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Abstract

We explore the roles and interactions of
the hyper-parameters governing regulari-
zation, and propose a range of values ap-
plicable to low-resource neural machine
translation. We demonstrate that default
or recommended values for high-resource
settings are not optimal for low-resource
ones, and that more aggressive regulariza-
tion is needed when resources are scarce,
in proportion to their scarcity. We ex-
plain our observations by the generaliza-
tion abilities of sharp vs. flat basins in the
loss landscape of a neural network. Re-
sults for four regularization factors corrob-
orate our claim: batch size, learning rate,
dropout rate, and gradient clipping. More-
over, we show that optimal results are ob-
tained when using several of these fac-
tors, and that our findings generalize across
datasets of different sizes and languages.

1 Introduction

The training of neural machine translation (NMT)
models is governed by many hyper-parameters,
which play a central role in the performances of
the trained models, especially their generalization
abilities. While most of the NMT frameworks rec-
ommend default values for the hyper-parameters,
when it comes to low-resource settings, fewer
guidelines are available.

This study systematically explores the roles and
interactions of a subset of hyper-parameters in
low-resource NMT settings, namely those acting
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as regularization factors. Regularizers do not fall
under a single theoretical definition: Goodfellow
et al. (2016, page 224) view them as a collection
of methods “intended to reduce generalization er-
ror but not training error.” We present here a uni-
fied perspective on several regularizers which act
upon the estimation of the gradients during back-
propagation. Using the distinction made by Keskar
et al. (2016) between flat and sharp basins in the
loss landscape, we argue that noisier estimates of
the gradients can increase the likelihood of find-
ing flatter minima, which have better generaliza-
tion abilities. Specifically, we defend three claims:

1. NMT models benefit from more aggressive re-
gularization when the amount of training data is
small. We demonstrate this for four different reg-
ularizers: batch size, learning rate, dropout, and
gradient clipping. We compare the default regu-
larization hyper-parameters of the OpenNMT-py
framework for mid-to-high resources — compara-
ble to those of the original Transformer (Vaswani
et al., 2017) — with the ones we optimized for a
low-resource setting (Sections 4-7).

2. The combination of different regularization
sources is preferable over their individual use.
When used together, an amount of regularization
from each of the four factors under study outper-
forms the use of any single one alone, and the best
scores are robust with respect to the variation of
each factor (Section 8).

3. Regularization factors optimized on one low-
resource dataset are beneficial for low-resource
datasets in other languages, and benefit from more
aggressive regularization as the amount of training
data decreases. We demonstrate this by comparing
our default and optimized settings on data samples
of varying sizes from our main corpus and four ad-
ditional low-size datasets (Section 9).



2 Background and Related Work

2.1 Regularizers and the Loss Landscape

In the absence of a general treatment of regula-
rization factors, most studies combine them em-
pirically and search only a very small part of the
hyper-parameter space. Kukacka et al. (2017) pro-
vide a taxonomy of regularization factors, but con-
tinue to define them simply as techniques to im-
prove generalization. Similarly, in their survey,
Moradi et al. (2020) consider as regularization any
“component of the learning process or prediction
procedure that is added to alleviate data shortage,”
but do not provide a common measure of regulari-
zation or consider the combination of factors.

Peng et al. (2015) study regularization tech-
niques independently as well as in combination,
still without a common theoretical underpinning.
On two NLP tasks, they observe that using two
factors — namely, L2 norm of weights and embed-
dings, and dropout — is better than using either by
itself. Moreover, when using both factors, if one is
set to its optimal value obtained when used alone,
the other one must be lowered.

We adopt here the perspective put forward by
Keskar et al. (2016), among others, who explain
the generalization gap between values of regulari-
zation factors in terms of the topography of the loss
landscape. Given a minimum of the loss function,
the slower this function varies around its neighbor-
hood (hence creating flat basins in the topography),
the flatter (or less sharp) is the region. Models that
are optimized in flatter regions tend to generalize
better, and moderately less accurate gradients give
models a higher probability of finding these flatter
regions.

Here, we narrow down our perspective to a set of
regularization factors that concern the estimation
of the gradients of the loss function, as they are
used during training with back-propagation. Ac-
cording to the above perspective, models trained
with noisier gradient estimates are more likely than
models trained with precise ones to find flat min-
ima of the loss function, as their identification
requires less precision. Additionally, a moder-
ate amount of noise confers “exploratory abilities”
that allow the search to exit sharper basins. There-
fore, there is an optimal amount of noise in the gra-
dient estimation: with too much noise, training is
hampered or becomes impossible, but with too lit-
tle noise, the model is likely to get trapped into
sharp minimizers with low generalization abilities.

For instance, in the case of batch size (a fre-
quently studied regularization factor), Goodfellow
et al. (2016, Chapter 8.1.3) explain that models
trained with smaller batch sizes tend to optimize
into low-precision regions because they use noisier
gradient estimates than when training with larger
batch sizes.

Hypothesizing that noisier gradients improve
the chance of a model to optimize into flatter re-
gions, Smith and Le (2017) and Smith et al. (2017)
propose a gradient noise scale to measure how
learning rate (another regularization factor) should
be adjusted to the batch size, on image data. They
estimate the average gradient noise g for each
batch as g = ¢(N/B —1) ~ eN/B where € is
the learning rate, IV the size of the training set, and
B the batch size, assuming that N > B. This
shows that “increasing the batch size and decay-
ing the learning rate are quantitatively equivalent”
(Smith et al., 2017, Sec. 1).

Jastrzebski et al. (2018) also note that the pro-
portionality of batch size and learning rate is cru-
cial for gradient descent convergence, and the abil-
ity of the resulting model to generalize well. In
particular, higher ratios seem to lead to flatter min-
ima, which lead to better generalization, similar to
what Keskar et al. (2016) observed. Specifically
whether the relation between batch size and learn-
ing rate is linear, squared, or otherwise, has not
been conclusively determined (Krizhevsky, 2014;
Hoffer et al., 2017; Popel and Bojar, 2018). The
roles of the batch size and learning rate have often
been discussed from the perspective of computer
vision, but different studies have made different
observations, and the debate has not been settled
yet (Dinh et al., 2017; Hoffer et al., 2017; Goyal et
al., 2017; Li et al., 2017; Kawaguchi et al., 2017).
As for dropout and gradient clipping, which are ad-
ditional regularization factors, they have not been
considered yet in relation to flat and sharp mini-
mizers. We will consider here that the claim that
less accurate gradients lead to flatter minima ap-
plies to them too: for dropout, due to removing
some components of the sums; and for clipping,
by affecting the norm of the gradient.

2.2 Regularization Factors for NMT

Recent NMT models are based on the Trans-
former (Vaswani et al., 2017), a deep encoder-
decoder neural network which is quite sensitive to
the hyper-parameters governing regularization fac-



tors during training. We discuss here the four pa-
rameters that we study in this paper.

Batch size. As we saw, models trained with
smaller batch sizes have better generalization ca-
pabilities. However, batch size is not only a regu-
larization factor, but has an influence on training
speed: larger batches accelerate training by mak-
ing a better use of the GPU memory.

Learning rate is a positive scalar that con-
trols how much the weights are updated. We use
the dynamic learning schedule known as ‘noam’
(Vaswani et al., 2017, Eq. 3). During its ini-
tial steps, known as warmup, the learning rate
increases linearly from zero, reaching its highest
value at the last warmup step w. Afterwards, it de-
cays proportionally to the inverse square root of the
step number s. At each step, this is multiplied by a
factor based on the output size of the embedding
layer dpo0de; (512 in Transformer-Base). More-
over, following OpenNMT-py’s recommendation,
we include a scaling factor (sf), which we set by
default to 2. The learning rate /7 at each step s:

Ir(s) = sf -d %5

. —0.5 —1.5
el T AT (s , S w ) (D)

Dropout (Srivastava et al., 2014) consists of a
masking noise: a probability that a unit is ran-
domly turned off during training. It is applied on
the output of each hidden layer, including the out-
put of the attention layers, but not the embedding
layer, so no loss of input or output data occurs.
This encourages each hidden unit to perform well
regardless of other units (Goodfellow et al., 2016,
Chapter 7.12).

Gradient clipping consists of renormalizing the
gradient g to a threshold v if it exceeds it, i.e. if
llg|| > v, then g < gv/||g|| (same direction but
bounded norm). Therefore, the smaller the value
of v, the more aggressively we clip the gradients,
and the more regularization is applied (Goodfellow
et al., 2016, Chapter 10.11.1).

2.3 Role of Regularization for NMT

Popel and Bojar (2018) report that BLEU scores
increase with batch size in a Transformer-based
NMT system, although with diminishing returns,
and recommend setting a large batch size. They
observed moderate changes across a large range of
learning rates, and found thresholds beyond which
training was much slower or diverged. They made
similar observations for warmup steps, concluding
that the search space for learning rate and warmup

steps was wide. Their experiments were performed
on large datasets, leaving their questions open for
low-resource settings.

Ott et al. (2018) observe that training time with
very large datasets can be shortened when using
larger batch sizes: they accumulate batches from
25k tokens per batch to 400k. When paired with
an increased learning rate schedule (noam’s times
two) they do not report performance loss.

Sennrich and Zhang (2019) found that smaller
batch sizes (1k-4k) were beneficial for low-
resource NMT, and studied a variety of regulari-
zation factors for recurrent neural networks. How-
ever, the regularization factors were not disentan-
gled, and their effects on Transformer-based NMT
are difficult to extrapolate.

Araabi and Monz (2020) studied the Trans-
former’s hyper-parameters in several low-resource
settings. They observed improvements for larger
batch sizes on the larger datasets, but did not ob-
serve improvements with smaller batch sizes on
smaller datasets, or changes to optimal number of
warmup steps or learning rate. They concluded to
the need for larger batches from the Transformer.
However, due to the late position of the batch size
and learning rate in their order of optimization
of the hyper-parameters, their regularizing effects
cannot be precisely determined.

Xu et al. (2020) computed gradients while accu-
mulating minibatches, and observed that increas-
ing batch size stabilizes gradient direction up to a
certain point, which allowed them to dynamically
adjust batch sizes while training. Miceli Barone et
al. (2017) observed improvements when combin-
ing dropout with L2-norm during fine-tuning, and
concluded that “multiple regularizers outperform a
single one.”

In previous work, we observed improvements of
scores and training time when using smaller batch
sizes, with a Transformer on a low-resource dataset
(Atrio and Popescu-Belis, 2021). We found a min-
imum value of the batch size below which train-
ing diverged, but did not study other regularization
factors and interactions between them.

Studies on the optimization and effects of re-
gularization factors thus remain scarce. Many
previous studies optimize parameters in sequence.
While this strategy is certainly a faster approach
to optimization, it does not shed full light on each
factor in isolation, as we do below in Sections 4
to 7, or in combination, as we study in Sections 8



Dataset Srec-tgt Lines Words (tgt)
WMT20 Low-res HSB-DE 60k 823k
= = 40k 550k
= = 20k 273k
NewsComm. vl3 DE-EN 120k 3M
TED Talks SK-EN 61k 1.3M
= SL-EN 19k 443k
= GL-EN 10k 214k

Table 1: Numbers of lines of the original corpora used in
our experiments. Sections 4-8 use only the first dataset. We
do not use monolingual or back-translated data, and train our
tokenizers using only each parallel corpus.

and 9.

3 Data and Systems

We train our NMT systems with the Upper Sor-
bian (HSB) to German (DE) training data of
the WMT 2020 Low-Resource Translation Task
(Fraser, 2020). We also use the HSB-DE devel-
opment and test sets provided by the WMT 2020
and 2021 Low-Resource Translation Tasks (Fraser,
2020; Libovicky and Fraser, 2021), each consist-
ing of 2k sentences. As length-based filtering does
not show significant differences, we do not filter
our data. Additionally, in Section 9, we train sys-
tems for translation from Galician (GL), Slovenian
(SL), and Slovak (SK) into English (EN), using to-
kenized and cleaned transcriptions of TED Talks
(Qi et al., 2018).! Finally, we train a larger Ger-
man to English system using 120k lines from News
Commentary v13 (Bojar et al., 2018), and sample
1,500 lines each for development and testing. Ta-
ble 1 presents these resources.

Tokenization into subwords is done with a Un-
igram LM model (Kudo, 2018) from Sentence-
Piece.” For each language pair we build a shared
vocabulary of 10k subwords using only the paral-
lel corpus, with character coverage of 0.98, nbest
of 1 and alpha of 0.

We use the Transformer-Base architecture
(Vaswani et al., 2017) implemented in OpenNMT-
py (Klein et al., 2017; Klein et al., 2020).3 Our
default setting of hyper-parameters is the one rec-
ommended by OpenNMT-py* which is close to the
original Transformer (Vaswani et al., 2017). The

"https://github.com/neulab/
word—embeddings—for—nmt
https://github.com/google/sentencepiece
3We make public our configuration files and package re-
quirements at https://github.com/AlexRAtrio/
reg-factors.
*https://opennmt.net/OpenNMT-py/FAQ.html#
how-do-i-use-the-transformer-model

regularization factors appear with relatively low
strengths in this setting, as is usual when large
datasets are available. The setting includes the
‘noam’ learning rate schedule with a scaling fac-
tor of 2 and a dropout rate of 0.1. For Adam,
B =0.9, fo =0.998 and € = 1078,

We train our models for a maximum of 100
hours, although they generally converge earlier.
When comparing batch sizes in Section 4, it could
be argued that epochs might provide a fairer com-
parison, but we measure real clock time as the most
relevant measure for practitioners.

A batch consists of lines (tokenized sentences)
that are translated one by one, with a fixed maxi-
mum length of 512 tokens for Transformer-Base.
Lines are padded if shorter, and filtered out if
longer. We train all models on two GPUs with
11 GB of memory each (GeForce RTX 1080Ti).
Each device processes several batches, depending
on the batch size, which are afterwards accumu-
lated and used to update the model. The effec-
tive batch size and the batch_size parameter of
OpenNMT-py are two different values: the former
is G X A x batch_size, where (G is the number of
GPUs and A the number of accumulated batches,
here equal to two.” Throughout the paper, we re-
port the batch_size parameter, but the effective
batch size is in fact four times larger.

We generate translations with a beam size of
seven, with consecutive ensembles of four check-
points. For each model we report the highest
BLEU score (Papineni et al., 2002) calculated with
SacreBLEU (Post, 2018) on detokenized text® as
well as the chrF score (Popovi¢, 2015). We test
the statistical significance of differences in scores
at the 95% confidence level using paired bootstrap
resampling from SacreBLEU.

4 Batch Size

In this section we train models with batch sizes
ranging from 500 to 10,000, with all other hyper-
parameters set to default. Models with batch sizes
of 100 and 250 were also trained, but did not con-
verge. The largest tested batch size is the largest
value supported by our GPUs.

The BLEU and chrF scores in Table 2 show that
lowering the batch size improves quality of NMT,

Shttps://forum.opennmt .net/t/
epochs—determination/3119
*https://github.com/mjpost/sacrebleu with
the signature nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.0.0.
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Batch train dev test

Size Xent Acc. | BLEU chrF | BLEU chrF
0.5k | 0.02 99.93 73.35 | 43.95" 69.25
1k 0.01 99.94 | 52.02 74.63 | 44.40" 70.02
3k 0.01 99.96 73.38 | 43917 69.16
6k 0.01 99.97 | 49.66+ 73.09 | 42.55— 68.85
9k 0.01 99.96 | 49.42+ 73.10 | 42.22— 68.40
10k 0.01 99.97 | 4846 7249 | 42.19— 68.38

Table 2: HSB-DE scores with various batch sizes, all other
settings being default ones. Values with the same color or
symbol are nor significantly different. The highest scores are
in bold.

likely due to the regularizing effect of a less ac-
curate gradient, according to our theoretical per-
spective. In particular, we observe improved re-
sults with a batch size smaller than 3,000 (+1.71
BLEU) and an optimal size around 1,000 (+2.21),
with scores gradually decreasing as batch size in-
creases. These results are in line with previous ob-
servations (Sennrich and Zhang, 2019; Atrio and
Popescu-Belis, 2021).

There is no clear correlation between the train-
ing accuracy or cross-entropy loss and the general-
ization capacity, i.e. the scores on the development
and test sets. The lower scores of models trained
with larger batch sizes are likely not due to over-
fitting, because the testing curves of these models
do not show any decrease late in the training. This
further supports the claim that better generaliza-
tion abilities are due to flat minima (Keskar et al.,
2016, Section 2.1).
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Figure 1: Throughput (subwords/second, in blue) and speed
(epochs/hour, in green) for the tested batch sizes.

Our results are competitive with the compara-
ble baselines from the WMT20 shared task on low-
resource NMT for HSB-DE (Fraser, 2020), which
used the same parallel data.” The baseline BLEU
"Some of these systems used in fact larger monolingual HSB,

DE and/or CS datasets for training their tokenizers, while we
only used 60k lines of parallel HSB-DE text.

scores of Knowles et al. (2020), Libovicky et al.
(2020) and Kvapilikova et al. (2020) were respec-
tively 44.1, 43.4, and 38.7 on the test set.

Regularization through smaller batch sizes thus
provides visible improvements with respect to the
default setting. Larger batch sizes, however, ex-
ploit more fully the memory of the GPUs, which
enables higher throughput in terms of subwords
processed per second, as illustrated in Figure 1,
although this does not increase linearly: instead,
we observe diminishing returns as batch size in-
creases. Still, while a batch size of 10k has
the lowest BLEU scores, it nearly doubles the
throughput with respect to the highest-scoring
batch size (1k). Due to differences in hardware
and software, these values are difficult to compare
to other studies, but the trends are similar to those
observed by Popel and Bojar (2018, Section 4.1).

If the regularization attained with lower batch
sizes can also be obtained by using other regula-
rization factors, this would allow the use of larger
batch sizes for a more efficient training. Therefore,
in the next sections, we will compare a large batch
size (10k) and the optimal, regularized one (1k),
and verify that none of the other regularization
factors that will be optimized have an impact on
speed.

S Learning Rate

Previous studies by Smith et al. (2017) and Smith
and Le (2017) have shown that the regularization
effects of the batch size and of the learning rate
may be comparable. In this section, we study the
role of varying schedules of the learning rate (5.1)
and the effect of resetting the schedule in mid-
training, i.e. suddenly increasing the learning rate
before another decrease (5.2).

5.1 Regularization through Learning Rate

Since all our models have the same dimension of
embeddings (d,,04e¢; in Eq. 1 above), the only vari-
ables influencing the learning rate in the ‘noam’
schedule are the number of warmup steps and the
scaling factor (Vaswani et al., 2017, Eq. 3). We test
two different values for the former: 8k (default)
and 16k. For the latter, we test even values from
2 (default) to 14. Figure 2 displays some tested
schedules, including our default one (8k, 2) and
the ‘noam’ original one (4k, 1).

The results in Table 3 show that both batch sizes
reach similar maximal scores (46.20 and 46.29),
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Figure 2: ‘Noam’ learning rate schedules with different scal-
ing factors (sf) and numbers of warmup steps (w).

although with different scaling factors: 6 for a
batch size of 1k vs. 10 for a batch size of 10k.
The improvement is 1.8 BLEU points for a batch
size of 1k, and 4.1 for 10k. As a batch size of 1k
is already a strong regularization factor, a smaller
value of the learning rate (hence less regulariza-
tion through this factor) is sufficient, compared to
the case of a larger batch size.

War Scaling factor

mup | 2 4 6 8 10 12 14

8k 4440 4542 3890 0.65 0.18 0.05 0.60
16k | 43.96 45.74 42.24
8k 42.19 44.59 45.27x45.93-45.87-45.34x45.31%
16k 41.70 44.36 45.32+45.89" 46.29" 45.69+45.69+

Table 3: BLEU scores on the HSB-DE test set for batch sizes
of 1k (top) and 10k (bottom) and various learning schedules.
We denote scores that are not significantly different row-wise
with the same color or symbol.

The models trained with the larger batch size
(10k) are more stable when learning rates increase
(larger scaling factors) likely due to more accurate
estimates of the gradients (compare lines 1 vs. 3,
and 2 vs. 4). Similarly, these models have a higher
maximal learning rate beyond which they diverge
(compare in Table 3 the large difference between
lines 1 and 2 with the small difference between
lines 3 and 4). This shows the importance of in-
creasing the number of warmup steps as the scal-
ing factor increases, to avoid reaching high max-
ima of the learning rate (the peaks visible on the
schedules in Figure 2). Moreover, the regulariza-
tion provided by other factors (in this case, batch
size) needs to be taken into account when increas-
ing the amount of regularization from the learn-
ing rate. Finally, as long as the maximal learning
rate remains below the values that make a model
diverge, the BLEU scores do not change signifi-
cantly when the scaling factor increases above a

certain value, as also observed by Popel and Bojar
(2018, 4.6, Fig. 7).

5.2 Resetting the LR during Training

From the perspective of the loss landscape, we
hypothesize that introducing more noise into the
gradient when the scores have already leveled-
off, namely by resetting the learning rate schedule,
should increase the probability for the weights to
escape the sharp minima basins and avoid falling
back into them, which should improve the gen-
eralization abilities of the trained model. Since
a model trained with a smaller batch size has a
higher chance, during the first part of training, to
fall into flat minima due to an increased gradient
noise (Smith et al., 2017), we expect the larger
batch sizes to benefit more from this strategy than
the smaller ones.

Hours
50 100 100
Batch size no Irreset  reset Ir
1k BLEU 44.25 44.40 45.85
chrF 69.78 70.02 70.84
Train. Acc. 99.93 99.94 99.84
Xent 0.02 0.01 0.02
A +0.15 +1.60
10k BLEU 41.60 42.19 45.25
chrF 68.03 68.38 70.57
Train. Acc. 99.94 99.97 99.92
Xent 0.01 0.01 0.01
A +0.59 +3.65

Table 4: BLEU and chrF scores on the HSB-DE test set,
training accuracy and cross-entropy on the training set, and
change of BLEU scores when continuing training until 100
hours vs. resetting the learning rate at 50h.

In Table 4 we provide the scores after train-
ing for 50 hours (half of their training time); the
scores after 100 hours when continuing to train
from the 50-hour checkpoint; and the final score
after training for 50 hours with a schedule reset at
the 50-hour checkpoint. The results corroborate
our hypothesis: both batch sizes benefit signifi-
cantly from the strategy of resetting the learning
rate, and the large batch size more than the smaller
one ((+3.65 vs. +1.6 BLEU points). As both mod-
els reached their highest BLEU scores before 25
hours, the difference is likely not due to that fact
that the first model saw more times the training
data thanks to its higher throughput. Furthermore,
after increasing the learning rate mid-training, both
the loss and training accuracy worsen or remain
stable, while BLEU scores improve, likely due to
reaching flatter basins, not lower minima.



6 Dropout Rate

The dropout of a certain proportion of neurons dur-
ing training is another frequent source of regulari-
zation. As this amounts to removing certain terms
from the summation of gradients, its role can also
be considered from the perspective of flat vs. sharp
minimizers.

Dropout
0.1 02 03 04 05 06 07 08
44.40%45.35+45.39+44.87%44.54% 42.58 37.69 19.83
42.19 4376 44.74 4291 3552

Table 5: Dropout scores on the HSB-DE test set for 1k (top)
and 10k (bottom) batch sizes. We denote row-wise lack of sig-
nificant differences with the same color or symbol. Dropout
rates of 0.9 have considerably lower scores.

BLEU scores in Table 5 show that the model
trained with a larger batch size — hence subject
to less regularization — requires a more aggres-
sive dropout of around 0.4-0.6 in order to reach
its highest scores, with respect to a model trained
with a smaller batch size, which reaches its highest
score for 0.2-0.3. This is consistent with our pre-
vious findings from Section 5.1 and Table 3, which
also showed that the model subject to less regula-
rization from a factor (larger batch size) required
more regularization from another factor in order to
reach its highest scores.

7 Gradient Clipping

Finally, we experiment with our fourth regulariza-
tion factor: gradient clipping. Since it directly in-
volves constraining the norm of the gradient, the
perspective based on flat vs. sharp basins in the
loss landscape also holds for it.

Batch Drop Gradient Clipping
size out None 20 10 5 2.5
1k 0.1 4440 4475 4492 4474 4454
10k 0.1 42.19 4241 4201 4230 4220
77777 02 | 4376 44.15 4434 4398 4385
0.3 4474 4536 4472 4475 4499
04 4540 4556 4530 4545 4548

Table 6: BLEU scores on the HSB-DE test set for batch sizes
of 10k and 1k on the test set, with a dropout rate of 0.1 (de-
fault), for several upper limits of the gradients.

As in the previous sections, we compare mod-
els trained with batch sizes of 1k and 10k, but
observe no statistically significant differences be-
tween them when using default values for other
hyper-parameters, with BLEU scores shown in Ta-
ble 6 — although values of 10 or 20 are always

among the best. This is likely because default
settings do not feature enough regularization (i.e.,
they do not increase enough the gradient’s norm)
for the gradients to be affected by clipping. For this
reason, we perform additional experiments with a
batch size of 10k (due to its advantage for speed)
with more regularizing dropout values of 0.2, 0.3,
and 0.4, and scaling factor of 6 and 10. Regard-
ing the models with increasing dropout rate, we
only observe a statistically significant difference
between the best and worst results (for dropout of
0.2), the best and two worst results (for 0.3), and
no differences at all (for 0.4). We conclude that
gradient clipping only marginally affects training
in these settings.

8 Combining Regularization Factors

We will now show that a combination of regulari-
zation factors can produce higher scores than in-
dividual factors used separately, and that the maxi-
mal scores are stable when varying the strengths of
regularizers around their optimal values. The batch
size is fixed at 10k, since this enables a higher
training speed than 1k with similar best scores,
provided that other regularization factors are used,
as shown in Tables 3, 4 and 5. The number of
warmup steps is fixed at 16k since we showed in
Section 5.1 that this parameter mainly limits the
peaks of the learning rate and thus prevents mod-
els from diverging early in the training. Our search
space for the other regularization factors is shown
in Table 8.

Factor Value | Xent Tr. BLEUchrF A
acc.

Defaults 0.01 9997 42.19 6838 -

Batch size 1k 0.02 9994 4440 7002 +2.21
S.f. 10 0.01 9994 4593 7074 +3.74
S.f. +w.s. 10+16k | 0.01 9994 46.29 7122 +4.10
L.r. reset 50% 0.01 9992 45.25 7057 +3.06
Dropout 0.4 0.07 9946 45.40 7100 +3.21
Clipping 10 0.01 9996 42.41 6843 +0.22
Combination Tables | 0.03 9978 47.11 71.88 +4.92
+ L.r. reset 0.06 9930 47.20 71.80 +5.01

Table 7: HSB-DE scores on the test set when the regulari-
zation factors are used either independently (lines 2—6) or in
combination (line 7), in the latter case with the optimal val-
ues from Table 8. The last column shows increases in BLEU
scores over the default settings.

We present in Table 7 the highest scores
achieved using individual regularization factors,
along with those from the default setup (first line)
and from the combination of factors (last two



lines). Regularization factors are already present
in the default setup, but at low strengths.

The comparison of scores in Table 7 shows
that each factor used independently allows the
model to outperform the default setting by 24
BLEU points. However, the use of a combina-
tion of factors achieves the highest score of 47.20
BLEU points (+ 5.01), which is significantly above
all others. In the case of resetting the learning
rate, although this has a visible effect when used
with default parameters, its effect is much smaller
when used jointly with other regularization factors,
likely because a flat basin is found before the reset.
Moreover, the combination of factors results in a
higher loss and a lower accuracy on the train set
than the default setup or factors used individually,
which supports our interpretation of the improve-
ment based on flatter minima.

Table 8 shows that the best scores reached
with increased regularization are quite stable when
varying the intensity of the factors. The optimal
region of the scaling factor is around 10, with a rel-
atively flat neighborhood, similar to the case when
it was optimized individually (Section 5). Optimal
dropout rates are now around 0.3-0.5, compared
to 0.4-0.6 when used individually (Section 6). Fi-
nally, gradient clipping has only a marginal effect
in combination with other factors, presumably be-
cause it cannot help to increase the gradients.

9 Testing on Additional Corpora

In this section, we confirm our claims using ad-
ditional low-resource datasets. We consider two
smaller samples with 40k and 20k lines from the
HSB-DE corpus, as well as parallel datasets for
Galician, German, Slovak and Slovenian (see Sec-
tion 3). We do not optimize regularization fac-
tors on each dataset, but only use the optimal
hyper-parameters found above on HSB-DE with
60k lines.

Table 9 demonstrates that these hyper-parameter

Grad Scaling Dropout

clipping factor 0.1 0.3 0.5 0.7

None 2 42.19 4474 4539 4291
6 4532 46770 4622 43.66
10 46.29 47.06 4693 43.18
14 45.69 46.84 47.07 43.61
18 4526 46.89 46.67 43.19

5 2 41.39 4447 4505 4348
6 4520 46.62 46.70 43.88
10 45.65 4711 46.76 44.04
14 4557 47.11 47.06 43.63
18 4472 4659 47.02 4272

Table 8: HSB-DE BLEU scores for a combination of the scal-
ing factor, gradient clipping, and dropout rate, for a batch size
of 10k and 16k warmup steps. The highest scores are in bold.

values bring significant improvements of BLEU
and chrF scores over the baseline for all datasets
(four different source languages). When compar-
ing HSB-DE datasets of different sizes, we find
that as the amount of data decreases, the positive
effects of our regularization parameters increase,
with up to 21% improvement in BLEU scores for
the smallest subset. Furthermore, we also observe
an increase in the loss over all datasets with the
optimized setup, which shows that the reason why
their less accurate gradients generalize better is not
due to finding lower but rather flatter minima of
loss.

10 Conclusion

We presented a unified perspective on the role
of four regularization factors in low-resource set-
tings: batch size, learning schedule, gradient clip-
ping and dropout rate. The results support our
claim that more regularization is beneficial in such
settings, with respect to the default values that are
recommended for high-resource settings. We first
substantiated the claim for each factor taken indi-
vidually, and then showed that a combination of
factors leads to improved scores and is robust when
factors vary. Finally, we showed that our findings
generalize across different low-resource sizes and

Corpus  Lines Default Optimized % A
Xent Tr. Acc. BLEU chrF | Xent Tr. Acc. BLEU chrF | BLEU
HSB-DE 60k | 0.01 99.97 42.19 6838 | 0.06 99.30 47.20 7180 | +11.87
HSB-DE 40k | 0.01 99.98 3238 6068 | 0.03 99.80 37.63 6512 | +16.21
HSB-DE 20k | 0.01 99.98 2293 5142 | 0.02 99.93 27.84 5627 | +21.41
DE-EN 120k | 0.10 98.20 2994 5681 | 0.60 84.71 35.77 6144 | +19.47
SK-EN 61k | 0.02 99.89 25.61 4642 | 0.40 89.29 29.71 4967 | +16.01
SL-EN 19k | 0.01 99.93 15.53 3499 | 0.09 98.89 18.43 3775 | +18.67
GL-EN 10k | 0.01 99.98 16.00 3452 | 0.04 99.69 19.04 3784 | +19.00

Table 9: BLEU scores on test sets of different corpora and subsets of our main HSB-DE corpus (first line), comparing our

default setup and our optimized setup as presented in Section 8.



languages. Overall, we interpreted the results from
the perspective of the loss landscape, and argued
that more regularization is beneficial because the
noise it introduces in the estimation of gradients
leads to finding flatter minima of the loss, which
have better generalization abilities. We hope that
better insights on the loss landscape of the Trans-
former will confirm our theoretical interpretation,
and that the observations put forward in this pa-
per will also help practitioners with setting hyper-
parameters for low-resource NMT systems.
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