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Abstract

Defect Triage is a time-sensitive and critical
process in a large-scale agile software devel-
opment lifecycle for e-commerce. Inefficien-
cies arising from human and process depen-
dencies in this domain have motivated research
in automated approaches using machine learn-
ing to accurately assign defects to qualified
teams. This work proposes a novel framework
for automated defect triage (DEFTri) using fine-
tuned state-of-the-art pre-trained BERT on la-
bels fused text embeddings to improve con-
textual representations from human-generated
product defects. For our multi-label text clas-
sification defect triage task, we also introduce
a Walmart proprietary dataset of product de-
fects using weak supervision and adversarial
learning, in a few-shot setting.

1 Introduction

In large e-commerce organizations, there are many
defects generated periodically with a massive pool
of software teams and developers spread across
geographies to pick from, each with unique do-
main specialization. Most organizations have a
large pool of human triaging agents responsible for
routing these product defects across various teams
within the organization. However, large-scale soft-
ware releases are time-sensitive, and effective de-
fect assignments are a critical component in the
process that is prone to bottlenecks. Determining
the most suitable team to own a defect may require
several attempts; thus, wasting time to diagnose a
defect not in the team’s domain of specialty and,
overall, negatively impacting the defect resolution
throughput.

Prior industry research work on automated de-
fect triage has primarily focused on using the tra-
ditional machine learning approaches. However,
with the recent surge of state-of-the-art pre-trained
language models, one under-explored field of appli-
cation is operations in agile software development.

In the defect triage, handling scenarios require Nat-
ural Language Understanding to utilize the con-
text of the defects logged by human testers, to pre-
dict all the teams associated with resolution. The
current defect triage process is primarily human-
agents driven. This work integrates an automated
defect triage framework, DEFTri using product de-
fect’s contextual features to achieve operational
excellence within Walmart’s software development
lifecycle.

We propose a novel framework, DEFTri to per-
form an automated defect triage using contextual
representations of human-generated defect texts.
We use Walmart’s proprietary data of product de-
fects curated by product managers, program man-
agers, and beta-testers to train our models. We
use domain-specific lexicons to generate labeled
training data using weak supervision in a few shot
settings. We further use adversarial learning to in-
crease our training sample size while increasing the
robustness of our models. We propose our model
architecture for fine-tuning pre-trained BERT (De-
vlin et al., 2018) for our multi-label classification
task. Finally, we consolidate our experiments, ana-
lyze the results and discuss future research work.

2 Related Work

Prior research work on defect triage (Choquette-
Choo et al., 2019; Mani et al., 2018;
Soleimani Neysiani et al., 2020) mostly fo-
cuses on using traditional machine learning and
RNNs on word vector representations of text
using BOW, Word2Vec, Tfidf, etc. Another recent
research relies on graph representation learning for
defect triage (Wu et al., 2021). This paper proposes
a graph recurrent convolution network with a
joint random walk mechanism-based architecture.
Also, several recent research on label embedding
(Xiong et al., 2021; Liu et al., 2021; Si et al.,
2020) has shown promising results for learning
the text and label representation in the same latent
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space. We further the research by proposing a
novel architecture to derive superior contextual
text representations using state-of-the-art language
model BERT for multi-label defect triage.

Most of these published research benchmarks
are on open-source defect report datasets - Eclipse
and Mozilla (Lamkanfi et al., 2013). However,
these datasets are focused on technical errors gen-
erated during system failures and do not mimic
our use case. Our product defects are comprehen-
sive user testing reviews consisting of natural lan-
guage, technical and domain-specific text. In the
real world, gathering labeled data is hard and expen-
sive. Hence, we propose a methodology to generate
a robust proprietary multi-label training dataset us-
ing weak supervision and adversarial learning.

3 Data

Our primary dataset is a proprietary in-house
dataset consisting of actual defect reviews gener-
ated by beta testers for one of our major software
releases. We rely on defect title and description
fields to create the text corpus and text labels to
identify the teams uniquely. Each defect could
have multiple associated teams and vice versa. For
our research, we have 3485 samples as a train set
and 85 samples as the test set with 15 unique team
labels for our multi-label dataset. Refer Table 1.
We have 4-5 human-expert annotated defects cor-
responding to each team label in our low-resource
setting. Our data preparation pipeline follows the
below steps,

3.1 Generate Labeled Data Using Weak
Supervision

Despite the success of fine-tuning pre-trained lan-
guage models, one bottleneck is the requirement of
labeled data. These labeled training data were ex-
pensive and time-consuming to create. It required
human annotators with domain expertise to read
through each defect review and assign team labels
accordingly. Every change in labeling guidelines,
team orientation, or use case changes necessitated
re-labeling. Hence, we used Snorkel label model
(Ratner et al., 2017) to generate weak labels for our
training data. We apply 25 labeling functions (LFs)
to unlabelled training data using a snorkel pipeline.
Refer Table 2.

3.2 Generate Synthetic Data Using
Adversarial Learning

Machine learning algorithms are often vulnerable
to adversarial examples that have imperceptible al-
terations from the original counterparts but can fool
the state-of-the-art models (Jin et al., 2019; Dong
et al., 2021).To increase the robustness, model train-
ing can be done using adversarial examples (Good-
fellow et al., 2014; Gowal et al., 2021). We use
Textattack framework (Morris et al., 2020) on 30%
of our data, chosen at random to generate synthetic
data for training our models and append these syn-
thetic examples to our train set. We use embedding
recipe of the framework that augments text by re-
placing words with neighbors in the counter-fitted
embedding space, with a constraint to ensure their
cosine similarity is at least 0.8. For every sampled
defect, we produce 2 augmented defect texts by al-
tering 10% of original text words, while preserving
the team labels . Refer Table 3

3.3 Fix Data Imbalances

We found that the final training data created us-
ing the above techniques were imbalanced. This
issue was because the product defects were likely
skewed towards a specific defect associated with
a more significant and frequently tested domain
vs. a rarely occurring one. We also noticed that
defect reviews for features related to new team la-
bels are getting introduced into the environment
on an ongoing basis. To resolve the skewness, we
used Multilabel Synthetic Minority Over-sampling
Technique (MLSMOTE) (Charte et al., 2015) w.r.t
the team labels with minimal data representation.

4 Model

The multi-team-labels defect classification task in
this research can be summarized with S as the tuple
set. di and ti represents the ith defect denoted
as D and its corresponding team-labels denoted
as T. N, n and m are the total number of defects,
the length of the ith defect text and the number of
teams-labels of the ith document, respectively.

S = {(di, ti)}Ni=1, D = {di|di = {d1, d2, , dn}},
T = {ti|ti = {t1, t2, , tm}}

Our framework, DEFTri aims at assigning team-
labels to its corresponding defects based on the
conditional probability P(ti|di).
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Defect Text Corpus (Anonymized Excerpts)
...For a store only query like XXX i am seeing available for
scheduled pickup as the stack title on FE when i don’t have a
slot booked.This stack title should just reflect the XXX query
like ios and web..Incorrect XXX mapping (number mapped to XXX..
...I cant add XXX to my cart from order details from my previous
canceled order. There is no actionable CTA.There is an add to cart
CTA for the XXX. See attached video. Using ios XXX...

Table 1: Samples of Defect Text Corpus.

Figure 1: DEFTri Data Generation Methodology

Rule corpus->labels (Anonymized)
Keyword ’android’ or ’ios’ -> [Team-LabelA]
Pattern ’*search*’ -> [Team-LabelB, Team-LabelC]

Table 2: Example LFs For Snorkel pipeline

4.1 Pre-Trained Model

For our fine-tuning, we use BERT pre-trained trans-
former embedding from Hugging Face’s Trans-
formers library (Wolf et al., 2020).BERT base
uncased embeddings are case insensitive and are
pre-trained on the English language self-supervised
using two objectives - masked language model-
ing (MLM) and Next Sentence Prediction (NSP).
These embeddings were introduced in the original
BERT (Devlin et al., 2018) paper and serve as
baseline embeddings for our models.

4.2 Approach

For our DEFTri framework, we propose 2 novel
implementations to derive superior contextual rep-
resentations from product defect text, that help in
improved multi-label defect classification task. We
denote the defect corpus(title and description) to-
kens as Di and their corresponding token embed-
dings as EDi, where K is the total number of words
in the input defect and DK represents the last to-
ken. Similarly, let Lj be the team label text of the
jth team of the overall 15 teams, corresponding to

the defect corpus. Finally, we derive the positional
embedding using BERT and apply classification
layer with activation to the last layer of the hidden
state at the [CLS] token.

4.2.1 Label Fused Model with [SEP]

We utilize the sentence pair configuration of BERT
for text input. We concatenate the team labels text
as Sentence A and concatenate the Defect title and
description text as Sentence B, both separated by a
[SEP] token. Refer Figure 2

Figure 2: DEFTri LabelFuse Model with [SEP]

4.2.2 Label Fused Model without [SEP]

For our second implementation, we concatenate
the team labels text along with Defect title and
description text as a single Sentence A, without
any [SEP] token as input. Refer Figure 3
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Defect Text (Anonymized) Adversarial Defect Text (Anonymized)
Price showing inconsistently Price displaying inconsistently
Final cost by weight not showing on search tiles Final prices by weight not showing on search tiles
Spacing on Nutrition Label is too large Spacing on Nourishment Label is too large

Table 3: Sample cases of Defect text vs Adversarial Defect Text.

Model Macro-F1 Accuracy
BERT+Linear 0.8123 0.8134
BERT+BiLSTM 0.8206 0.8216
BERT+LabelFuse w/o [SEP]+Linear 0.8144 0.8153
BERT+LabelFuse w/o [SEP]+BiLSTM 0.8236 0.8245
BERT+LabelFuse w [SEP]+Linear 0.8137 0.8150
BERT+LabelFuse w [SEP]+BiLSTM 0.8229 0.8241

Table 4: DEFTri Experiments Results For Contextual Multi-TeamLabel Classification on Real Product Defects

Figure 3: DEFTri LabelFuse Model w/o [SEP]

4.3 Classification Head

We experimented with two different dense layers
for the classification head - Linear and BiLSTM.
Refer Table 5

Classification Heads Dense Layer Linear Layer
Type Activation In Out In Out

Linear Tanh 768 768 768 15
BiLSTM ReLU 768 256 512 15

Table 5: DEFTri Classification Head Configurations

4.4 Loss Function and Optimizer

For model training we use PyTorch implementation
of BCEWithLogitsLoss as our loss function and
AdamOptimizer as our optimizer. BCEWithLog-
itsLoss combines a Sigmoid layer and the Binary
Cross Entropy Loss in one single class. In case of
multi-label classification the loss can be described
as,

lt(x, y) = Lt = {l1,t, ..., lN,t}T ,
ln,t = −wn,t[ptyn,t · logσ(xn,t) + (1 + yn,t) ·
logσ(xn,t)]

where t=15 and represents the number of team-
labels , n is number of sample in the batch and pt is
the weight of the positive answer for team-label t.

4.5 Hyper-Parameters

We use a set of hyper-parameters for our experi-
ments. We used manual search for hyper-parameter
search and the best model was chosen based on the
best top-1 accuracy yielded in the validation data.
Refer Table 6

HParams Values
Dropout 0.1

Max Sequence Length 512
Batch-Size 16

Learning Rate 1e-5
Weight Decay 0.01
Adam epsilon 1e-6

Epochs 10

Table 6: DEFTri Hyper-Parameters

5 Experiments

As baseline and our proposed architecture, we use
the pre-trained bert-base-uncased model (Wolf
et al., 2020; Vaswani et al., 2017). We perform
a total of 6 experiments for our models under 3 dif-
ferent settings (1) baseline fine-tuned BERT model
with no fused labels (2) fine-tuned BERT with
fused labels without [SEP] token and (3) fine-tuned
BERT with fused labels with [SEP] token, using
2 classification heads combinations e.g Linear and
BiLSTM. Refer Table 4 and Appendix A.1

For data preprocessing step, the corpus is con-
verted to lowercase and tokenzied with one-hot-
encoded labels.Our deep learning model is then
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trained to predict multiple team-labels for each
test sample. At inference time, the model takes
in an input of text corpus of defect and predicts
a vector of probabilities for each of the 15 team-
labels. We used a confidence threshold of 0.55 for
our probability vector to obtain a binary vector for
comparison with ground-truth.

Measuring accuracy on exact binary vector
matching for multi-label classification is too
penalizing because of the low tolerance for partial
errors. Therefore, we divide our predictions by
classes. For each of the team-labels in our dataset,
we calculate the number of false positives (FP),
false negatives (FN), true positives (TP), true
negatives (TN). Finally, to obtain our Accuracy,
we sum up the values across each team-labels as
below,

Accuracy =
∑

TPt+
∑

TNt∑
FPt+

∑
FNt+

∑
TPt+

∑
TNt

where T=15 and represents the number of
team-labels in our dataset and TPt, TNt, FPt ,
FNt represents values of TP, TN, FP, FN for tth

team-label. Similarly, we used macro-F1 (F1)
scores based on averaged value of precision and
recall calculated over all team-labels as below,

Precisiont =
TPt

FPt+TPt

Recallt =
TPt

FNt+TPt

F1 = 2×
1
T

∑
Precisiont× 1

T

∑
Recallt

1
T

∑
Precisiont+

1
T

∑
Recallt

6 Analysis

Based on our experiments, we observed that label-
fused contextual learning-based fine-tuned BERT
models significantly outperformed the base model
using only the context of the defect text. The per-
formance boost over the base BERT pre-trained
fine-tuned model is because of the context in the
label embeddings used in addition to the defect text
in the label-fused models, which optimizes on the
alignment of features, which makes it possible to
classify better. Our team labels were short mean-
ingful English words vs abbreviations which made
fused embeddings better for classification when
paired as a sentence with the defect texts as inputs.
We observed that label-fused model without [SEP]
token performed better that with [SEP] token which
could have been because of the unnatural formation

of Sentence A, where a bunch of team labels are
concatenated together.

Also, with the addition of synthetically gener-
ated data using adversarial examples for model
training, we achieved an average accuracy improve-
ment of 2.69% across our models vs. using the
original data only. However, during our experi-
ments we observed that the performance was sen-
sitive towards the choice of text corpus sequence
length and perturbation percentage for data aug-
mentation made, during model training. A higher
percentage of perturbations combined with a lower
sequence length of text corpus negatively impacted
performance.

7 Future Work

Fine-tuning language models with weak supervi-
sion definitely solves the challenge of low labeled
data availability. However, the models perfor-
mance definitely suffers from error-propagation of
pseudo-labels generated during the process. Re-
cent research in contrastive self-regularized self-
training approach (Yu et al., 2020) and GAN-BERT
in adversarial setting (Croce et al., 2020) have
shown promising results for fine-tuning BERT-
based language models with weak supervision.
Also, Contrastive learning and Adversarial Learn-
ing approaches applied to various NLP tasks have
demonstrated improvement over fine-tuning on
BERT-based models (Mohanty et al., 2021; Pan
et al., 2021). To further our research, we would
improve upon these approaches.

8 Conclusion

In this work, we proposed a novel framework,
DEFTri for automated defect triage using contex-
tual representations of human-generated defect re-
views at Walmart. We discussed our methodology
of generating a new proprietary labeled dataset by
using weak supervision and adversarial learning, in
a few shot setting. We presented two label-fused
model approaches for fine-tuning pre-trained BERT.
As hypothesized, the experimental results show that
our approach improves the multi-label text classifi-
cation task for defect triage. We also proposed our
future work of implementing contrastive learning
for fine-tuning using weak supervision.
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A Appendix

A.1 Experiment Setting
We ran all our experiments on a Google Cloud
Platform using a n1-standard-16 machine with
NVIDIA Tesla V100 GPUs.
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