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Abstract

Although most studies have treated attribute
value extraction (AVE) as named entity recog-
nition, these approaches are not practical in
real-world e-commerce platforms because they
perform poorly, and require canonicalization
of extracted values. Furthermore, since val-
ues needed for actual services is static in many
attributes, extraction of new values is not al-
ways necessary. Given the above, we formal-
ize AVE as extreme multi-label classification
(XMC). A major problem in solving AVE as
XMC is that the distribution between positive
and negative labels for products is heavily im-
balanced. To mitigate the negative impact de-
rived from such biased distribution, we propose
label masking, a simple and effective method to
reduce the number of negative labels in training.
We exploit attribute taxonomy designed for e-
commerce platforms to determine which labels
are negative for products. Experimental results
using a dataset collected from a Japanese e-
commerce platform demonstrate that the label
masking improves micro and macro F1 scores
by 3.38 and 23.20 points, respectively.

1 Introduction

Since organized product data plays a crucial role
in serving better product search and recommenda-
tion to customers, attribute value extraction (AVE)
has become a critical task in the e-commerce in-
dustry. Although many studies have treated AVE
as named entity recognition (NER) task (§ 2.1),
NER-based approaches are not practical in real-
world e-commerce platforms. First, NER-based
methods perform poorly because the number of
attributes (classes) in e-commerce domains is ex-
tremely large (Xu et al., 2019). Second, it is neces-
sary to take a further step to normalize extracted val-
ues (e.g., coral to pink). To reflect extracted values
in actual services, e-commerce platform providers
need to convert the values into canonical form by
referring their own attribute taxonomy that covers
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Figure 1: Extreme multi-label classification model with
label masking for attribute value extraction.

attributes and values for the services. Third, ex-
traction of new values is not necessary in many
attributes (e.g., country of origin). Since it is rare
for new values of attributes other than brands to be
introduced to the world, it is sufficient to extract
the values defined in the attribute taxonomy.

Given the above reasons, we formalize AVE
as extreme multi-label classification (XMC), and
design a model that directly predicts possible
canonical attribute-value pairs except for brands1

from given product data. The main problem
in solving AVE as XMC is that the number of
relevant attribute-value pairs to products is far
fewer than that of irrelevant pairs; the majority of
attribute-value pairs are regarded as irrelevant (e.g.,
⟨Memory size, 512GB⟩ for sneakers). To tackle this
problem, we propose label masking that mitigates
the negative effects of a large amount of irrelevant
pairs in training (Figure 1, § 4.2). We detect the
irrelevant pairs by referring an attribute taxonomy
(§ 3) associated with a real-world dataset we use
to train and evaluate models. Through experiments
using the dataset, we confirm that our label mask-
ing method improves micro and macro F1 scores
by 3.38 and 23.20 points, respectively.

Our contributions can be summarized as follows:

1NER-based methods are necessary to extract new values.
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• We formalize AVE as an XMC problem.

• We proposed label masking, a simple and ef-
fective method to alleviate the negative impact
from irrelevant attribute-value pairs in training
(§ 4.2).

• We showed the effectiveness of the label mask-
ing using a real-world dataset. It especially
performed well on attribute-value pairs at the
long tail (§ 5.4).

2 Related Work

2.1 Attribute Value Extraction
There are many attempts based on NER techniques
to extract attribute values from product descrip-
tions (Probst et al., 2007; Wong et al., 2008; Put-
thividhya and Hu, 2011; Bing et al., 2012; Shin-
zato and Sekine, 2013; More, 2016; Zheng et al.,
2018; Rezk et al., 2019; Karamanolakis et al., 2020;
Zhang et al., 2020). As Xu et al. (2019) reported,
NER-based models perform poorly on a real-world
dataset including ten thousand attributes or more.

To deal with a large number of attributes, there is
research that introduces question-answering (QA)
models for the AVE task (Xu et al., 2019; Wang
et al., 2020; Shinzato et al., 2022). These QA-
based approaches take an attribute as query and a
product title as context, and extract attribute values
from the context as answer for the query. Since
those models take attributes as input, it is neces-
sary to run the extraction repeatedly on the same
product titles with different attributes. Hence, the
QA-based approaches are more time-consuming
than XMC-based approaches that can predict val-
ues for multiple attributes at a time.

2.2 Extreme Multi-Label Classification
To reduce the large output space, previous XMC
studies perform label clustering as a separate stage
from training classifiers (Wydmuch et al., 2018;
You et al., 2019; Chang et al., 2020; Zhang et al.,
2021; Jiang et al., 2021; Mittal et al., 2021a,b). For
example, XR-Transformer (Zhang et al., 2021) first
vectorizes each label with combination of TF-IDF
and embeddings of text associated with the label.
Then, it applies balanced k-means (Malinen and
Fränti, 2014) to these label vectors to generate a
hierarchical label cluster tree by recursively parti-
tioning label sets. Instead of k-means, Mittal et al.
(2021a) and Mittal et al. (2021b) partition labels
into equal sized clusters, and then train a binary

Category Shoes > Men’s shoes > Sneakers

Attributes Color Material Shoe size

Values
• Red • Leather • US 4
• Blue • Canvas • US 4.5
• Green • Gore-Tex • US 5

Table 1: Example of attribute taxonomy.

classifier per cluster that predicts whether a given
text is relevant to labels in the cluster.

On the other hand, in real-world e-commerce
platforms, an attribute taxonomy is available. This
can be regarded as label clusters manually tailored
by the e-commerce platform providers. Therefore,
we simply leverage the existing attribute taxonomy
to reduce the size of labels in training through label
masking.

3 Attribute Taxonomy

We assume that for each category, attribute tax-
onomy defines all possible attribute-value pairs
that products in the category can take. General
attribute-value pairs (e.g., ⟨Color, Red⟩) are defined
for multiple categories. Table 1 shows an example
of attributes and values defined for the category of
sneakers. By referring to the attribute taxonomy, it
is possible to determine which attributes and values
are relevant or irrelevant to which category of prod-
ucts. For example, from the table, we can see that
512GB of memory size is irrelevant to sneakers.

4 Proposed Method

This section proposes our model based on XMC
with label masking for the AVE task. Given a
product data x = ⟨c, t,d⟩, where c denotes a
category, t denotes a title consisting of n tokens
({t1,t2,. . . ,tn}) and d denotes a description con-
sisting of m tokens ({d1,d2,. . . ,dm}), respectively,
the model returns a set of attribute-value pairs that
should be linked with the product data x.

Figure 1 depicts the model architecture. As a
backbone of the architecture, we employ a pre-
trained BERT-base model (Devlin et al., 2019),
and put a feed forward layer on the top of BERT.
As an input to BERT, we construct a string
[CLS; t; SEP;d] by concatenating t, d, CLS and
SEP; CLS and SEP are special tokens to represent a
classifier token and a separator, respectively. Simi-
lar with Jiang et al. (2021), we concatenate the last
l hidden representations of the CLS token, and then
feed the concatenated vector into a feed forward
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Category Title Description Attribute-value pairs

靴 > メンズ靴 >
スニーカー

ノ ー ス ウ エ ー ブ
【northwave】ESPRESSO
ORIGINAL RED 男性
用 メンズ / 女性用 レ
ディース /スニーカー

製品説明落ち着いたレッドが象
徴的な、足元のアクセントとし
て最適な1足。軽量ラバーでソー
ルも軽量化された人気カラーの
モデル。

⟨靴サイズ(cm), 25.0 ⟩,
⟨靴サイズ(cm), 26.0 ⟩,
⟨靴サイズ(cm), 27.0 ⟩,
⟨カラー,レッド ⟩

Shoes > Men’s shoes
> Sneakers

Northwave [northwave]
Espresso Original Red
Men’s / Women’s / Sneak-
ers

Product description. These sneakers
are the perfect accent for your feet
and come in a soft red color. The
sole is made of lightweight rubber to
reduce weight. It is a popular color.

⟨ Shoe size (cm), 25.0 ⟩,
⟨ Shoe size (cm), 26.0 ⟩,
⟨ Shoe size (cm), 27.0 ⟩,
⟨ Color, Red ⟩

Figure 2: Example of product data. The top shows the original data and the bottom shows its translation.

layer as the representation of the input.
The size of the outputs from the feed forward

layer is equal to the total number of labels (attribute-
value pairs). The outputs are converted into prob-
ability through a sigmoid layer, and then pass to
the label masking. To mask labels irrelevant to the
given product data x, we refer an attribute taxon-
omy built for an e-commerce platform. We com-
pute binary cross entropy (BCE) loss over only
relevant labels.

In testing, we choose ones whose probability
returned from the model exceeds 0.5 among labels
relevant to the product data x.

4.1 Preliminary: XMC

XMC is a special case of the multi-label classifica-
tion problem. What makes XMC unique is its size
of a target label set. The label size is 4K to 501K
in common XMC datasets (Chang et al., 2020).

Formally, XMC can be defined as follows: Giv-
ing a training set {(x(i), y(i))}Ni=1 where x(i) is the
instance, and y(i) ∈ {0, 1}L is the label of x(i)

represented by L dimensional multi-hot vectors.
L is the size of the label set. y

(i)
j = 1 indicates

that the j-th label is a positive example for xi.
The regular XMC is aimed to learn the function
σθ(x) ∈ {(0, 1) ⊂ R}L which predicts scores in
range of [0.0, 1.0] to all labels by giving x. σ tends
to be closed to 1.0 to j-th label when yj = 1. The
ordinary loss function in XMC is BCE:

BCE = −
L∑

j=1

(yj log σ
j
θ(x) + (1− yj) log (1− σj

θ(x)))

BCE loss sums over the log loss among all labels.

4.2 Label Masking

In the AVE task, the number of “hot” labels is ex-
tremely small compared to the number of labels

defined for the task (L). This means that distribu-
tion between positive and negative labels is heavily
imbalanced. Such distribution has the negative im-
pact on training classification models because the
BCE sums far more loss values from the negative
labels.

To alleviate the impact derived from the negative
labels, we exploit attribute taxonomy. Since the
majority of the negative labels are irrelevant labels
to given product data x, we introduce a function M
that returns only relevant labels to x. BCE loss can
be rewritten as follows:

BCE = −
∑

j∈M(x)

(yj log σ
j
θ(x) + (1− yj) log(1− σj

θ(x)))

M(x) = {j : j ∈ L ∧ lj
rel∼ x}

where lj
rel∼ x means label lj is relevant to x.

By matching a category of x with categories in
the attribute taxonomy, we can obtain all possible
attribute-value pairs for x. We regard those pairs
as relevant labels to x.

By introducing the function M, BCE loss dis-
cards the log loss values from the irrelevant labels.
The label masking enables us to train XMC models
more properly since (1) it reduces bias in the dis-
tribution between positive and negative labels, and
(2) the irrelevant labels would not affect the model
parameters during back-propagating. This makes
the model training more sensitive than normal to
misclassification within relevant labels.

5 Experiments

5.1 Dataset
We use product data and attribute taxonomy
from Rakuten2, a large e-commerce platform in
Japan. Each product consists of a tuple of cate-
gory, title, description and a set of attribute-value

2https://www.rakuten.co.jp/
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Count

# of product data 1,999,175
# of top categories 38
# of leaf categories 6,796
# of distinct attributes 1,300
# of distinct attribute-value pairs (labels) 7,979
Avg. tokens per title 44.05
Avg. tokens per description 332.04
Avg. # of positive labels 4.42
Avg. # of negative labels 7974.58
Avg. # of relevant labels 489.25
Avg. # of irrelevant labels 7489.75

Table 2: Data statistics. These numbers are calculated
from both training and test data.

pairs. Rakuten manages category and attribute tax-
onomies, and sellers assign products a category
and attribute-value pairs defined in the taxonomies.
Figure 2 shows an example of the product data.

For experiments, among product data in Rakuten,
we randomly sampled 2,000,446 product data
that own one or more attribute-value pairs ex-
cept brands. We halve this dataset as a 50-50
train/evaluation split. We selected attribute-value
pairs appeared in both datasets3, and removed prod-
uct data that did not have any selected pairs. More-
over, from the evaluation dataset, we discarded
product data whose category did not appear in the
training dataset. As a result, the training and evalu-
ation datasets contain 1,000,047 and 999,128 prod-
ucts respectively. Statistics of the dataset are listed
in Table 2. We can see that the label masking
reduces the size of labels from 7,979 to 489 on
average.

5.2 Evaluation Metrics

We use precision (P), recall (R), F1 score and pre-
cision at k (P@k, k = 1,3,5), which is widely used
in the XMC tasks.To obtain a top-k list, we regard
all prediction results as output regardless of scores.

5.3 Models

We compare the following models:

XR-Transformer XMC model that shows the
state-of-the-art performance on datasets commonly
used in the XMC field (Zhang et al., 2021). We
train the model using the codes released from the
authors4 with default parameters other than max

3The total number of the un-selected attribute-value pairs
is 1,289. These pairs appeared 10 times or less in the sampled
product data.

4https://github.com/amzn/pecos

Hyper parameter Value

Learning rate 0.0001
Weight decay 0.0
Epoch 5
Batch size 64
Dropout rate 0.1
Max. sequence length 512
Warmup proportion 10%
# of CLS’s hidden representations to concat. (l) 5

Table 3: Hyper parameters

sequence length and batch size. We set 512 for max
sequence length and 64 for batch size.

BERT BERT (Devlin et al., 2019) without our la-
bel masking. It computes BCE loss from all labels.

BERT with multiple classifiers Model that sim-
ply exploits a given category. We design a clas-
sifier (feed forward) layer for each category, and
put them on the top of a single BERT. Because of
this, parameters in BERT are in common with all
classifiers. According to the category, we replace
a classifier in training and testing. We construct
mini-batches to include product data in the same
category. As categories, in addition to leaf cate-
gories (e.g., Sneakers), we also adopt top categories
(Shoes). This is because the size of training data
is not sufficient in some minor leaf categories. By
taking top categories, we can expect that the size of
training data is enlarged although it increases irrel-
evant labels to leaf categories assigned in products.
The total number of top categories is 38, including
shoes, food, furniture and home appliances.

BERT with label masking Our proposed model.
It computes BCE loss from only relevant attribute-
value pairs to the category of given product data.
Unlike BERT with multiple classifiers, this model
has a single classifier, and the classifier is trained
using product data from all categories.

For fair comparison with our model that assumes
a category of the target product to be given, we
discard irrelevant labels that the baseline models
predict.

We employ a pretrained Japanese BERT-base
model and its tokenzier released from Tohoku Uni-
versity5, and use them in all models. We apply
NFKC Unicode normalization6 to titles and de-
scriptions before the tokenization.

5https://github.com/cl-tohoku/bert-japanese
6https://unicode.org/reports/tr15/

137

https://github.com/amzn/pecos
https://github.com/cl-tohoku/bert-japanese
https://unicode.org/reports/tr15/


Models Micro Macro P@k (%)
P (%) R (%) F1 P (%) R (%) F1 k = 1 k = 3 k = 5

XR-Transformer 92.01 73.80 81.90 45.43 19.93 27.71 90.30 65.68 53.61
BERT 88.77 74.64 81.09 26.57 15.42 19.51 87.59 63.97 52.36
BERT w/ multiple classifiers - leaf 87.79 74.90 80.83 47.24 30.89 37.36 87.79 55.63 44.60
BERT w/ multiple classifiers - top 89.04 79.88 84.21 52.12 34.99 41.87 91.10 65.95 53.75
BERT w/ label masking (ours) 88.90 80.46 84.47 52.82 35.85 42.71 91.57 66.31 54.08

Table 4: Performance of each model.

Group Freq. Micro F1 Macro F1

(# of pairs)

High (76) [104, ∞) 89.57 (+1.56) 86.15 (+2.31)
Med. (454) [103, 104) 81.98 (+3.90) 78.58 (+5.24)
Low (1,457) [102, 103) 70.79 (+10.59) 66.80 (+14.55)
Rare (5,992) [1, 102) 53.85 (+33.20) 33.19 (+26.97)

Table 5: Micro and macro F1 scores of our model for
each group of attribute-value pairs. Gains over BERT
without label masking are enclosed in parentheses.

For models other than XR-Transformer, we use
gradient descent by the Adam (Kingma and Ba,
2015) optimizer. To avoid overfitting, we apply a
dropout rate at 0.1 and stochastic weight averag-
ing (Izmailov et al., 2018) to the models. Table 3
shows the hyper parameters.

Similarly with our model, as the representation
of the input to BERT and BERT with multiple clas-
sifiers, we use a vector concatenating CLS embed-
dings obtained from the last five encoders. We
implemented the models in PyTorch.

5.4 Results

Table 4 shows the performance of each model. We
can observe that our proposed model outperformed
all baselines. Micro and macro F1 gains over BERT
without label masking are 3.38 and 23.20 points, re-
spectively. The significant improvement on macro
F1 score shows that the label masking is effective
on various kinds of attribute-value pairs. These
results show that reducing the number of irrelevant
labels in training is crucial to train more accurate
XMC models.

The reason why the performance of BERT with
multiple classifiers trained on leaf categories is
lower than ours is that the number of training ex-
amples for this model is insufficient in many leaf
categories, as we mentioned. For 5,572 categories,
the number of training examples is less than 64.
Since parameters of BERT in this model are in
common with all categories, this result implies that
the classifiers are not well trained. On the other

hand, the single classifier in our model is success-
fully trained because (general) attribute-value pairs
scattered on various leaf categories are fully used
to train the classifier.

Since the data sparseness problem is alleviated,
BERT with multiple classifiers trained on top cate-
gories outperforms the model trained on leaf cate-
gories. Furthermore, its performance is closed to
ours. We believe that the gap of the performance
between the model trained on top categories and
ours is from the quality of association between cat-
egories and attributes. In case of the model trained
on top categories, attribute-value pairs defined for
different leaf categories in the same top category
are handled as relevant labels (e.g., heel height for
sneakers). Meanwhile, our model is not affected
by such attribute-value pairs. The gap implies that
these erroneous relevant pairs hurt the performance.

To see the effectiveness of the label masking in
detail, we categorize attribute-value pairs according
to the frequency in the training data, and then check
the performance for each frequency group. Table 5
shows the performance of our model in each group
together with micro and macro F1 gains over BERT.
The improvement in micro and macro F1 scores is
greater for attribute-value pairs with less training
examples. This means that the label masking works
well for attribute-value pairs at the long-tail.

6 Conclusion

In this paper, we formalized AVE as XMC, and
proposed label masking, a simple and effective
method that mitigates the negative impact from
the imbalanced distribution of attribute-value pairs
relevant and irrelevant to products. Experimental
results using a real-world dataset show that the
label masking improves the performance of BERT-
based XMC models; it is especially effective for
attributes with less training data.

As for future work, we plan to see the effective-
ness of the label masking method on other tasks in
e-commerce domains such as item classification.
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