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Abstract

Social media platforms often act as breeding
grounds for various forms of trolling or mali-
cious content targeting users or communities.
One way of trolling users is by creating memes,
which in most cases unites an image with a
short piece of text embedded on top of it. The
situation is more complex for multilingual(e.g.,
Tamil) memes due to the lack of benchmark
datasets and models. We explore several mod-
els to detect Troll memes in Tamil based on
the shared task, "Troll Meme Classification in
DravidianLangTech2022" at ACL-2022. We
observe while the text-based model MURIL
performs better for Non-troll meme classifica-
tion, the image-based model VGG16 performs
better for Troll-meme classification. Further
fusing these two modalities help us achieve sta-
ble outcomes in both classes. Our fusion model
achieved a 0.561 weighted average F1 score
and ranked second in this task.

1 Introduction

Over the past few years, social media platforms
have been expanding rapidly. Users of the plat-
form interact by sharing content to enrich their
knowledge and social connections. Although most
of the content on social media platforms that ex-
isted so far was textual, recently, a unique mes-
sage was born: the meme (Chakravarthi, 2020;
Chakravarthi and Muralidaran, 2021). A meme
is usually created by an image and a short piece of
text on top of it, entrenched as part of the image.
Memes are generally meant to be harmless and con-
ceived to look humorous, but sometimes, bad actors
use memes for threatening and abusing individu-
als or specific target communities (Ghanghor et al.,
2021a,b; Yasaswini et al., 2021). Such memes are
collectively known as Offensive/Troll memes in
social media.

Trolling is the exercise of publicizing a message
via social media that is planned to be abusive, in-
citing, or threatening to distract, which often has
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rambling or off-topic content to provoke the audi-
ence(Bishop, 2014; Suryawanshi et al., 2020a). In
addition, such memes can be treacherous as they
can easily harm the reputation of individuals, fa-
mous celebs, political entities, businesses, or social
groups, e.g., minorities. Although various studies
have been conducted to detect offensive posts using
different natural language techniques, Troll meme
classification has not yet been explored.

The situation for countries like India is more
complicated due to the immense lanuage diverisy'.
The meme in the Indian context, can be com-
posed in English, local language (native or for-
eign script) or in combination of both language and
script (Sampath et al., 2022; Ravikiran et al., 2022;
Chakravarthi et al., 2022; Bharathi et al., 2022;
Priyadharshini et al., 2022). This adds another chal-
lenge for the troll meme classification. Tamil is one
of the world’s longest-surviving classical languages
(Anita and Subalalitha, 2019b,a; Subalalitha and
Poovammal, 2018). Tamil is a member of the south-
ern branch of the Dravidian languages, a group of
about 26 languages indigenous to the Indian sub-
continent (Subalalitha, 2019; Srinivasan and Sub-
alalitha, 2019; Narasimhan et al., 2018). It is also
classed as a member of the Tamil language family,
which contains the languages of around 35 ethno-
linguistic groups, including the Irula and Yerukula
languages (Sakuntharaj and Mahesan, 2021, 2017,
2016; Thavareesan and Mahesan, 2019, 2020a,b,
2021).

Recently, there has been a lot of effort to investi-
gate the malicious side of memes, e.g., focusing on
hate(Gomez et al., 2020), offensive(Suryawanshi
et al., 2020a), and harmful(Pramanick et al.,
2021) memes. However, the majority of the
studies are centralized around the English lan-
guage. Further several shared tasks like HASOC
2021(Modha et al., 2021), DravidianLangTech
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(a) An example of a Troll meme
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(b) An example of a Non-troll meme

Figure 1: Examples of troll and not-troll meme

Split | Troll | Non-troll | Total
Train | 1,282 | 1,018 2,300
Test | 395 272 667

Total | 1,677 | 1,290 2,967

Table 1: Dataset statistics

2021(Chakravarthi et al., 2021), have been orga-
nized on multiple languages for hostile content
detection in the Indian context, but it is limited to
textual classification. Extending those tasks further,
the organizer of this shared task has organized a
classification task to identify troll memes in Tamil
by providing 2,967 memes. This paper illustrates
the methodologies we used to identify Tamil troll
memes, which helped us achieve second place in
the final leader-board standings of shared tasks.

2 Related Work

This section discusses some of the text-based abu-
sive content detection methods and briefly explains
the multi-modal techniques used so far to detect
malicious memes.

2.1 Text-based abusive content detection

Recently, a lot of work has been carried out to iden-
tify abusive speech using text from social media
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Figure 2: Our fusion model architecture with VGG16
and MURIL

posts (Das et al., 2020). In 2017, Davidson et al.
(2017) made public a Twitter dataset in which thou-
sands of tweets were labeled offensive, hate, and
neither. The earlier efforts to create such classi-
fiers used easy methods such as linguistic features,
word n-grams, bag-of-words, etc (Davidson et al.,
2017). With the availability of larger datasets, re-
searchers have started utilizing complex models
such as deep learning and graph embedding(Das
et al., 2021b) strategies to improve the classifier
performance of hate speech detection in social me-
dia posts. In 2018, Pitsilis et al. (2018) used deep
learning-based models, such as the recurrent neu-
ral networks (RNNS5s), to detect the abusive tweets
in the English language and witnessed that it was
pretty effective in this task. In contrast, RNNs
have been established to perform well with sev-
eral language models. In addition, other neural
network models, such as LSTM and CNN, have
succeeded in detecting abusive speech (Goldberg,
2015; la Pefia Sarracén et al., 2018). Recently,
Transformer-based (Vaswani et al., 2017) language
models such as BERT, (Devlin et al., 2019) are be-
coming quite prevalent in several downstream tasks,
such as spam detection, classification(Das et al.,
2021a; Banerjee et al., 2021), etc. Having observed
the exceptional performance of these Transformer
based models, we also utilize a Transformer based
model, MURIL, which is pre-trained explicitly in
Indian Languages.



Model Accuracy | F1 Score(T) | F1 Score(w) | Precision(w) | Recall(w)
MURIL | 0.556 0.637 0.552 0.549 0.556
VGG16 | 0.587 0.736 0.458 0.522 0.587
Fusion | 0.566 0.649 0.561 0.558 0.567

Table 2: Performance Comparisons of Each Model. T: Troll Class. w: Weighted-Average. The best performance in
each column is marked in bold and second best is underlined
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Figure 3: Confusion Matrix on Test Data for Each Model

2.2 Multi-modal abusive content detection

Lately, several datasets have been made public
to the research community for abusive meme de-
tection. Sabat et al.(2019) created a dataset of
5,020 memes for hate speech detection. The
MMHSI150K hate meme dataset developed by
Gomez et al.(2020) is one of the enormous datasets
collected from Twitter, consisting of 150K posts.
Similarly, Facebook Al (Kiela et al., 2020) intro-
duced another Hateful Meme dataset of 10K+ posts
labeled hateful and non-hateful. As part of the hate-
ful meme detection, an array of techniques with
diverse architecture ranging from the text-based
model, image-based model, and multi-modal mod-
els have been employed, including Glove embed-
ding, FastText embedding, ResNet-152, VGG16,
VisualBERT, UNITER, ViLBERT CC, V-BERT
COCO(Pramanick et al.,, 2021; Chandra et al.,
2021).

In this work, we use the VGG16 model, which is
extensively used for several classification problems,
to extract the features of all the memes and finally
use it with the textual features to design our final
model.

3 Dataset Description

The shared task on Troll Meme Classification
in DravidianLangTech2022 (Suryawanshi et al.,
2022) at ACL-2022 is based on a classification
problem with the aim of moderating and minimiz-
ing the offensive/harmful content in social media.
The objective of the shared task is to devise method-
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ologies and vision-language models for troll meme
detection in Tamil. We show the class distribution
of the dataset(Suryawanshi et al., 2020b; Suryawan-
shi and Chakravarthi, 2021) in Table 1. The training
set consisting of 2,300 memes (out of which 1,282
memes were labeled as troll meme) and the test
set consisting of 667 memes. In addition, the latin
transcribed texts were shared for all memes. We
show example of both Troll and Non-troll memes
in Figure 1.

4 Methodology

In this section, we discuss the different parts of the
pipeline that we pursued for the detection of troll
meme using the dataset.

4.1 Uni-modal Models

As part of our initial experiments, we created the
following two uni-model models, one utilizing text
features and the other using image-based features.
MURIL: MURIL(Khanuja et al., 2021) is a trans-
former encoder having 12 layers with 12 atten-
tion heads and 768 dimensions. We used the pre-
trained model which has been trained on 17 Indian
languages and their transliterated counterparts us-
ing the MLM (masked language model) and the
next sentence prediction (NSP) loss functions. The
dataset used for pre-training is obtained by using
the publicly available corpora from Wikipedia and
Common Crawl. We pass all the texts associated
with the meme via pre-trained MURIL ? to get the

https://huggingface.co/google/
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768-dimensional feature vectors for each meme
and then finally fed it to a output node for the final
prediction.

VGG16: VGG16 (Simonyan and Zisserman, 2014)
is a Convolutional Neural Network architecture, a
variant of the VGG model which consists of 16
layers and is very appealing because of its very uni-
form architecture. We pass all the images(meme)
via VGG16 and get the 256-dimensional feature
vectors, then we pass it to the two dense layer of
size 256 (with dropout of 0.5), 64 and finally fed it
two the output node for the final prediction.

4.2 Fusion Model

The uni-modal models we used so far do not use the
relation between the text and image present in the
meme. To have better understanding between the
text and image, we design a new MURIL+VGG16
fusion classifier, where we first concatenate the em-
bedding from the both MURIL and VGG16 mod-
els discussed above, then we pass the concatenated
embedding to a classification node for the final pre-
diction. The detail of the pipeline is presented in
Figure 2.

All the models are trained with binary cross-
entropy loss functions and Adam optimizer for 20
epochs.

5 Results

Table 2 demonstrates the performance of each
model. We observe among the uni-modal mod-
els, VGG16 has the highest Accuracy(MURIL:
0.556, VGG16: 0.587) and F1 score (MURIL:
0.637, VGG16: 0.736) for troll class. Though
in terms of weighted F1 score(MURIL: 0.552,
VGG16: 0.458), the text-based model MURIL per-
forms better. When we fuse these two models,
the fusion model achieves the highest weighted
F1 score(0.561) among all the models. To further
understand the model’s weakness, we show the
confusion matrix of each model in Figure 3. We
observe that while the MURIL performs better on
the Non-troll meme datapoints, VGG16 performs
better on the troll meme datapoints. Whereas on the
non-troll meme data points, VGG16 shows inferior
performance. The fusion model brings the positive
characteristics of both MURIL and VGG16 and
performs the best by understanding better connec-
tions between the text and image of the memes.

muril-base-cased
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6 Conclusion

In this shared task, we deal with a novel problem
of detecting Tamil troll memes. We evaluated dif-
ferent uni-modal models and introduced a fusion
model. We found that text-based model MURIL
performs better on the Non-troll class, whereas
VGG16 performs better on the Troll class. Ensem-
bling these two models help us in gaining stable
outcomes in both classes. We plan to explore fur-
ther other vision-based models to improve classifi-
cation performance as an immediate next step.
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