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Abstract

Unlike English, morphologically rich lan-
guages can reveal characteristics of speak-
ers or their conversational partners, such
as gender and number, via pronouns, mor-
phological endings of words and syntax.
When translating from English to such
languages, a machine translation model
needs to opt for a certain interpretation of
textual context, which may lead to seri-
ous translation errors if extra-textual in-
formation is unavailable. We investigate
this challenge in the English-to-Polish lan-
guage direction. We focus on the un-
derresearched problem of utilising exter-
nal metadata in automatic translation of
TV dialogue, proposing a case study where
a wide range of approaches for control-
ling attributes in translation is employed
in a multi-attribute scenario. The best
model achieves an improvement of +5.81
chrF++/+6.03 BLEU, with other models
achieving competitive performance. We
additionally contribute a novel attribute-
annotated dataset of Polish TV dialogue
and a morphological analysis script used to
evaluate attribute control in models.

1 Introduction

In some languages, dialogue explicitly expresses
certain information about the interlocutors: for
example, while in English words describing the
speaker “I” and the interlocutor “you” are ambigu-
ous w.r.t. their gender, number and formality, lan-
guages such as Polish, German or Spanish will
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mark for one or more of these attributes. In in-
dustrial settings such as dubbing and speech trans-
lation, there is an abundance of available metadata
about the interlocutors, such as their genders, that
could be used to help resolve these ambiguities.

Field Value

source "Are you blind?"
spoken by (=speaker) "Anne"

speaker’s gender "feminine"
spoken to (=interlocutor(s)) ["Mark", "Colin"]

interlocutor(s)’ gender "masculine"
formality "informal"

Table 1: A TV segment along with available metadata.

Table 1 shows an example of such a TV seg-
ment: the English sentence ‘Are you blind?’,
should translate to Polish as ‘Jesteście ślepi?’ as
the addressee is a group of men and the setting is
informal; however, when spoken e.g. formally to a
mixed-gender group of people, the correct transla-
tion would read ‘Są państwo ślepi?’, using a differ-
ent verb inflection and an honorific państwo. Since
the contextual information required to resolve the
ambiguity in this example does not belong to the
text itself, traditional models do not use it. This
yields hypotheses which introduce some assump-
tions about that context, typically reflecting biases
present in the (often unbalanced) training data. To
avoid this, a better solution is to resolve such am-
biguities by using both the available metadata and
the source text as translation input. Alternatively,
when such information is unavailable, all possible
contextual variants could be provided as output,
passing the choice from the model to the user (Ja-
covi et al., 2021; Schioppa et al., 2021).

In the context of the gender of the speaker and
interlocutor, prior research has explored two ways



Figure 1: Example of an ambiguous English sentence with all plausible translations to Polish. There are a total of 18 equally
plausible possible hypotheses based on the combination of contexts.

in which such information influences a text (Rabi-
novich et al., 2017; Vanmassenhove et al., 2018).
Firstly, naturally occurring texts satisfy grammat-
ical agreement between the gender of the speaker
and interlocutor and the utterances which describe
them. How this agreement is expressed in speech
varies among different languages (Stahlberg et al.,
2007). Polish is a grammatical gender language:
every noun is assigned a gender, and grammatical
forms must agree with that noun. In contrast, En-
glish is a natural gender language, with “no gram-
matical markings of sex” (Stahlberg et al., 2007,
p. 165). Secondly, gender can be seen as a demo-
graphic factor that influences the way people ex-
press themselves (e.g. word choice). Hereinafter
we refer to the former as grammatical agreement
and the latter as behavioural agreement.

In this work, we seek to build machine transla-
tion (MT) models that satisfy grammatical agree-
ment. Given an English sentence and a set of at-
tributes (e.g. the gender of the speaker and num-
ber of interlocutors), an MT system must translate
this sentence into Polish with a correct grammat-
ical agreement to all attributes but introduce no
markings of behavioural agreement.

We explore the agreement to one SPEAKER at-
tribute: the gender of the speaker (SPGENDER),
and three INTERLOCUTOR attributes: the gen-
der(s) and number of interlocutor(s) (ILGENDER,
ILNUMBER), as well as the desired FORMALITY

of addressing the interlocutor(s). Figure 1 exem-
plifies the extent of ambiguity these attributes in-
troduce in English-to-Polish translation.

The main contributions of our work are: (1)
a novel English-Polish parallel corpus of TV di-
alogue annotated for SPGENDER, ILGENDER,

ILNUMBER and FORMALITY; (2) a tool for
analysing attributes expressed in Polish utterances;
(3) the examination of a wide range of approaches
to attribute control in NMT, showing that at least
four of them can be reliably used for incorporat-
ing extra-linguistic information within English-to-
Polish translation of dialogue.

The paper is structured as follows. Section 2 dis-
cusses previous work. Section 3 presents the prob-
lem definition, focusing on Polish as the target lan-
guage. The creation of the parallel English-Polish
corpus of dialogue utterances that mark subsets of
the investigated attributes is presented in Section
4.1. How the MT models are trained to control the
four extra-textual attributes is discussed in Section
4.3, whilst the results are presented in Section 4.2.
Finally, we describe conclusions and potential di-
rections for future work in Section 6.

2 Related Work

The state-of-the-art in MT is currently represented
by neural MT (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015) implemented via the Trans-
former architecture (Vaswani et al., 2017). De-
spite their unparalleled performance, these mod-
els are limited by ignoring the extra-textual con-
text (e.g. speaker’s gender). Consequently, much
recent work aims to control NMT with various at-
tributes. In particular, attention has been paid to
tasks such as multilingual NMT (Johnson et al.,
2017), by specifying the target language in the in-
put; formality or politeness transfer (e.g. Sennrich
et al. (2016)); controlling the gender of the speaker
and/or interlocutor (Elaraby et al., 2018; Van-
massenhove et al., 2018; Moryossef et al., 2019);
length and verbosity (Lakew et al., 2019; Lakew et



al., 2021); or constraining the vocabulary (Ailem
et al., 2021).

Attribute control in NMT is most commonly fa-
cilitated with a tagging (or side constraints) ap-
proach, whereby a set of terms is added to the vo-
cabulary, each embedding a certain type. These are
trained alongside token embeddings and used in
various ways during inference. Controlling mul-
tiple attributes with this approach has not been
excessively studied (Schioppa et al., 2021), but
can be facilitated by simply concatenating the
tags (Takeno et al., 2017). However, for a set of
equally important attributes, their ordering should
not matter, but a tagging approach by design re-
quires tags to be ordered in a specific way. Com-
bining attributes by averaging their embeddings
has also been explored in previous work (cf. Lam-
ple et al. (2019), Schioppa et al. (2021)), where
authors incorporated the resulting vectors either
into the input of the Encoder or the Decoder or di-
rectly into the model (Michel and Neubig, 2018;
Schioppa et al., 2021).

Typically, attribute-controlling neural models
are fully supervised, requiring annotated training
data. Such annotations can be obtained directly,
e.g. from metadata (Vanmassenhove et al., 2018);
although most available corpora are unannotated.
Sennrich et al. (2016) and Elaraby et al. (2018)
automatically annotate the data using morphosyn-
tactic parsers based on rules, validating agree-
ment to the attribute in question in target-side sen-
tences. To verify that the rules capture the attribute
completely, a precision/recall score is computed
against a manually labelled test set.

3 Problem Specification

Recognising the small number of studies within
machine translation research on the English-to-
Polish language direction, as well as our capacity
(thanks to the available parsers and native speak-
ers to validate their performance), we decide to
focus the study on this language pair. Polish is a
West Slavic language spoken by over 50M people
over the world (Jassem, 2003). It uses an expanded
version of the Latin alphabet and is characterised
by a complex inflectional morphology (Feldstein,
2001). It is a grammatical gender language (Ko-
niuszaniec and Błaszkowska, 2003) meaning all
forms dependent on pronouns must agree to their
gender and number. It uses a West Slavic system
of honorifics pani, pan, panie, panowie, państwo

(henceforth Pan+) (Stone, 1977). Being a null-
subject language (Sigurðsson and Egerland, 2009),
it does not require that pronouns signifying the
speaker or the interlocutor are explicit, unless they
belong to the Pan+ group (Keown, 2003).

English lacks a grammatical gender or a system
of honorifics, and the pronoun “you” is used for
both plural and singular second person addressees.
It is therefore ambiguous w.r.t. some expressions
describing the speaker or the interlocutor, which
we capture into four attributes, as follows (the at-
tributes are summarised in Table 2).

SPEAKER attributes The gender of all
forms dependent on the pronoun ja “I” must
match the gender of the speaker SPGENDER

∈ {feminine,masculine}. This includes past
and future verbal expressions (e.g. byłam ‘I
wasfem’ vs. byłem ‘I wasmasc’), adjectives (e.g.
piękna ‘prettyfem’ vs. piękny ‘prettymasc’) and
nouns (e.g. wariatka ‘lunaticfem’ vs. wariat
‘lunaticmasc’) that describe the speaker.

INTERLOCUTOR attributes All word forms de-
pendent on the pronoun ty/wy/Pan+ “you”, includ-
ing the pronoun itself, must match:
• the gender of the interlocutor (ILGENDER); this

includes cases analogous to SPGENDER, ex-
tended to e.g. vocatives (e.g. Ty wariatko/cie!
‘You lunaticfem/masc!’);

• the number of interlocutors (ILNUMBER); this
includes verbs and pronouns in second person;

• the formality in addressing the interlocutor
(FORMALITY)1; this entails using an inflection
of the pronoun Pan+ consistent with ILGENDER

and ILNUMBER where applicable, or using po-
lite forms (e.g. Proszę wejść. ‘Come in.’).

Attribute Abbreviation Type

SPEAKER

SPGENDER
<sp:feminine> Feminine speaker

<sp:masculine> Masculine speaker
INTERLOCUTOR

ILGENDER

<il:feminine> Feminine interlocutor(s)
<il:masculine> Masculine interlocutor(s)

<il:mixed> Mixed-gender interlocutor(s)

ILNUMBER
<singular> One interlocutor

<plural> Multiple interlocutors

FORMALITY
<informal> Informal

<formal> Formal

Table 2: Attributes and types controlled in the experiment.

1While we define formality as binary, it can be more complex
e.g. Japanese in Feely et al. (2019).



Throughout this paper, when discussing gender
we refer solely to grammatical gender rendered in
utterances. In the Polish language, the grammati-
cal system of gender in first and second person is
a dichotomy of masculine and feminine variants,
lacking alternatives for people who identify as nei-
ther. We discuss potential solutions to this issue in
directions for future work (§6).

4 Experimental Setup

4.1 Data Collection
We collect pre-training data from two corpora: the
English-to-Polish part of OpenSubtitles18 (Lison
and Tiedemann, 2016) and the Europarl (Koehn,
2005) corpus. The data quantities can be found in
Table 3 (column “pretrain”).

pretrain finetune amb_test

train
#sents 10.8M 2.9M −
#tokens 82.1M 26M −

dev
#sents 3K 3.5K −
#tokens 23.3K 48.7K −

test
#sents − 3.5K 1K
#tokens − 47.7K 10.3K

Table 3: Quantities of unique data used for: model pre-
training (pretrain), model fine-tuning (finetune) and
the test set for calculation of restricted impact (amb_test).
Values are averaged for source and target text.

Corpus Extraction for Fine-tuning We extract
the fine-tuning data directly from the pre-training
corpus; each sample is paired with an annotation
of up to four types of attributes. For that purpose
we implement a set of morphosyntactic rules for
the Polish SpaCy model (Tuora and Kobyliński,
2019) which uses the Morfeusz2 morphological
analyser (Kieras and Wolinski, 2017).2 Since at-
tribute annotations vary at sentence level, we pro-
duce sentence-level annotations (instead of word-
or scene-level). For both speaker and interlocu-
tor gender attributes, the masculine gender makes
up over 60% of the corpus. Altogether, a total of
34.33% of the corpus marks at least one of the at-
tributes. Figure 2 shows how linguistic categories
contributed to extracting each attribute.

Similarly to Elaraby et al. (2018) and Gonen
and Webster (2020), we observe that certain nouns
marked as describing the speaker or interlocutor
have a fixed gender irrespective of that person’s
2The code is available at https://github.com/
st-vincent1/grammatical_agreement_eamt/.

Figure 2: Contributions of each grammatical category to each
attribute in the extracted corpus.

gender and are therefore inadequate determinants
of their gender (e.g. coward “tchórz” is always
masculine). We could not find a reliable (complete
nor heuristic) method to resolve this other than cre-
ating a “stopwords” list of all inflexible nouns. The
process is now performed in two steps: we first ex-
tract a list of sentences containing gender-marked
words and then filter out those that were selected
based on our “stopwords” list of inflexible nouns.

We extract 223.0K noun-dependent sentences
with 9K unique lemmatised nouns in the first pass,
build the “stopwords” list of 6.8K words and end
up with 67.3K sentences.

Parser Rules We identify sentences marking for
SPGENDER by finding tokens in first person sin-
gular and verifying that their head marks feminine
or masculine gender. FORMALITY is identified
through the use of the inflected pronouns in the
Pan+ set (unless it is used as a title, e.g. in ‘Ms
Smith’). Formal requests are selected by finding
proszę (‘please’) in the target sentence but not in
the source. ILGENDER is trivially inferred in for-
mal cases; for informal language, we match struc-
tures analogous to those for the SPGENDER and
extend them to comparative phrases and vocatives.
ILNUMBER follows from the plurality of second-
person verbs as well as the use of the pronoun ty
(‘you’, singular) or wy (‘you’, plural).

Parser Performance To measure the effective-
ness of the parser, a native Polish speaker with ex-
pertise in NLP manually annotated a random sam-
ple of 1K sentence pairs from the training cor-
pus for the provided attribute types. Given a sam-
ple, the annotator was instructed to identify a type
from each attribute, and then highlight a part of
the Polish sentence proving its occurrence. Preci-



Count Context Example

train dev test SPGENDER ILGENDER ILNUMBER FORMALITY English Polish

419.9K 0.8K 0.8K sp:feminine ∗ ∗ ∗ I’m an amateur. Jestem amatorką.
743.6K 0.8K 0.8K sp:masculine ∗ ∗ ∗ I’m all alone. Jestem całkiem sam.
9.3K 0.2K 0.2K ∗ il:feminine plural informal You’re smitten. Jesteście odurzone.
73.8K 0.2K 0.2K ∗ il:masculine plural informal Have you met Pete? Poznaliście Pete’a?
315.9K 0.2K 0.2K ∗ × plural informal You need to leave. Musicie wyjść.
326.8K 0.2K 0.2K ∗ × singular informal I got you something. Przyniosłem ci coś.
273.0K 0.2K 0.2K ∗ il:feminine singular informal Are you sick? Jesteś chora?
498.7K 0.2K 0.2K ∗ il:masculine singular informal Understand? Zrozumiałeś?
0.7K 0.1K 0.1K ∗ il:feminine plural formal Please, let me explain. Wyjaśnię paniom.
2.7K 0.2K 0.2K ∗ il:masculine plural formal Aren’t you? Panowie nie są?
5.7K 0.2K 0.2K ∗ il:mixed plural formal You are wrong. Mylą się państwo.
63.0K 0.2K 0.2K ∗ il:feminine singular formal Martini for you? Dla pani martini?
144.0K 0.2K 0.2K ∗ il:masculine singular formal Let me have your coat. Wezmę pański płaszcz.
33.5K 0.2K 0.2K ∗ × × formal Go ahead. Proszę kontynuować.

Table 4: Training data quantities for all combinations of contexts with examples for each combination, with relevant grammat-
ical expressions highlighted. Since SPEAKER and INTERLOCUTOR contexts are always independent, the counts include cases
where they co-occur. ∗ = this attribute may occur in this place; × = this attribute is never expressed within this category.

sion and recall scores were measured between the
judgements of the parser and the annotator. The
parser (hereinafter Detector) scored near-perfectly
(99.82% precision and 99.17% recall averaged
over all attributes) and proved suitable for the tasks
of both extracting the corpus and evaluating at-
tribute controlling. Beyond input errors leading
to incorrect parsing, we observed two consistent
cases of failure:
• when the interlocutor is addressed in plural but

is in fact singular (in cases like “Gosingular help
her. Maybe you [two] willplural figure it out to-
gether.” the addressee may be interpreted as plu-
ral instead of singular depending on the majority
of grammatical matches for each type);

• some tag questions (e.g. “prawda?”) or expres-
sions (e.g. the words “kimś” (‘someoneinstr.’),
“czymś” (‘somethinginstr.’)) are consistently in-
correctly analysed for dependencies, which
sometimes leads to triggering of incorrect rules.

Data Selection and Annotation Table 4 shows
particular groups of contexts, their typical expres-
sion, and total count in the corpus.3 Similarly to
Sennrich et al. (2016), we mask the annotations of
half the training samples every epoch at random
and give half of the unannotated sentence pairs a
random set of attributes. This helps preserve the
translation quality of the model’s outputs when in-
sufficient context is given.

Our development and test sets are balanced

3Note that ILGENDER, ILNUMBER, FORMALITY are co-
dependent, since they all concern the same entity (the inter-
locutor), and thus different combinations of their types lead
to different grammatical expressions.

across the 14 context groups (cf. table 4). We
gather a total of 4K unique examples for each
set. When evaluating each implemented approach,
we provide two results: when complete context
is given, or when an isolated attribute type is
provided. Consider a complete-context test case
within the ILNUMBER group of

<il:feminine>,<plural>,<formal> I like you.

The input for the isolated attribute is as follows:

<plural> I like you.

that is, we omit all types but those belonging to
the examined attribute. For the complete context
case we provide the full input. To evaluate each
individual type (e.g. <il:feminine> or <formal>),
in the isolated attribute case we gather all devel-
opment/test cases which match the selected type,
with a total count of minimum 200 examples (for
<il:mixed>) up to 1200 (for <plural>).

4.2 Model Settings

We use the Transformer architecture (Vaswani et
al., 2017) implemented in PyTorch (Paszke et al.,
2019). Similarly to Lakew et al. (2021), we test a
range of model alterations.

We split them into two categories: Types as Tags
(TAG*) and Embedded Types (EMB*). We scale
each approach that was originally proposed as a
way of controlling a single attribute to a multi-
attribute scenario: for TAG*, we supply multiple
tags in a random order, and for EMB* we average
the embeddings (see Table 5).



Approach Multi-attribute solution Embedding size Input space occupied

Types as Tags

TAGENC▲ (Sennrich et al., 2016) ntypes

TAGDEC (Takeno et al., 2017) ++ ntypes ∗ dmodel ntypes + 1
TAGENCDEC▲ (Lakew et al., 2021) 2 ∗ ntypes + 1

Embedded Types

EMBPWSUM (Lakew et al., 2021) 0
EMBADD (Schioppa et al., 2021) 0
EMBENC (Ours)

∑
types

ntypes
ntypes ∗ dmodel 1

EMBSOS (Lample et al., 2019) 0
EMBENCSOS (Ours) 1

OUTBIAS▲ (Michel and Neubig, 2018)
∑

types
ntypes

ntypes ∗ lenvocab 0

Table 5: Comparison of examined approaches. ++ = concatenation. ▲ = Approach originally proposed for single-attribute
control and extended by us.

Types as Tags We encode each type of each
attribute as a special vocabulary token (e.g.
<singular>, cf. Table 2). During fine-tuning,
these tags are concatenated to the source or target4

sentences and trained like other tokens. We use
three settings:

• TAGENC: appending the tags to the source sen-
tence (Sennrich et al., 2016).

• TAGDEC: prepending the tag to the target sen-
tence (Takeno et al., 2017).

• TAGENCDEC: applying tags to both sen-
tences (Niu and Carpuat, 2020).

Average Embedding As an alternative to se-
quential tagging, embedded types T can be aver-
aged and supplied as a single vector E(T ) (Lample
et al., 2019). We test five settings:

• EMBPWSUM: adding E(T ) position-wise to
each input token (Lakew et al., 2021).

• EMBADD: adding E(T ) position-wise to En-
coder outputs (Schioppa et al., 2021).

• EMBENC: concatenating E(T ) to the input (cf.
Dai et al. (2019), but in our approach the embed-
ding is not trained adversarially).

• EMBSOS: replace the start-of-sequence
(<sos>) token in the Decoder input with
E(T ) (Lample et al., 2019).

• EMBENCSOS: as an additional setting, we test
combining EMBENC and EMBSOS.

As a special case, we test OUTBIAS: adding
a type embedding as a bias on the final layer of
the Decoder (Michel and Neubig, 2018). We omit
4During inference, we supply tags by forcibly decoding the
relevant type tokens, followed by a <null> token, before the
main decoding step commences.

the black-box injection method of Moryossef et al.
(2019) due to its inapplicability to ILGENDER in
plural and to FORMALITY. Our baseline is the pre-
trained model without attribute information.

4.3 Training Details
We preprocess the corpus with Moses tools for
detokenisation and normalising punctuation5, and
by running a short set of custom rules. We train
a joint sub-word segmentation model of 16K to-
kens with SentencePiece (Kudo and Richardson,
2018) and encode both sides of the corpus. We
follow the standard training regimen for a 6-layer
Transformer (Vaswani et al., 2017) with an input
length limit of 100 tokens; this model has just over
52.3M trainable parameters. All training is done
on a single 32GB GPU. As the decoding algorithm,
we use beam search with a beam size of 5. We
pre-train the model until a patience criterion of the
chrF++ (Popović, 2017) validation score not in-
creasing for 5 consecutive validation steps (which
occur every 3/4th epoch). This happens around
the 24th epoch, or after 66 hours of training.

Each of the nine architectural upgrades is a copy
of the pre-trained model expanded with the rele-
vant component and fine-tuned. The fine-tuning
process exposes the model to the fine-tuning cor-
pus in 10 epochs; performance is validated every
half epoch. We select the best checkpoint based on
the highest chrF++ score on the development set.

4.4 Evaluation
We consider the following criteria in evaluation:

1. Translation Quality. Attribute-controlled
5https://github.com/alvations/sacremoses



isolated attribute complete context

Model chrF++↑ BLEU↑ Agree↑ (%) chrF++↑ BLEU↑ Agree↑ (%) AMBID↑

Baseline 46.60 23.13 74.35 46.60 23.13 74.35 −
TAGENC 48.95 25.52 99.03 52.41 29.16 99.39 95.87
TAGDEC 48.65 25.40 99.21 50.83 27.65 96.84 93.15

TAGENCDEC 48.28 25.26 99.35 51.01 28.15 99.26 82.66
EMBPWSUM 46.03 22.37 100 51.90 28.69 97.90 88.67

EMBADD 47.45 23.61 99.96 51.77 28.56 98.24 87.76
EMBENC 47.72 24.39 83.42 52.23 28.98 99.30 95.58
EMBSOS 48.28 24.90 99.91 52.38 29.09 98.47 92.07

EMBENCSOS 48.60 25.08 99.87 51.94 28.77 98.55 92.37
OUTBIAS 48.59 24.98 96.71 49.32 26.11 86.25 94.05

Table 6: Translation performance of all models; “isolated attribute” means that only one (the investigated) attribute was
revealed to the model. The highlighted scores include the best one in the column and all statistically equivalent results according
to a bootstrap resampling method (p < 0.05).

translations should be of quality no worse than
translations of the non-specialised model.

2. Grammatical Agreement. Attribute-
controlled hypotheses should completely
agree to the specified type where necessary.

3. Restricted Impact. Grammatical agreement
should only affect words that explicitly render
the attributes. Therefore, if no attribute is to be
expressed in the hypotheses, then they should
be no different from baseline hypotheses.

We evaluate translation quality with
chrF++ (Popović, 2017)6 and BLEU (Pap-
ineni et al., 2002). Grammatical agreement is
quantified with the help of the Detector. For every
attribute, we calculate how many hypotheses agree
to the correct type t and to the incorrect type t̂.
Let hypt be a hypothesis translated using type
t as context, and agree(hyp, t) denote that the
Detector has found evidence of type t expressed
in hyp. We express the total agreement score as:

Agree =
agree(hypt, t)

agree(hypt, t) + agree(hypt, t̂)

Finally, we quantify restricted impact with a
custom metric, which measures that attribute-
independent sentences do not carry any attribute-
reliant artifacts; we define this metric, AMBID, as:

chrF++(NMT(srca, A),NMT(srca, Â))

where A is a set of attribute types and Â is the
reverse set.7 We use an attribute-ambivalent test
set of a 1K sentences to calculate this score (Table
3, column “amb_test”).
6For clarity, we normalise chrF++ scores to a [0, 100] range.
7For the type triplet ILGENDER we assume that

̂il:masculine = il:feminine, ̂il:mixed = il:feminine,
̂il:feminine = il:masculine.

5 Results

We report quantitative results in Table 6.

Grammatical Agreement The Agree column in
Table 6 shows the agreement scores given by
the Detector. In the isolated attribute scenario,
all methods but OUTBIAS and EMBENC achieve
near-perfect agreement scores. The agreement
scores in the complete context scenario remain
high for other models except TAGDEC, and pick
up for EMBENC, suggesting that controlling sev-
eral attributes generally has no negative impact on
individual attributes.

Translation Quality Attribute-controlling mod-
els achieve significant gains over baseline for both
the isolated attribute and complete context sce-
narios, and the gains are consistently higher in
the latter, suggesting that exposing the models to
more context yields better translations. TAGENC

achieves the highest improvement over the base-
line in terms of chrF++/BLEU for complete con-
text (+5.81 chrF++/+6.03 BLEU). The gains in
translation quality are correlated with agreement
scores, except for EMBPWSUM, for which the
isolated attribute scenario leads to a near-perfect
agreement but low quality scores. Further inves-
tigation shows that this model learned to overpro-
duce context-sensitive words when given a context
of only a subset of types (e.g. translating “you” as
“I” to introduce SPGENDER marking), leading to
high agreement scores but degradation in quality.
This highlights the importance of pairing an accu-
racy measure with a translation quality metric.

To investigate how successful the models are
at modelling each context group individually, we
report the mean chrF++ scores obtained for each



Figure 3: Translation quality (chrF++) for each contextual group.

group’s test set (Figure 3). All contextual models
bring significant improvements over the baseline
except in the Formal plural feminine interlocutor
group, for which there was little training data (cf.
Table 4); improvements are consistently greater for
feminine than masculine groups. No single model
performs consistently better than others than oth-
ers, but TAGDEC, EMBPWSUM and OUTBIAS

fall behind on most groups. Finally, we observe
no significant gain generally from including infor-
mation in both the Encoder and the Decoder.

Restricted Impact The AMBID scores shown in
Table 6 reveal that TAGENC and EMBENC intro-
duce the least variation in attribute-ambivalent ut-
terances, suggesting that adding contextual infor-
mation to the Encoder input only helps limit cre-
ation of unwanted artifacts. The distance of only
4.13 chrF++ points to the ideal score of 100 for the
highest-scoring model suggests good separation of
grammatical and behavioural agreement. Some
separation-specific modelling may further improve
this score, but it was outside the scope of this work.

General Discussion The results suggest that
TAGENC is the most reliable approach to the pre-
sented problem, followed by EMBSOS and EM-
BENC. Notably, we find other methods dubbed as
superior to TAGENC in previous work (EMBADD,
TAGDEC and TAGENCDEC) to underperform in
our case.

6 Conclusions and Future Work

In this work, we have highlighted the problem of
grammatical agreement in translation of TV dia-

logue in the English-to-Polish language direction.
We have created and described a dataset annotated
for four speaker and interlocutor attributes that di-
rectly influence grammar in dialogue: speaker’s
gender, interlocutor’s gender and number and for-
mality relations between them. We have presented
a selection of models capable of controlling these
attributes in translation, yielding a performance
gain of up to +5.81chrF++/+6.03BLEU over the
baseline (non-controlling) model. Finally, we have
produced a tool that produces an accuracy score for
agreement to each type.

Considering all criteria of evaluation, we have
identified TAGENC as the best performing ap-
proach, with EMBENC, and EMBSOS also achiev-
ing competitive performance. TAGENC may be
more attractive in scenarios where interventions in
the model architecture are impossible as it can be
implemented via data preprocessing alone, but the
other two have a more scalable design (cf. §2). Fi-
nally, contrary to some previous work, we found
no advantages stemming from including the con-
textual information in the Decoder as well as the
Encoder.

Future Work NMT research should strive to
move beyond seeing gender as a dichotomous phe-
nomenon (Savoldi et al., 2021). Within this paper
we did not consider the scenarios with non-binary
interlocutors due to i) lack of available data and
ii) lack of consensus regarding non-binary gender
expression in the Polish language (Misiek, 2020).
However, our work can be applied to non-binary
expression once data and more studies are avail-



able. Furthermore, the influence in NMT of other
extra-textual attributes (e.g. multimodal ones, like
spatial information, or emergent ones, such as per-
sonal attributes) is yet to be explored. It remains an
open question whether such attributes should all be
considered individually, or whether there is a way
of identifying and/or using them implicitly.
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