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Abstract
This paper presents an outline of the shared task
on translation of under-resourced Dravidian lan-
guages at DravidianLangTech-2022 workshop
to be held jointly with ACL 2022. A description
of the datasets used, approach taken for analy-
sis of submissions and the results have been il-
lustrated in this paper. Five sub-tasks organized
as a part of the shared task include the follow-
ing translation pairs: Kannada to Tamil, Kan-
nada to Telugu, Kannada to Sanskrit, Kannada
to Malayalam and Kannada to Tulu. Training,
development and test datasets were provided
to all participants and results were evaluated
on the gold standard datasets. A total of 16
research groups participated in the shared task
and a total of 12 submission runs were made for
evaluation. Bilingual Evaluation Understudy
(BLEU) score was used for evaluation of the
translations.

1 Introduction

The results of the shared task on Machine Trans-
lation (MT) of Dravidian languages held as a part
of DravidianLangTech-2022 workshop have been
presented in this paper. Five translation sub-tasks
featured in this shared task, namely: Kannada to
Tamil, Kannada to Telugu, Kannada to Sanskrit,
Kannada to Malayalam and Kannada to Tulu. We
evaluated the performance of the systems using
BLEU scores. Training, development, and test data
used in this shared task have been released publicly.
MT is one of the fundamental problems in the area
of natural language processing. We hope that this
shared task and associated datasets can further re-
search and development of translation technology
for under-resourced Dravidian languages.

Related works have been described in section
2. A brief description about Dravidian languages
and Sanskrit are given in section 3 and section 4
respectively. The task description and the datasets
have been discussed in section 5. The description
of the systems submitted has been given to section

6. Lastly, the results and the conclusion have been
discussed in section 7 and section 8 respectively.

2 Related Works

In the past few years Deep Learning (DL) based ar-
chitectures have increasingly been applied to tackle
the problem of MT (Pan et al., 2021; Du et al.,
2021; Chen et al., 2018; Hoang et al., 2018). These
architectures require large amounts of data during
training and this, in turn, makes them unsuitable
for application in development of translation sys-
tems for under-resourced languages. Dabre et al.
(2019); Aharoni et al. (2019) demonstrate good
performance on translation of under-resourced lan-
guages using multilingual MT systems. Another
noteworthy approach to tackle this problem is the
development of universal translation systems (Gu
et al., 2018). The key idea driving this line of
research is the development of a system that’s capa-
ble of transferring linguistic attributes across data
from different languages. This is aimed at alle-
viating the need for large bilingual datasets for
under-resourced languages.

Data augmentation is another approach that has
been explored in building of translation systems of
under-resourced languages. Xia et al. (2019) pro-
pose a framework for a translation system that uses
monolingual target side dataset along with pivots
grounded in a third high resource language. Pre-
cisely, they propose a two-stage framework based
on pivoting to convert data from high-resourced
languages to under-resourced languages, thus aug-
menting the available data for the translation under-
resourced languages.

Another avenue of interest that has been pop-
ular amongst researchers working in this domain
is application of Transfer Learning (TL) based ap-
proaches to improve the performance of MT sys-
tems for under-resourced languages. Zoph et al.
(2016) train a model for under-resourced MT by
initializing some parameters of the model with pa-
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rameters from a neural model trained on the task of
MT for a resource rich language pair. They report
an average increase in performance by 5.6 BLEU.
Kocmi and Bojar (2018) demonstrate improved
performance on translation of under-resourced lan-
guages by employing a simple TL based approach
wherein they train a parent model for MT of a re-
source rich language pair followed by fine-tuning
on an under-resourced language pair. It is interest-
ing to note that the authors report improved perfor-
mance even if the languages in the under-resourced
setting are altogether different from the languages
which are used to train the model. Mahata et al.
(2020) study the impact of languages and their rel-
ative position in the language family on the per-
formance of TL systems. Furthermore, they try to
quantify the impact of shared vocabulary on the
performance of such systems.

In the past few years MT of Indian languages
has gained increasing traction from the research
community. Chakravarthi et al. (2019, 2021) pro-
pose a translation system to improve WordNet for
Dravidian languages. Chakravarthi et al. (2019)
assess the suitability of using orthographically mo-
tivated methods to develop translation systems for
Dravidian languages. The key idea behind devel-
oping these systems is to leverage the orthographic
similarity amongst Dravidian languages to build ro-
bust systems in under-resourced scenarios. Pathak
and Pakray (2019) propose a neural system for MT
of Indian languages based on openNMT1.

3 Dravidian Languages

Dravidian languages, which make up the fifth
largest linguistic family in the world, are spoken by
around 200 million people in South Asia and dias-
pora communities around the world. In Dravidian
language family, there are 26 languages, including
Tamil, Malayalam, Kannada, and Telugu, which
are considered as major languages, in addition to
20 non-literary languages (Krishnamurti, 2003).
Since the most Dravidian languages have their writ-
ing script, they have a separate block in the Uni-
code computing industry standard (Sarveswaran
et al., 2021). All of these languages use left-to-
right writing systems and maintain similar fea-
tures in their word formation and sentence struc-
ture. In these languages, sentences are constructed
by a sequence of words and words are formed by
adding prefixes and/or suffixes to the root word

1https://github.com/OpenNMT/OpenNMT-py

(Priyadharshini et al., 2021; Kumaresan et al., 2021;
Chakravarthi and Muralidaran, 2021; Chakravarthi
et al., 2020; Sampath et al., 2022; Ravikiran et al.,
2022; Chakravarthi et al., 2022; Bharathi et al.,
2022; Priyadharshini et al., 2022). Dravidian lan-
guages follow an alpha-syllabic writing scheme,
with each character being called a syllable. Conso-
nant ligatures are formed when vowels and conso-
nants are tied together with grammar (Thavareesan
and Mahesan, 2019a, 2020a).

Tamil was the first language to be listed as a clas-
sical language of India and is one of the longest-
surviving classical languages of India. Being a
scheduled language by the Indian constitution, it
is an official language of Tamil Nadu, a state of
India and Puducherry, a territory of India. Fur-
ther, it is also considered as one of the official
languages of Sri Lanka and Singapore. Besides
Kerala, Karnataka, Andhra Pradesh, Telangana,
and the Union Territory of Andaman and Nico-
bar Islands, Tamil is spoken by significant minori-
ties in four other south Indian states. Tamil script
was first recorded in 580 BCE on pottery from
Keezhadi, Sivagangai, and Madurai districts of
Tamil Nadu, India by the Tamil Nadu State Depart-
ment of Archaeology and Archaeological Survey
of India (Sivanantham and Seran, 2019). The script
was known as Tamili or Tamil-Brahmi2. The alpha-
bets of Tamil consist of 18 consonants, 12 vowels,
and 216 compound letters followed by a special
character making total of 247 letters (Hewavitha-
rana and Fernando, 2002). Tamil is an official lan-
guage of Tamil Nadu, Sri Lanka, Singapore, and
the Union Territory of Puducherry in India. Signifi-
cant minority speak Tamil in the four other South
Indian states of Kerala, Karnataka, Andhra Pradesh,
and Telangana, as well as the Union Territory of
the Andaman and Nicobar Islands (Sakuntharaj
and Mahesan, 2021, 2017, 2016; Thavareesan and
Mahesan, 2019b, 2020b,c, 2021). It is also spo-
ken by the Tamil diaspora, which may be found
in Malaysia, Myanmar, South Africa, the United
Kingdom, the United States, Canada, Australia,
and Mauritius. Tamil is also the native language
of Sri Lankan Moors. Tamil, one of the 22 sched-
uled languages in the Indian Constitution, was the
first to be designated as a classical language of In-
dia (Subalalitha, 2019; Srinivasan and Subalalitha,
2019; Narasimhan et al., 2018). Tamil is one of the
world’s longest-surviving classical languages. The

2Tamil-Brahmi
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earliest epigraphic documents discovered on rock
edicts and "hero stones" date from the 6th century
BC. Tamil has the oldest ancient non-Sanskritic
Indian literature of any Indian language (Anita and
Subalalitha, 2019b,a; Subalalitha and Poovammal,
2018).

Malayalam belongs to the Dravidian language
family and is highly agglutinative. It originated
during the last quarter of the 9th Century A.D
(Sekhar, 1951). As a result of the steep Western
Ghats separating the dialect from the main speech
group in the 16th century, it gradually developed
into a separate language. The Ramacaritam is the
first literary work written in Malayalam, a com-
bined language of Tamil and Sanskrit, utilizing the
Tamil Grantha script used in Tamil Nadu for the
writing of Sanskrit and foreign words (Andronov,
1996). There are 13 vowels, 36 consonants, 5 chillu,
an anuswara, a visarga, and a chandrakkala mak-
ing total of 57 letters in Malayalam (Kumar and
Chandran, 2015). Telugu belongs to the Dravid-
ian language family and is predominantly spoken
by the people of Andra Pradesh. It is the official
language of Andhra Pradesh and Telangana with
more than 2.75 million Telugu speakers3. Inscrip-
tions of Telugu date back to 575 CE. There is a
total of 52 letters in Telugu with 16 vowels and 36
consonants and the script is called Abugida which
belongs to the Brahmi family4. Kannada is the
second-oldest Dravidian language, spoken primar-
ily by residents of Karnataka. There are around
44 million Kannada speakers worldwide, with over
12.6 million non-Kannada speakers in Karnataka
speaking it as a second or third language5. It is
one of the scheduled languages of the Indian con-
stitution, as well as the official and administrative
language of Karnataka, India. It uses the Brahmi
script, which comprises 49 letters in total, com-
prising 13 vowels, 2 diphthongs, and 34 conso-
nants6. Kannada has a large number of articles,
although they are not all digitized. Tulu is a promi-
nent Dravidian language spoken primarily by the
people of Dakshina Kannada and Udupi in Kar-
nataka state, as well as some parts of Kasaragod
in Kerala state. Tulu is spoken by around 2.5 mil-
lion individuals who believe it to be their mother
tongue7. With its particular sociocultural quali-

3Telugu language
4Teligu-script
5Census report 2011
6Kannada-script
7Tulu language and its script

Languages Train set Dev set Test set

Kannada-Tamil 90,974 2,000 2,000

Kannada-Malayalam 88,813 2,000 2,000

Kannada-Telugu 88,503 2,000 2,000

Table 1: Statistics of set I

Languages Train set Dev set Test set

Kannada-Sanskrit 9,470 1,000 1,000

Kannada-Tulu 8,300 1,000 1,000

Table 2: Statistics of set II

ties, religious practices, creative traditions, and dra-
matic forms, the Tulu-speaking people have made
a substantial contribution to Karnataka’s cultural
history, and via it, to Indian culture and civilization
as a whole. It has kept numerous characteristics of
the ancient Dravidian languages while also mak-
ing some advances not seen in other Dravidian
languages (Kekunnaya, 1994). Furthermore, Tulu
has its own script, Tigalari, which is developed
from the Grantha script, which is no longer in use
(Antony et al., 2016). There are 52 letters in Tulu
with 16 vowels and 36 consonants.

4 Sanskrit

The Sanskrit language has been around for hun-
dreds of years, and it uses the Devanagari (Keith,
1993). With its extensive vocabulary, phonology,
grammar, and syntax, Sanskrit literature has a long
history of use in ancient poetry, drama, science, and
philosophy (Macdonell, 1915). It consists of 16
vowels and 36 consonants and belongs to the Indo-
European language family. Sanskrit is a highly
inflected language divided into eight chapters to
make it more structured and understandable (Panini
Asthadhyayi) (Kak, 1987). Despite the enormous
number of articles, the quantity of digital resources
is limited, especially for the parallel corpus.

5 Task Description and Dataset

Codalab was used to host the shared task. Several
translation sub-tasks were organized as a part of
this task, namely: Kannada to Tamil, Kannada to
Malayalam, Kannada to Telugu, Kannada to San-
skrit, and Kannada to Tulu. The participants could
choose which sub-tasks they wanted to participate
in. For each language pair, participants were pro-
vided with training, development, and test datasets.
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Objective of the task was to train/develop MT sys-
tems for the language pairs that were provided. Par-
ticipants translated the test data using MT models
proposed by them and submitted the results to the
workshop organizers. BLEU is selected as the eval-
uation metric to evaluate the submitted MT models.
In order to determine the participants’ rank, the sub-
missions were compared with gold-standard data.

5.1 Dataset
Datasets used in this shared task are broadly
grouped into two categories: i) Collection of pub-
licly available parallel corpora (set I) (ii) Con-
struction of parallel corpus from scratch (set II).
In the set I, parallel corpora were collected from
Samanantar8 - a collection of the largest paral-
lel corpora available for Indic languages (Ramesh
et al., 2022) and statistics of set I is shown in Ta-
ble 1. It may be noted that only a small portion
is used in this task instead of using whole dataset.
For set II, dataset is manually constructed and Ta-
ble 2 gives the statistics of set II. Since there is
no parallel corpus available for the translation of
Kannada-Tulu and Kannada-Sanskrit, the construc-
tion of parallel corpora will exacerbate entangle-
ment for these under-resourced language pairs. To
create these parallel corpora, we collected mono-
lingual Tulu and Sanskrit documents from digitally
accessible sources and manually translated the cor-
responding Kannada sentences.

6 System Description

Out of 16 research groups, 12 run submissions were
made by 4 teams. Set II received the maximum
number of submissions (4 teams) followed by set
I (3 teams). Further, results of the participated
systems in terms of BLEU score and system ranks
for each language pair are shown in Table 3. Based
on the BLEU scores, we evaluated the performance
of the submitted systems. The following is a brief
description of the participants’ systems. For more
information, please refer to their papers.

Aditya et al. (2022) have used two distinct mod-
els, namely: i) fine-tuned multilingual indicTrans9

model with pseudo data generated from monolin-
gual data obtained using backtranslation ii) Convo-
lutional Neural Network (CNN), Seq2Seq models

8https://indicnlp.ai4bharat.org/
samanantar/

9https://indicnlp.ai4bharat.org/
indic-trans/

like, Long Short Term Memory (LSTM), Bidirec-
tional LSTM (BiLSTM) and transformer models
which were trained from scratch using Fairseq10

library. They report better BLEU scores for trans-
former (Vaswani et al., 2017) model trained from
scratch using Fairseq library for all the language
pairs.

Piyushi et al. (2022) have proposed a system
based on the openNMT-py implementation of the
transformer (Vaswani et al., 2017) for building the
baseline model. Furthermore, they also carry out
experiments by using the IndicNLP 11 tokenizer to
improve upon the baseline and report an improve-
ment in the observed results. They report better
BLEU scores for the Kannada - Tulu and Kannada
- Sanskrit languages.

7 Results and Discussion

As shown in Table 3 the submissions were evalu-
ated with BLEU scores. The results indicate that
Aditya et al. (2022) achieved the best performance
across Kannada - Tamil, Kannada - Telugu and
Kannada - Malayalam translation tasks. As men-
tioned in Section 6, they carried out their experi-
ments with multiple models namely LSTM, BiL-
STM, ConvS2S, Transformer, pre-trained multilin-
gual transformer using backtranslation. On these
translation tasks they report the better performance
of the LSTM based architectures as well as the pre-
trained transformer model. This indicates that for
these 3 language pairs which have comparatively
larger datasets available the DL architectures with a
large number of parameters perform better than the
other models. For the language pairs in Set II (as
shown in 2) the models employed by Aditya et al.
(2022) didn’t achieve the best performance. The
primary reason for this is that size of the dataset for
these language pairs is not sufficient to either train
the LSTM models from scratch or fine-tune the
transformer architecture in order to achieve mean-
ingful generalization.

Piyushi et al. (2022) report the best performance
across the Kannada - Tulu and Kannada - Sanskrit
language pairs. These languages which belong to
Set II (as shown in Table 2) have comparatively
smaller datasets. The authors have used openNMT
system to tackle the problem at hand. The opotimal
performance of their approach for the languages

10https://github.com/pytorch/fairseq
11https://github.com/AI4Bharat/

indicnlp_corpus
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Languages Team BLEU Rank

Kannada-Tamil
PICT 0.3536 1

Anvita 0.1791 2

Translation_Techies 0.0798 3

Kannada-Telugu
PICT 0.3687 1

Anvita 0.1959 2

Translation_Techies 0.1242 3

Kannada-Malayalam
PICT 0.2963 1

Anvita 0.1301 2

Translation_Techies 0.0729 3

Kannada-Sanskrit

PICT 0.7482 1

Anvita 0.6209 2

PICT 0.035 3

Unitum 0.0011 4

Kannada-Tulu

Translation_Techies 0.6149 1

Anvita 0.2788 2

Unitum 0.007 3

PICT 0.0054 4

Table 3: Results of the participating systems in BLEU score and ranks

of Set II can particularly be attributed to the hyper-
parameter tuning to the openNMT system. Also,
it is interesting to note that participants used the
indic tokenization scheme provided by IndicNLP
and reported improved results. The impact of the
tokenization on specific language pairs however
cannot be verified using the subtasks presented in
this paper and more comprehensive experiments
need to be carried out.

8 Conclusion

The shared task on MT in Dravidian Languages
opened up a slew of new research opportunities
in the field of MT in Dravidian languages. The
task also involves Sanskrit, an ancient language, in
addition to Dravidian languages. Despite positive
reactions and enthusiasm for attending the event,
the number of system submissions was not im-
pressive. We collected Kannada-Tamil, Kannada-
Malayalam, and Kannada-Telugu from samanatar,
a collection of parallel corpora. Further, Kannada-
Sanskrit and Kannada-Tulu parallel corpora were
created manually. The performance and BLEU
scores of the participants are not credible, yet they
are not discouraging. The main inference from the
participants’ results is that along with the baseline
MT models, efficient dataset preparation methods,
namely, backtranslation and subword tokenization

also necessary to achieve better performance in
the translation of morphologically rich languages.
As a final note, we hope to continue conducting
this workshop in the coming years to contribute to
the advancement of language technology for under-
resourced Dravidian languages.
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