
prevent us from achieving the best possible per-
formance by incorporating other information-rich
inputs (Chen et al., 2021a). However, our main
motivation is to evaluate noise-resistance training
approaches. For each dataset, we filter-out cate-
gory labels with less than 10 samples, then apply
stratified random sampling to split 10% for test-
ing and 90% for training. We leave a study of
few-shot learning for product title classification for
future work. Hyper-parameters of models and train-
ing algorithms are fine-tuned within training sets
when needed. In experiments with noisy labels,
only training samples have label corrupted while
testing sets are unchanged. This assures a realis-
tic evaluation that model accuracies are measured
against ground-truth disregarding how the model
was trained. To measure skewness of data label
distribution, we calculate KL-divergence from the
actual category distribution to uniform distribution.
Data statistics are shown in Table 1.

* Flipkart': the original set contains nearly
20,000 samples but over 200 category labels
are unqualified for modeling (e.g., those ei-
ther have too few samples or are considered
as Brand Name). Therefore we use 19,666
samples of top 28 categories.

* WDC dataset is WDC-25 Gold Standard for
Product Categorization (Primpeli et al., 2019).
We remove items with category label “not-
found” and keep 23,597 samples with 24 class
labels.

'www.kaggle.com/PromptCloudHQ/flipkart-products
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Table 1: Summary of product title datasets

Dataset #cls #train #test KL
Flipkart 28 17,682 1984 1.04
WDC 24 21,225 2,372 0.34
Retail 21 41,586 4,642 0.00
Pricerunner 10 31,773 3,538 0.03
Shopmania 147 282,095 31,437 1.49
Skroutz 12 214346 23,824 1.10

 Retail dataset has 46,228 training samples
with item titles, descriptions, images and
category labels placed into 21 categories
(Elayanithottathil and Keuper, 2021). We do
not use their test data which does not have
category labels.

e Pricerunner, Shopmania, Skroutz datasets?
were collected from three online electronic
stores and product comparison platforms
(Akritidis et al., 2018, 2020).

As shown in Table 1, datasets Flipkart, Shopma-
nia and Skroutz are highly imbalanced with KL-
divergence greater than 1. Each of these datasets
has major classes with thousands of samples and
minor classes with tens of samples. WDC dataset
is moderately skewed having 24 classes with num-
ber of samples ranging from 10 to 4,753. Retail
and Pricerunner sets are the most balanced with
KL-divergence close to zero. Retail dataset has
roughly 2,200 samples per class while Pricerunner
has class samples in range (2000, 6000).

4 Base Model for Product Title
Categorization

We develop a product title classifier based on
LSTM-CNNs architecture proposed in (Ma and
Hovy, 2016). The network architecture is depicted
in Figure 1. Input encoding layer is a concate-
nation of word-embeddings (looking-up function
against GloVe pre-trained embeddings (Penning-
ton et al., 2014)) and character embeddings (out-
put of a Character-CNN layer). The sequence of
embedding vectors is passed to a Bidirectional Re-
current Neural Network of LSTM cells (Hochreiter
and Schmidhuber, 1997). Prediction is carried by
a dense layer whose input is last hidden state of
Bidirectional LSTM. The DNN is implemented

2www.kaggle.com/lakritidis/product-classification-and-

categorization

Table 2: Models” macro F1 scores on product title data

Dataset LSTM-CNNs BERT-base
Flipkart 0.89 0.90
WDC 0.92 0.92
Retail 0.82 0.82
Pricerunner 0.96 0.98
Shopmania 0.83 0.87
Skroutz 0.96 0.98

in PyTorch (Paszke et al., 2017) and trained us-
ing Adam optimizer with Cross-entropy loss. For
experiments with different datasets, we use the
same set of hyper-parameters: Glove embedding
42B.300d, LSTM hidden size 100, character em-
bedding size 25 with 3 convolution heads of filter
sizes 2, 3, 4, learning rate 5e-4, clip gradient norm
greater than 5.0. Models are trained for 10 epoch
with batch size 16.

To evaluate our implementation, we compare
model performance with fine-tunning the pre-
trained BERT-base uncased language model (De-
vlin et al., 2019). Results on 6 datasets with clean
label are reported in Table 2.> Our model performs
on par with BERT-base in small datasets Flipkart,
WDC, and Retail with macro F1 of less than 1
percentage point lower. For datasets Pricerunner
and Skroutz, both models return great performance
with BERT-base outperforming our model by 2
percentage points. Shopmania dataset observes
the largest performance difference when BERT
achieves F1 score 4 percentage points higher than
LSTM-CNNSs. Good performance of LSTM-CNNs
gives us a strong base classifier which is much
faster to train than BERT-base (LSTM-CNNSs has
approximately 6M of trainable parameters while it
is 110M for BERT). We will study the impact of
pre-training on noise-resistance in a future study.

5 Instance-Dependent Noise Stimulation

A common approach for automated IDN genera-
tion is to train one or a set of classifiers on clean
label data, and use such classifiers to generate noisy
labels for the whole dataset. Related studies can be
different on how to maintain a pool of classifiers,
e.g., different checkpoints of a single models or
different model architectures, and label placement
strategies, e.g., whether replacing clean label sam-
ples with noisy counterparts or allowing a sample

3Macro F1 score is a fair evaluation metric for imbalanced
data.
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Figure 1: LSTM-CNNs architecture for product title classifier
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to have multiple copies with different labels. We
follow (Zhang et al., 2021b; Chen et al., 2021b)
to use replacement strategy which is considered a
more difficult setting. We implement four different
IDN algorithms, and adjust parameters to gener-
ate noisy label data with noise rates (i.e., ratio of
noisy label samples over data size) in two levels:
0.2 (low) and 0.4 (medium).

Last-epoch IDN: We train a base classifier for
10 epochs to obtain the network corresponding to
last epoch checkpoint. The trained network is ex-
ecuted on training data to obtain prediction con-
fidence score (i.e., output of softmax layer) for
every sample. Following the formula of noise type-
I described in (Zhang et al., 2021b), we corrupt
item category from the most confident label to the
second confident label. This method uses a noise
factor parameter to control noise rate, thus we run
different trials to probe the noise factors that give
us noise rates of interest.

Multi-epoch IDN: The base classifier is trained
for 10 epochs to obtain a sequence of networks cor-
responding to multiple epoch checkpoints. Each
sample is assigned a score as the average of predic-
tion probabilities assigned by network sequences
following the algorithm proposed in (Chen et al.,
2021b). Potential noisy label should have the
highest score among possible labels excluding the
ground truth. In particular, data instances are sorted
by scores of most likely corrupted labels, and r pro-
portion of top instances will have labels flipped to

Hordem

Word-emb

Char-CNN

108’

obtain noise rate r.

Multi-model IDN: Similarly to multi-epoch IDN,
we train 5 different versions of the base classifier by
varying initial weights to get a network sequence,
each network corresponds to last epoch checkpoint
(i.e., epoch 10) of a training. Then we apply the
same algorithm as in multi-epoch IDN to calculate
noisy labels.

Similarity-based IDN: From our experience in
product data analyses, we hypothesize that hu-
man annotators, and thus machine learning mod-
els, may have difficulties in categorizing similar
items, e.g., “Tara Lifestyle Chhota Bheem Printed
Art Plastic Pencil Boxes” and “Starmark BTS Star
Art Polyester Pencil Box”. Our idea is to locate
highly similar items across categories and flip their
category labels.

To generate noisy labels, we first calculate tex-
tual similarity between items of different categories.
We implement two vector-based cosine similarity
computations. First, A SentenceTransformer model
(Reimers and Gurevych, 2019)* is used to gener-
ate embeddings of product titles. Second, a Tf-Idf
model is learned from training set to generate Tf-
1df vectors of input titles. For each pair of product
titles, we compare two cosine similarities calcu-
lated from sentence embedding vectors and Tf-Idf
vectors. The greater score of two methods is as-
signed as similarity score Sim of two inputs. For

“Pretrained model all-MiniLM-L12-v2
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each item ¢, of category c, we record the maximal
similarity score Maxsim between it and every item
from another category ¢’ of category set C"

Maxsimy(ic) = maxj(Sim(ic, j)) j e

The sequence of maximal similarity scores of the
item is used as weight vector /. for a multinominal
distribution from which we draw a noisy label ¢
given the item.

I. = {Maxsimy(i.) Vd € C,d # c}.

¢ ~Multinomial(l.)

For all items, we assign their Maxsim; as rep-
resentative scores of their corrupted labels, and we
sort items by corrupted label scores from high to
low. Given noise rate r, we select top r proportion
of items to replace true labels by corrupted labels.

6 Experiments on Noisy Labels

6.1 Data Denoising by Corrupting Product
Titles

We propose a novel data denoising method that re-
duces noise ratio by relabeling a sample when its
prediction is certain. We say an input has certain
prediction when model prediction on both original
and corrupted inputs are the same. Our method
relies on an idea of critical information assumption,
i.e., we hypothesize that there are product titles
which provide too much information that model
does not need to use all words to predict their la-
bels. For such titles, if one or more words are
dropped, model should still predict the same label.
There have been different studies to extract part of
critical information from input to explain output of
prediction models (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Kokalj et al., 2021). Regarding
product title, leading words are considerately more
important than trailing words for recognizing prod-
uct category.’ Algorithm 1 is a simple heuristic to
drop words from a product title. Statement 2 makes
sure some right words are dropped even when an
input is less than 15 words.

We propose Algorithm 2 to denoise training data.
With clean data, model should achieves highly con-
fident predictions on training samples. Thus, we
reason that unconfident predictions on training sam-
ples (i.e., p < 0.8) are likely due to noisy labels.
We note that in case of noisy training, input label
is not considered ground truth generally.

>A common template arranges title words in order of
Brand Name > Product > Key features > Size > Color >
Quantity (sellerengine.com/product-title-keyword-strategies-
for-new-products-on-amazon).

Algorithm 1 Drop words from a product title

1: Drop left words until dropped words have at
least 5 letters in total or less then 4 words re-
maining

2: Drop right words until dropped words have
at least 5 letters in total or less then 4 words
remaining

3: Drop right words while there are more than 15
words

Steps 3 and 4 update® training samples while
step 5 removes samples which the model is unsure.
Our denoising algorithm reduces noise rate with a
trade-off of smaller training data. Their impact to
training data is shown in Table 3. For each dataset
and input noise rate, we average noise rate and data
size reductions after denoising the data corrputed
by different noise stimulations.

Algorithm 2 Denoise training data

1: Run pre-trained model M on training data D:
{Lo, P,} < M(D) where L, are predicted
label and P, are prediction probability

2: Run M on corrupted training data D (e.
drops words from titles): { Ly, Py} + M (f))

3: Assign predicted labels to samples where pre-
dictions are confident:

InputLabel < L, if P, > 0.8

4: Assign predicted labels to samples where pre-
dictions are certain:

InputLabel <— L, if L, = Ly

5: Remove samples where predictions are nei-
ther certain nor confident: L, # Ly and P, <
0.8and P; < 0.8

6.2 Noise-Resistance Training Algorithms

In this study, we compare three training solu-
tions that were developed for data with noisy la-
bels: Self-Evolution Average Label — SEAL (Chen
et al., 2021b), Progressive Label Correction —
PLC (Zhang et al., 2021b) and CoTeaching™ — CTp
(Yu et al., 2019). The three training algorithms
work independently from the underlying models.
SEAL trains a model on multiple iterations.
In each iteration, SEAL optimizes model’s loss
against soft labels which are average predictions
over epochs of the previous iteration. PLC first

®For efficiency, our actual implementation only update a
sample when its input label is different from predicted label.
This condition is ignored in pseudo code for simplicity.
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Table 3: Average reduction of noise rate and data size after denoising

Noise rate 0.2 Noise rate 0.4
Dataset Noise reduction Data reduction | Noise reduction Data reduction
Flipkart 36% 4% 29% 11%
WDC 28% 3% 21% 8%
Retail 26% 8% 30% 17%
Pricerunner 48% 3% 43% 11%
Shopmania 50% 7% 43% 12%
Skroutz 44% 6% 33% 7%

Table 4: Models’ macro F1 scores on product title data with noisy labels. Highest scores are bold. API shows
average performance improvement compared to base classifier.

Noise rate 0.2 Noise rate 0.4
Last-epoch IDN
Dataset Base DeN SEAL PLC CTp |Base DeN SEAL PLC CTp
Flipkart 074 082 081 078 0.81 | 055 0.67 0.69 0.62 0.66
wDC 086 08 088 0.87 0.88 | 0.68 0.71 0.71 0.73 0.77
Retail 072 076 078 0.78 0.78 | 0.59 0.66 0.70 0.66 0.71
Pricerunner 0.89 094 094 093 094 | 0.71 0.87 0.90 0.79 0.91
Shopmania 0.74 0.71 073 0.76 0.68 | 0.59 0.62 0.62 0.63 0.56

Skroutz 090 094 094 093 095 | 077 0.86 0.86 0.78 0.92

API - 37% 48% 42% 3.8% - 129% 153% 8.5% 16%
Multi-epoch IDN

Flipkart 073 073 074 075 0.75 | 0.61 0.59 0.64 0.62 0.63

wDC 081 082 083 083 082 | 065 0.66 0.66 0.65 0.68

Retail 079 080 079 079 080 | 0.73 0.73 0.76 0.74 0.76

Pricerunner 091 0091 092 092 092 | 0.80 0.82 0.84 0.82 0.85
Shopmania 0.76 0.75 076  0.77 0.67 | 0.63  0.65 0.65 0.62 0.57
Skroutz 095 095 095 095 095 | 0.88 0.90 0.90 0.88 0.90
API - 02% 08% 13% -09% - 1% 35% 0.6% 1.8%
Multi-model IDN
Flipkart 072 074 075 074 0.75 | 0.57 0.61 0.64 0.61 0.63
WDC 082 083 083 082 083 | 065 0.65 0.67 0.66 0.67
Retail 078 0.79 080 079 0.79 | 0.70 0.73 0.76 0.73 0.74
Pricerunner 090 0.91 0.92 091 092 | 0.80 0.81 0.84 0.81 0.84
Shopmania 0.76 0.75 078 0.77 0.68 | 0.66 0.65 0.66 0.64 0.57
Skroutz 095 095 095 095 095 | 090 0.92 0.91 0.91 0.92
API - 0.8% 2.1% 1% -0.2% - 2.2% 5% 2% 2.1%
Similarity-based IDN
Flipkart 073 076 076 077 0.78 | 0.55 0.58 0.61 0.65 0.67
WDC 073 074 075 075 0.76 | 0.58 0.58 0.59 0.59 0.60
Retail 069 075 077 076 0.77 | 0.57 0.66 0.72 0.70 0.72
Pricerunner 0.86 0.91 0.93 092 093 | 0.72 0.83 0.85 0.82 0.86
Shopmania 0.70 0.70  0.71 0.73 0.65 | 0.57 0.59 0.57 0.59 0.50
Skroutz 084 089 085 084 0.88 | 0.68 0.76 0.72 0.69 0.76
API - 43% 48% 49% 4.7% - 8.6% 104% 102% 11.7%
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Table 5: Models’ macro F1 scores averaged over different noise stimulations. Highest scores are bold.

Noise rate 0.2

Noise rate 0.4

Dataset Base DeN SEAL PLC CTp | Base DeN SEAL PLC CTp
Flipkart 0.73 0.762 0.765 0.76  0.772 | 0.57 0.6125 0.645 0.625 0.647
WDC 0.805 0.812 0.822 0.817 0.822 | 0.64 0.65 0.6575 0.657 0.68
Retail 0.745 0.775 0.785 0.78 0.785 | 0.6475 0.695 0.735 0.707 0.732
Pricerunner 0.89 0917 0.927 092 0.927 | 0.757 0.832 0.857 0.81 0.865
Shopmania 0.74  0.727 0.745 0.757 0.67 | 0.612 0.627 0.625 0.62 0.55
Skroutz 091 0932 09225 0917 0932 | 0.807 0.86 0.8475 0.815 0.875

trains noisy label data normally for a number of
epochs, i.e., warm-up phase, with expectation that
model can learn from clean labels before over-fits
to noisy labels. Then PLC corrects input labels
after each epoch for cases that it yields a confi-
dence score above a threshold. CoTeaching™ is an
upgrade of CoTeaching paradigm that cross-trains
two models using only small-loss samples in each
mini-batch. CoTeaching™ further prevents the two
models from convergence by passing only samples
whose predictions disagree among small-loss data
to loss optimization step.

6.3 Experiment Results

Experimental results of individual models are
shown in Table 4. We first train the base classifier
directly on noisy label data and record Macro F1
score on column Base. We then denoise’ training
data before training the base classifier, and enter
performance into column DeN. Next columns re-
port F1 scores of models trained by noise-resistance
algorithms on noisy label data (i.e., not desnoised).

As expected, label noises degrade model perfor-
mance significantly. Noise rate 0.2 reduces per-
formance of base model from 5% (Skroutz) - 18%
(Flipkart), while the performance reduction is 17%
(Skroutz) to 46% (Flipkart) given noise rate 0.4.
Pricerunner and Skroutz have lowest performance
degradation which is reasonable because these two
datasets are the easiest (see Table 2).

Evaluating impact of different IDN methods,
similarity-based IDN degrades performance of
base classifier the most in comparison with other
IDN methods. Comparing performance of noise-
resistance training methods with base classifier, we
report average performance improvement (API)
over different datasets in percentage point. Noise-
resistance training methods have the most diffi-

"We run pre-trained model reported in column Base on

training data to collect prediction outputs as described in Al-
gorithm 2.

culty in improving multi-epoch and multi-model
IDNSs. In particular, performance improvements are
at most 2% and 5% when multi-epoch and multi-
model IDN rates are 0.2 and 0.4 respectively. Such
noise-resistance training methods achieve much
higher performance improvements when noisy la-
bels are generated by other two IDN methods. Par-
ticularly, average performance improves are at least
4% and 8% when last-epoch and similarity-based
IDN rates are 0.2 and 0.4 respectively.

Denoising data before training show improve-
ments but performance improvements are lower
for multi-epoch and multi-model IDN’s than for
last-epoch and similarity-based IDN’s. Although
our data denoising implementation is basic, it helps
improve performance more than PLC in many set-
tings, e.g., higher API in last-epoch, multi-epoch
and multi-model IDN’s. This encourage us to ex-
plore more advanced classifiers for better noise
reduction results.

Table 5 summarizes the results by grouping
by dataset name then averaging over different
noise stimulation methods. It is shown that
CoTeaching™ performs better than other methods
in many datasets, e.g., 5 datasets with noise rate
0.2 and 4 datasets out of 6 with noise rate 0.4. DeN
performs worse than three noise-resistance training
methods despite a fact that noise rate was reduced
significantly as shown in Table 3. We hypothe-
size that regular training cannot recover from noisy
instances that denoising algorithm is unable to cor-
rect/remove.

Comparing different datasets, we observe that
Shopmania is the most difficult. Among denois-
ing and noise-resistance training algorithms, the
best approach could only improve performance by
4% and 7% when noise rate is 0.2 and 0.4 respec-
tively. CoTeaching™ even performed worse than
base classifier on this dataset. As shown in Table 1,
Shopmania is the largest dataset, has the most num-
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Table 6: Models’ macro F1 scores on product title data
with noise rate 0.6. Scores are averaged over IDN meth-
ods.

Dataset Base CTp API (%)
Flipkart 041 045 10%
WDC 0.42 046 9%
Retail 0.52 0.60 15%
Pricerunner 0.51 0.54 6%
Shopmania 042 042 0%
Skroutz 0.58 0.64 10%

ber of classes and the most imbalanced distribution.
Regarding imbalanced data, noisy labels in a minor
class might be harder to address due to its small
number of instances.

Finally, prediction performance at high noise
rate 0.6 is briefly shown in Table 6. We only com-
pare base classifier to CoTeaching™ which is the
best performing approach in this setting. While
noise-resistance training algorithms do improve
performance, overall performance is low. In our
opinion, such a performance score is too low for
an product title classification application. Thus we
do not find any of the three training algorithms or
our denoising algorithm can work reasonably well
with high noise rate in product data.

6.4 Future Work

Data denoising algorithm opens new opportunities
for us to further improve product title classification
with noisy labels. We plan to improve data denois-
ing by several techniques: (1) run denoising algo-
rithm using a base model trained with small num-
ber of epochs to prevent over-fitting to noise, (2)
use more advanced base classifier, and transformer-
based model is a good candidate. Stacking data de-
noising and noise-resistance training is another ex-
tension, and we can approach this in two ways: (1)
data denoising provides less-noisy data for noise-
resistance training, (2) noise-resistance training
provides better base model to denoise data.

7 Conclusion

In this paper, we evaluate a denoising algorithm and
three training approaches for product title classifi-
cation with category labels corrupted by instance-
dependent noise. We introduce a new IDN stimula-
tion algorithm and compare with three IDN algo-
rithms from prior studies to explore model perfor-
mance on a wider range of noise type. Therefore

our study can evaluate model robustness to IDN
more reliably. Overall we find that CoTeaching™
achieves highest average improvement and be our
recommendation when applying to new product
data without prior knowledge of noise cause or true
distribution. SEAL can be a good method when we
have clean validation data to evaluate. However,
all methods studied in this paper have difficulties
to address noise in large scale data with highly im-
balanced class distribution, especially when noise
rate is high. For such extreme setting, applica-
tion of data denoising and noise-resistance training
algorithms could not yield to reasonable perfor-
mance for applying to production. For a future
work, we plan to combine multiple techniques in-
cluding transformer-based classifier as a more ad-
vanced model and stacking data denoising with
noise-resistance training.
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