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Abstract

With the widespread usage of social media and
effortless internet access, millions of posts and
comments are generated every minute. Un-
fortunately, with this substantial rise, the us-
age of abusive language has increased signif-
icantly in these mediums. This proliferation
leads to many hazards such as cyber-bullying,
vulgarity, online harassment and abuse. There-
fore, it becomes a crucial issue to detect and
mitigate the usage of abusive language. This
work presents our system developed as part
of the shared task to detect the abusive lan-
guage in Tamil. We employed three machine
learning (LR, DT, SVM), two deep learning
(CNN+BiLSTM, CNN+BiLSTM with Fast-
Text) and a transformer-based model (Indic-
BERT). The experimental results show that
Logistic regression (LR) and CNN+BiLSTM
models outperformed the others. Both Logistic
Regression (LR) and CNN+BiLSTM with Fast-
Text achieved the weighted F}-score of 0.39.
However, LR obtained a higher recall value
(0.44) than CNN+BiLSTM (0.36). This leads
us to stand the 2" rank in the shared task com-
petition.

1 Introduction

With the rapid growth of user-generated content
in social media, the emergence of abusive content
also increased dramatically (Priyadharshini et al.,
2021; Kumaresan et al., 2021). This insurgence has
become a reason of worry for governments, policy-
makers, social scientists and tech companies since
it has detrimental consequences on society (Sharif
et al., 2021b; Chakravarthi et al., 2020b). Currently,
we are living in an information era where social me-
dia plays a vital role in shaping people’s minds, and
opinions (Perse and Lambe, 2016; Chakravarthi
et al., 2021). Therefore mitigating the usage of
abusive language has become extremely important
(Sharif and Hoque, 2021b). Companies like Face-
book, YouTube, Twitter have been trying to achieve

this for years (Ghanghor et al., 2021a,b; Yasaswini
et al., 2021). It is impossible to monitor and mod-
erate social media content manually because of its
large volume and its messy forms (Meyer, 2016).
Therefore, it is necessary to develop an intelligent
system to tackle this issue. Several studies have
been conducted to detect abusive language for En-
glish, and other high resource languages (Kumar
et al., 2020; Sampath et al., 2022; Ravikiran et al.,
2022; Chakravarthi et al., 2022; Bharathi et al.,
2022; Priyadharshini et al., 2022). In contrast, a
low-resource language like Tamil remained out of
focus and has much room for improvement (Priyad-
harshini et al., 2020; Chakravarthi et al., 2020a).

Tamil is an official language of Tamil Nadu,
Sri Lanka, Singapore, and the Union Territory
of Puducherry in India (Anita and Subalalitha,
2019b,a; Subalalitha and Poovammal, 2018). Sig-
nificant minority speak Tamil in the four other
South Indian states of Kerala, Karnataka, Andhra
Pradesh, and Telangana, as well as the Union Ter-
ritory of the Andaman and Nicobar Islands (Sub-
alalitha, 2019; Srinivasan and Subalalitha, 2019;
Narasimhan et al., 2018). Tamil, as a Dravid-
ian language, descended from Proto-Dravidian,
a proto-language, according to Bhadriraju Krish-
namurti. Linguistic reconstruction implies that
Proto-Dravidian was spoken about the third mil-
lennium BC, likely in the peninsular Indian re-
gion surrounding the lower Godavari river basin.
The material evidence implies that the speakers of
Proto-Dravidian belonged to the civilization linked
with South India’s Neolithic complexes. The ear-
liest Old Tamil documents are small inscriptions
in Adichanallur dating from 905 BC to 696 BC.
Tamil has the most ancient non-Sanskritic Indian
literature (Sakuntharaj and Mahesan, 2021, 2017,
2016; Thavareesan and Mahesan, 2019, 2020a,b,
2021).

This work aims to build a system that can clas-
sify abusive language from Tamil text concerning
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eight different categories: Hope-Speech, Homopho-
bia, Misandry, Counter-speech, Misogyny, Xeno-
phobia, Transphobia and None-of-the-above. Var-
ious machine learning (ML), deep learning (DL),
and transformer-based models have been used to
attain this goal. The key contributions of this work
are illustrated in the following:

* Developed multiple ML and DL techniques
to classify abusive texts in Tamil into eight
classes.

* Investigated the performance of the models to
find the suitable method for the classification
of abusive comments and analyzed in-depth
error, providing useful insight into abusive
text classification.

2 Related Work

Recently, researchers are trying to develop methods
and tools to analyze social media sites like Twitter,
Facebook, and Snapchat since these mediums has
become integral part of our life (Anand and Eswari,
2019). Studies have already been conducted to
detect abusive or offensive comments on social me-
dia (Sharif et al., 2021a; Aurpa et al., 2022; Sharif
et al., 2020). Few researches has focused on other
overlapping domains such as hate speech (Founta
et al., 2018; Waseem et al., 2017), cyberbullying
(Fosler-Lussier et al., 2012), racism/sexism (Ta-
lat et al., 2018), aggression & trolling (Zampieri
et al., 2019) and so on. All of these researches
primarily conducted for high-resource languages.
Very few researches have been carried out to de-
tect abusive language for low-resources languages
like Tamil. Eshan and Hasan (2017) evaluated the
effectiveness of RF, NB, and SVM classifiers to
detect abusive language. Their system achieved
the maximum accuracy (=~ 95%) for SVM with
linear kernel and tri-gram features. Ishmam and
Sharmin (2019) collected roughly 5000 Bengali
abusive comments from Facebook and categorized
them into six different classes: hate speech, com-
munal attack, inciteful comments, religious hatred,
political hatred etc. They obtained the highest ac-
curacy of 70.10% utilizing the GRU-based model.
Salminen et al. (2020) collected 197,566 comments
from Twitter, Wikipedia, Reedit and YouTube,
where 20% of the data was hateful. They ap-
plied logistic regression, naive bayes, support vec-
tor machines, XGBoost techniques on this dataset
and obtained 0.92 F7-score using XGBoost classi-

fier. Sharif and Hoque (2021a) developed a gold
standard dataset on Bengali aggressive comments
from social media called ‘ATxtC’, which contains
7591 annotated data. In the subsequent work they
presented a novel Bengali aggressive text dataset
(called ‘BAD’) with two-level of annotation (Sharif
and Hoque, 2021b). They proposed a weighted en-
semble technique that uses m-BERT, distil-BERT,
Bangla-BERT, and XLLM-R as base classifiers to
identify and categorize aggressive texts in Bengal.
The model achieved the highest weighted-score of
93.43% in the identification task and 93.11% in the
categorization task.

3 Task and Dataset Description

Task organizers created a gold standard dataset
to detect abusive comments from Tamil social
networking sites. This task aims to develop a
system that can correctly identify abusive texts
from a given set of texts in Tamil. We used the
corpus provided by the organizers of the work-
shop! (Chakravarthi, 2020; Chakravarthi and Mu-
ralidaran, 2021; Hande et al., 2021; Priyadharshini
et al., 2022). The shared task required classifying
a text into eight predefined classes (i.e., Misogyny,
Misandry, Homophobia, Transphobia, Xenopho-
bia, Counter-speech, Hope-speech and None-of-
the-above). Table 1 reports the number of samples
in the train, validation, and test sets for each class.
Dataset is quite imbalanced where Transphobia and
Homophobia classes have only 10 and 51 text sam-
ples, respectively. Before model development, we
preprocessed the dataset to exclude irrelevant char-
acters, numbers, symbols, punctuation marks, and
€mojis.

Class Train Validation Test
Misogyny 125 24 48
Misandry 447 104 127
Homophobia 35 8 8
Transphobia 6 2 2
Xenophobia 95 29 25
Counter-speech 149 36 47
Hope-speech 87 11 26
None-of-the-above | 1296 346 416
Total 2240 560 699

Table 1: Class wise dataset distribution in train, valida-
tion and test set

"https://competitions.codalab.org/competitions/36403
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4 Methodology

The techniques and methods used to detect abu-
sive categories for given YouTube comments are
briefly explained in this section. We cleaned the
raw data first by stripping away noisy elements and
then extracted features (Lewis, 1992) using various
feature extraction techniques, including TF-IDF,
Word2Vec, and FastText. We used ML and DL
based techniques for the baseline evaluation. The
schematic process of our approach is depicted in
Figure 1.

Output
Predictions
ML Models L -
LR S O]
DT O] :
TF-IDF SVM ol :

Ensemble

DL Models

Word2Vec CNN+BILSTM | —
FastText .

Transformer

Indic-BERT .

Input
Texts

Figure 1: Schematic process of abusive comments clas-
sification

4.1 Feature Extraction

Feature extraction is conducted prior to training
the models. The TF-IDF (Nayel, 2020) values of
the unigram features are calculated and used for
training ML models. On the other hand, Word2Vec
(Jurgens, 2021) and FastText (Joulin et al., 2017)
embeddings are used as feature for the DL models.
Keras embedding layer generates the embedding
vectors of the dimension of 100. In contrast, a pre-
trained embedding matrix is in the case of FastText
embedding.

4.2 ML Baselines

In order to design the abusive comment detection
system, we developed several ML-based methods
such as logistic regression (LR), decision tree (DT),
and support vector machine (SVM). After con-
structing the three models, we also use the majority
voting ensemble technique to predict the abusive
category of the texts. Furthermore, in search of
improved performance, an ensemble approach is
applied using the classifiers mentioned earlier. In
LR and DT models, the C value is settled at 2,
whereas SVM is implemented with a C value of 6.

4.3 DL Baselines

In the case of DL approach (Ruiz et al., 2020), we
combined CNN and LSTM (Du et al., 2020) to
classify a given comment. A total of seven layers
is used to construct the combined model. Initially,
a sequence vector of length 260 is fed to the em-
bedding layer. Subsequently, two convolution lay-
ers are added with the ‘relu’ activation function.
Features are downsampled through a max-pooling
layer before passing to the BILSTM layer. BiL-
STM has 128 units, and the overfitting problem is
reduced by setting the dropout rate to 0.2. Finally, a
softmax layer is used to get the predictions. We also
performed experimentation with pre-trained word
vectors (FastText). We use the ‘Adam’optimizer
with a learning rate of 1e3,and a loss function of
‘sparse_categorical_crossentropy’. The model has
been trained for 25 epochs with a batch size of 32.

4.3.1 Transformers

Considering the recent vogue of transformers, we
also employ a transformer-based model. Specifi-
cally, we chose Indic-BERT as a pre-trained model
is trained on the texts of various Indian languages
such as Tamil, Bangla, and Telugu. We chose
Indic-BERT because it has far fewer parameters
than other multilingual models (i.e., mBERT, XLM-
R, etc.) while achieving comparable performance
(Kakwani et al., 2020). The maximum length of the
input text is settled to 150 and use Ktrain (Maiya,
2020) package to fine-tune the model. The model
is compiled using the Ktrain ‘fit_onecycle’method
along with a learning rate of 2e~°. Finally, the
training is performed for 4 epochs bypassing 12
instances at each iteration. The implementation
details of implemented models have been open
sourced for reproducibility?.

5 Results and Analysis

The performance of the various methods on the
test set is reported in Table 2. The macro F}-score
measures the supremacy of the models. However,
we pay close attention to the other measures such
as accuracy (A), precision (P) and recall (R) scores.

It is observed that, among the ML models, the
LR model outperformed the DT and SVM models
achieving the highest macro F-score (0.39). The
combination of CNN and BiLSTM (C+B) achieved
a very low macro F-score (0.16) when trained with

Zhttps://github.com/m1n1-coder/ML-and-DL-models-of-
Tamil-Abusive-Comment-Detection
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Methods Classifier P R  Fj-score A
LR 038 044 039  0.60
DT 031 034 032 057
ML models o\ y 054 026 029  0.66
Ensemble 0.26 0.44 0.28 0.67
C+B (Word2Vec) | 0.19 0.18  0.16 _ 031
DLmodels g magText) | 052 036 039 0.63
Transformer Indic-BERT 0.22 0.20 0.19 0.69

Table 2: Performance of various models on the test set. Here, C+B represents the CNN+BiLSTM model

Word2Vec features. Surprisingly, the performance
is improved to 0.39 when we used a pre-trained
word embedding (i.e. FastText). Unfortunately, the
transformer model, Indic-BERT, could not provide
satisfactory performance on the test set. Moreover,
we conducted a thorough investigation into all of
the employed models. The outcomes of the in-
vestigation is presented in Table 3. It is revealed
that the LR model predicts 6 of the 8 categories
with the highest F}-score. This demonstrated that
the LR model performed admirably and was the
best model across all evaluation metrics. How-
ever, CNN+BiLSTM with FastText embedding also
achieved the same macro F-score (0.39). On the
other hand, the transformer model performs poorly
due to the prevalence of local words across the
different abusive classes.

The comparative analysis illustrates that our
model (i.e., COMBATANT) achieved the 2"¢ po-
sition in the task (Table-4). Although we inves-
tigated various ML and DL models on the cor-
pus, the submission included the best three models
(LR, SVM, and CNN+BiLSTM (with FastText)).
The LR model outperformed the other models by
achieving the highest F-score.

5.1 Error Analysis

The LR classifier outperformed all models in clas-
sifying Tamil abusive comments on the shared task
dataset. However, it is necessary to investigate the
errors of the model in order to assess how accu-
rately the classifier performed across the different
classes. The confusion matrix is used to illustrate
the errors (Figure 2). We noticed that, among the
classes, Misandry and Counter-Speech contained
a relatively high true positive rate (TPR). Misandry
class obtained a TPR of 65.35%, whereas Counter-
Speech achieved 53.2%. However, Transphobia
has a TPR of 0%. With a low TPR, Homopho-
bia class also experienced a large number of miss-

Confusion Matrix of LR

None-of-the-above 17 46 2 0 7 41 31 250

12 21 2 5 1 0 7 0

Misogyny
200
Misandry { 26 6 83 1 0 3 4 4

Homophobia{ 0 1 1 5 0 0 1 0 150

Transphobic

Actual classes

Xenophobia
Counter-speech{ 17 3 2 0 0 0 25 0 50

Hope-Speech { 14 1 1 0 0 0 1 9

Predicted classes

Figure 2: Confusion matrix of the best model (LR).

classification. This lower outcome could be oc-
curred due to inadequacy and class imbalance of
data. As a result, many of the test data were incor-
rectly classified as None-of-the-above.

6 Conclusion

This paper presents the various models developed
to classify abusive comments in Tamil. This
work used three ML, two DL classifiers and one
transformer-based model to perform the classifi-
cation task. The LR model with TF-IDF features
outperformed all models by obtaining the highest
macro Fi-score (0.39). Although the combined
CNN and BiLSTM model (C+B) achieved a sim-
ilar macro F7j-score (0.39) with FastText features,
the LR model obtained a higher recall value (0.44).
Surprisingly, Indic-BERT performed poorly com-
pared to the ML and DL models. These inferior
results might occur because of the prevalence of
local words, which is unknown to the model. It
will be interesting to investigate how the model per-
forms if the dataset is used in more advanced trans-
former models (XML-R, Electra, mBERT, MuRIL).
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Classes LR DT | SVM | Ensemble | C+B(Word2Vec) | C+B(FastText) | Indic-BERT
Misogyny 042 | 031 | 0.21 0.24 0.08 0.14 0.15
Misandry 0.62 | 0.50 | 0.54 0.55 0.28 0.53 0.42

Homophobia 048 | 0.42 | 0.46 0.43 0.00 0.50 0.15
Transphobic 0.00 | 0.00 | 0.00 0.00 0.00 0.67 0.03
Xenophobia 0.29 | 0.14 | 0.07 0.07 0.10 0.10 0.07
Counter-speech 0.38 | 0.28 | 0.15 0.00 0.21 0.26 0.11
Hope-Speech 0.26 | 0.18 | 0.14 0.20 0.11 0.14 0.10
None-of-the-above | 0.71 | 0.72 | 0.78 0.79 0.47 0.78 0.49

Table 3: Class-wise performance of models in terms of F}-score

Team_Names Precision Recall Fl-score Rank
CEN-Tamil 0.380 0.290 0.320 1
COMBATANT 0.290 0.330 0.300 2
DE-ABUSE 0.330 0.290 0.291 3
DLRG 0.340 0.260 0.270 4
TROOPER 0.400 0.230 0.250 5
abusive-checker 0.140 0.140 0.140 6
Optimize_Prime_Tamil_Runl 0.130 0.130 0.130 7
GJG_Tamil 0.130 0.140 0.130 8
umuteam_tamil 0.130 0.130 0.130 9
MUCIC 0.120 0.130 0.120 10
BpHigh_tamil(1) 0.180 0.120 0.060 11
SSNCSE_NLP 0.130 0.140 0.090 12

Table 4: Summary of performance comparison for all participating teams in the shared task

Furthermore, we aim to tackle the data imbalance
problem by adding more diverse data to the exist-
ing corpus that might improve the model’s perfor-
mance.
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