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Abstract

We address the task of automatically
distinguishing between human-translated
(HT) and machine translated (MT) texts.
Following recent work, we fine-tune pre-
trained language models (LMs) to perform
this task. Our work differs in that we use
state-of-the-art pre-trained LMs, as well
as the test sets of the WMT news shared
tasks as training data, to ensure the sen-
tences were not seen during training of the
MT system itself. Moreover, we analyse
performance for a number of different ex-
perimental setups, such as adding transla-
tionese data, going beyond the sentence-
level and normalizing punctuation. We
show that (i) choosing a state-of-the-art
LM can make quite a difference: our
best baseline system (DEBERTA) outper-
forms both BERT and ROBERTA by over
3% accuracy, (ii) adding translationese
data is only beneficial if there is not much
data available, (iii) considerable improve-
ments can be obtained by classifying at the
document-level and (iv) normalizing punc-
tuation and thus avoiding (some) shortcuts
has no impact on model performance.

1 Introduction

Generally speaking, translations are either per-
formed manually by a human, or performed au-
tomatically by a machine translation (MT) sys-
tem. There exist many use cases in Natural Lan-
guage Processing in which working with a human-
translated text is not a problem, as they are usually
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of high quality, but in which we would like to fil-
ter out automatically translated texts. For example,
consider training an MT system on a parallel cor-
pus crawled from the Internet: we would prefer-
ably only keep the high-quality human-translated
sentences.

In this paper, we will address this task of dis-
criminating between human-translated (HT) and
machine-translated texts automatically. Studies
that have analysed MT outputs and HTs compar-
atively have found evidence of systematic differ-
ences between the two (Ahrenberg, 2017; Van-
massenhove et al., 2019; Toral, 2019). These out-
comes provide indications that an automatic classi-
fier should in principle be able to discriminate be-
tween these two classes, at least to some extent.

There is previous related work in this direc-
tion (Arase and Zhou, 2013; Aharoni et al., 2014,
Li et al., 2015), but they used Statistical Machine
Translation (SMT) systems to get the translations,
while the introduction of Neural Machine Trans-
lation (NMT) has considerably improved general
translation quality and has led to more natural
translations (Toral and Sdnchez-Cartagena, 2017).
Arguably, the discrimination between MT and HT
is therefore more difficult with NMT systems than
it was with previous paradigms to MT.

We follow two recent publications that have
attempted to distinguish NMT outputs from
HTs (Bhardwaj et al., 2020; Fu and Nederhof,
2021) and work with MT outputs generated by
state-of-the-art online NMT systems. Addition-
ally, we also build a classifier by fine-tuning
a pre-trained language model (LM), given the
fact that this approach obtains state-of-the-art
performance in many text-based classification
tasks.



The main differences with previous work are:

* We experiment with state-of-the-art LMs, in-
stead of only using BERT- and ROBERTA-
based LMs;

* We empirically check the performance im-
pact of adding translationese training data;

* We go beyond sentence-level by training and
testing our best system on the document-
level;

* We analyse the impact of punctuation short-
cuts by normalizing the input texts;

* We use the test sets of WMT news shared task
as our data sets, to ensure reproducibility and
that the MT system did not see the transla-
tions during its training.

The rest of the paper is organised as follows.
Section 2 outlines previous work on the topic. Sec-
tion 3 details our methodology, focusing on the
data sets, classifiers and evaluation metrics. Sub-
sequently, Section 4 presents our experiments and
their results. These are complemented by a dis-
cussion and further analyses, in Section 5. Finally,
Section 6 presents our conclusions and suggestions
for future work. All our data, code and results is
publicly available at https://github.com/
tobiasvanderwerff/HT-vs-MT

2 Related Work

Analyses Previous work has dealt with finding
systematic and qualitative differences between HT
and MT. Ahrenberg (2017) compared manually an
NMT system and a HT for one text in the trans-
lation direction English-to-Swedish. They found
that the translation by NMT was closer to the
source and exhibited a more restricted repertoire of
translation procedures than the HT. Related, an au-
tomatic analysis by Vanmassenhove et al. (2019)
found that translations by NMT systems exhibit
less lexical diversity than HTs. A contemporary
automatic analysis corroborated the finding about
less lexical diversity and concluded also that MT
led to translation that had lower lexical density,
were more normalised and had more interference
from the source language (Toral, 2019).

SMT vs HT classification Given these findings,
it is no surprise that automatic classification to dis-
criminate between MT and HT has indeed been
attempted in the past. Most of this work targets

SMT since it predates the introduction of NMT and
uses a variety of approaches. For example, Arase
and Zhou (2013) relied on fluency features, while
Aharoni et al. (2014) used part-of-speech tags and
function words, and Li et al. (2015) parse trees,
density and out-of-vocabulary words. Their meth-
ods reach quite high accuracies, though indeed rely
on SMT systems, which are of considerable lower
quality than the current NMT ones.

NMT vs HT classification To the best of our
knowledge only two publications have tackled this
classification with the state-of-the-art paradigm,
NMT (Bhardwaj et al., 2020; Fu and Nederhof,
2021). We now outline these two publications and
place our work with respect to them.

Bhardwaj et al. (2020) work on automatically
determining if a French sentence is HT or MT,
with the source sentences in English. They test
a variety of pre-trained language models, either
multilingual —XLM-R (Conneau et al., 2020) and
mBERT (Devlin et al., 2019a)— or monolingual for
French: CamemBERT (Martin et al., 2020) and
FlauBERT (Le et al., 2020). Moreover, they test
their trained models across different domains and
MT systems used during training. They find that
pre-trained LMs can perform this task quite well,
with accuracies of over 75% for both in-domain
and cross-domain evaluation. Our work follows
theirs quite closely, though there are a few impor-
tant differences. First, we use publicly available
WMT data, while they use a large private data set,
which unfortunately limits reproducibility. Sec-
ond, we analyze the impact of punctuation-type
“shortcuts”, while it is unclear to what extent this
gets done in Bhardwaj et al. (2020)." Third, we
also test our model on the document-level, instead
of just the sentence-level.

Fu and Nederhof (2021) work on the WMT18
news commentary data set for translating Czech,
German and Russian into English. By fine-tuning
BERT they obtain an accuracy of 78% on all lan-
guages. However, they use training sets from
WMT18, making it highly likely that Google
Translate (which they use to get the translations)
has seen these sentences during training.> This
means that the MT outputs they get are likely
of higher quality than it would be the case in a
1They do apply 12 conservative regular expressions, but, as
there is no code available, it is unclear what these are and
what impact this had on their results.

This likely does not apply to Bhardwaj et al. (2020), as they
use a private data set.



real-world scenario, and thus closer to HT, which
would make the task unrealistically harder for the
classifiers. On the other hand, an accuracy of 78%
is quite high on this challenging task, so perhaps
this is not the case. This accuracy might even be
suspiciously high: it could be that the model over-
fit on the Google Translations, or that the data con-
tains artifacts that the model uses as a shortcut.

Original vs MT Finally, there are three related
works that attempt to discriminate between MT
and original texts written in a given language,
rather than human translations as is our focus.
Nguyen-Son et al. (2019a) tackles this by matching
similar words within paragraphs and subsequently
estimating paragraph-level coherence. Nguyen-
Son et al. (2019b) approaches this task by round-
trip translating original and machine-translated
texts and subsequently using the similarities be-
tween the original texts and their round-trip trans-
lated versions. Nguyen-Son et al. (2021) extends
the former work improving the detection of MT
even if a different system is used.

3 Method
3.1 Data

We will experiment with the test sets from the
WMT news shared tasks.> We choose this data set
mainly for these four reasons:

(1) it is publicly available so it guarantees repro-
ducibility;

(i1) it has the translation direction annotated,
hence we can inspect the impact of having
original text or human-translated text (i.e.
translationese) in the source side;

(iii) the data sets are also available at the
document-level, meaning we can train and
evaluate systems that go beyond sentence-
level;

(iv) these sets are commonly used as test sets, so it
is unlikely that they are used as training data
in online MT systems, which we use in our
experiments.

We will use the German-English data sets, and
will focus on the translation direction German-to-
English. This language pair has been present the
longest at WMT’s news shared task, from 2008
till the present day. Hence, it is the language pair

3For example, https://www.statmt.org/wmt20/
translation-task.html

Data set #SNTo #SNTr #DOCp #DOCr
WMTO08 361 0 15 0
WMT09 432 448 17 21
WMTI10 500 505 15 22
WMTI11 601 598 16 18
WMTI12 611 604 14 18
WMT13 500 500 7 9
WMT14 1,500 1,503 96 68
WMT15 736 1,433 33 48
WMTI16 1,499 1,500 87 68
WMT17 1,502 1,502 66 64
WMTI18 (dev) 1,498 — 69 —
WMTI9 (test) 2,000 — 145 —
WMTO08-17 8242 8,593 366 336
WMT14-17 5,237 5,938 282 248

Table 1: Statistics of the data sets. # SNT stands for number
of sentences, # DOC for number of documents, O for number
of sentences or documents in which the source side is original,
while T stands for translationese. WMTO08-17 and WMT14-
17 indicate the sizes of the two training sets used.

with the most test data available. We use 2008 to
2017 as training, 2018 as dev and 2019 as test. Full
statistics are shown in Table 1.

Translationese For each of these sets, roughly
half of the data was originally written in our source
language (German) and human-translated to our
target language (English), while the other half was
originally written in our target language (English)
and translated to our source language (German) by
a human translator. We thus make a distinction be-
tween text that originates from text written in the
source language (German), and text that originates
from a previous translation (i.e. English to Ger-
man). We will refer to the latter as translationese.

Half of the data can thus be considered a dif-
ferent category: the source sentences are actually
not original, but a translation, which means that
the machine-translated output will actually be an
automatic translation of a human translation, in-
stead of an automatic translation of original text.
In that part of the data, the texts in the HT cat-
egory are not human translations of original text,
but the original texts themselves. Since this data
might exhibit different characteristics, given that
the translation direction is the inverse, we only use
the sentences and documents that were originally
written in German for our dev and test sets (indi-
cated with O in Table 1). Moreover, we empiri-
cally evaluate in Section 4 whether removing the
extra translationese data from the training set is
actually beneficial for the classifier.



MT Since we are interested in contrasting HT
vs state-of-the-art NMT, we automatically trans-
late the sentences using a general-purpose and
widely used online MT system, DeepL.* We trans-
late from German to British English,’ specifically.
We use this MT system for the majority of our ex-
periments, though we do experiment with cross-
system classification by testing on data that was
translated with other MT systems, such as Google
Translate, using their paid APL® We manually
went through a subset of the translations by both
DeepL and Google Translate and indeed found
them to be of high quality.

To be clear, in our experiments, the machine
translations actually double the size of the train,
dev and test sets as indicated in Table 1. For each
German source sentence, the data set now contains
a human translation (HT, taken from WMT) and
a machine translated variant (MT, from DeepL or
Google), which are labelled as such. As an exam-
ple, if we train on both the original and transia-
tionese sentence-level data of WMTO08-17, we ac-
tually train on 8,242 - 2 4+ 8,593 - 2 = 33,670 in-
stances. Note that this also prevents a bias in topic
or domain towards either HT or MT.

Ceiling To get a sense of what the upper ceil-
ing performance of this task will be, we check
the number of cases where the machine translation
is the exact same as the human translation. For
DeepL, this happened for 3.0% of the WMTO08-
17 training set sentences, 3.1% of the dev set and
3.9% of the test set. For Google, the percent-
ages are 2.4%, 2.0% and 3.5%, respectively.” Of
course, in practice, it is likely impossible to get
anywhere near this ceiling, as the MT system also
sometimes offers arguably better translations (see
Section 5 for examples).

*https://www.deepl.com/translator - used in
November 2021.

SDeepL forces the user to choose a variety of English (either
British or American). This implies that the MT output could
be expected to be (mostly) British English while the HT is a
mix of both varieties. Hence, one could argue that variety is
an aspect that could be picked up by the classifier. We also
use Google Translate, which does not allow the user to select
an English variety.

SWe noticed that the free Python library googletrans had
clearly inferior translations. The paid APIs for Google and
DeepL obtain COMET (Rei et al., 2020) scores of 59.9 and
61.9, respectively, while the googletrans library obtains 21.0.
"If we apply a bit more fuzzy matching by only keeping ascii
letters and numbers for each sentence, the percentages go up
by around 0.5%.

Parameter Range

Learning rate 5x107%,1075,3 x 107°
Batch size {32,64}

Warmup {0.06}

Label smoothing  {0.0,0.1,0.2}

Dropout {0.0,0.1}

Table 2: Hyperparameter range and final values (bold) for our
final DEBERTA models. Hyperparameters not included are left
at their default value.

3.2 Classifiers

SVM We will experiment with a number of dif-
ferent classifiers. As a baseline model, we use
a linear SVM with unigrams and bigrams as fea-
tures trained with scikit-1learn (Pedregosa et
al., 2011), for which the data is tokenized with
Spacy.® The use of a SVM is mainly to find out
how far we can get by just looking at the superficial
lexical level. It also allows us to identify whether
the classifier uses any shortcuts, i.e. features that
are not necessarily indicative of a human or ma-
chine translation, but due to artifacts in the data
sets, which can still be picked up as such by our
models. An example of this is punctuation, which
was mentioned in previous work (Bhardwaj et al.,
2020). MT systems might normalize uncommon
punctuation,” while human translators might opt
for simply copying the originally specified punc-
tuation in the source sentence (e.g. quotations,
dashes). We analyse the importance of normaliza-
tion in Section 5.

Fine-tuning LMs Second, we will experiment
with fine-tuning pre-trained language models.!?
Fu and Nederhof (2021) only used BERT (Devlin
et al., 2019b) and Bhardwaj et al. (2020) used a
set of BERT- and ROBERTA-based LMs, but there
exist newer pre-trained LMs that generally obtain
better performance. We will empirically decide the
best model for this task, by experimenting with a
number of well-established LMs: BERT (Devlin et
al., 2019b), RoBERTa (Liu et al., 2019), DeBERTa
(He et al., 2021b; He et al., 2021a), XLNet (Yang
et al., 2019), BART (Lewis et al., 2020) and Long-
former (Beltagy et al., 2020). For all these models,
we only tune the batch size and learning rate. The

Shttps://spacy.io/

The normalisation of the punctuation as a pre-processing
step when training an MT system is a widespread technique,
so thate.g. «, », "/, “ and ,, are all converted to e.g. .
"Implemented using HuggingFace (Wolf et al., 2020).



Acc.
BART-large Lewis et al. (2020) 64.9
BERT-large Devlin et al. (2019b) 61.9
DEBERTA-v3-large He et al. (2021a) 68.6
Longformer-large ~ Beltagy et al. (2020) 63.5
ROBERTA-large Liu et al. (2019) 65.5
XLNET-base Yang et al. (2019) 62.3
DEBERTA-v3-large (optim) 68.9

Table 3: Best development set results (all in %) for MT vs
HT classification for a number of pre-trained LMs. On the test
set, DEBERTA-v3-large (optim) obtains an accuracy of 66.1.

best model from these experiments is then tuned
further (on the dev set). We tune a single parameter
at a time and do not perform a full grid search due
to efficiency and environmental reasons. Hyperpa-
rameter settings and range of values experimented
with are shown in Table 2.

Evaluation We evaluate the models looking at
the accuracy and Fl-score. When standard de-
viation is reported, we averaged over three runs.
For brevity, we only report accuracy scores, as
we found them to correlate highly with the F-
scores. We include additional metrics, such as the
F-scores, on our GitHub repository.

4 Experiments

SVM The SVM classifier was trained on the
training set WMTO08-17o (i.e. part of the data set
with original source side), where the MT output
was generated with DeepL. It obtained an accu-
racy of 57.8 on dev and 54.9 on the test set. This is
in line with what would be expected: there is some
signal at the lexical level, but other than that the
task is quite difficult for a simple SVM classifier.

Finding the best LM As previously indicated,
we experimented with a number of pre-trained
LMs. For efficiency reasons, we perform these
experiments with a subset of the training data
(WMT14-170, i.e. with only translations from
original text). The results are shown in Table 3. We
find the best performance by using the DeBERTa-
v3 model, which quite clearly outperformed the
other LMs. We obtain a 6.7 point absolute increase
in accuracy over BERT (61.9 to 68.6), the LM
used by Fu and Nederhof (2021)), and a 3.7 point
increase over the second best performing model,
BART-large. We tune some of the remaining hyper-
parameters further (see Table 2) and obtain an ac-
curacy of 68.9. We will use this model in our next
experiments.

Trained on — DeepL Google
| Evaluated on Acc. Acc.
DeepL 66.1 +1.1 56.3+0.3
Google 63.8+1.6 64.9+1.1
FAIR (Ng et al., 2019) 62.6+1.9 57.7+1.8
RWTH (Rosendahl et al., 2019) | 61.9 £+ 1.5 58.3+1.8
PROMT (Molchanov, 2019) 50.3£0.9 52.1+3.3
online-X 575£1.1 56.6+3.4

Table 4: Test set scores (all in %) for training and testing
our best DEBERTA across different MT-systems (DeepL and
Google) and 4 WMT19 submissions. online-X refers to an
anonymous online MT system evaluated at WMT19.

Cross-system performance A robust classifier
that discriminates between HT and MT should
not only recognize MT output that is produced by
a particular MT system (the one the classifier is
trained on), but should also work across different
MT systems. Therefore, we test our DeepL-trained
classifier on the translations of Google Translate
(instead of DeepL) and vice versa. In this experi-
ment we train the classifier on all the training data
(i.e. WMTO8-17047) and evaluate on the test set.

In Table 4, we find that this cross-system eval-
uation leads to quite a drop in accuracy: 2.3% for
DeepL and even 8.6% for Google. It seems that
the classifier does not just pick up general features
that discriminate between HTs and NMT outputs,
but also MT-system specific features that do not al-
ways transfer to other MT systems.

In addition, we test both classifiers on a set of
MT systems submitted to WMT19. We pick the
two top and two bottom submissions according to
the human evaluation (Barrault et al., 2019). The
motivation is to find out how the classifiers per-
form on MT outputs of different levels of transla-
tion quality. We also notice a considerable drop in
performance here. Interestingly, the classifiers per-
form best on the high-quality translations of FAIR
and RWTH (81.6 and 81.5 human judgment scores
at WMT19, respectively), and perform consider-
ably worse on the two bottom-ranked WMT19 sys-
tems (71.8 and 69.7 human judgment scores). It
seems that the classifier does not learn to recognize
lower-quality MT outputs if it only saw higher-
quality ones during training.

This inability to deal with lower-quality MT
when trained only on high-quality MT seems
counterintuitive and was quite surprising to us. Af-
ter all, the difference between high-quality MT
and human translation tends to be more subtle
than in the case of low-quality MT. However,



| Dev Test
WMT14-17047 | 71.1+£13 64.9£0.6
WMT14-170 | 68.9+14 64.0£1.1
WMT08-17047 | 71.2+0.9 66.1+£1.1
WMT08-17p | 71.5+0.8 66.3+£0.5
WMTO08-17p | 63.7+0.8 59.5+0.3

Table 5: Dev and test scores for training our best DEBERTA
model on either WMT14-17 or WMTO08-17 translated with
DeepL, compared with training on the same data sets but not
adding the translationese data (T') and only using 7.

the learned features most useful for distinguish-
ing high-quality MT from HT are likely differ-
ent in nature than the features that are most use-
ful for distinguishing low-quality MT from HT
(e.g., simple lexical features versus features related
to word ordering). From this perspective, feed-
ing low-quality MT to a system trained on high-
quality MT can be seen as an instance of out-of-
distribution data that is not modelled well during
the training stage. Nevertheless, this featural dis-
crepancy could likely be resolved by supplying ad-
ditional examples of low-quality MT to the classi-
fier at training time.

Removing translationese data In our previous
experiment we used the full training data (i.e.
WMTO08-1704+7). However, most of the WMT
data sets only consist for 50% of sentences that
were originally written in German; the other
half were originally written in English (see Sec-
tion 3.1). We ask the question whether this addi-
tional data (which we refer to as translationese)
is actually beneficial to the classifier. On the one
hand, it is in fact a different category than human
translations from original text. On the other, its us-
age allows us to double the amount of training data
(see Table 1).

In Table 5 we show that the extra data helps if
there is not much training data available (WMT14-
17), but that this effect disappears once we in-
crease the amount of training data (WMTO08-17).
In fact, the translationese data seems to be clearly
of lower quality (for this task), since a model
trained on only this data (WMTO08-17r), which is
of the same size as the WMT08-17, experiments,
results in quite a drop in accuracy (59.5 vs 66.3 on
the test set). We have also experimented with pre-
training on WMTO08-17p47 and then fine-tuning
on WMTO08-17p. Our initial results were mixed,
but we plan on investigating this in future work.

Beyond sentence-level In many practical use-
cases, we actually have access to full documents,
and thus do not have to restrict ourselves to look-
ing at just sentences. This could lead to better
performance, since certain problems of NMT sys-
tems only come to light in a multi-sentence set-
ting (Frankenberg-Garcia, 2021). Since WMT also
contains document-level information, we can sim-
ply use the same data set as before. Due to the
number of instances being very low at document
level (see Table 1), and to the fact that the addition
of translationese data showed to be beneficial with
limited amounts of training data (see Table 5), we
use all the data available for our document-level
experiments, i.e. WMTO08-1747.

We have four document-level classifiers: (i) a
SVM, similar to the one used in our sentence-level
experiments, but for which each training instance
is a document; (ii) majority voting atop our best
sentence-level classifier, DEBERTA, i.e. we aggre-
gate its sentence-level predictions for each docu-
ment by taking the majority class; (iii) DEBERTA
fine-tuned on the document-level data, truncated
to 512 tokens; and (iv) Longformer (Beltagy et
al., 2020) fine-tuned on the document-level data,
as this LM was designed to handle documents.

For document-level training, we use gradient ac-
cumulation and mixed precision to avoid out-of-
memory errors. Additionally, we truncate the input
to 512 subword tokens for the DEBERTA model.
For the dev and test set, this means discarding 11%
and 2% of the tokens per document on average, re-
spectively.!! A potential approach for dealing with
longer context without resorting to truncation is to
use a sliding window strategy, which we aim to ex-
plore in future work.

The results are presented in Table 6. First, we
observe that the document-level baselines obtain,
as expected, better accuracies than their sentence-
level counterparts (e.g. 60.7 vs 54.9 for SVM and
72.5 vs 66.1 for DEBERTA on test). Second, we
observe large differences between dev and test, as
well as large standard deviations. The instability
of the results could be due, to some extent, to the
low number of instances in these data sets (138 and
290, as shown in Table 1). Moreover, the test set is
likely harder in general than the dev set, since it on
average has fewer sentences per document (13.8 vs
21.7).

""The median subword token count in the HT document-level
data is 376, with a minimum of 47 and maximum of 3,254.



DeepL Google
Dev Test Dev Test
SVM 74.8 60.7 84.7 64.8
DEBERTA (mc) | 84.7+8.0 72.54+5.2 93.2£1.1 67.6+£3.4
DEBERTA 91.1+24 76.8+4.4 959+ 1.5 60.84+1.2
Longformer 80.2 £2.7 82.0£7.2 94.2+1.3 63.24+0.9

Table 6: Accuracies of training and evaluating on document-
level DeepL and Google data. For DEBERTA, we try two
versions: a sentence-level model applied to each sentence in
a document followed by majority classification (mc), and a
model trained on full documents (truncated to 512 tokens).

5 Discussion & Analysis

Thus far we have reported results in terms of an au-
tomatic evaluation metric: classification accuracy.
Now we would like to delve deeper by conducting
analyses that allow us to obtain further insights. To
this end, we exploit the fact that the SVM classifier
outputs the most discriminative features for each
class: HT and MT.

5.1 Punctuation Normalization

In this first analysis we looked at the best features
of the SVM to find out whether there is an obvious
indication of “shortcuts” that the pre-trained lan-
guage models can take. The best features for both
HT and MT are shown in Table 8.

For comparison, we also show the best features
after applying Moses’ (Koehn et al., 2007) punc-
tuation normalization,'? which is commonly used
as a preprocessing step when training M T systems.
Indeed, there are punctuation-level features that by
all accounts should not be indicative of either class,
but still show up as such. The backtick (*) and dash
symbol (—) show up as the best unigram features
indicating HT, but are not present after the punctu-
ation is normalized.

Now, to be clear, one might make a case of still
including these features in HT vs MT experiments.
After all, if this is how MT sentences can be spot-
ted, why should we not consider them? On the
other hand, the shortcuts that work for this partic-
ular data set and MT system (DeepL) might not
work for texts in different domains or texts that are
translated by different MT systems. Moreover, the
shortcuts might obscure an analysis of the more in-
teresting differences between human and machine
translated texts.

Phttps://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
tokenizer/normalize-punctuation.perl

Original Normalized

Sent-level

SVM 54.9 54.5

DEBERTA-V3 66.1+1.1 67.0£0.6
Doc-level

SVM 60.7 60.0

DEBERTA (majority) 72.5+5.2 72.0£4.1

DEBERTA 76.8+t4.4 T7.2+£4.7

Longformer 820+ 7.2 83.7+2.1

Table 7: Test set accuracies of training and evaluating on
sentence-level and document-level data on either the original
or normalized (by Moses) input texts, translated with DeepL.

In any case, we want to determine the impact
of punctuation-level shortcuts by comparing the
original scores versus the scores of our classi-
fiers trained on punctuation-normalized texts. The
results of our baseline and best sentence- and
document-level systems with and without normal-
ization are shown in Table 7. We observe that,
even if the two best unigram features were initially
punctuation, normalizing does not affect perfor-
mance in a major way. There is even a small in-
crease in performance for DEBERTA-v3 and Long-
former, though likely not significant.

5.2 Unigram Analysis

In our second analysis we manually went through
the data set to analyse the 10 most indicative uni-
gram features for MT (before normalization).' In-
terestingly, some are due to errors by the human
translator: the MT system correctly used school-
yard instead of the split school yard, and it also
used the correct name Olympiakos Piraeus instead
of the incorrect Olypiacos Piraeus (typo in the first
word). Some are indeed due to a different (and
likely better) lexical choice by the human transla-
tor, though the translation is not necessarily wrong:
competing gang instead of rival gang, espionage
scandal instead of spy affair, judging panel instead
of jury and radiation instead of rays. Finally, the
feature disclosure looks to be an error on the MT
side. It occurs a number of times in the machine-
translated version of a news article discussing Wik-
ileaks, in which the human translator chose the
correct Wikileaks publication instead of Wikileaks
disclosure and whistleblower activists instead of
disclosure activists.

BOf course, since we only look at unigrams here, and the per-
formance of the sentence-level SVM is not very high anyway,

all these features have in common that they do not necessarily
generalize to other domains or MT-systems.



Before normalization

After normalization

Most indicative for MT | Most indicative for HT | Most indicative for MT | Most indicative for HT
1-grams 2-grams ‘ 1-grams 2-grams ‘ 1-grams 2-grams ‘ 1-grams 2-grams
olympiakos are said ) the riders olympiakos " proctor | u.s. the riders
affair " proctor - the 2015 affair are said program consequently ,
forsa 2010, u.s. consequently , | forsa book " nearly the 2015
rival per cent nearly projects , rays 2010, anticipated . the
rays almost the program . the rival per cent everybody  projects,
schoolyard  the flat anticipated life " disclosure  almost the | premier <93>the hunting
disclosure  in view <93>the - weiss jury be put lama <92>s  a part
jury with industry | premier a part succeed and later weiss as for

Table 8: Best features (1-gram and 2-gram models) in the SVM classifier per class, before and after normalizing punctuation.

For the best unigrams indicative of HT, there are
some signs of simplification by the MT system.
It never uses nearly or anticipate, instead gener-
ally opting for almost and expected. Similarly, hu-
man translators sometimes used U.S. to refer to the
United States, while the MT system always uses
US. The fact that we used British English for the
DeepL translations might also play arole: program
is indicative for HT since the MT system generally
used programme.

6 Conclusions

In this paper we trained classifiers to automat-
ically distinguish between human and machine
translations for German-to-English. Our classifiers
are built by pre-training state-of-the-art language
models. We use the test sets of the WMT shared
tasks, to ensure that the machine translation sys-
tems we use (DeepL and Google) did not see the
data already during training. Throughout a number
of experiments, we show that: (i) the task is quite
challenging, as our best sentence-level systems ob-
tain around 65% accuracy, (ii) using translationese
data during training is only beneficial if there is
limited data available, (iii) the accuracy drops con-
siderably when performing cross MT-system eval-
uating, (iv) accuracy improves when performing
the task on the document-level and (v) normalizing
punctuation (and thus avoiding certain shortcuts)
does not have an impact on model performance.

In future work, we aim to do a number of things.
For one, we want to experiment with both trans-
lation directions and different source languages
instead of just German. Second, we want to
perform cross-domain experiments (as in Bhard-
waj et al. (2020)), as we currently only looked

at news texts.!* Third, we want to look at the
effect of the source language: does a monolin-
gual model that is trained on English translations
from German still work on translations into En-
glish from different source languages? This can
shed on light on the question in what sense gen-
eral source language-independent features that dis-
criminate between HT and MT are actually identi-
fied by the model. Fourth, we plan to also use the
source sentence, with a multilingual pre-trained
LM, following Bhardwaj et al. (2020). This ad-
ditional information is expected to lead to better
results. While the source sentence is not always
available, there are real-world cases in which it is,
e.g. filtering crawled parallel corpora. Fifth, we
would like to expand the task to a 3-way classi-
fication, as in the least restrictive scenario, given
a text in a language, it could be either originally
written in that language, human translated from
another language or machine translated from an-
other language.
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“Note that this domain has a real-world application: the de-
tection of fake news, given the fact that MT could be use to
spread such news in other languages (Bonet-Jover, 2020).
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