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Introduction

We are excited to welcome you to DLG4NLP 2022, the 2nd Workshop on Deep Learning on Graphs for
Natural Language Processing, to be held on July 15, 2022 as part of NAACL in Seattle. The DLG4NLP
workshop aims to bring together both academic researchers and industrial practitioners from different
backgrounds and perspectives to solve challenges in deep learning on graphs for NLP. This workshop
intends to share visions of investigating new approaches and methods at the intersection of graph ma-
chine learning and NLP. The workshop will consist of contributed talks, invited talks, position talks, and
panelists on a wide variety of novel GNN methods and NLP applications.
The NAACL conference is a premier publication venue for research in NLP. This year, the DLG4NLP
workshop includes four keynote talks, eight presentation sessions, two position talks, and a panel discus-
sion. We have a big “thank you” to say to the authors and speakers (Prof. Jiawei Han, Prof. Heng Ji,
Prof. Meng Jiang, and we are inviting more speakers when writing our preface).
This year, we had 12 Program Committee (PC) members who were responsible for reviewing 2 papers
each. Every submission received at least three reviews. The members of the Program Committee did
an excellent job in reviewing the submitted papers, and we thank them (Zhong Zhang, Sijie Cheng,
Suyuchen Wang, Sifan Wu, Haochen Shi, Qianggang Ding, Yu Chen, Qingkai Zeng, Yile Wang, Yulong
Chen, Meng Qu, Yuyan Chen) for their essential role in reviewing the papers and helping produce a high
quality program for the conference.
In addition, we thank Ryan Cotterell, the Publications Chair, and Ashish Sabharwal, Yunyao Li, Dan
Goldwasser, the Workshop Chairs for NAACL 2022, for their dedicated work in assisting workshop
organizers to produce high quality proceedings.
Finally, we thank all the conference organizers and participants for making DLG4NLP workshop at
NAACL 2022 a success and for growing the research areas of NLP with their fine work.
Lingfei Wu, Bang Liu, Rada Mihalcea, Jian Pei, Yue Zhang, Yunyao Li, workshop co-organizers.
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Abstract
Generative commonsense reasoning (GCR) in
natural language is to reason about the com-
monsense while generating coherent text. Re-
cent years have seen a surge of interest in
improving the generation quality of common-
sense reasoning tasks. Nevertheless, these ap-
proaches have seldom investigated diversity in
the GCR tasks, which aims to generate alter-
native explanations for a real-world situation
or predict all possible outcomes. Diversifying
GCR is challenging as it expects to generate
multiple outputs that are not only semantically
different but also grounded in commonsense
knowledge. In this paper, we propose MoKGE,
a novel method that diversifies the generative
reasoning by a mixture of expert (MoE) strat-
egy on commonsense knowledge graphs (KG).
A set of knowledge experts seek diverse rea-
soning on KG to encourage various generation
outputs. Empirical experiments demonstrated
that MoKGE can significantly improve the di-
versity while achieving on par performance on
accuracy on two GCR benchmarks, based on
both automatic and human evaluations.

1 Introduction

An important desideratum of natural language gen-
eration (NLG) is to produce outputs that are not
only correct but also diverse (Tevet and Berant,
2021). The term “diversity” in NLG is defined as
the ability of a generative model to create a set of
possible outputs that are each valid given the input
and vary as widely as possible in terms of content,
language style, and word variability (Gupta et al.,
2018). This research problem is also referred as
one-to-many generation (Shen et al., 2019; Cho
et al., 2019; Yu et al., 2021; Shen et al., 2022).

Diversity in NLG has been extensively studied
for various tasks in the past few years, such as ma-
chine translation (Shen et al., 2019) and paraphrase

§ Codes of our model and baselines are available at
https://github.com/DM2-ND/MoKGE.

A sub-KG on ConceptNet

Input: Piano is a kind of sport .

Outputs: 3 different explanations

piano sport
play

music

kind

form

action

press

art
soccer

instrumentsong

key

[1]: UsedFor [2]: PartOf [3]: IsA [4]: RelatedTo

[1] [1]

[4] [3]
[1]

[3]
[4] [4]

[1]
[3]

[4] [2]

[4]
[1]

(1) You can produce music when pressing keys 
on the piano, so it is an instrument .

(2) Piano is a musical instrument used in songs 
to produce different musical tones .

(3) Piano is a kind of art form .

Figure 1: An example of diverse commonsense expla-
nation generation. It aims at generating multiple rea-
sonable explanations given a counterfactual statement.
Relevant concepts on the commonsense KG (in shade)
can help to perform diverse knowledge reasoning.

generation (Gupta et al., 2018). In these tasks, out-
put spaces are constrained by input context, i.e.,
the contents of multiple outputs should be similar,
and globally, under the same topic. However, many
NLG tasks, e.g., generative commonsense reason-
ing, pose unique challenges for generating multiple
reasonable outputs that are semantically different.

Figure 1 shows an example in the common-
sense explanation generation (ComVE) task. The
dataset has collected explanations to counterfac-
tual statements for sense-making from three anno-
tators (Wang et al., 2020). From the annotations,
we observed that different annotators gave explana-
tions to the unreasonable statement from different
perspectives to make them diverse in terms of con-
tent, e.g., wrong effect and inappropriate usage.

In order to create diversity, existing methods
attempted to produce uncertainty by introducing
random noise into a latent variable (Gupta et al.,
2018) or sampling next token widely from the vo-
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Table 1: Under human evaluation, the performance of
existing diversity promoting methods is still far from
that of humans. Our method MoKGE can exceed the
human performance on the ComVE task.

ComVE α-NLG

Avg. # human references 3.00 4.20

Avg. # meanings (⇑)
Human references 2.60 3.79
Nucleus sampling 2.15 3.35
MoKGE (our method) 2.63 3.72

cabulary (Holtzman et al., 2020). However, these
methods were not able to explicitly control vary-
ing semantics units and produce outputs of diverse
content. Meanwhile, the input text alone contains
too limited knowledge to support diverse reason-
ing and produce multiple reasonable outputs (Yu
et al., 2022c). As an example, Table 1 shows the
human evaluation results on two GCR tasks. While
human annotators were able to produce 2.60 dif-
ferent yet reasonable explanations on the ComVE
dataset, one SoTA diversity-promoting method (i.e.,
nucleus sampling (Holtzman et al., 2020)) could
produce only 2.15 reasonable explanations.

To improve the diversity in outputs for GCR
tasks, we investigated the ComVE task and found
that 75% of the concepts (nouns and verbs) in hu-
man annotations were among 2-hop neighbors of
the concepts contained in the input sequence on
the commonsense KG ConceptNet1. Therefore, to
produce diverse GCR, our idea is enabling NLG
models to reason from different perspectives of
knowledge on commonsense KG and use them to
generate diverse outputs like the human annotators.

Thus, we present a novel Mixture of Knowledge
Graph Expert (MoKGE) method for diverse gen-
erative commonsense reasoning on KG. MoKGE
contains two major components: (i) a knowledge
graph (KG) enhanced generative reasoning mod-
ule to reasonably associate relevant concepts into
the generation process, and (ii) a mixture of expert
(MoE) module to produce diverse reasonable out-
puts. Specifically, the generative reasoning module
performs compositional operations on KG to obtain
structure-aware representations of concepts and re-
lations. Then, each expert uses these representa-
tions to seek different yet relevant sets of concepts
and sends them into a standard Transformer model
to generate the corresponding output. To encourage

1ConceptNet: https://conceptnet.io/

different experts to specialize in different reasoning
abilities, we employ the stochastic hard-EM algo-
rithm by assigning full responsibility of the largest
joint probability to each expert.

We conducted experiments on two GCR bench-
marks, i.e., commonsense explanation genera-
tion and abductive commonsense reasoning. Em-
pirical experiments demonstrated that our pro-
posed MoKGE can outperform existing diversity-
promoting generation methods in diversity, while
achieving on par performance in quality.

To the best of our knowledge, this is the first
work to boost diversity in NLG by diversifying
knowledge reasoning on commonsense KG.

2 Related Work

2.1 Diversity Promoting Text Generation

Generating multiple valid outputs given a source
sequence has a wide range of applications, such as
machine translation (Shen et al., 2019), paraphrase
generation (Gupta et al., 2018), question genera-
tion (Cho et al., 2019), dialogue system (Dou et al.,
2021), and story generation (Yu et al., 2021). For
example, in machine translation, there are often
many plausible and semantically equivalent trans-
lations due to information asymmetry between dif-
ferent languages (Lachaux et al., 2020).

Methods of improving diversity in NLG
have been explored from various perspectives.
Sampling-based decoding is one of the most ef-
fective solutions to improve diversity. For example,
nucleus sampling (Holtzman et al., 2020) samples
next tokens from the dynamic nucleus of tokens
containing the vast majority of the probability mass,
instead of decoding text by maximizing the likeli-
hood. Another line of work focused on introducing
random noise (Gupta et al., 2018) or changing la-
tent variables (Lachaux et al., 2020) to produce
uncertainty. In addition, Shen et al. (2019) adopted
a mixture of experts to diversify machine transla-
tion, where a minimum-loss predictor is assigned
to each source input. Shi et al. (2018) employed an
inverse reinforcement learning approach for uncon-
ditional diverse text generation.

However, no existing work considered perform-
ing diverse knowledge reasoning to generate multi-
ple reasonable outputs of different contents.

2.2 Knowledge Graph for Text Generation

Incorporating external knowledge is essential for
many NLG tasks to augment the limited textual
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Piano is    a    kind of   sport  .

source 
concepts

KG
locate 
subKG

GNN Encoder (S2)

Concept Selection (S3) 

Piano is   … sport  music press …

Transformer (S4)

You can produce music when pressing …

Top-ranked concepts

piano

sport

play

kind

action

soccerentertainment

music

press

art

instrumentsong

piano
sport

play

kind

action

soccerentertainment

form

instrument

art

exercise

pianist
occupation

Piano is   … sport art form …

Transformer (S4)

Piano is a kind of art form .

Top-ranked concepts

press

(S1)

Expert 1

Expert 2music

Figure 2: The overall architecture of MoKGE. The MoKGE consists of four steps: (S1) the model constructs a
sequence-associated subgraph from the commonsense KG; (S2) a relational-GCN iteratively updates the represen-
tation of a concept node by aggregating information from its neighboring nodes and edges; (S3) each knowledge
expert selects different salient concepts that should be considered during generation; (S4) the model generates the
outputs by integrating the token embeddings of the input sequence and the top-ranked entities.

information (Yu et al., 2022c; Dong et al., 2021;
Yu et al., 2022b). Some recent work explored using
graph neural networks (GNN) to reason over multi-
hop relational knowledge graph (KG) paths (Zhou
et al., 2018; Jiang et al., 2019; Zhang et al., 2020a;
Wu et al., 2020; Yu et al., 2022a; Zeng et al.,
2021). For example, Zhou et al. (2018) enriched
the context representations of the input sequence
with neighbouring concepts on ConceptNet using
graph attention. Ji et al. (2020) performed dynamic
multi-hop reasoning on multi-relational paths ex-
tracted from the external commonsense KG. Re-
cently, some work attempted to integrate exter-
nal commonsense knowledge into generative pre-
trained language models (Guan et al., 2020; Bhaga-
vatula et al., 2020; Liu et al., 2021). For example,
Guan et al. (2020) conducted post-training on sy-
thetic data constructed from commonsense KG by
translating triplets into natural language texts using
templates. Yu et al. (2022c) wrote a comprehensive
survey for more detailed comparisons of different
knowledge graph enhanced NLG methods.

3 Proposed Method

Problem formulation. In this paper, we focus
on diversifying the outputs of generative common-
sense reasoning (GCR) tasks, e.g. commonsense
explanation generation and abductive common-
sense reasoning. These tasks require one-to-many
generation, i.e., creating a set of reasonable out-
puts that vary as widely as possible in terms of con-

tents, language style and word variability. Formally,
given a source input x, our goal is to model a condi-
tional distribution for the target outputs p(y|x) that
assigns high values to {p(y1|x), · · · , p(yK |x)} for
K mappings, i.e., {x→ y1, · · · , x→ yK}. Mean-
while, the outputs {y1, · · · , yK} are expected to be
diverse with each other in terms of contents.

Existing diversity-promoting methods only var-
ied the language styles and failed to perform differ-
ent knowledge reasoning to generate diverse con-
tents (Cho et al., 2019; Shen et al., 2019; Holtzman
et al., 2020). Here, incorporating commonsense
KG is essential for the generative reasoning (GR)
tasks because the KG cannot only augment the lim-
ited information in the input text, but also provide
a rich searching space for knowledge reasoning.
Therefore, we propose to employ commonsense
KG to play the central role of performing diverse
knowledge reasoning, then use different sets of
selected concepts to produce diverse outputs.

Model Outline. Our model has two major com-
ponents: (i) a knowledge graph (KG) enhanced
generative reasoning module to reasonably asso-
ciate relevant concepts and background into the
generation process, and (ii) a mixture of expert
(MoE) module to diversify the generation process
and produce multiple reasonable outputs.

3.1 KG-enhanced Generative Reasoning
The KG-enhanced generative reasoning module is
illustrated in Figure 2. It consists of four steps.
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First, a sequence-associated subgraph is retrieved
from the KG given the input sequence (§3.1.1).
Then, a multi-relational graph encoder iteratively
updates the representation of each node by aggre-
gating information from its neighboring nodes and
edges (§3.1.2). Next, the model selects salient con-
cepts that should be considered during generation
(§3.1.3). Finally, the model generates outputs by
integrating the token embeddings of both the input
sequence and the top-ranked concepts (§3.1.4).

3.1.1 Sequence-aware subgraph construction
To facilitate the reasoning process, we resort to
an external commonsense knowledge graph G =
{V, E}, where V denotes the concept set and E
denotes the edges with relations. Since direct rea-
soning on the entire graph is intractable, we extract
a sequence-associated subgraph Gx = {Vx, Ex},
where Vx consists of the concepts extracted from
the input sequence (denoted as Cx) and their
inter-connected concepts within two hops, i.e.,
Vx = {Cx ∪ N (Cx) ∪ N (N (Cx))}. For exam-
ple, in Figure 2, Cx = {piano, sport, kind} and
Vx = {piano, sport, kind, art,music, press, ...}.
Next, the generation task is to maximize the condi-
tional probability p(y|x,Gx).
3.1.2 Multi-relational graph encoding
To model the relational information in the com-
monsen KG, we employ the relational graph con-
volutional network (R-GCN) (Schlichtkrull et al.,
2018) which generalizes GCN with relation spe-
cific weight matrices. We follow Vashishth et al.
(2020) and Ji et al. (2020) to use a non-parametric
compositional operation ϕ(·) to combine the con-
cept node embedding and the relation embed-
ding. Specifically, given the input subgraph Gx =
{Vx, Ex} and an R-GCN with L layers, we update
the embedding of each node v ∈ Vx at the (l+1)-th
layer by aggregating information from the embed-
dings of its neighbours in N (v) at the l-th layer:

olv =
1

|N (v)|
∑

(u,v,r)∈E
Wl

Nϕ(hl
u,hl

r), (1)

hl+1
v = ReLU(olv + Wl

Shl
v), (2)

where hv and hr are node embedding and relation
embedding. We define the compositional operation
as ϕ(hu,hr) = hu−hr inspired by the TransE (Bor-
des et al., 2013). The relation embedding is also
updated via another linear transformation:

hl+1
r = Wl

Rhl
r. (3)

Finally, we obtain concept embedding hL
v that en-

codes the sequence-associated subgraph context.

3.1.3 Concept selection on knowledge graph
Not all concepts in G appear in the outputs. Thus,
we design a concept selection module to choose
salient concepts that should be considered during
generation. For each concept v ∈ Vx, we calculate
its probability of being selected by taking a multi-
layer perception (MLP) on the top of graph encoder:
pv = Pr[v is selected|x] = MLP(hL

v ).
To supervise the concept selection process, we

use the overlapping concepts between concepts ap-
pearing in the output sequence Cy and concepts
in input sequence associated subgraph Gx, i.e.,
Vx ∩ Cy, as a simple proxy for the ground-truth
supervision. So, the concept selection loss (here
only for one expert, see MoE loss in Eq.(8)) is:

Lconcept =−
( ∑

v∈Vx∩Cy

v log pv (4)

+
∑

v∈Vx−Cy

(1− v) log(1− pv)
)
.

Finally, the top-N ranked concepts on the subgraph
Gx (denoted as v1, ..., vN ) are selected as the addi-
tional input to the generation process.

3.1.4 Concept-aware sequence generation
We utilize a standard Transformer (Vaswani et al.,
2017) as our generation model. It takes the con-
catenation of the sequence x and all the selected
concepts v1, ..., vN as input and auto-regressively
generates the outputs y. We adopt the cross-entropy
loss, which can be written as:

Lgeneration = − log p(y|x, v1, · · · , vN ) (5)

= −
|y|∑

t=1

log p(yt|x, v1, · · · , vN , y<t).

Note that since the selected concepts do not have a
rigorous order, we only apply positional encodings
(used in Transformer) to the input sequence x.

3.1.5 Overall objective
We jointly optimizes the following loss:

L = Lgeneration + λ · Lconcept. (6)

where λ is a hyperparameter to control the impor-
tance of different tasks2.

2We performed a hyperparameter search and found when
λ was around 0.3, the model performed the best. Therefore,
we set λ = 0.3 in the following experiments.
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3.2 MoE-Promoted Diverse Generation
To empower the generation model to produce mul-
tiple reasonable outputs, we employ a mixture of
expert (MoE) module to model uncertainty and gen-
erate diverse outputs. While the MoE models have
primarily been explored as a means of increasing
model capacity, they are also being used to boost
diverse generation process (Shen et al., 2019; Cho
et al., 2019). Formally, the MoE module introduces
a multinomial latent variable z ∈ {1, · · · ,K}, and
decomposes the marginal likelihood as follows:

p(y|x,Gx) =
K∑

z=1

p(z|x,Gx)p(y|z, x,Gx). (7)

Training. We minimize the loss function (in
Eq.(6)) using the MoE decomposition,

∇ log p(y|x,Gx) (8)

=
K∑

z=1

p(z|x, y,Gx) · ∇ log p(y, z|x,Gx),

and train the model with the EM algorithm (Demp-
ster et al., 1977). Ideally, we would like different
experts to specialize in different reasoning abili-
ties so that they can generate diverse outputs. The
specialization of experts means that given the in-
put, only one element in {p(y, z|x,Gx)}Kz=1 should
dominate in value (Shen et al., 2019). To encourage
this, we employ a hard mixture model to maximize
maxz p(y, z|x,Gx) by assigning full responsibil-
ity to the expert with the largest joint probability.
Training proceeds via hard-EM can be written as:

• E-step: estimate the responsibilities of each
expert rz ← 1[z = argmaxz p(y, z|x,Gx)]
using the current parameters θ;

• M-step: update the parameters with gradients
of the chosen expert (rz = 1) from E-step.

Expert parameterization. Independently param-
eterizing each expert may exacerbate overfitting
since the number of parameters increases linearly
with the number of experts (Shen et al., 2019). We
follow the parameter sharing schema in Cho et al.
(2019); Shen et al. (2019) to avoid this issue. This
only requires a negligible increase in parameters
over the baseline model that does not uses MoE. In
our experiments, we compared adding a unique ex-
pert embedding to each input token with adding an
expert prefix token before the input text sequence,
where they achieved very similar performance.

Producing K outputs during inference. In or-
der to generate K different outputs on test set, we

follow Shen et al. (2019) to enumerate all latent
variables z and then greedily decoding each token
by ŷt = argmax p(y|ŷ1:t−1, z, x). In other words,
we ask each expert to seek different sets of con-
cepts on the knowledge graph, and use the selected
concepts to generate K different outputs. Notably,
this decoding procedure is efficient and easily par-
allelizable. Furthermore, to make fair comparisons
with sampling-based methods, we use greedy de-
coding without any sampling strategy.

4 Experiments

4.1 Tasks and Datasets

Commonsense explanation generation. It aims
to generate an explanation given a counterfac-
tual statement for sense-making (Wang et al.,
2019). We use the benchmark dataset ComVE
from SemEval-2020 Task 4 (Wang et al., 2020).
The dataset contains 10,000 / 997 / 1,000 examples
for training / development / test sets, respectively.
The average input/output length is 7.7 / 9.0 words.
All examples in the dataset have 3 references.
Abductive commonsense reasoning. It is also
referred as α-NLG. It is the task of generating a
valid hypothesis about the likely explanations to
partially observable past and future. We use the
ART benchmark dataset (Bhagavatula et al., 2020)
that consists of 50,481 / 1,779 / 3,560 examples
for training / development / test sets. The average
input/output length is 17.4 / 10.8 words. Each
example in the ART dataset has 1 to 5 references.

4.2 Baseline Methods

We note that as we targeted at the one-to-many
generation problem, we excluded those baseline
methods mentioned in the related work that cannot
produce multiple outputs, e.g., Zhang et al. (2020a);
Ji et al. (2020); Liu et al. (2021). Different from
aforementioned methods, our MoKGE can seek
diverse reasoning on KG to encourage various gen-
eration outputs without any additional conditions.

To the best of our knowledge, we are the first
work to explore diverse knowledge reasoning on
commonsense KG to generate multiple diverse out-
put sequences. Therefore, we only compared our
MoKGE with existing diversity-promoting base-
lines without using knowledge graph.
VAE-based method. The variational auto-encoder
(VAE) (Kingma and Welling, 2014) is a deep gen-
erative latent variable model. VAE-based methods

5



produce diverse outputs by sampling different la-
tent variables from an approximate posterior dis-
tribution. CVAE-SVG (SVG is short for sentence
variant generation) (Gupta et al., 2018) is a condi-
tional VAE model that can produce multiple out-
puts based an original sentence as input.
MoE-based method. Mixture models provide an
alternative approach to generate diverse outputs
by sampling different mixture components. We
compare against two mixture of experts (MoE) im-
plementations by Shen et al. (2019) and Cho et al.
(2019). We refer them as MoE-prompt (Shen et al.,
2019) and MoE-embed (Cho et al., 2019).
Sampling-based method. Sampling methods cre-
ate diverse outputs by sampling next token widely
from the vocabulary. We compare against two
sampling algorithms for decoding, including trun-
cated sampling (Fan et al., 2018) and nucleus sam-
pling (Holtzman et al., 2020). Truncated sam-
pling (Fan et al., 2018) randomly samples words
from top-k probability candidates of the predicted
distribution at each decoding step. Nucleus sam-
pling (Holtzman et al., 2020) avoids text degenera-
tion by truncating the unreliable tails and sampling
from the dynamic nucleus of tokens containing the
vast majority of the probability mass.

4.3 Implementation Details

All baseline methods were built on the Transformer
architecture with 6-layer encoder and decoder, and
initialized with pre-trained parameters from BART-
base (Lewis et al., 2020), which is one of the state-
of-the-art pre-trained Transformer models for nat-
ural language generation (Gehrmann et al., 2021).
In our MoKGE, the Transformer parameters were
also initialized by BART-base, in order to make fair
comparison with all baseline methods. The R-GCN
parameters were random initialized.

For model training, we used Adam with batch
size of 60, learning rate of 3e-5, L2 weight decay
of 0.01, learning rate warm up over the first 10,000
steps, and linear decay of learning rate. Our models
were trained by one Tesla V100 GPU card with
32GB memory, and implemented on PyTorch with
the Huggingface’s Transformer (Wolf et al., 2020).
All Transformer-based methods were trained with
30 epochs, taken about 4-5 hours on the ComVE
dataset and 7-9 hours on the α-NLG dataset.

In addition to our MoKGE implementation, we
also provide the baseline implementation code on
GitHub https://github.com/DM2-ND/MoKGE.

4.4 Automatic Evaluation

We evaluated the performance of different gener-
ation models from two aspects: quality (or say
accuracy) and diversity. Quality tests the appro-
priateness of the generated response with respect
to the context, and diversity tests the lexical and
semantic diversity of the appropriate sequences
generated by the model. These evaluation metrics
have been widely used in existing work (Ott et al.,
2018; Vijayakumar et al., 2018; Zhu et al., 2018;
Cho et al., 2019; Yu et al., 2021).

Quality metrics (⇑). The quality is measured
by standard N-gram based metrics, including
the BLEU score (Papineni et al., 2002) and the
ROUGE score (Lin, 2004). This measures the
highest accuracy comparing the best hypothesis
among the top-K with the target (Vijayakumar
et al., 2018). Concretely, we generate hypothe-
ses {Ŷ (1), · · · Ŷ (K)} from each source X and keep
the hypothesis Ŷ best that achieves the best sentence-
level metric with the target Y . Then we calculate a
corpus-level metric with the greedily-selected hy-
potheses {Y (i),best}Ni=1 and references {Y (i)}Ni=1.

The diversity of evaluated by three aspects: con-
cept, pairwise and corpus diversity.

Concept diversity. The number of unique con-
cepts (short as Uni.C) measures how many unique
concepts on the commonsense KG are covered in
the generated outputs. A higher value indicates the
higher concept diversity. Besides, we also measure
the pairwise concept diversity by using Jaccard sim-
ilarity. It is defined as the size of the intersection
divided by the size of the union of two sets. Lower
value indicates the higher concept diversity.

Pairwise diversity (⇓). Referred as “self-” (e.g.,
self-BLEU) (Zhu et al., 2018), it measures the
within-distribution similarity. This metric com-
putes the average of sentence-level metrics be-
tween all pairwise combinations of hypotheses
{Y (1), · · · , Y (K)} generated from each source se-
quence X . Lower pairwise metric indicates high
diversity between generated hypotheses.

Corpus diversity (⇑). Distinct-k (Li et al., 2016)
measures the total number of unique k-grams nor-
malized by the total number of generated k-gram
tokens to avoid favoring long sentences. Entropy-
k (Zhang et al., 2018) reflects how evenly the em-
pirical k-gram distribution is for a given sentence
when word frequency is considered.
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Table 2: Diversity and quality evaluation on the ComVE (upper part) and α-NLG (lower part) datasets. Each model
is required to generate three outputs. All experiments are run three times with different random seeds, and the
average results on the test set is calculated as the final performance, with standard deviations as subscripts.

Methods
Model
Variant

Concept diversity Pairwise diversity Corpus diversity Quality

#Uni.C(⇑) Jaccard (⇓) SB-3 (⇓) SB-4 (⇓) D-2(⇑) E-4(⇑) B-4 (⇑) R-L (⇑)

CVAE
z = 16 4.560.1 64.740.3 66.660.4 62.830.5 33.750.5 9.130.1 16.670.3 41.520.3
z = 32 5.030.3 47.270.8 59.201.3 54.301.5 32.861.1 9.070.5 17.040.2 42.170.5
z = 64 4.670.0 54.690.8 55.020.8 49.581.0 32.550.5 9.070.2 15.540.4 41.030.3

Truncated
sampling

k = 5 4.370.0 71.380.7 74.200.2 71.380.2 31.320.4 9.180.1 16.440.2 40.990.2
k = 20 4.600.0 63.421.2 64.472.1 60.332.4 33.690.6 9.260.1 17.700.2 42.580.5
k = 50 4.680.1 60.981.8 61.392.4 56.932.8 34.800.3 9.290.1 17.480.4 42.440.5

Nucleus
sampling

p = .5 4.190.1 72.781.0 77.660.8 75.140.9 28.360.6 9.050.3 16.090.6 40.950.5
p = .75 4.410.1 67.011.7 71.412.5 68.222.9 31.210.3 9.160.1 17.070.5 41.880.7
p = .95 4.700.1 61.922.6 63.433.4 59.233.8 34.170.3 9.270.2 17.680.4 42.600.8

MoE
embed 5.410.0 47.550.5 33.640.2 28.210.1 46.570.2 9.610.1 18.660.5 43.720.2
prompt 5.450.2 47.540.4 33.420.3 28.400.3 46.930.2 9.600.2 18.910.4 43.710.5

MoKGE
(ours)

embed 5.350.2 48.180.5 35.361.1 29.711.2 47.510.4 9.630.1 19.130.1 43.700.1
prompt 5.480.2 44.370.4 30.930.9 25.301.1 48.440.2 9.670.2 19.010.1 43.830.3

Human 6.270.0 26.490.0 12.360.0 8.010.0 63.020.0 9.550.0 100.00.0 100.00.0

#Uni.C(⇑) Jaccard (⇓) SB-3 (⇓) SB-4 (⇓) D-2(⇑) E-4(⇑) B-4 (⇑) R-L (⇑)

CVAE
z = 16 4.800.0 56.880.1 67.890.4 64.720.5 26.270.2 10.340.0 13.640.1 37.960.1
z = 32 5.050.0 50.920.4 62.080.2 58.250.3 26.670.1 10.360.0 13.350.1 37.730.1
z = 64 5.140.0 47.040.7 57.870.4 53.610.4 24.910.1 10.210.1 11.770.1 36.350.2

Truncated
sampling

k= 5 4.860.1 72.781.1 67.091.0 63.821.1 25.470.3 10.440.1 13.330.2 38.070.2
k= 20 5.480.1 45.651.8 54.652.1 50.362.4 29.300.5 10.620.2 14.120.7 38.760.6
k= 50 5.530.0 45.840.5 52.113.7 47.754.2 30.080.3 10.640.1 14.010.8 38.980.6

Nucleus
sampling

p= .5 4.190.1 62.541.8 73.340.3 71.010.3 25.490.0 10.460.0 11.710.1 36.530.2
p= .75 5.130.0 54.250.6 64.490.4 61.450.5 27.720.1 10.540.1 12.630.0 37.480.1
p= .95 5.490.0 46.760.5 56.320.5 52.440.6 29.920.1 10.630.0 13.530.2 38.420.3

MoE
embed 6.220.1 29.180.4 29.021.0 24.191.0 36.220.3 10.840.0 14.310.2 38.910.2
prompt 6.050.1 29.341.2 28.052.0 23.181.9 36.710.1 10.850.0 14.260.3 38.780.4

MoKGE
(ours)

embed 6.270.2 30.460.8 29.171.5 24.041.6 38.150.3 10.900.1 13.740.2 38.060.2
prompt 6.350.1 28.060.6 27.402.0 22.432.4 38.010.6 10.880.2 14.170.2 38.820.7

Human 6.620.0 12.430.0 10.360.0 6.040.0 53.570.0 10.840.0 100.00.0 100.00.0

* Metrics: SB-3/4: Self-BLEU-3/4 (⇓), D-2: Distinct-2 (⇑), E-4: Entropy-4 (⇑), B-4: BLEU-4 (⇑), R-L: ROUGE-L (⇑)

4.4.1 Experimental results

Comparison with baseline methods. We evalu-
ated our proposed MoKGE and baseline methods
based on both quality and diversity. As shown in
Table 2, MoE-based methods achieved the best per-
formance among all baseline methods. MoKGE
can further boost diversity by at least 1.57% and
1.83% on Self-BLEU-3 and Self-BLEU-4, com-
pared with the vanilla MoE methods. At the same
time, MoKGE achieved on par performance with
other baseline methods based on the quality evalua-
tion. Specifically, on the ComVE dataset, MoKGE
achieved the best performance on BLEU-4 and
ROUGE-L, and on the α-NLG dataset, the perfor-

mance gap between MoKGE and the best baseline
method was always less than 0.5% on BLEU-4.

Ablation study. We conducted an ablation study to
analyze the two major components in the MoKGE.
The experimental results are shown in Table 3.
First, we note that when not using MoE (line –w/o
MoE), we used the most basic decoding strategy
– beam search – to generate multiple outputs. We
observed that the outputs generated by beam search
differed only on punctuation and minor morpho-
logical variations, and typically only the last few
words were different from others. Besides, integrat-
ing commonsense knowledge graph into the MoE-
based generation model brought both quality and
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Table 3: Ablation studies. When not suing MoE (line –w/o MoE), we set beam as three to generate three outputs.

Methods
ComVE (left part: diversity; right part: quality) α-NLG (left part: diversity; right part: quality)

SB-4 (⇓) D-2 (⇑) E-4 (⇑) B-4 (⇑) R-L (⇑) SB-4 (⇓) D-2 (⇑) E-4 (⇑) B-4 (⇑) R-L (⇑)

MoKGE 25.301.1 48.440.2 9.670.2 19.010.1 43.830.3 22.432.4 38.010.6 10.880.2 14.170.2 38.820.7
⊢ w/o KG 28.400.3 46.930.2 9.600.2 18.910.4 43.710.5 23.181.9 36.710.1 10.850.0 14.260.3 38.780.4
⊢ w/o MoE 74.150.2 31.920.1 9.140.0 15.870.1 40.240.2 77.340.2 19.190.1 10.100.0 12.840.1 37.520.2

Table 4: Human evaluations by independent scoring based on diveristy, quality, flency and grammar. In addition,
* indicates p-value < 0.05 under paired t-test between MoKGE and baseline methods.

Methods
ComVE α-NLG

Diversity Quality Flu. & Gra. Diversity Quality Flu. & Gra.

Truncated samp. 2.15±0.76 2.22±1.01 3.47±0.75 2.31±0.76 2.63±0.77 3.89±0.36
Nucleus samp. 2.03±0.73 2.29±1.03 3.52±0.70 2.39±0.73 2.67±0.72 3.91±0.28
MoKGE (ours) 2.63±0.51* 2.10±0.99 3.46±0.81 2.66±0.51* 2.57±0.71 3.87±0.34
Human Ref. 2.60±0.59 3.00 4.00 2.71±0.57 3.00 4.00

Table 5: Human evaluations by pairwise comparison: MoKGE v.s. two baseline methods based on diversity.

Against methods
ComVE α-NLG

Win (%) Tie (%) Lose (%) Win (%) Tie (%) Lose (%)

v.s. Truncated samp. 47.85±5.94 37.09±4.56 15.06±3.31 45.35±5.06 43.19±2.78 11.46±2.31
v.s. Nucleus samp. 54.30±4.62 36.02±2.74 9.68±3.48 41.53±1.55 46.99±2.04 11.48±2.36

diversity improvement on the ComVE, but might
sacrifice a little quality (less than 0.5% on BLEU-4)
on the α-NLG dataset. Overall, our MoKGE ben-
efited from KG and MoE modules, and achieved
great performance on both diversity and quality.

4.5 Human Evaluation

Automatic diversity evaluation (e.g., Self-BLEU,
Distinct-k) cannot reflect the content-level diver-
sity. Therefore, we conducted extensive human
evaluations to assess both the quality and diversity
of outputs generated from different models.

The human evaluation was divided into two
parts: independent scoring and pairwise compar-
isons. All evaluations were conducted on Amazon
Mechanical Turk (AMT), and each evaluation form
was answered by at least three AMT workers.

Independent scoring. In this part, human annota-
tors were asked to evaluate the generated outputs
from a single model. We first presented top-3 gen-
erated outputs from a certain model to human an-
notators. The annotators would first evaluate the
diversity by answering “How many different mean-
ings do three outputs express?” Then we presented
human-written outputs to the annotators. The anno-
tator would evaluate the quality by comparing ma-
chine generated outputs and human-written outputs,
and answering “How many machine generated out-

puts are correct?” The diversity and quality scores
are normalized to the range from 0 to 3. Besides,
the annotators need to give a fluency and grammar
score from 1 to 4 for each generated output.

Pairwise comparisons. In this part, the annotators
were given two sets of top-3 generated explana-
tions from two different methods each time and
instructed to pick the more diverse set. The choices
are “win,” “lose,” or “tie.”

As shown in Table 4-5, our MoKGE can signif-
icantly outperform the state-of-the-art sampling-
based methods in diversity evaluation (p-value
< 0.05 under paired t-test), even slightly better
than human performance on the ComVE task. At
the same time, we can observe MoKGE is able
to obtain on par performance with other methods
based on quality evaluation. The p-value is not
smaller than 0.05 (i.e., not significant difference)
under paired t-test between MoKGE and baseline
methods based on the quality evaluation.

4.6 Case Study

Figure 3 demonstrates human-written explanations
and generated explanations from different diversity-
promoting methods, including nucleus sampling,
mixture of experts (MoE) and our MoKGE. Over-
all, we observed that the nucleus sampling and
MoE methods typically expressed very similar
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𝜶-NLG -- Input: Billy had received good grades on his report card.     [              ].    He decided as he got home that elephants were his new favorite animal.

[1]: AtLocation [2]: HasProperty [3]: IsA [4]: RelatedTo

(1) Billy’s parents took him to the zoo as a reward.
(2) Billy wanted to go to the zoo. He saw elephants.
(3) Billy went to the store and bought an elephant.

(1) Billy's parents sent him on an African safari for a reward.
(2) He went to the zoo later in the day and saw elephants.
(3) His mother stopped by the store and bought him a stuffed elephant.

animal

elephant

zoo
reward

good

MoKGE (ours)

store

toy

gift

card stuff

home

city
(1) Billy wanted to go to the zoo and see elephants.
(2) Billy was excited to go on his trip to the zoo.
(3) Billy went to the zoo to see the animals. 

Nucleus sampling

Human references
big

[4]

[4]

[1]

[1]

[4]

[3]

[4] [4]

[1]
[1]

[1]
[2]

[1]

ComVE -- Input: Cars are made of fuel. Goal (explanation for sense-making): [              ].

(1) Cars are not made of fuel.
(2) Cars burn fuel to produce energy and work.
(3) Fuel is a liquid which cannot make cars.

MoKGE (ours)

Nucleus sampling MoE (Shen et al.,)

Human references

energy
fuel gas

car

burnwork

liquid

produce

machinevehicle 

metalgasoline

[1]: UsedFor
[4]: RelatedTo

[4] [6]

[2]: Has subevent
[5]: Causes    

[3]: IsA
[6]: MadeOf

material

[4][4]
[4]

[4]

[4]

[4]

[2]
[3]

[1][1]

[5]
(1) Fuel is not a vehicle material.
(2) Fuel is not used to make cars. They use gasoline.
(3) Cars are not made of fuel. They are made of metal.

[3]

[3]

(1) Cars are made of metal. but not fuel.
(2) Cars are made of aluminum, not made by fuel.
(3) Fuel is used to make cars more efficient, not less so.

(1) Cars are made of rubber. Fuel is not used to make cars.
(2) Cars are made of aluminum, which is not fuel.
(3) Cars are powered by electric motors and not by fuel.

(1) Billy went to the zoo to see the animals.
(2) Billy was excited to go to the zoo with his friends.
(3) Billy's parents took him to the zoo to see elephants.

MoE (Shen et al.,)

Figure 3: Case studies. MoKGE can produce diverse knowledge reasoning on commonsense KG, select different
relevant concepts (in shades of different colors), then generate diverse outputs. The outputs diversity of MoKGE is
significantly better than that of beam search and nucleus sampling, and close to human performance.

meanings, e.g., “go to the zoo and see elephants”
and “took him to the zoo and see elephants” in the
α-NLG case. On the contrary, MoKGE can gener-
ate semantically richer and more diverse contents
than the other two methods by incorporating more
commonsense concepts on the knowledge graph.

5 Future Directions

Improving content diversity in NLG. Most of
the existing diversity-promoting work has focused
on improving syntactic and lexical diversity, such
as different language style in machine transla-
tion (Shen et al., 2019) and word variability in
paraphrase generation (Gupta et al., 2018). Nev-
ertheless, methods for improving content diversity
in NLG systems have been rarely studied in the
existing literature. We believe that generating di-
verse content is one of the most promising aspects
of machine intelligence, which can be applied to
a wide range of real-world applications, not only
limited to commonsense reasoning.

Besides, leveraging knowledge graph is not the
only way to promote content diversity as it is a
highly knowledge-intensive task. Many existing
knowledge-enhanced methods (Yu et al., 2022c)
can be used to acquire different external knowledge
for producing diverse outputs, e.g., taking different
retrieved documents as conditions for generator.

Designing neural diversity metrics. In spite of
growing interest in NLG models that produce di-
verse outputs, there is currently no principled neu-

ral method for evaluating the diversity of an NLG
system. As described in Tevet and Berant (2021),
existing automatic diversity metrics (e.g. Self-
BLEU) perform worse than humans on the task
of estimating content diversity, indicating a low
correlation between metrics and human judgments.

Therefore, neural-based diversity metrics are
highly demanded. Intuitively, the metrics should
include computational comparisons of multiple ref-
erences and hypotheses by projecting them into the
same semantic space, unlike metrics for evaluat-
ing the generation quality, e.g., BERTScore (Zhang
et al., 2020b) and BLEURT (Sellam et al., 2020),
which only measures the correlation between a pair
of reference and hypothesis.

6 Conclusions

In this paper, we proposed a novel method that di-
versified the generative reasoning by a mixture of
expert strategy on commonsense knowledge graph.
To the best of our knowledge, this is the first work
to boost diversity in NLG by diversifying knowl-
edge reasoning on commonsense knowledge graph.
Experiments on two generative commonsense rea-
soning benchmarks demonstrated that MoKGE out-
performed state-of-the-art methods on diversity,
while achieving on par performance on quality.
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Abstract

Previous studies have shown that the Abstract
Meaning Representation (AMR) can improve
Neural Machine Translation (NMT). However,
there has been little work investigating in-
corporating AMR graphs into Transformer
models. In this work, we propose a novel
encoder-decoder architecture which augments
the Transformer model with a Heterogeneous
Graph Transformer (Yao et al., 2020) which
encodes source sentence AMR graphs. Ex-
perimental results demonstrate the proposed
model outperforms the Transformer model and
previous non-Transformer based models on
two different language pairs in both the high
resource setting and low resource setting. Our
source code, training corpus and released mod-
els are available at https://github.com/
jlab-nlp/amr-nmt.

1 Introduction

Neural Machine Translation (NMT, Bahdanau et al.
2015; Vaswani et al. 2017) has proven to be an
effective approach, and is the dominant method
for machine translation in recent years. However,
state-of-the-art NMT methods sometimes repeat
words, leave out important pieces of the translation,
and hallucinate information not contained in the
source, or in other words, fail to accurately capture
the semantics of the source in some cases.

To address this problem, researchers have ex-
plored incorporating syntactic and semantic infor-
mation into NMT systems. While most of previous
NMT studies incorporating extra information are
focused on syntax-based NMT (Stahlberg et al.,
2016; Aharoni and Goldberg, 2017; Li et al., 2017;
Chen et al., 2017; Bastings et al., 2017; Wu et al.,
2017; Chen et al., 2018; Currey and Heafield, 2019;
Zhang et al., 2019; Eriguchi et al., 2019; Sundarara-
man et al., 2019; Zhang et al., 2021; Ni et al., 2021),
there has recently been interest in incorporating se-
mantic information into NMT. Marcheggiani et al.

data-entity meet-03 

He 

end-01 

Tuesday night

:ARG0
:ARG1

:time

:weekday
:dayperiod

:ARG0

Figure 1: The AMR graph for sentence "He ended his
meeting on Tuesday night.".

(2018) shows that incorporating Semantic Role La-
beling (SRL) information can alleviating the "ar-
gument switching" problem for NMT. Song et al.
(2019) shows that Abstract Meaning Representa-
tion (AMR, Banarescu et al. 2013) graphs can be
helpful for NMT for the Bi-LSTM with attention.
AMR (Banarescu et al., 2013) is a semantic formal-
ism that encodes the meaning of a sentence as a
rooted, directed graph. Figure 1 shows an AMR
graph, in which the nodes (eg. end-01) represent
the concepts, and edges (eg. AGR0) represent the
relations between concepts they connect.

In prior work, Nguyen et al. (2021) examined the
effect of AMRs in different NMT models, propos-
ing a method for incorporating AMR into NMT.
However, the method Nguyen et al. (2021) pro-
posed for incorporating AMR into the Transformer
showed limited success, as their performance with
the Transformer with AMR was less than their Bi-
LSTM with AMR.

In this work, we re-examine methods for incor-
porating AMR graphs into Transformer models.
The Transformer (Vaswani et al., 2017) architec-
ture has been the state-of-the-art for NMT for sev-
eral years. We propose to improve upon the Trans-
former model by incorporating AMR graphs with
a graph Transformer in a novel manner. In partic-
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ular, we observe the best performance gains when
integrating the semantic information contained in
the AMR graphs into both the encoder and decoder
modules of the Transformer.

While much research on Transformers is for
text, many researchers have also investigated
Transformer-like architectures for the encoding of
graph structures. Yao et al. (2020) proposed the
Heterogeneous Graph Transformer which indepen-
dently models the different relations in the indi-
vidual subgraphs of the original graph, including
direct relations, indirect relations and other possi-
ble relations between nodes.

We improve the performance of the Transformer
by employing a vanilla Transformer to encode and
decode the source sentence and a Heterogeneous
Graph Transformer to encode an AMR graph of the
source sentence. We use a novel integration model
to combine the graph representations (§3) into the
encoder and decoder. We show that our method
improves upon the Transformer, and improves upon
the best previous method for incorporating AMR
graphs into NMT.

Experiments on the WMT16 English to German
dataset and IWSLT15 English to Vietnamese show
that incorporating AMR into Transformer models
with proper encoding representation combination
models can robustly improve the vanilla sequence-
to-sequence Transformer baseline and outperforms
all previous approaches when incorporating AMR
in both low data setting and large data setting.

In summary, our contributions are the following:

• We propose a novel integration encoder-
decoder model which combines the sentence
representations from the vanilla sequence
Transformer and graph representations from
Heterogeneous Graph Transformer to better
incorporate AMR into machine translation
purely using Transformers.

• We introduce two encoder integration meth-
ods and two decoder integration methods to
combine the two Transformers which enforces
the model to combine information from both
representations independently and coherently.

• We perform several comparison experiments
and results show that our proposed models
robustly performs better than both vanilla se-
quence Transformer and previous baselines
which shows that including AMR into ma-

chine translation can be more effective by only
using Transformer-based models.

2 Background

In this section, we review the original Transformer
architecture for sequences as well as the Heteroge-
neous Graph Transformer, and introduce notation
we will use in later sections.

2.1 Transformer
The Transformer (Vaswani et al., 2017) con-
tains several layers, which has a multi-head self-
attention layer (Bahdanau et al. 2015; Graves et al.
2014; Weston et al. 2015) followed by a feedfor-
ward layer, along with residual connections (He
et al., 2016) and layer normalization (Ba et al.,
2016) .

Let the input sequence be S = [s1, ..., sL] ∈
RL×e, where L is the sequence length and e is
the hidden size of the attention layer. Queries Q,
keys K, and values V used in the self-attention
computation are obtained by linearly projecting the
input, or the output of the previous layer, X:

Q = SWQ,K = SWK , V = SW V , (1)

While WQ,WK ,W V ∈ Re×e are learnable pro-
jection matrices. To perform multi-head self
attention, Q, K, and V are split into heads
Qh,Kh, Vh ∈ RL×d for h in 1, ...,H where H is
the number of heads and d = e/H . Then, the con-
text representation Eh ∈ RL×d, that corresponds
to each attention head h, is obtained by:

Eh = softmax(
QhK

T
h√
d

)Vh, (2)

Where d is the hidden size dimension of each Kh

and the softmax is performed row-wise. The head
context representations are concatenated to obtain
the final context representation ES ∈ RL×e:

ES = [E1, ..., EH ]WR, (3)

where WR ∈ Re×e is another projection matrix
that aggregates all head’s representations.

2.2 Heterogeneous Graph Transformer
A Heterogeneous Graph Transformer (Yao et al.,
2020) is a Transformer-based graph encoder and
decoder model. Yao et al. (2020) extends the input
transformed Levi graph (Beck et al., 2018) into
multiple types of subgraphs (i.e.fully-connected,
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reverse, etc.) according to its heterogeneity then
updating the node representation in different sub-
graphs based on its neighbor nodes in the current
subgraph and finally combining all the representa-
tions of this node in different subgraphs to get the
graph final representation.

Let the input graph nodes be G = [g1, ..., gN ] ∈
RN×e, whereN is the number of nodes and e is the
hidden size of the attention layer. Then the output
representation of node i in each attention head Zi

is obtained by:

Zi =
∑

j∈Ni

αij(gjW
V ) (4)

αij = softmax(
(giW

Q)(gjW
K)T√

d
) (5)

where W V ,WQ,WK ∈ Re×e are layer-specific
learnable parameter matrices and αij represents
the attention score of node j to i and d = e/H
where H is the number of attention heads. Then
the output Z in each encoder layer is obtained by:

Z = [ZGsub
1 , ..., ZGsub

M ]WR (6)

Z
Gsub

m
i =

∑

j∈NGsub
m

i

αij(gjW
V ),m ∈ [1,M ] (7)

where M is the number of subgraphs,
WR ∈ RMe×e, Gsub

m is the set of sub-
graphs including M elements (i.e. Gsub =
{fullyconnected, connected, default, reverse})
and N

Gsub
m

i is the set of neighbors in the m-th
subgraph of node i. Finally there is a layer
aggregation strategy from Xu et al. (2018) using
Jumping Knowledge architecture (Xu et al., 2018),
so the final output of the graph representation
EG ∈ RN×e is:

EG = [Z1, , ..., ZT ]Wjump (8)

where Wjump ∈ RLe×e and T is the number of
layers including the embedding layer.

3 Our AMR-Transformer Model

Figure 2 shows the overview of our proposed model
architecture. To encode and decode both source
sentences and source AMR graphs to target sen-
tences, our model consists of two parallel stacked
encoder and decoder layers, one for sequence en-
coding and decoding from the neural sequence to
sequence model, and the other for graph encoding
and decoding from the neural graph to sequence

Encoder Integration

Decoder Integration

Linear Layer

Sequence 
Transformer 


Decoder

Graph 

Transformer 


Decoder

Graph 

Transformer 


Encoder

Sequence 
Transformer 


Encoder

Source AMR

Target

Figure 2: Overview of our AMR-Transformer model.

model. Given the encoded sequence representa-
tion from the sequence encoder and the encoded
graph representation from the graph encoder, the
sequence to sequence decoder only receives the se-
quence representation while the graph to sequence
decoder receives the combination of the sequence
representation and the graph representation. The
specific combination approaches are discussed in
§3.2 and §3.3. Finally, two decoder representations
are concatenated and fed into the final linear layer
to generate target sequence representation. In this
way, the model can combine the advantage of the
traditional sequence to sequence model which does
translation based on source sentence encodings and
the graph to sequence model which incorporates
AMR graphs into the translation. The combination
of source sentence representation and the graph
representation into the graph to sequence decoder
can lead the graph to sequence decoder to decoding
towards good translation quality since using only
AMR graphs representation can lead to poor trans-
lation quality compared to the vanilla sequence to
sequence model using source sentences.
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3.1 Sequence and Graph Encodings
Here we describe our sentence and graph encod-
ings. Let S = [s1, ..., sLs ] ∈ RLs×e be the source
sentence where si is the ith token in S, Ls is the
length of the source sentence and e is the hidden
size of the encoder. Let G = [g1, ...gN ] ∈ RN×e

be the AMR graph of the source sentence where gj
is the j’th node in G and N is the number of nodes.
The source sequence encoding representation ES

is computed by Eq. 3 and the AMR graph encoding
representation EG is computed by Eq. 8.

3.2 Encoder Integration: Multi-head
Attention Integration

To integrate the encoder representations for the se-
quence encode and graph encoder, we employ a
multi-head attention mechanism. Figure 3 shows
an overview of the multi-head attention (MHA)
(Vaswani et al., 2017) integration of the two en-
coder representations. At a high level, we com-
pute MHA between the source sequence encoding
representation ES and the AMR graph encoding
representationEG, which allows the model to learn
correlations between individual tokens and nodes
in S and G, s∗ and g∗.

Each row inES is the representationES
i ∈ R1×e

of the corresponding token si. Each row in EG is
the representation EG

j ∈ R1×e of the correspond-
ing node gj . These two matrices, ES and EG, are
fed into two types of multi-head attention (MHA)
layers, one finding correlations from S to G (S2G)
and the other from G to S (G2S), which gener-
ate two attention matrices, As2g ∈ RLs×e and
Ag2s ∈ RN×e.

As2g = [hs2g1 , ..., hs2gH ]WOs2g (9)

hs2gi = σ(
ESW

Qs2g

i (EGW
Ks2g

i )T√
d

)EGW
Vs2g

i

(10)
H is the number of heads and d = e/H .
W

Qs2g

i ,W
Ks2g

i ,W
Vs2g

i ∈ Re×d, WOs2g ∈ RN×e

are learned parameters and σ represents softmax.

Ag2s = [hg2s1 , ..., hg2sH ]WOg2s (11)

hg2si = σ(
EGW

Qg2s

i (ESW
Kg2s

i )T√
d

)ESW
Vg2s

i

(12)

WOg2s ∈ Re×e and W
Qg2s

i ,W
Kg2s

i ,W
Vg2s

i ∈
Re×d are learned parameters and σ is softmax.

Then the graph to sequence decoder input repre-
sentation Dg

in ∈ R(Ls+N)×e is computed by:

Dg
in = [As2g,Ag2s] (13)

Multihead Attention S2G

Multihead Attention G2S

es
Ls

es
1

. . . :ES eg
Neg

1
. . . :EG

as2g
Ls

as2g
1 :As2g . . .

ag2s
Nag2s

1 :Ag2s . . .

C
oncatenate 

 :Dg
in

as2g
Ls

as2g
1
. . .

ag2s
N

. . .
ag2s

1

Figure 3: The multi-head attention integration.

3.2.1 Direct Integration
As a baseline, we also experiment with a simpler
method of integrating the two encoders, which we
call direct integration. Given the previous obtained
source sequence encoding representation ES and
AMR graph encoding representation EG, the graph
to sequence decoder input representation Dg

in ∈
R(Ls+N)×e is computed using concatenation:

Dg
in = [ES , EG] (14)

3.3 Decoder Integration

To keep the advantages of the vanilla sequence
Transformer, the sequence to sequence decoder in-
put representation Ds

in is identical to ES , then Ds
in

is fed into the sequence to sequence decoder to
obtain the target sentence representation Ds

out ∈
RLt∗e, where Lt is the length of the target sentence.
The previous obtained Dg

in which is the graph to
sequence decoder input representation is fed into
the graph to sequence decoder to obtain the target
sentence representation Dg

out ∈ RLt∗e. Then the fi-
nal target sentence representation Ztarget ∈ RLt×e

is obtained by:

Ztarget = (Ds
out +Dg

out)W
T
e +Be (15)

Where We ∈ Rv∗e is the embedding weight matrix,
Be ∈ RLt∗v is the bias and v is the vocabulary size.
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Dataset Train Dev Test
WMT16 EN-DE NC-V11 238K

3000 2999
WMT16 EN-DE Full 4.5M
IWST15 EN-VI 133K 1553 1268 1080

Table 1: The statistics of datasets. EN-DE: English to
German; EN-VI: English to Vietnamese. For IWST15
English-Vietnamese, there are two test sets, the left cell
in the Test column represents the tst2013 and the right
cell in the Test column represents the tst2015.

4 Experiments

4.1 Data and Preprocessing

Following Song et al. (2019), we use the WMT16
English to German dataset1 in both the news com-
mentary setting (News Commentary v11, NC-V11)
and the full data scenario. For all experiments we
use newstest2013 and newstest2016 respectively
as the development and test sets. To evaluate the
model performance on low-resource languages, we
also include experiments on IWST15 English to
Vietnamese dataset2and follow the preprocessing
steps described below. For this dataset, we use
tst2012 as development set and use tst2013 and
tst2015 as test sets following Nguyen et al. (2021).
Table 1 shows the number of sentences for training,
development and testing splits.

To preprocess the data, we use Moses3 data
cleaning and tokenization tools to clean and to-
kenize all data for both sides. We used Google
sentencepiece4 in BPE mode to deal with rare
and compound words for both sides and conducted
4000 BPE merges for English-Vietnamese data,
8000 BPE merges for the English-German News
Commentary V11 data and 16000 BPE merges for
the English-German full data. For the AMR pars-
ing, instead of JAMR (Flanigan et al., 2016) used
by Song et al. (2019), we employed a recent AMR
parser, AMR-gs5 (Cai and Lam, 2020) to obtain
better AMR parsing quality. However we also con-
ducted an AMR parsing ablation experiment using
JAMR in §5.2 to show comparison of the effect of
AMR parsing quality.

4.2 Models

We trained and evaluated the following models on
WMT2016 English-German in both subset data set-
ting and full data setting and one real low resource

1http://www.statmt.org/wmt16/translation-task.html
2https://wit3.fbk.eu/2015-01
3http://www.statmt.org/moses/
4https://github.com/google/sentencepiece
5https://github.com/jcyk/AMR-gs

languages and IWST15 English-Vietnamese. Fol-
lowing Nguyen et al. (2021) we also carefully reim-
plemented and ran their best system which is a
non-Transformer based model with our settings to
show a fair comparison. We use AMR-Transformer
to refer to our proposed model. The models we
compare are:

• Vanilla sequence Transformer (Baseline, §2.1)

• AMR-Transformer-DI: Ours with direct inte-
gration (§3.2.1)

• AMR-Transformer: Ours with MHA integra-
tion (§3.2)

We also compared to other Non-Transformer base-
lines including Dual2seq ((Song et al., 2019))
which leverages the BiLSTM to encode sequences
and graph recurrent network (GRN) to encode
AMR graphs and an improved version proposed
by ((Ni et al., 2021)) which also applies the BiL-
STM to encode sequences but employs the graph
attention network (GAN) to encode AMR graphs.

4.3 Hyperparameters

We use the Adam optimizer (Kingma and Ba, 2015).
The batch size on tokens is set to 4096 with gradi-
ent accumulation size 2. Between layers, we apply
dropout with a probability of 0.1 for the vanilla
sequence Transformer. The best model is selected
based on the word accuracy on the development
set. BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) and Meteor (Denkowski and Lavie,
2014) are used as the metrics on cased and to-
kenized results. For experiments with WMT16
English-German, both Sequence Transformer and
Heterogeneous Graph Transformer word embed-
ding size are 512 and hidden size are 2048, the
dropout for the Heterogeneous Graph Transformer
part is 0.3 and the models are trained for at most
300000 steps with early stopping and 16000 warm
up steps. For experiments with IWST15 English-
Vietnamese, the Sequence Transformer word em-
bedding size is 256 and hidden size is 1024, Het-
erogeneous Graph Transformer embedding size is
256 and hidden size is 512, the dropout for the Het-
erogeneous Graph Transformer part is 0.8 and the
models are trained for at most 120000 steps with
early stopping and 2000 warm up steps. All models
were trained on either one A40 or A100 GPU.
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System on WMT16 English-German
NC-v11 Full

BLEU TER↓ Meteor PS GH BLEU TER↓ Meteor PS GH
Dual2seq (Song et al., 2019) 19.2 63.1 38.4 - - 25.5 54.8 43.8 - -
Bi-LSTM -AMR (Nguyen et al. 2021, reimplement) 19.0 66.4 37.5 62M 7h 24.8 58.9 43.1 72M 15h
Vanilla sequence Transformer (§2.1) 20.3 66.3. 39.4 52M 12h 26.0 58.5 45.2 61M 20h
Vanilla sequence Transformer (Double Parameters) 20.9 62.1 40.3 138M 12h 26.2 57.6 45.2 151M 20h
AMR-Transformer-DI (§3.2.1) 21.5 62.7 40.4 117M 16h 26.4 56.7 44.9 132M 28h
AMR-Transformer (§3.2) 22.1* 62.0* 41.1* 117M 16h 26.5** 56.4* 45.2 133M 28h

Table 2: TEST performance on WMT16 English-German. NC-v11 represents training only with the NC-v11 data,
while Full means using the full training data. * represents significant (Koehn, 2004) result (p < 0.001) over vanilla
sequence Transformer. ** represents significant result (p < 0.05) over vanilla sequence Transformer. ↓ indicates
lower is better. PS: approximate parameter size. GH: approximate GPU training hours with early stopping.

System on IWST15 English-Vietnamese PS GH
tst2013 tst2015

BLEU TER↓ Meteor BLEU TER↓ Meteor
Bi-LSTM -AMR (Nguyen et al., 2021) - - 29.3 - - 26.4 - -
Bi-LSTM -AMR (Nguyen et al. 2021, reimplement) 17M 9h 26.4 56.4 44.1 25.2 60.5 42.1
Vanilla sequence Transformer (§2.1) 13M 5h 30.0 52.1 48.2 27.6 57.6 45.4
Vanilla sequence Transformer (Double parameters) 36M 5h 28.3 54.4 46.4 26.8 59.2 44.2
AMR-Transformer-DI (§3.2.1) 20M 7h 30.2 52.4 48.2 28.2 57.3 45.5
AMR-Transformer (§3.2) 20M 7h 30.6* 52.1 48.5 28.2** 57.1 45.9

Table 3: TEST performance on IWST15 English-Vietnamese. tst2013 represents the results evaluated on tst2013
and tst2015 represents the results evaluated on tst2015. * represents p < 0.05 over vanilla sequence Transformer.
** represents p < 0.11 over vanilla sequence Transformer. ↓ indicates lower is better. PS: approximate parameter
size. GH: approximate GPU training hours with early stopping.

4.4 Main Results

4.4.1 Results on WMT16 English-German
Table 2 shows the test BLEU, TER and Meteor
scores of all systems trained on the small scale
News Commentary v11 subset or the large scale
full set. The result shows that our Transformer
baseline already outperforms all previous non-
Transformer based results. Our system using AMR-
Transformer whether it is DI or MI are all consis-
tently better than the other systems under all three
metrics, showing the effectiveness of the semantic
information provided by AMR with Transformers.
Particularly, AMR-Transformer is the best perform-
ing model for both settings and significantly bet-
ter than vanilla sequence Transformer baselines
under all three metrics. In terms of different set-
tings, our best model shows 1.8 BLEU points im-
provement over the vanilla sequence Transformer
baseline and at least 2.9 BLEU points improve-
ment over the non-Transformer baselines on News
Commentary V11 data. For the Full data, the im-
provement is smaller but our best model is still
significantly better than vanilla sequence Trans-
former baseline in terms of BLEU points and at
least 1.0 BLEU points improvement over the non-
Transformer baselines. The results show the same
conclusion as Song et al. (2019) that AMR graphs
helps more on a low resource setting. Our AMR-

Transformer model has roughly double the parame-
ters as the baseline Transformer model due to the
graph encoder. To show the effectiveness of our
approach is not from increasing the parameter size,
we conduct experiments on Transformer baselines
with doubled parameters. Our approach still shows
better performance.

4.4.2 Results on IWST15 English-Vietnamese

Table 3 shows the results of all systems trained
on the IWST15 English to Vietnamese data. Our
best AMR-Transformer is significantly better than
vanilla sequence Transformer on tst2013 and also
better than the previous non-Transformer based
model. However, the model is not significantly
better on tst 2015, which is due to the different
data distribution between tst2013 and tst2015. Our
experiments also show that adjusting the model
dropout rate of Heterogeneous Graph Transformer
side when using fixed hyperparameter of the Se-
quence Transformer side during training can im-
prove the performance since the model dropout rate
can control how much AMR information is used to
contribute to the final predictions. Our experiments
inidcate that a high dropout rate for Heterogeneous
Graph Transformer side during low resource set-
tings can enable AMR information help sequence
to sequence model better than a low dropout rate.
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Ablation on WMT16 English-German
NC-v11 Full

BLEU TER↓ Meteor BLEU TER↓ Meteor
AMR-Transformer, No Encoder Integration 20.9 64.1 39.5 26.4 56.5 45.4
AMR-Transformer-DI, Single Decoder 19.9 65.8 36.6 25.5 60.8 42.6
AMR-Transformer, Single Decoder 16.1 72.7 32.3 21.6 65.4 38.7
AMR-Transformer-DI 21.5 62.7 40.4 26.4 56.7 44.9
AMR-Transformer 22.1 62.0 41.1 26.5 56.4 45.2

Table 4: Model ablations TEST performance comparasion on WMT16 English-German. NC-v11 represents train-
ing only with the NC-v11 data, while Full means using the full training data.). ↓ indicates lower is better.

The improvement gap between our best model and
vanillas Transformer is smaller than the model
trained on English to German News commentary
V11 data which indicates that the size of the train-
ing data in low resource settings takes an effect
on how much AMR information can help when
incorporating into the sequence to sequence trans-
lation models. With more training data when it is
in low resource setting, the help of AMR informa-
tion increases but during high resource setting the
help of AMR information decreases. Our AMR-
Transformer model has roughly double the parame-
ters as the baseline Transformer model due to the
graph encoder. To show the effectiveness of our
approach is not because of enlarging the parameter
size in this dataset, we also double the parameters
of Transformer baselines, and the performance is
even lower than the smaller parameters baseline
due to the possible over-fitting.

5 Analysis and ablation studies

5.1 Model ablations

To verify the effectiveness of our encoder integra-
tion and decoder integration we conduct ablation
experiments on WMT16 English-German data. Ta-
ble 4 shows model ablations test performance. we
can see that compared to the best model, the perfor-
mance drops largely on the both data setting with-
out decoder integration , at least 2.2 BLEU points
drop on News Commentary V11 data and at least
2.7 BLEU drop on the full data which indicates
the decoder integration have a large contribution to
the performance improvement in both data settings.
For the encoder integration part, it shows different
situations on the two data setttings. On the News
Commentary V11 training data, without encoder
integration, the BLEU drops 1.2 points while on the
full training data, however, the BLEU score does
not drop too much which indicates that encoder
integration is more helpful in low resource settings.

Generally, the drop gap between the best model and
without decoder integration is larger than the drop
gap between the best model and without encoder
integration which indicates that decoder integration
is more helpful for the performance improvement
than the encoder integration in both data settings.

5.2 Influence of AMR parsing accuracy

To verify the influence of AMR parsing quality we
also conduct an experiment on News Commentary
V11 dataset using a previous JAMR paser (Flanigan
et al., 2016) with the best model. Table 6 shows the
result. We can see that with a lower quality AMR
parser the BLEU score drops 0.9 points but it is still
better than the vanilla sequence Transformer base-
line and previous non-Transformer based models,
which indicates that the quality of the AMR parser
influences the performance of the model. However,
even with lower quality AMR parses, our approach
can still improve upon the Transformer baseline.

5.3 Case study

We conduct case studies for a better understand-
ing of the model performance. We compare the
outputs of the vanilla Transformer baseline and
our AMR-Transformer model with multihead at-
tention integration trained on News commentary
V11 data. Tables 5 presents these examples. In the
first example, the source sentence is in the syntax
of "someone said something" and the vanilla Trans-
former baseline model completely misses this syn-
tax which causes the incorrect translation while our
model perfectly kept the original sentence syntax
and meaning. In the second example, the vanilla
Transformer baseline model incorrectly translate
the verb "hold up" into "verteilt" which means "dis-
tributed" in German which causes meaning of the
sentence entirely different from the source sen-
tence, while our model perfectly translate it the
same as the reference sentence which indicates that
our model with AMR graphs is helpful for keeping
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AMR: (c0 / say-01 :ARG0 (c2 / we) :ARG1 (c1 / take-01 :ARG0 c2 :ARG1 (c4 / they)
:ARG3 (c5 / city :name (c7 / name :op1 "passau")) :manner (c6 / car)) :time (c3 / once))
Src: We said at once that we would take them to Passau by car .
Ref: Wir haben gleich gesagt , wir bringen sie mit dem Auto nach Passau .
Vanilla Transformer: Sobald wir sie zu einem Auto nach Passau nehmen würden .
AMR-Transformer: Wir sagten einmal darauf , dass wir sie mit dem Auto Passau nehmen würden .
AMR: (c0 / and :op2 (c1 / hold-up-11 :ARG1 (c2 / number :mod (c4 / this)) :location (c3 / state :mod (c5 / early))))
Src: And these numbers hold up in early states .
Ref: Und diese Zahlen halten sich in frühen Staaten .
Vanilla Transformer: Und diese Zahlen sind in frühen Bundesstaaten verteilt .
AMR-Transformer: Und diese Zahlen halten an frühe Staaten fest .
AMR: (c0 / note-01 :ARG1 (c1 / it) :ARG1-of (c3 / cause-01 :ARG0 (c4 / reason :ARG1-of (c5 / personal-02))) :mod (c2 / too))
Src: It was noteworthy because of personal reasons , too .
Ref: Sie war auch aus persönlichen Gründen bemerkenswert .
Vanilla Transformer: Auch weil es aus persönlichen Gründen bemerkenswert war , war sie beachtenswert .
AMR-Transformer: Sie war auch aufgrund von persönlichen Gründen bemerkenswert .
AMR: (c0 / contrast-01 :ARG1 (c1 / hard-02 :ARG1 (c3 / find-01 :ARG1 (c7 / keep-01)) :mod (c4 / usual) :polarity -)
:ARG2 (c2 / possible-01 :ARG1 (c6 / get-03 :ARG1 (c8 / store) :ARG2 (c9 / busy-01 :ARG1 c8))))
Src: While the store can get busy , parking is usually not hard to find .
Ref: Auch wenn der Laden gut besucht ist , ist es nicht schwer , einen Parkplatz zu finden .
Vanilla Transformer: Während sich der Laden mit dem Glücksfall beschäftigt , ist es normalerweise nicht schwer, einen
Parking zu finden .
AMR-Transformer: Während der Stur Busy bekommen kann , ist Parking normalerweise nicht schwer zu finden .

Table 5: Sample system outputs

Ablation with JAMR NC-v11
BLEU TER↓ Meteor

AMR-Transformer w/ JAMR 21.2 64.4 40.3
AMR-Transformer w/ AMR-gs 22.1 62.0 41.1

Table 6: TEST performance on WMT16 English to
German NC-v11 using two different AMR pasers with
the best model. ↓ indicates lower is better.

the meaning of the verbs. In the third example, the
vanilla sequence Transformer repeatedly translates
the same meaning twice while our model correctly
translate it only once which indicates our model
can avoid the repetition of tokens in the same mean-
ing. However, there are situations that our model
performs badly. In the forth example, our model in-
correctly translates the noun word "store" while the
vanilla Transformer baseline translate it correctly
which indicates that AMRs may not be helpful
when translating nouns.

Generally from our observations, with the AMR
incorporated with our proposed model, although
there may be a problem for translation of nouns, our
system can more correctly translate the key verbs,
more easily keep the same sentence syntax with
the source sentence and avoid repetitions which
are enable the NMT system more easily to keep
the source sentence meaning and generate a better
translation quality.

6 Related Work

Several recent studies have investigated on how to
incorporate semantic information into neural ma-
chine translation (NMT) models. Marcheggiani
et al. (2018) studied the semantic role labeling
(SRL) information for NMT, which used graph
convolutional network (GCN) layers to encode the
predicate-argument structure from SRL to improve
the translation performance of the NMT model.
In line with their work, Song et al. (2019) was
the first to exploit the AMR information on NMT,
which used a graph recurrent network to encode
the AMR graph and found that AMR informa-
tion can improve attention-based sequence to se-
quence neural translation model and they only eval-
uated their model on WMT16 English to German
dataset. Nguyen et al. (2021) then examine the
effect of AMR in different sequence to sequence
machine translation models, however, they found
that their proposed single decoder Transformer
model to incorporate the AMR information per-
forms worse than the Bi-LSTM model with sim-
ple graph attention network. In this paper, we
focus on improving the performance of incorpo-
rating AMR information purely with Transform-
ers. Our proposed method of integrating vanilla
sequence Transformer and Heterogeneous Graph
Transformer model with encoder integration and
decoder integration provides a better way to incor-
porate the AMR information into NMT.
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7 Conclusion

We combine the Transformer and the Heteroge-
neous Graph Transformer to incorporate semantics
captured in AMR graphs into neural machine trans-
lation. Experimental results show that our proposed
AMR-Transformer model robustly outperforms the
vanilla sequence Transformer baseline and previous
non-Transformer based models across two differ-
ent language pairs in both high resource setting and
low resource setting.
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Abstract

There has been an increasing interest in mod-
eling continuous-time dynamics of temporal
graph data. Previous methods encode time-
evolving relational information into a low-
dimensional representation by specifying dis-
crete layers of neural networks, while real-
world dynamic graphs often vary continuously
over time. Hence, we propose Continuous Tem-
poral Graph Networks (CTGNs) to capture con-
tinuous dynamics of temporal graph data. We
use both the link starting timestamps and link
duration as evolving information to model con-
tinuous dynamics of nodes. The key idea is
to use neural ordinary differential equations
(ODE) to characterize the continuous dynamics
of node representations over dynamic graphs.
We parameterize ordinary differential equations
using a novel graph neural network. The exist-
ing dynamic graph networks can be considered
as a specific discretization of CTGNs. Experi-
ment results on both transductive and inductive
tasks demonstrate the effectiveness of our pro-
posed approach over competitive baselines.

1 Introduction

Graph neural networks (GNNs) have attracted
growing interest in the past few years due to their
universal applicability in various fields, e.g., social
networks (Fan et al., 2019) and natural language
processing (Liu et al., 2021a). Graph neural net-
works (GNNs) learn a lower-dimensional represen-
tation for a node in a vector space by aggregating
the information from its neighbors using discrete
hidden layers. Then the embedding can be used for
downstream tasks such as node classification (At-
wood and Towsley, 2015), link prediction (Zhang
and Chen, 2018; Li et al., 2020), and knowledge
completion (Liu et al., 2021b).

Most graph neural networks only accept static
graphs as input, although real-life graphs of interac-
tions, such as user-item interactions, often change
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Figure 1: The importance of link duration. Consider
the behavior of a user watching movies. There are two
types of nodes in the graph: user nodes and item nodes.
Given the user’s historical behavior, the predicted target
is (user1, don’t_click, Movie_4). If we ignore the link
duration information, user1 seems interested in cartoon
movies because he clicked on it at timestamp t1. But
user1 only watched the Movie_ 1 for 10s. The link
duration indicated that although the user clicked, he was
not interested.

over time. Learning the node representation on dy-
namic graphs is a very challenging task. Dynamic
graph methods can be divided into discrete-time dy-
namic graph (DTDG) models and continuous-time
dynamic graph (CTDG) models. More recently,
an increasing interest in CTDG-based graph repre-
sentation learning algorithms can be observed (Xu
et al., 2020; Trivedi et al., 2018; Kumar et al., 2019;
Rossi et al., 2020; Wang et al., 2020b; Ding et al.,
2021).

Although the above continuous-time dynamic
methods have achieved impressive results, they still
have limitations. The majority of research (Rossi
et al., 2020; Wang et al., 2020b; Xu et al., 2020;
Trivedi et al., 2018; Kumar et al., 2019) pays at-
tention to the contact sequence dynamic graphs, in
which the links are permanent, and no link dura-
tion is provided (e.g., email networks and citation
networks). However, most real-life networks are
event-based dynamic graphs in which the interac-
tions between source nodes and destination nodes
are not permanent (e.g., employment networks and
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Figure 2: Overview of our Continuous Temporal Graph network.

proximity networks). The event-based dynamic
graph includes the time at which the link appeared
and the duration of the link. Link duration reflects
the degree of association between the two nodes,
e.g., user i browses item j for 2 seconds and k for
20 seconds. It means that the user’s interest in the
two items j, k is different. Ignoring the link du-
ration information can reduce the link prediction
ability and even result in questionable inference.
Thus, it is crucial to consider the influence of link
duration on node relationship prediction (Zhang
and Chen, 2018; Li et al., 2020) and knowledge
completion (Liu et al., 2021b).

The existing GNN-based methods (Weinan,
2017; Oono and Suzuki, 2019) that learn the node
representation over dynamic graphs can be consid-
ered discrete dynamical systems. Chen et al. (2018)
demonstrate that the continuous dynamical systems
are more efficient for modeling continuous-time
dynamic data. The discrete networks can roughly
be regarded as continuous networks by stacking
enough layers. However, Onno and Suzuki (2019)
point out that graph neural networks (GNNs) ex-
ponentially lose expressive power for downstream
tasks, which will lead to over-smoothing problems
as we add more hidden layers. Therefore, design-
ing effective continuous Graph Neural Networks
to model continuous-time dynamics of node rep-
resentation on dynamic graphs is critical. To this
end, many continuous graph neural networks (Chen
et al., 2018; Xhonneux et al., 2019) have been pro-
posed recently. Although those mentioned above
continuous dynamic neural networks are more effi-
cient to model the graph data, few approaches have
been proposed for dealing with dynamic graphs
using continuous-time dynamic neural networks.

This paper proposes a general framework of
continuous temporal graph networks (CTGNs)
to model continuous-time representations for dy-

namic graph-structured data. We combine Ordinary
Differential Equation Systems (ODEs) and graphs
methods. Instead of specifying discrete hidden lay-
ers, we integrate neural layers over continuous time.
Figure 2 illustrates the workflow of the proposed
CTGN method. There is an interaction between
two nodes. First, a novel temporal graph network
(TGN) is applied as the encoder to learn the la-
tent states using the updated memory. Then, the
neural ODE module is used to model the node’s
continuous-time representation. Considering that
the link duration reflects the degree of association
between the two nodes, we use the link duration
as the integration variable to control the weights
of different interactions. After that, we use the
LSTM (Shi et al., 2015) as the decoder to com-
pute the probability of interaction between the two
given nodes. Finally, the memory is updated as the
input of the encoder. Memory is a compressed rep-
resentation of the historical behavior of all nodes
defined in Section 3.1. Experimental results on five
real-world datasets of link prediction demonstrate
the effectiveness of the proposed method over the
state-of-art baselines. The main contributions of
this paper are:

• We present a novel Continuous Temporal
Graph Network (CTGN) inspired by the neu-
ral ODE method.

• CTGNs pay attention to the event-based dy-
namic graph. CTGNs update the node’s rep-
resentation with both the valid discrete times-
tamps when the link appears and the link du-
ration between two linked nodes as evolving
information.

• We show that our model can outperform exist-
ing state-of-the-art methods on both transduc-
tive and inductive tasks.

23



2 Background

2.1 Dynamic Graph Methods
The existing dynamic graph representation learn-
ing methods can be divided into two categories,
discrete-time dynamic graphs and continuous-time
dynamic graphs.

Discrete-time dynamic graphs (DTDGs) are a
sequence of snapshots at different time intervals.

DG = {G1, G2, ..., GT } , (1)

where T is the number of snapshots. Current dy-
namic graph methods (Wang et al., 2020a; Trivedi
et al., 2017; Xiong et al., 2019) have been mostly
designed for discrete-time dynamic graphs (DT-
DGs).

Continuous-time dynamic graphs (CTDGs)
can be viewed as a set of observations/events
(Kazemi et al., 2019), and the network evolution
information is retained. There are only a few works
on CTDG. But recently, more attention has been
paid to continuous-time graphs. All three repre-
sentations of CTDG are described in more detail
below.

1. The contact sequence dynamic graph is the
simplest representation form of CTDG.

CS = (ui, vi, ti) , (2)

where u is the source node, v is the destina-
tion node, and t is the timestamp when the
link appears. In the contact sequence dynamic
graph, the link is permanent (e.g., citation net-
works) or instantaneous (e.g., email networks).
Therefore, this graph has no link duration.

There has been a lot of research on contact se-
quence dynamic graphs. Trivedi et al. (2018)
learn the representation of node i by aggre-
gating the node destination’s neighborhood
information and updating the embedding for
the node using a recurrent architecture after
an interaction involving node i. Kumar et
al. (2019) employ two recurrent neural net-
works to update the embedding of a user and
an item at every interaction. TGAT (Xu et al.,
2020) proposes a novel functional time encod-
ing method and uses self-attention to inductive
representation learning on temporal graphs.
Wang et al. (2020b) propose the asynchronous
propagation attention network (APAN) for
real-time temporal graph embedding.

2. The event-based dynamic graph consists of
the node pairs (u, v), the edge appears times-
tamp t and the link duration ∆t . Link dura-
tion indicates how long the edge lasts until it
disappears.

EB = (ui, vi, ti,∆ti) . (3)

Rossi et al. (2020) proposes a generic induc-
tive framework operating on contact sequence
dynamic graphs by adding a memory module
on TGAT (Xu et al., 2020). TGN can also
operate on the event-based dynamic graph by
simply replacing the timestamp t with link
duration ∆t in the memory module.

3. The streams graph can be viewed as a par-
ticular case of the event-based dynamic graph.
The streams graph includes the edge label δ,
which indicates edge removal or edge addition.

GS = (ui, vi, ti, δi), δi ∈ [−1, 1] . (4)

TGN (Rossi et al., 2020) converts the streams
graph into an event-based graph for process-
ing. According to the edge label, the event
can be reorganized as (ui, vi, t′, t), which was
created at time t′ and deleted at time t, then
two messages can be computed for the source
and target nodes.

The existing CTDG methods model discrete dy-
namics representations of continuous-time graph
data with multiple discrete propagation layers. Our
proposed method focuses on the event-based tem-
poral graph and updates the node’s representation
with both the timestamps and the link duration be-
tween the two nodes. CTGN also supports contact
sequence dynamic graph. The model details will be
slightly different from event-based dynamic graph.
We will clarify this point in Chapter 3.

2.2 Continuous-time Dynamical Systems

Continuous-time dynamical systems mean that the
system’s behavior changes with time development
in the continuous-time domain. There have been
related works that view data as a continuous ob-
ject in artificial intelligence, e.g., pictures (Chen
et al., 2018) and static graphs (Xhonneux et al.,
2019; Poli et al., 2019). The continuous-time dy-
namic graph (CTDG) we introduced in Section
2.1 is also a continuous-time dynamical system in
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which nodes’ state changes over time. Therefore,
it is necessary to model the continuous dynamical
system of CTDG data. To the best of our knowl-
edge, our CTGN is the first approach that learn
continuous-time dynamics on CTDG.

2.3 Neural Ordinary Differential Equations
and Continuous Graph Neural Networks

Considering a residual network:

ht+1 = ht + f(ht, θt) (5)

A theoretical method to improve the perfor-
mance of discrete networks is to stack more neural
layers and take smaller steps (Chen et al., 2018).
However, this scheme is not feasible because of the
limited computer resources and over-fitting prob-
lems. Oono and Suzuki (2019) point out that Graph
Neural Networks (GNNs) exponentially lose ex-
pressive power for downstream tasks when adding
more hidden layers because of over-smoothness
problems.

Inspired by residual network and ordinary dif-
ference, neural ordinary difference is proposed
to solve this problem. Neural ODE models
continuous-time dynamical systems by parameter-
izing the hidden state’s derivative using a neural
network.

dz

dt
= f(z, t), z(0) = x, (6)

NeuralODE can be regarded as a discrete net-
work with an infinitesimal learning rate and in-
finite layers. Weinanl (2017) proposes the idea
of using continuous dynamical systems to model
hidden layers. Chen et al. (2018) introduce neural
ODE, a continuous-depth model by parameteriza-
tion the derivative of the hidden state using a neural
network. Neural ODE only focuses on unstruc-
tured data. Xhonneux et al. (2019) apply continu-
ous dynamical methods to static graph-structured
data. They propose Continuous Graph Neural Net-
works (CGNNs), which solve the over-smoothing
caused by stacking more layers and improve the
performance of GNNs. Zang and Wang (2019)
learn continuous-time dynamics on complex net-
works. However, continuous graph neural networks
(CGNN) can only deal with static data.

3 The Proposed Method: CTGN

In this section, we introduce our proposed approach.
The key idea of the CTGN is to build continuous-

time hidden layers which can learn continuous in-
formative node representations over event-based
dynamic graphs. To characterize the continuous
dynamics of node representation, we use ordinary
differential equations (ODEs) parameterized by a
neural network, which is a continuous function of
time. We study both transductive and inductive
settings. In the transductive task, we predict fu-
ture links of the nodes observed during the training
phase. In the inductive tasks, we predict future
links of the nodes never seen before. We first em-
ploy a temporal graph attention layer (Xu et al.,
2020) to project each node into a latent space based
on its features and neighbors. And then, an ODE
module is designed to define the continuous dy-
namics on the node’s latent representation hi(t).

3.1 Temporal Graph Network
Memory Passing. Memory si(t) is used to record
the historical information of each node i the model
has seen so far. It is a compressed representation of
the historical behavior of all nodes. Memory si(t)
is updated when there is an interaction involving
node i. At the end of each batch, we firstly compute
memory si(t) using the last time message mi(t

−)
and memory si(t−):

si(t) = mem(mi(t), si(t−)) . (7)

Here, mem(·) is a learnable memory update func-
tion. In all experiments, we choose the memory
function as GRU. si(0) is initialized as a zero vec-
tor. At the end of each batch, the message mi(t) for
the node can be updated to compute i’s memory:

mi(t) = msgs(si(t−)||sj(t−)||∆t||eij(t)) ,
mj(t) = msgs(sj(t−)||si(t−)||∆t||eij(t)) .

(8)

Here || is the concatenation operator, ∆t is the link
duration between node i and j, . In the contact se-
quence dynamic graph, the link duration property is
not available. We use (t−t−) as ∆t. There may be
multiple events ei1(t1), . . . , eiN (tN ) involving the
same node i in the same batch. In the experiment,
we only use the latest interaction eiN (tN ) to com-
pute i’s message. msg(·) is a learnable function,
and we use an RNN network in our experiment:

Multi-head Attention. Given an observed event
p = (i, j, t,∆t), we can compute the node latent
representation respectively for i and j using:

H(l)(t) = Attn(l)(Q(l)(t),K(l)(t),V(l)(t)) , (9)
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Event-based dynamic graph Contact sequence dynamic graph

NetFlix Mooc Lastfm Wikipedia Reddit
Nodes 18672 13374 7353 9227 10984
Edges 163417 131660 73358 157474 672447

Chronological Split70%-15%-15%70%-15%-15%70%-15%-15%70%-15%-15% 70%-15%-15%
Unseen nodes 10% 10% 10% 10% 10%

Timespan 2 years 2 years 2 years 30 days 30 days

Table 1: Statistics of the datasets used in our experiments.

Attn(Q,K,V) = softmax(
QKT

√
dk

)V , (10)

where Q , K , V denote the ’querys’, ’keys’, ’val-
ues’, respectively. H(l) = [h(l)

1 , ...,h(l)
i ] are the

embedding of the graph nodes of l-th layers. The
multi-head attention layer compute the node i’s
representation by aggregating it’s N-hop neighbors.

Q(l)(t) = (H(l−1)(t) || ϕ(0))WQ , (11)

K(l)(t) = C(l)(t)WK , (12)

V(l)(t) = C(l)(t)WV , (13)

C(l)(t) = [H(l−1)
1 (t) || E1(t1) || ϕ(t− t1),

. . . ,H(l−1)
N (t) || EN (tN ) || ϕ(t− tN )] .

(14)

Here ϕ(·) represents a generic time encoder (Xu
et al., 2020). WQ,WK ,WV ∈ Rdk×dk are the
projection matrices used to generate attention em-
bedding. We define keys and values as the neighbor
information. h(0)

i (t) = si(t) + vi, si(t) is node i’s
memory which saves the history information for the
node. En(t) = [e1n(t), ..., ein(t)], ein(t) is edge
features between node i and it’s n-hop neighbor
at time t. Temporal graph network is a discrete
method that can be thought of as a discretization of
the continuous dynamical systems.

3.2 Model Continuous Dynamics of Node
Representation

In order to characterize the continuous dynamics
of node representations, instead of only specifying
a discrete sequence of hidden layers, we parame-
terize the hidden layers using ordinary differential
equations (ODEs), a continuous function of time.

dz

dt
= f(z, t), z(0) = x. (15)

Here, x is an initial vector, f is a learnable function,
t is a time interval and z is a vector.

z(t) = z(0) +
∫ t

0
(f(t, z))dτ. (16)

We can compute the node’s continuous-time dy-
namics representation by Equation 16 at arbitrary
time t > 0.

Previous work (Zang and Wang, 2019; Poli et al.,
2019) model continuous-time dynamics for data
by setting integration variable [0, t] as a hyper-
parameter. Considering the influence of link du-
ration on the interaction between two nodes, we
choose the link duration as the integration variable,
in our experiment t = dur.

Link duration shows how long it was (in sec-
onds) until that user terminated browsing. Link
duration can reflect the user’s interest in different
items. Take link duration as an integer variable that
can control the weights of different interactions.

We parameterize the derivative of the hidden
state using a neural network that takes the latent
state, computed by the temporal graph network
mentioned in Section 3.1 as input.

zi(t) = ODESolver(f(t, z),hi(t),∆ti). (17)

Here, hi(t) is a discrete latent state computed by
temporal graph networks, ∆ti is the link duration
between source node i and destination j. f(t, z)
is ODE function, we choose f(t, z) as MLP. A
black-box ODE solver computes the final node
continuous dynamics embedding zi(t). We utilize
the torchdiffeq.odeint_adjoint PyTorch package to
solve reverse-time ODE and backpropagate.

3.3 Time Smoothness
The time-encoding method (Xu et al., 2020) used
in this paper is an effective method to map times-
tamp t from the time domain to d-dim vector space.
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NetFlix Mooc Lastfm

Transductive Inductive Transductive Inductive Transductive Inductive
GAT* 96.45 ± 0.2 92.09 ± 0.6 83.33 ± 10 77.39 ± 10 76.77 ± 0.5 62.81 ± 0.6

GraphSAGE* 95.14 ± 0.6 89.84 ± 1.7 82.01 ± 2.4 78.36 ± 2.2 77.41 ± 0.6 62.57 ± 0.3
CGNN* 91.82 ± 0.2 † 96.88 ± 0.2 † 74.93 ± 10 †
NDCN* 90.70 ± 0.9 † 96.07 ± 0.1 † 82.09 ± 1.4 †
DyRep 99.07 ± 0.1 97.36 ± 0.1 83.52 ± 6.5 68.96 ± 4.0 82.96 ± 0.3 68.06 ± 0.3
Jodie 99.20 ± 0.1 97.43 ± 0.1 93.12 ± 0.6 80.85 ± 1.2 84.41 ± 0.3 68.14 ± 0.5
TGAT 96.56 ± 0.2 93.04 ± 0.2 73.69 ± 1.3 68.76 ± 1.2 78.80 ± 0.8 64.19 ± 0.7
TGN 99.05 ± 0.2 97.38 ± 0.4 97.76 ± 0.4 93.86 ± 0.9 87.05 ± 0.1 72.89 ± 0.1

APAN 98.23 ±1.7 † 93.64 ± 1.3 † 82.65 ± 0.1 †
CTGN 99.27 ± 0.1 97.84 ± 0.2 97.97 ± 0.4 94.89 ± 0.4 87.20 ± 0.1 74.05 ± 0.1

Table 2: Experiments on event-based datasets. Average Precision (%) for future edge prediction task in transductive
and inductive settings. First best performing method. *Static graph method. †Does not support inductive.

node classification link prediction-tranductive link prediction-inductive

Wikipedia Reddit Wikipedia Reddit Wikipedia Reddit
GAE* 74.85 ± 0.6 58.39 ± 0.5 91.44 ± 0.1 93.23 ± 0.3 † †

VGAE* 73.67 ± 0.8 57.98 ± 0.6 91.34 ± 0.3 92.92 ± 0.2 † †
GAT* 82.34 ± 0.8 64.52 ± 0.5 94.73 ± 0.2 97.33 ± 0.2 91.27 ± 0.4 95.37 ± 0.3

GraphSAGE* 82.42 ± 0.7 61.24 ± 0:6 93.56 ± 0.3 97.65 ± 0.2 91.09 ± 0.3 96.27 ± 0.2
DyRep 84.59 ± 2.2 62.91 ± 2.4 94.59 ± 0.2 97.98 ± 0.1 92.05 ± 0.3 95.68 ± 0.2
Jodie 84.84 ± 1.2 61.83 ± 2.7 94.62 ± 0.5 97.11 ± 0.3 93.11 ± 0.4 94.36 ± 1.1
TGAT 83.69 ± 0.7 65.56 ± 0.7 95.34 ± 0.1 98.12 ± 0.2 93.99 ± 0.3 96.62 ± 0.3
TGN 87.81 ± 0.3 67.06 ± 0.9 98.46 ± 0.1 98.70 ± 0.1 97.81 ± 0.1 97.55 ± 0.1

APAN 89.86 ± 0.3 65.34 ± 0.4 98.12 ± 0.2 99.22 ± 0.2 † †
CTGN 88.01 ± 1.5 68.38 ± 3.4 98.64 ± 0.1 98.28 ± 0.2 98.01 ± 0.1 98.05 ± 0.2

Table 3: Experiments on contact sequence datasets. ROC AUC (%) for the dynamic node classification task, Average
Precision (%) for link prediction task. *Static method, †Does not support inductive.

However, the learning process of each timestamp
is independent of other timestamps. Independent
learning of hyperplanes of adjacent time intervals
may cause adjacent times to be farther apart in em-
bedded space. Actually, adjacent states in the graph
should be more similar. To avoid the problem men-
tioned above, we constrained the variation between
hyperplanes at adjacent timestamps by minimizing
the euclidean distance:

Lsmooth(W ) =
T−1∑

t=1

||wt+1 − wt||2 . (18)

3.4 Model Learning

We use the link prediction loss function for training
CTGN:

loss = αLsmooth(W ) + Ltask , (19)

where α is a tradeoff parameter, ltask is a loss func-
tion defined as the cross-entropy of the prediction
and the ground truth. Our experiment found a pa-
rameter α of 0.002 for contact sequence dynamic
graphs and 0.7 for event-based dynamic graphs.

4 Experiment and Analysis

In this section, we first introduce datasets, base-
lines and parameter settings. Then we compare
our proposed method with other strong baselines
and competing approaches for both the inductive
and transductive tasks for two benchmarks contact
sequence dynamic graph datasets and three event-
based dynamic graph datasets.

We study both transductive and inductive tasks.
For event-based dynamic graphs, we learn link
prediction tasks. For contact-sequence dynamic
graphs, we learn dynamic node classification and
link prediction tasks.

27



100 150 200 250 300 350 400
BATCH SIZE

0.93

0.94

0.95

0.96

0.97

0.98

AV
ER

AG
E 

AP
 (%

)

CTGN
TGN
TGAT

(a)

100 150 200 250 300 350 400
BATCH SIZE

0.965

0.970

0.975

0.980

0.985

0.990

AV
ER

AG
E 

AP
 (%

)

CTGN
TGN
TGAT

(b)

5 10 15 20
Number of sampled neighbors

0.92

0.93

0.94

0.95

0.96

0.97

0.98

AV
ER

AG
E 

AP
 (%

)

CTGN
TGN
TGAT

(c)

5 10 15 20
Number of sampled neighbors

0.965

0.970

0.975

0.980

0.985

0.990

AV
ER

AG
E 

AP
 (%

)

CTGN
TGN
TGAT

(d)

Figure 3: Ablation studies on the Netflix dataset for both the transductive and inductive setting of the link prediction
task. 3(a) Sensitivity study result of batch size in inductive setting. 3(b) Sensitivity study result of batch size in
transductive setting. 3(c) The relationship between number of sampled neighbors and the model performance in
inductive setting. 3(d) The relationship between number of sampled neighbors and the model performance in
transductive setting.

4.1 Datasets

We use five real-world datasets in our experi-
ments, three event-based dynamic graphs: Netflix
1, Mooc (Feng et al., 2019) and Lastfm (Cantador
et al., 2011), two contact sequence dynamic graphs:
Wikipedia (Kumar et al., 2019), Reddit (Kumar
et al., 2019).

The statistics of the datasets used in our experi-
ments are described in detail in Table 1.

4.2 Baseline

We compare our model with four CTDG meth-
ods: Jodie (Kumar et al., 2019), Dyrep (Trivedi
et al., 2018), TGAT (Xu et al., 2020), TGN (Rossi
et al., 2020), APAN (Wang et al., 2020b). And we
also include four DTDG methods: GAE (Kipf and
Welling, 2016), VGAE (Kipf and Welling, 2016),
GAT (Veličković et al., 2018), GraphSAGE (Hamil-
ton et al., 2017) as well as two state-of-the-art static
graph neural ODE methods: CGNN (Xhonneux
et al., 2019), NDCN (Zang and Wang, 2019).

4.3 Parameter Setup

We set the batch size to 200 for training and
patience to 5 for early stopping in all experi-
ments. The node embedding dimension is 172.
During training, we used 0.0001 as the learning
rate for contact sequence dynamic graph datasets
(Wikipedia and Reddit) and 0.00009 for event-
based dynamic graph datasets (Netflix, Mooc,
Lastfm). The weight of time smoothness loss α
is set to 0.002 on Wikipedia , Reddit and 0.7 on
Netflix, Mooc, Lastfm. We choose the LSTM layer
as the decoder for link prediction task and MLP
for node classification task. We report mean and
standard deviation across 10 runs.

1https://vodclickstream.com/

4.4 Result

To demonstrate the effectiveness of our proposed
method, we compare CTGN with competitive base-
lines on five real-world event-based graph datasets.
Table 2 shows the results on link prediction tasks
in both transductive and inductive settings for three
event-based datasets. It is evident that our approach
has achieved better results than the discrete dynam-
ics graph neural networks on almost all datasets,
especially in the inductive setting.

Table 3 shows the dynamic node classification
and link prediction results on two contact sequence-
datasets. CTGN has a solid ability to embed dy-
namic graphs. The conclusion can be obtained
from the Table 2 and Table 3.

Figure 3 shows ablation studies on the Netflix
dataset for both the transductive and inductive set-
ting of the link prediction task. As we can see
from Figure 3(a) and 3(b), our model is not sen-
sitive to batch size. When the training batch size
is 100, CTGN has the same average precision as
TGN. With the continuous increase of batch size,
the performance of CTGN is more stable.

5 Conclusion

This paper introduces CTGN, a continuous tempo-
ral graph neural network for learning representa-
tion for event-based dynamic graphs. We build the
connection between temporal graph networks and
continuous dynamical systems inspired by neural
ODE. Our framework allows the user to trade off
speed for precision by selecting different learning
rates and the weight of time smoothness loss pa-
rameters during training. We demonstrate on the
link prediction task against competitive baselines
that our model can outperform many existing state-
of-the-art methods.
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Abstract

In this work, we propose the application
of abstract meaning representation (AMR)
based semantic parsing models to parse
textual descriptions of a visual scene into
scene graphs, which is the first work to
the best of our knowledge. Previous works
examined scene graph parsing from tex-
tual descriptions using dependency pars-
ing and left the AMR parsing approach
as future work since sophisticated meth-
ods are required to apply AMR. Hence,
we use pre-trained AMR parsing models
to parse the region descriptions of visual
scenes (i.e. images) into AMR graphs and
pre-trained language models (PLM), BART
and T5, to parse AMR graphs into scene
graphs. The experimental results show that
our approach explicitly captures high-level
semantics from textual descriptions of vi-
sual scenes, such as objects, attributes of
objects, and relationships between objects.
Our textual scene graph parsing approach
outperforms the previous state-of-the-art
results by 9.3% in the SPICE metric score.

1 Introduction

Understanding and representing a scene is straight-
forward for humans, but an AI system requires vari-
ous techniques to implement it. One such technique
is scene graph proposed by (Johnson et al., 2015).
Scene graph is a graph-structured representation
that captures high-level semantics of visual scenes
(i.e. images) by explicitly modeling objects along
with their attributes and relationships with other
objects. Scene graph is demonstrated effective in
various tasks including semantic image retrieval
(Wang et al., 2020; Schroeder and Tripathi, 2020),
image captioning (Yang et al., 2019; Zhong et al.,
2020), and visual question answering (Hildebrandt
et al., 2020; Damodaran et al., 2021).

Figure 1: An example of (a) dependency parsing and (b)
abstract meaning representation (AMR) parsing from
textual description (i.e. region description) of "White
street sign with black writing".

Approaches for scene graph generation are clas-
sified into two categories: 1) scene graph genera-
tion based on image as input and 2) scene graph
generation based on text (i.e. image caption) as in-
put. Various approaches (Xu et al., 2017; Zellers
et al., 2018; Gu et al., 2019; Zhong et al., 2021)
are proposed for the former category. On the other
hand, only a fewer approaches (Schuster et al.,
2015; Anderson et al., 2016; Wang et al., 2018;
Andrews et al., 2019) are proposed for the latter. In
this paper, we focus on the latter category, which
is also called textual scene graph parsing. Textual
scene graph parsing has the advantage of being
able to capture the high-level meaning of the image
scene from the text.

Most of previous works (Schuster et al., 2015;
Anderson et al., 2016; Wang et al., 2018) for scene
graph parsing generated scene graphs using depen-
dency parsing to acquire the dependency relation-
ships for all words in a text, as shown in Figure 1
(a). Apart from dependency parsing, there is also
another approach for parsing semantic graphs from
textual descriptions, which is called abstract mean-
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ing representation (AMR) proposed by (Banarescu
et al., 2013). AMR abstracts semantic concepts
from words, and we therefore consider AMR is
more suitable for scene graph parsing. However,
the use of dependency parsing appeared to be a
common theme in the literature rather than AMR,
hence scene graph parsing with AMR has been left
as future work in (Anderson et al., 2016; Wang
et al., 2018).

To this end, we investigate the use of AMR with
pre-trained language models (PLM), such as BART
(Lewis et al., 2020) and T5 (Raffel et al., 2020),
for parsing scene graphs from textual descriptions
of visual scenes. We first parse sentences to AMR
graphs using a pre-trained AMR parsing model,
and then we generate scene graphs from AMR
graphs using the PLM.

Our contributions are the following: i) To the
best of our knowledge, ours is the first work for
parsing scene graphs from texts using abstract
meaning representation (AMR) contrary to the pre-
vious works (Schuster et al., 2015; Anderson et al.,
2016; Wang et al., 2018). ii) We extend pre-trained
language models such as BART and T5 to generate
scene graphs from texts and AMR graphs. iii) Our
approach outperforms the previous state-of-the-art
result by 9.3% on SPICE metric for scene graph
parsing task on intersection of Visual Genome and
MS COCO datasets.

2 Related Works

2.1 Abstract Meaning Representation

Abstract meaning representation (AMR) (Ba-
narescu et al., 2013) is a graph-based semantic
representation which captures semantics "who is
doing what to whom" in a sentence. Each sen-
tence is represented as a rooted, directed, acyclic
graph with labels on nodes (e.g. semantic con-
cepts) and edges (e.g. semantic relations). Repre-
sentative tasks for AMR are Text-to-AMR, captur-
ing the meaning of a sentence within a semantic
graph, and AMR-to-Text, generating text from such
a graph. AMR2.0 (LDC2017T10) and AMR3.0
(LDC2020T02) datasets are currently actively used,
which contain a semantic treebank of over 39, 260
and 59, 255 English natural language sentences, re-
spectively from broadcast conversations, newswire,
weblogs and web discussion forums.

To address these tasks, earlier studies used sta-
tistical methods. With the development of deep
learning, researchers have proposed neural mod-

els such as graph-to-sequence (Zhu et al., 2019),
sequence-to-graph (Cai and Lam, 2020), and neural
transition-based parser models (Zhou et al., 2021).
Recently, with the advent of pre-trained language
models (PLM), AMR-based models incorporating
the generation capability of PLM have been pro-
posed and shown interesting results for various
NLP tasks such as information extraction (Huang
et al., 2018; Zhang and Ji, 2021), text summariza-
tion (Liu et al., 2015; Dohare and Karnick, 2017),
and dialogue systems (Bonial et al., 2020).

(Lam et al., 2021) proposed an efficient heuris-
tic algorithm to approximate the optimal solution
by formalizing ensemble graph prediction as min-
ing the largest graph that is the most supported
by a collection of graph predictions. (Bevilacqua
et al., 2021) proposed symmetric parsing and gen-
eration (SPRING), which casts AMR tasks as a
symmetric transduction task by devising graph lin-
earization and extending the pre-trained encoder-
decoder model, BART. In this paper, we utilize
pre-trained AMR parsing (i.e. Text-to-AMR) mod-
els from (Bevilacqua et al., 2021) to parse AMR
graph from sentences since the SPRING model has
the best performance among the publicly available
pre-trained AMR parsing models1.

2.2 Scene Graph Parsing

Scene graph proposed by (Johnson et al., 2015) is
a graph-structured representation that represents
rich structured semantics of visual scenes (i.e. im-
ages). Nodes in the scene graph represent either
an object, an attribute for an object, or a relation-
ship between objects. Edges depict the connection
between two nodes. In this subsection, we intro-
duce the study of scene graph parsing based on text.
Most of the previous studies (Schuster et al., 2015;
Anderson et al., 2016; Wang et al., 2018) used de-
pendency parsing as a common theme. (Schuster
et al., 2015) proposed a rule-based and a learned
classifier with dependency parsing. (Wang et al.,
2018) proposed a customized dependency parser
with end-to-end training to parse scene graph. (An-
drews et al., 2019) proposed a customized atten-
tion graph mechanism using the OpenAI Trans-
former2 (Radford and Narasimhan, 2018). Unlike
these studies, we use the AMR approach to parse
scene graphs and demonstrate better quantitative

1https://github.com/SapienzaNLP/spring
2This model consists of a BPE (Byte-Pair-Encoding) sub-

word embedding layer followed by 12-layers of decoder-only
transformer with masked self-attention heads.
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performance.

2.3 Pre-trained Language Model

BART (Lewis et al., 2020) is a denoising au-
toencoder for pretraining sequence-to-sequence
(seq2seq) models. It uses the standard Transformer
(Vaswani et al., 2017)-based neural machine trans-
lation (NMT) architecture. It is constructed based
on seq2seq/NMT architecture by combining a bidi-
rectional encoder (Devlin et al., 2019) and a left-
to-right decoder (Radford et al., 2019). BART is
trained by corrupting text with an arbitrary nois-
ing function (i.e. token masking, infilling, deletion,
and sentence permutation) and learning a model to
reconstruct the original text. We use both BART-
base (BART model with 6 encoder and decoder
layers and around 140M parameters) and BART-
large (BART model with 12 encoder and decoder
layers and nearly 400M parameters) models for our
investigation.

T5 (Raffel et al., 2020) is an encoder-decoder
unified framework that is pre-trained on a multi-
task mixture of unsupervised and supervised tasks
and for which a wide range of NLP tasks such as
translation, classification, and question answering
are cast as feeding the model text as input and train-
ing it to generate some target text. We use both
T5-base (T5 model with 12 encoder and decoder
layers and nearly 220M parameters) and T5-large
(T5 model with 24 encoder and decoder layers and
nearly 770M parameters) models for our examina-
tion.

3 Methodology

In this section, we use pre-trained language models
(PLM), BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020), as baselines to parse scene graph (SG)
from text directly (Text-to-SG). We then describe
how to generate scene graphs from AMR graphs
(AMR-to-SG) using PLM models.

3.1 Text-to-SG Parsing

We train the pre-trained language models to take
each region description of an image as input and
generate scene graphs. The PLM models take
text as input and map it into a task-specific out-
put sequence. For instance, if the region descrip-
tion "White street sign with black writing" is
an input, the parsed output, {(street sign, writ-
ing), (white-street sign, black-writing), (street sign-

with-writing)} will be in the form of {(objects),
(attribute-object), (object-relationship-object)}.

3.2 AMR-to-SG Parsing

First, we parse the region descriptions into AMR
graphs. Then, we parse the AMR graphs into the
scene graphs. For this, we use the two AMR parsing
models of SPRING (Bevilacqua et al., 2021), which
are pre-trained on AMR2.0 (LDC2017T10) and
AMR3.0 (LDC2020T02) datasets.

We linearize the AMR graph into a sequence
of symbols which will be the input to pre-trained
language models, BART and T5, for training. For
the linearization technique, we adopt the depth-first
search (DFS) based algorithm used in (Konstas
et al., 2017), as it is closely related to the way
how natural language syntactic trees are linearized
(Bevilacqua et al., 2021). Thus, as shown in Figure
1 (b), the input of BART and T5 will be "(z0 / sign
:mod (z1 / street) :ARG1-of (z2 / white-03) :ARG1-
of (z3 / write-01 :ARG1-of (z4 / black-04)))", where
zo, z1, z2, z3 and z4 are special tokens to handle
co-referring nodes, and the output will be in the
same format as Text-to-SG parsing output.

4 Experiments

4.1 Implementation Details

Datasets For fair comparisons with the existing
models, we train and validate our models with the
subsets of Visual Genome (VG) (Krishna et al.,
2016) and MS COCO (Lin et al., 2014) datasets.
The training set is the intersection of the VG and
MS COCO train2014 set (34,027 images with
1,070,145 regions). The evaluation set is the inter-
section of VG and MS COCO val2014 set (17,471
images with 547,795 regions). We follow the same
preprocessing steps as in (Wang et al., 2018) for
setting the training/test splits.

Evaluation To evaluate parsed scene graphs from
region descriptions with the ground truth region
scene graphs, we use SPICE metric (Anderson
et al., 2016) which calculates a F-score over tu-
ples. As mentioned in (Wang et al., 2018), there is
an issue that a node in one graph could be matched
to several nodes in the other when SPICE calcu-
lates the F-score. Thus, following previous works,
we enforce one-to-one matching while calculating
the F-score and report the average F-score for all
regions.
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Scene graph parser F-score
Text-to-SG
Stanford (Schuster et al., 2015) 0.3549
SPICE (Anderson et al., 2016) 0.4469
CDP (Wang et al., 2018) 0.4967
AG (Andrews et al., 2019) 0.5221
BART-base 0.5071
BART-large 0.5073
T5-base 0.5093
T5-large 0.5101
AMR-to-SG

BART-base
AMR2.0
AMR3.0

0.6112
0.6096

BART-large
AMR2.0
AMR3.0

0.6062
0.6092

T5-base
AMR2.0
AMR3.0

0.6128
0.6114

T5-large
AMR2.0
AMR3.0

0.6151
0.6149

Table 1: F-score (i.e. SPICE metric) comparison be-
tween pre-trained language models (for Text-to-SG and
AMR-to-SG) and existing parsers on the intersection of
VG (Krishna et al., 2016) and MS COCO (Lin et al.,
2014) validation set. CDP and AG are abbreviations of
Customized Dependency Parser and Attention Graph,
respectively.

Experimental Settings In our experiments, We
set the number of epoch to 5, the batch size to 32,
and learning rate to 0.0005 with a weight decay
of 0.004. It takes about a day to train BART-base,
BART-large, and T5-base models and around four
days to train T5-large model using two Tesla V100
with 32 GB graphic memory.

4.2 Results and Analysis

Table 1 shows results of the F-score comparison be-
tween pre-trained language models (PLM) with
both Text-to-SG and AMR-to-SG and existing
parsers on the intersection of VG and MS COCO
validation set.

Text-to-SG We observe that the performance of
PLM models is relatively higher than dependency
parsing based models (i.e. Stanford, SPICE and
Customized Dependency Parser) and shows com-
parable results with the previous state-of-the-art
model, Attention Graph (AG), which used cus-
tomized attention graph with pre-trained trans-
former model. Furthermore, we find that the larger
the model size, the better the performance. We ex-
pect to improve the performance of PLM models
with hyperparameter tuning, which we perform as
our future work.

AMR-to-SG All parsing models using AMR
(AMR-to-SG) not only outperform the previous
state-of-the-art model, Attention Graph (AG), but
also show better performance than Text-to-SG
PLM-based models. All of AMR-to-SG models
for AMR 2.0 achieves an average of 8.92% perfor-
mance improvement, and 8.91% for AMR 3.0. In
particular, our best model (T5-large for AMR 2.0)
outperforms the previous state-of-the-art model by
9.3%. Interestingly, despite the same PLM model,
when comparing the case where AMR graph is
input instead of text, BART shows an average of
10.32% performance improvement for AMR 2.0
and 10.22% for AMR 3.0, respectively. T5 shows
an average of 10.43% performance improvement
for AMR 2.0 and 12.87% for AMR 3.0, respec-
tively. In consequence, we find that the AMR based
approach captures high-level abstract semantics of
text better than dependency parsers and the other
baseline models.

5 Conclusion

In this work, we investigate the application of ab-
stract meaning representation (AMR) for parsing
scene graph by using pre-trained language models
(PLM), BART and T5, with AMR parsing model of
SPRING. We conducted two sets of experiments:
1) scene graph parsing using PLM models, directly
from region descriptions, and 2) scene graph pars-
ing using PLM models from AMR graphs parsed
from region descriptions via AMR parsing pre-
trained models. Our results show AMR graphs cap-
ture high-level abstract semantics of region descrip-
tions. We evaluate our approach using the SPICE
metric score. The results of Text-to AMR are com-
parable and of AMR-to-Text outperform the exist-
ing state-of-the-art models by 9.3%.

In our future work, we will investigate an
adapter-based method (Ribeiro et al., 2021) to en-
code graph structures into PLM models to improve
the performance of textual scene graph parsing.
Furthermore, we will examine our approach based
on the lately published, pre-trained AMR parsing
model, AMRBART3 (Bai et al., 2022). As our
scene graph parser performance improves further,
we expect to be able to use it to automatically gen-
erate either an image scene graph or video scene
graph datasets with less biased and more diverse
labels.

3https://github.com/muyeby/AMRBART
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Abstract

Language models encode linguistic proprieties
and are used as input for more specific mod-
els. Using their word representations as-is for
specialised and low-resource domains might
be less efficient. Methods of adapting them
exist, but these models often overlook global
information about how words, terms, and con-
cepts relate to each other in a corpus due to
their strong reliance on attention. We consider
that global information can influence the re-
sults of the downstream tasks, and combination
with contextual information is performed us-
ing graph convolution networks or GCN built
on vocabulary graphs. By outperforming base-
lines, we show that this architecture is prof-
itable for domain-specific tasks.

1 Introduction

Numerous types of word vectors are used as word
representations for NLP tasks. These vectors en-
code useful semantic proprieties and are often used
as weights or input of generic task models. For
quite some time, Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) were the go-to
off-the-shelf embeddings that many systems used.
FastText (Bojanowski et al., 2017) came as a way
to deal with OOV words and still offers a better
representation for words than most systems since
it takes into account the morphological complexity
of words by dealing with n-grams instead of whole
words. Over the last few years, a new generation
of deep neural approaches brought forth by trans-
formers has brought significant improvements in
many downstream applications. Language models,
like BERT (Devlin et al., 2019), already encode so
much knowledge and can capture semantic and syn-
tactic information remarkably well (Coenen et al.,
2019). They can be further trained on new tasks
for adapting it to a new task or more specialised
domains and further improve the quality of the rep-
resentations (Peters et al., 2019).

Language models are trained over massive gen-
eral domain corpora (Graff et al., 2003; Zhu et al.,
2015) by optimising an objective that predicts the
local contexts, captures linguistic units’ distribu-
tional properties along the way, and address pol-
ysemy issues. Their quality can thus be arguably
correlated to the volume of data available. How-
ever, in the case of specialised domains, the cor-
pora are generally relatively modest in size, and
these methods might be less efficient. It must be
noted that if this claim is not always valid for all
domains, especially for the English language, it
is undoubtedly almost always true for other much
less-resourced languages (Eisenschlos et al., 2019).

When using neural-based models, the conven-
tional way of integrating further knowledge about
specialised domains into models pre-trained on gen-
eral corpora is to leverage pre-training by doing
transfer learning and fine-tuning the model, tweak-
ing its original weights to suit the tasks at hand
better. If fine-tuning BERT is the most used adapta-
tion method, it will rapidly hit a performance ceil-
ing if the domain is too specialised or small, and
some methods (Schick and Schütze, 2020) exist to
tackle this problem. BERT will heavily rely on the
context to build representations of too specialised
or rare words. Each layer of the encoder’s attention
mechanism enriches the new representation of the
input data with contextual information by paying
attention to different parts of the text. Nonethe-
less, this particular feature of BERT may make it
more challenging for it to consider the more global
place a word occupies within a corpus’s vocabulary,
especially for these words.

Many data structures are hierarchical or graph
structures in nature, such as social networks, paper
citation networks, ontologies and semantic rela-
tions, such as hypernymy of hyponymy. Global
relations between words within a sentence, a doc-
ument or a corpus can be represented as a graph.
Using such graphs as inputs, Graph Neural Net-
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work (GNN) (Wu et al., 2021) captures general
knowledge about the words and how they inter-
act in a corpus. Several variants of GNN for text
classification tasks exist. As presented by (Kipf
and Welling, 2017), Graph Convolutional networks
(GCN) is an approach for semi-supervised learn-
ing on graph-structured data based on an efficient
variant of convolutional neural networks that op-
erate directly on graphs. GCN is typically built
using an adjacency matrix (based on a given rela-
tionship graph). The GCN’s central idea is to take
the weighted average of a node and all its neigh-
bours during the convolution operation and uses
both node features and the structure for the train-
ing. Text GCN (Yao et al., 2019) is a particular
version of GCN, jointly learning both words and
documents embeddings, and suited for situations
with less training data. Graph methods do not en-
code positional information, and when information
about position or context is needed, it might not
be enough. Hence, pairing a GCN with a model
that can grasp contextual information, like BERT,
seems necessary.

There has not been much work trying to combine
BERT and GNN. Since experts make inferences
with relevant domain knowledge when performing
domain-specific tasks, previous work has been con-
ducted to integrate this knowledge into language
models using knowledge graphs. Knowledge-
enabled language representation model K-BERT
(Liu et al., 2019) injects triples from a knowledge
graph into the sentences as domain knowledge.
BERT-MK (He et al., 2020) also takes into ac-
count knowledge graph contextualised knowledge.
(Shang et al., 2019) embedded a medical ontol-
ogy with Graph Attention Networks (GAT) and
combined it with BERT for medication recommen-
dation. (Jeong et al., 2020) concatenates the output
of GCN and the output of BERT for citation recom-
mendation tasks. Obviously, these methods presup-
pose the existence of a knowledge graph or an on-
tology. These resources are expensive to build and
do not always exist for the domain and task at hand.
Vocabulary graphs, on the other hand, are easy to
build. (Lu et al., 2020) propose VGCN-BERT, a
model which combines BERT with a Vocabulary
GCN (VGCN), and where local and global infor-
mation interacts from the first layer of BERT down,
building an augmented representation jointly.

We build upon their work to adapt BERT to our
specialised tasks and corpora. As (Lu et al., 2020)

conveniently pointed out in their work, the utility of
capturing global dependencies with a graph embed-
ding instead of conventional non-contextualised
embedding models (Mikolov et al., 2013; Pen-
nington et al., 2014; Bojanowski et al., 2017)
can be questioned (Srinivasan and Ribeiro, 2020).
These methods provide additional information, but
these models’ small text window limits the con-
nections between words. Long-range connections
are more easily captured with GCN. In addition,
by building a graph on a task-specific corpus, task-
dependent dependencies are captured, in addition
to the general dependencies already encoded in the
pre-trained models.

2 Intrintic Evaluation Tasks

I2B2 (Uzuner et al., 2011) deals with automatic
medical concept extraction and deals with the ex-
traction of concepts (problems, tests and treat-
ments) from anonymised medical reports. This task
was proposed by the 2010 edition of the I2B2/VA
Natural Language Processing Challenges for Clini-
cal Records 1. Medical reports tend to be unstruc-
tured, arbitrarily expressed, and sometimes roughly
thrown together, leading the NLP practitioner to
deal with noisy documents.

Concept Training Test

Problem 7,073 12,592
Test 4,608 9,225
Treatment 4,844 9,344

Total 16,525 31,161

Table 1: Frequencies of concept types in the I2B2 2010
annotated corpus

BioCreative V CDR (BC5CDR) is a collection
of 1,500 PubMed titles and abstracts selected from
the CTD-Pfizer corpus and was used in the BioCre-
ative V chemical-disease relation task. We use
the standard training and test set in the BC5CDR
shared task to extract the entities, and we do not
perform entity linking.

3 Experimental Methodology

Transfer Learning Pre-trained word vectors
have been an essential component in many NLP
systems. Word representations are fed into a task-
specific model, often improving the results. Re-

1https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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Dataset Training Dev Test

Disease 4,182 4,244 4,424
Chemical 5,203 5,347 5,385

Total 9,385 9,591 9,809

Table 2: Frequencies of entities in BC5CDR (chemical
and disease) annotated corpus

cently, contextual word representations have signifi-
cantly improved state of the art over non-contextual
vectors. Transfer learning is leveraged here with
the usage of BERT embeddings.

Domain Adaptation Adaptation can often take
two forms: feature extraction, where the model’s
weights are used as-is as inputs of another system
in a similar fashion to classic feature-based models
and fine-tuning, where the model’s weights con-
tinue to be trained on the new data for a specific
task.

Graph Convolutional Networks Graph Convo-
lutional Networks (GCNs) are often used for hi-
erarchical representation problems. By perform-
ing convolution operations on neighbouring nodes
(words) in the graph, a representation of a word
will be enriched with information about its neigh-
bours, which will allow the integration of informa-
tion about the global context of the word. Since we
are using the vocabulary to build the graph, we use
VGCN (Lu et al., 2020). VGCN are able to take
into account more global information about the vo-
cabulary but often fail to capture some of the local
information, which is why we use them combined
with BERT. This paper considers lexical relations
in a language, namely, the vocabulary graph, to
be global information about the task-specific lan-
guage. This vocabulary graph is constructed using
both wordpieces (Wu et al., 2016) and word’s co-
occurrences alongside documents. We first select
the relevant part of the global vocabulary graph
according to the input token or sentence and trans-
form it into an embedding representation. We then
combine it with BERT token embedding and use
multiple layers of attention mechanism to fuse the
two.

The vocabulary graph is constructed using
weighted positive point-wise mutual information
(PPMI) (Levy and Goldberg, 2014). A higher
PPMI indicate a higher semantic correlation be-
tween words. For each pair of words (w, c), we

have:

Pα(c) =
count(c)α∑
c count(c)

α

with the context probabilities raised to α = 0.75,
giving rare words are slightly higher probability.

PMIα(w, c) = max(log2
P (w, c)

P (w)Pα(c)
, 0)

With this subword segmentation method, the
word epistaxis, for example, will be represented
as five tokens by BERT: ep, ##ista, ##xi and ##s),
since it is not in the model’s training vocabulary.
We are left with having to average or sum these em-
beddings to get a final embedding for our word.
It puts us at a disadvantage when dealing with
domain-specific corpora because most of the words
in the area do not exist in the model’s vocabulary.
The model will rely heavier on the context to get
embeddings for these wordpieces. We use both
full words and wordpieces to build the vocabulary
graphs in order to counteract this.

Given an undirected graph G = (V,E) with a
set N nodes vi ∈ V , a set of edges (vi, vj), re-
spectively, an adjacency matrix A ∈ RN×N , a
degree matrix Dii =

∑
j Aij and a feature matrix

X ∈ RN×C , with C the number of dimensions of
a feature vector, a forward 2-layer GCN model is
computed as follow :

Z = f(X,A)

f(X,A) = softmax(Â ·ReLU(ÂXW 0)W (1))

with Â = (D̃− 1
2 Ã)(D̃− 1

2X), the average of all
neighbours feature vectors, scaled over both the
rows and the columns of the matrix, putting more
weights on low-degree nodes and reducing the
impact of high-degree ones, and computed using
Ã = A+λIN (usually, λ = 1, but it can be treated
as a trainable parameter) and D̃, its degree ma-
trix. The adjacency matrix A corresponds to the
weighted PPMI as the vocabulary graph and the
feature matrix X to pre-trained embedding from
BERT.

In the equation aforementioned, the GCN has
two layers, as it is usually the standard (Kipf and
Welling, 2017; Lu et al., 2020). With one layer
GCN, each node can only get the information from
its immediate neighbours. By adding another con-
volutional layer on top of it, we repeat the ag-
gregation (or pooling process), but this time, the
neighbours already have information about their
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I2B2 BC5CDR

Model P R F1 P R F1

BiLSTM-CRF 81.2 ± 0.4 84.4 ± 0.6 82.0 ± 0.3 78.2 ± 0.1 80.1 ± 0.8 79.2 ± 0.2

GCN 71.4 ± 0.5 52.1 ± 0.2 63.7 ± 0.1 79.9 ± 0.9 77.2 ± 1.0 78.6 ± 0.9

BERT 87.4 ± 0.3 87.0 ± 0.1 87.2 ± 0.8 86.0 ± 0.7 85.0 ± 0.8 85.5 ± 0.1
+ GCNvanilla 87.7 ± 1.2 86.5 ± 0.2 87.4 ± 0.2 86.3 ± 0.6 86.1 ± 0.7 86.2 ± 0.3
+ GCNadd 89.7 ± 0.4 86.0 ± 0.7 87.7 ± 0.1 87.7 ± 0.4 85.7 ± 0.3 86.3 ± 0.2
+ GCNembedding 89.0 ± 0.2 88.8 ± 1.0 88.9 ± 0.2 87.9 ± 0.5 85.7 ± 0.1 86.7 ± 0.4

Table 3: Analysis (in % F1-Score) of the outputs of our different models for the sequence labelling. This is an
averaging of 3 runs for each experiment.

neighbours from the previous step. The number
of layers is really the maximum number of hops
that each node can reach to capture global informa-
tion. However, we usually do not want to go too far
in the graph. Otherwise, we may smooth out the
graph, erasing important information entirely, mak-
ing the representation less meaningful and resulting
in a drop of performance (Kipf and Welling, 2017).
Since the GCN’s nodes are task entities, such as
words, wordpieces or documents, this architecture
requires all entities, including those from the train-
ing set, validation set, and test set, to be present in
the graph during all the phases 2.

In the same fashion as (Lu et al., 2020), to com-
bine these representations with BERT and to lever-
age both local and global information, we combine
the vocabulary graph embedding obtained by our
GCN and the BERT embedding and feed them to
the first encoder. It will allow for the words’ order
in the sentence to be maintained and local infor-
mation to be used, all the while the global infor-
mation obtained by GCN will interact with BERT
representation over the 12 layers of encoders. We
also test two other combination methods: as for
the first one, instead of integrating the GCN into
the BERT embedding module, we simply add it to
BERT embedding before passing it to the encoder.
The second one consists of producing two outputs,
one of the GCN and one of BERT, concatenating it
just before applying a RELU and feeding it to the
fully connected classification layer.

To summarise, multiple models are tested here,
with several baselines in addition to the BERT and
GCN combinations:

• Bi-LSTM model: BERT embeddings are
used as input of a 256 hidden units and 2-

2Masks are used during training to only use training nodes.

layers bidirectional LSTM with an additional
CRF layer.

• GCN: 2-layer GCN with BERT embeddings
as input, with a simple fully-connected layer
as output. This model only leverages global
informations.

• BERT: pre-trained BERT for token classifi-
cation, with a simple fully-connected layer as
output. For all tasks, bert-base-cased is used.

• BERT+GCNadd or BERT with added graph
embedding: Two representations are gen-
erated using BERT and GCN and are then
summed. The combined representation is
passed through a fully-connected layer for
classification.

• BERT+GCNembedding or BERT with inte-
grated graph embedding: Instead of only
using the regular BERT embeddings as input,
we feed both the graph embedding obtained
by the GCN and the BERT embedding to the
BERT encoders.

• BERT+GCNvanilla or BERT with concate-
nated graph embedding: Two representa-
tions are generated using BERT and GCN and
are then concatenated. The combined repre-
sentation is passed through a fully-connected
layer for classification.

3.1 Pre-processings and Experimental settings

For all tasks, non-ASCII values, special charac-
ters and HTML tags are removed. Tokens from
I2B2 and BC5CDR are then represented in the In-
side–Outside–Beginning (IOB) tagging format for
token classification. For the experimental settings,
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we implemented the models in PyTorch and Py-
Torch Geometric for the GCN part. All our experi-
ments were run on a single GPU GEFORCE GTX
1080 for about ± 40 minutes per run (on average,
over all the experiments).

4 Results

The results of the experiments are shown in Table 3.
Performance is measured in macro-averaged scores
(exact match). We report our results for the stan-
dard approaches first, and we contrast them with
different combinations and architectures. Over-
all, all the BERT models with additional GCN
global information perform better than the other
baseline models, namely, the BiLSTM-CRF, the
simple GCN and BERT. This confirms our intu-
itions and shows that it is beneficial to merge local
and global information, and those resulting rep-
resentations seem more worthwhile for the down-
stream tasks. A tendency seems to be showing (see
Table 3): while getting a better F1-score, most of
the boost in the overall score for the BERT with
added global information goes to have better pre-
cision than the vanilla BERT and a lower recall
simultaneously. This indicates an actual decrease
in false positives, and these tendencies are similar
across the board.

Future analysis can also be conducted on sub-
words since BERT breaks words down into word-
pieces. The problem for specialised domains is
that a more domain-oriented subword tokenisation
method is probably more appropriate. For exam-
ple, with BERT wordpieces tokeniser, "adenocar-
cinoma" will be broken into "aden", "oca", "rc",
"ino", "ma" and, surprisingly, "carcinoma" will
be broken into "car", "cino", "ma", making "ma"
the only subword that they share, even if the two
words are semantically very close. Some methods
have been developed, particularly for clinical text
(Nguyen et al., 2019). However, using them means
that we have to retrain the whole BERT model (sim-
ilar to ClinicalBERT, for example), which defeats
the purpose of adaptation. We rely on the GCN
to fetch these missing pieces of information, con-
nect them and integrate them back into the BERT
model.

In this work, we wanted to examine if we can
improve results for languages and domains for
which there are no BioBERT and Clinical BERT,
e.g. there are no WindBERT or PoliticalBERT for
hypothetical wind energy or politics related tasks.

This step of adaptation to the domain would make
sense and even be necessary. Using a graph neural
network constructed over the corpus’ vocabulary
exclusively follows the same logic. It comes from
our decision to find a way to improve the model
intrinsically without using external resources. Even
if many resources exist for the English language,
it is still crucial to explore ways to adapt existing
models to our downstream specialised tasks where
the volume of data is often insufficient. There is
still a lot of room for improvement. One major lim-
itation of this work — and work on graph neural
networks in general, is the need to use all entities,
including those from the training set, validation set,
and test set, to build the vocabulary graph.

5 Conclusion

The quality of word representations obtained
through language models is often correlated to
the volume of data available. In the case of spe-
cialised domains, these methods might be less effi-
cient due to the usually modest size of the corpora.
This is particularly exacerbated in the case of spe-
cialised and low-resource domains, and the models
might need to go through an adaptation phase. This
work seeks to understand how these methods can
be adapted on the fly by using additional features
from GCN. The achieved results outperform the
baselines across the board. It shows that it is ben-
eficial to merge local and global information, and
those resulting representations yield some addi-
tional advantages and are more worthwhile for the
downstream task. Future work will cover analysis
of attention layers before and after adding more
global information. It will also involve considering
more sophisticated relations than simple mutual
information into the GCN, such as exploiting ori-
ented graphs to encode dependencies, synonymy,
hypo- and hyperonymy, and different architecture
such as Graph Attention Networks.
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Abstract

Recent advances in commonsense reasoning
have been fueled by the availability of large-
scale human annotated datasets. Manual an-
notation of such datasets, many of which are
based on existing knowledge bases, is expen-
sive and not scalable. Moreover, it is challeng-
ing to build augmentation data for common-
sense reasoning because the synthetic questions
need to adhere to real-world scenarios. Hence,
we present GRADA, a graph-generative data
augmentation framework to synthesize factual
data samples from knowledge graphs for com-
monsense reasoning datasets. First, we train
a graph-to-text model for conditional genera-
tion of questions from graph entities and rela-
tions. Then, we train a generator with GAN
loss to generate distractors for synthetic ques-
tions. Our approach improves performance for
SocialIQA, CODAH, HellaSwag and Common-
senseQA, and works well for generative tasks
like ProtoQA. We show improvement in robust-
ness to semantic adversaries after training with
GRADA and provide human evaluation of the
quality of synthetic datasets in terms of fac-
tuality and answerability. Our work provides
evidence and encourages future research into
graph-based generative data augmentation. 1

1 Introduction

Recent work has seen the emergence of several
datasets for improving commonsense reasoning of
language models through tasks like question an-
swering (QA) (Sap et al., 2019b; Talmor et al.,
2019; Bisk et al., 2020) and natural language infer-
ence (Bhagavatula et al., 2020; Zellers et al., 2019;
Sakaguchi et al., 2020). Some of these datasets
are based on existing knowledge graphs that rep-
resent different aspects of commonsense through
entities and relations. For example, annotators for
SocialIQA (Sap et al., 2019b) were shown an event

1Code and synthetic data files are available at https:
//github.com/adymaharana/GraDA.
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Figure 1: GRADA framework: The original dataset
is used to train GraphGPT2, a graph-to-text question
generator and OptionGAN, a distractor generator. The
synthetic dataset is subjected to filtering and used to
train the model in combniation with the original dataset.

from the inferential knowledge graph ATOMIC
(Sap et al., 2019a) and instructed to turn it into
a sentence by adding names, filling placeholders
and adding context, etc. For multiple-choice QA
datasets, annotators are also instructed to write dis-
tractor choices for each question. These useful
datasets are collected through a time-taking and
money-intensive crowdsourcing process which is
hard to scale. Large pretrained models like GPT2
(Radford et al., 2018) can be finetuned to generate
sentences from narrow data distributions, and it
has recently been leveraged to augment datasets
for text classification (Anaby-Tavor et al., 2020)
and question answering (Puri et al., 2020; Yang
et al., 2020). However, it is challenging to gener-
ate augmentation data for commonsense reasoning
because the generated questions and answers (re-
ferred to as “synthetic” in rest of the paper) need
to depict plausible real-world scenarios accurately.
Hence, we develop GRADA, a graph-based gen-
erative data augmentation framework to generate
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synthetic samples from existing knowledge graphs
that encode information about the real world.

Each sample in commonsense reasoning datasets
comprises a question which describes a real-world
scenario and can be mapped to a set of predefined
entities and relations from knowledge bases like
ConceptNet and ATOMIC. For instance, the ques-
tion “Besides a mattress, name something people
sleep on.” from the ProtoQA dataset (Boratko et al.,
2020) can be mapped to the single-hop path (mat-
tress, RelatedTo, people) using ConceptNet. If
a pretrained language model is trained to condi-
tionally generate questions from such input paths,
we can expect it to generate sensible questions
when it is provided new paths with similar relations.
The model will likely generalize to unseen entity
nodes and generate questions containing unique
commonsense knowledge. Following this intu-
ition, we finetune GPT2 (Radford et al., 2019) to
generate questions which explicitly depict the en-
tities and relations in input path. When trained
on the aforementioned example (alongside other
similar examples) and provided with the new path
(mattress, RelatedTo, soft), our model generates
“Besides a mattress, name something that’s soft.”,
which is a valid question for probing real-world
commonsense. Usually, these paths contain multi-
ple nodes with several hops and hence are referred
to as graphs in rest of the paper. In order to rep-
resent the graph, we explore both (a) encoding of
linearized graph and (b) augmentation of linear en-
codings with structure-aware encoding of graph,
and find that the latter improves the transfer of
semantic knowledge from graph to text.

Synthetic questions need to be accompanied
by synthetic answers and distractor choices (for
multiple-choice datasets), which are similarly gen-
erated by finetuning GPT2 for conditional genera-
tion of answers/distractors from the question. How-
ever, Yang et al. (2020) report that human anno-
tators find it hard to pick a unique/unambiguous
answer in more than 50% of the synthetic dataset
generated in this manner. Therefore, we explore
an alternative where we finetune the generative
model within a GAN framework (Nie et al., 2019a)
where it is continuously challenged by a discrimi-
nator model to generate unique distractors that can
fool the discriminator (see OptionGAN, Figure 1).
The synthetic questions and answers thus gener-
ated are assembled into synthetic samples which
are then used in a two-stage training pipeline (Mi-

tra et al., 2019). Additionally, since the generative
pipeline is only an approximate imitation of the
human annotation process, we are left with several
ambiguous and inaccurate samples in the synthetic
pool. Hence, we retain the most informative data
samples from the synthetic pool by using Question
Answering Probability (Zhang and Bansal, 2019)
to measure accuracy by answerability. Our contri-
butions can be summarized as follows:

• We present a generative framework consisting of
(i) a graph-to-text model to convert knowledge
graphs to questions, (ii) a model finetuned with
GAN loss to generate distractors for common-
sense reasoning QA datasets, and (iii) combined
with a filter for selecting the most informative
samples from synthetic datasets.

• We improve performance on commonsense rea-
soning datasets, and perform ablation analysis to
show the impact of various modules in our frame-
work as well as human evaluation of synthetic
dataset quality.

2 Related Work

Explicit reasoning over knowledge graphs has been
a popular approach for improving commonsense
understanding of QA models. Bauer et al. (2018);
Lin et al. (2019); De Cao et al. (2019); Feng
et al. (2020) and Lv et al. (2020) extract relevant
multi-hop relational commonsense from knowl-
edge graphs and show significant improvements
over models that operate solely on text. Devlin et al.
(2019); Yang et al. (2019); Ye et al. (2019) expand
the rich latent knowledge of large pretrained mod-
els by finetuning on similar corpora (Havasi et al.,
2010) before finetuning on the target dataset. Mitra
et al. (2019) convert external resources (Koupaee
and Wang, 2018) to QA samples for data augmen-
tation. Yang et al. (2020) generate randomly initial-
ized samples from finetuned GPT2 as augmentation
data for target datasets. We ground the generated
samples to real-world facts by providing knowl-
edge graphs as input to the model.

There has been a surge of efforts in neural graph-
to-text modeling in the recent years. Marcheggiani
and Perez-Beltrachini (2018) encode input graphs
using a graph convolutional encoder (Kipf and
Welling, 2017). Koncel-Kedziorski et al. (2019)
propose the model GraphWriter which improves on
the graph attention networks presented in Velick-
ovic et al. (2018) by replacing self-attention en-
coder with Transformer blocks (Vaswani et al.,
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2017). Several recent works have shown that pre-
trained generative models can be finetuned with
or without structure-aware graph encoding to im-
prove graph-to-text generation (Mager et al., 2020;
Ribeiro et al., 2020; Hoyle et al., 2020; He et al.,
2020; Ke et al., 2021). Query or question genera-
tion has also been shown to benefit from knowledge
graphs in Shen et al. (2022); Bi et al. (2020). We
combine the structure-aware encoding capabilities
of graph-to-text models with the rich contextual
knowledge of pretrained models in GraphGPT2
and generate rich real-world scenarios from sparse
sub-graphs (Shen et al., 2022; Chen et al., 2020;
Kumar et al., 2019).

Good distractors are necessary for a task model
to learn the right reasoning towards answering
multiple-choice datasets. To this end, Liang et al.
(2018) rank distractors using feature-based en-
semble methods. Offerijns et al. (2020); Yang
et al. (2020) finetune GPT2 to generate distractors.
Chung et al. (2020) approach distractor genera-
tion as a coverage problem and select distractors
for maximizing sample difficulty. Cai and Wang
(2018) use adversarial training to sample high qual-
ity negative training examples for knowledge graph
embeddings. In a similar line of work, we use gen-
erative adversarial networks (GANs) (Goodfellow
et al., 2014) with the Gumbel-Softmax relaxation
(Kusner and Hernández-Lobato, 2016; Nie et al.,
2019b) and train a generator with GAN loss to
imitate the creation of human-authored tricky, in-
correct answer options. Most NLP applications use
REINFORCE (Sutton et al., 2000) algorithm and
its variants (Yu et al., 2017; Cai and Wang, 2018;
Qin et al., 2018; Zhang et al., 2018) to circumvent
the discrete sampling issue for text-based GANs.

3 Methods

In this section, we describe the various modules in
the GRADA framework.

3.1 Graph-to-Text Generation

In the first module of our pipeline, we generate
synthetic questions by using knowledge graphs as
input. Given a dataset of input graphs (gi), we fine-
tune GPT2 with cross-entropy loss for conditional
generation of questions (qi) from the graphs i.e.,
Lq =

∑N
i=1 log p(qi|f(gi)), where f(.) is the func-

tion for encoding the graph and p(.) represents the
probabilities. We explore linearized graph encod-
ing as well as structure-aware encoding of graph.

Linearized Graph Input. Graph linearization
is a simple way to use graphs like text when
finetuning GPT2. We adopt depth-first-search
to linearize the input graphs and preserve edge
information to some extent by augmenting GPT2
vocabulary with special tokens for edges. GPT2
is finetuned for conditional generation of target
question from this linearized graph input.

Using linearized graphs with pretrained lan-
guage models (PTLMs) surpasses graph-based ar-
chitectures at data-to-text generation by a large mar-
gin (Ribeiro et al., 2020). However, Mager et al.
(2020) show that omitting the edge information
from linearized graphs notably degrades perfor-
mance, implying that graph structure is beneficial
for generation. Hence, we propose GraphGPT2.

GraphGPT2 for Structure-aware Graph Input.
Instead of linearizing the input graph, we encode
the graph using a Transformer-based graph
encoder fs(.) which preserves the graph structure
by performing masked self-attention over edges
and nodes. We use the Transformer-based graph
encoder from Graph Writer (Koncel-Kedziorski
et al., 2019) for structure-preserving encoding
of graphs. First, we convert the input graphs
gi into unlabeled connected bipartite graphs
Gi = (vi, ei), where vi is the list of entities,
relations and global vertex, and ei is the adjacency
matrix describing the directed edges (Beck et al.,
2018). The global vertex is connected to all entity
vertices and promotes global context modelling
by allowing information flow between all parts
of the graph. Next, vi is projected to a dense,
continuous embedding space Vi and is sent as input
to the graph encoder (see Figure 2). The encoder
is composed of L stacked Transformer blocks;
each Transformer block consists of a N -headed
self-attention layer followed by normalization and
a two-layer feed-forward network. The resulting
encodings i.e. fs(gi), are referred to as graph
contextualized vertex encodings. These encodings
are prepended to the embedded representation
of linearized graph in the form of past key
values, and sent as input to the decoder. The
decoder i.e., pretrained GPT2, is finetuned to
generate a coherent question from the combined
embeddings. The graph encoder is initialized with
GPT2 embeddings to force continuity in word
representation across modules. Figure 2 shows the
integration of graph contextualized encodings with
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Figure 2: GraphGPT2: The Graph Encoder is composed
of L Transformer blocks and its output is concatenated
with GPT2 embeddings for input to GPT2.

GPT2 in GraphGPT2. The combined generative
model is finetuned end-to-end for maximizing the
conditional log-likelihood of target question qi i.e.
Lq =

∑N
i=1 log p(qi | [fl(gi); fs(gi)]), where fl(.)

represents the linearized graph embeddings.

During inference, both of the above models are
provided with graphs that do not appear in training
dataset to generate synthetic questions containing
new knowledge. See Sec. 4.1 for details on creation
of training and inference datasets.

3.2 Answer & Distractor Generation

We finetune a GPT2 model for conditional gen-
eration of answers from questions i.e., La =∑N

i=1 log p(ai|qi). However, as we discussed in
Sec. 1, a similar method for conditional generation
of distractors does not guarantee good distractors.
Hence, we finetune GPT2 within a GAN frame-
work to generate maximally adversarial distractors,
in a bid to imitate the best human annotator.

OptionGAN for Adversarial Choices. We train
a model to generate distractors (in the multiple-
choice QA task) for the synthetic questions ob-
tained from GraphGPT2 (see Figure 1) using
a generator-discriminator adversarial framework.
The discriminator D is a sequential classification
model that takes the question qi, concatenated with
the ground truth correct answer ai i.e., [qi; ai] or
the distractor d̂i generated by generator G i.e.,
[qi; d̂i] as input and classifies the pair as correct
or otherwise. While training, the generator runs
the risk of learning to generate correct answers in-
stead of distractors, since it’s goal is to be able to
fool the discriminator into classifying the question-
distractor pair [qi; d̂i] as correct. To prevent this,
we heavily bias the model by first pretraining it

Context

How would Casey feel as a result?

Casey owed money for college and
Remy paid her bill so she wouldn't owe

Answer

indebted

Adversarial Choices

- generous and kind
- like a good friend

Adversarial Choice
Generator Discriminator

Softmax

Gradients

like a good friend like a good friend
indebted

Gumbel

Figure 3: Training process for OptionGAN.

to generate only distractors using the conditional
cross-entropy loss and then continue with adver-
sarial training from the saved weights. Mathemat-
ically, we pretrain the generator G with the loss
Lg =

∑N
i=1 log p(di|qi), where qi, di are ques-

tion and distractor, respectively. We use the ques-
tion as input instead of the knowledge sub-graph,
since most generated questions contain additional
semantics from the latent knowledge of the pre-
trained generative model which is not present in
the original sub-graph. Then, the pretrained gener-
ator is finetuned within an adversarial framework
to produce distractors that successfully fool the dis-
criminator, so that we get adversarial options that
are as tricky as human-annotated options (see Fig-
ure 3). We use the Gumbel-Softmax relaxation
(Nie et al., 2019a) while sampling from gener-
ator to allow flow of gradients through the dis-
criminator model i.e. z = softmax( 1τ (h + g)),
where h, g and τ are the logits generated from G,
Gumbel distribution sample and temperature re-
spectively. The temperature is annealed using an
exponential function during training. Following
RelGAN (Nie et al., 2019a), we use the Relativistic
standard GAN loss for the adversarial training i.e.
min
G

max
D

log sigmoid(D([qi; ai]) − D([qi; d̂i])).

Generator G is trained to minimize the loss while
discriminator D is trained to maximize the loss. In
practice, we use GPT2 for both roles i.e., generator
as well as discriminator.

3.3 Filtering and Selection of Samples

Inspite of the careful construction of synthetic sam-
ples using knowledge graphs, the pool of synthetic
samples can be noisy and may consist of incoher-
ent text, incorrect question-answer pairs or out-
of-distribution samples. Hence, we use Question
Answering Probability (QAP) (Zhang and Bansal,
2019) to measure accuracy of synthetic samples.
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Figure 4: Example of synthetic context generated from
GraphGPT2 for the CODAH dataset.

The QAP score (µ) is the prediction probability
of the true class by a model with parameters θ
which has been trained on the original dataset i.e.
µi = pθ(ai|xi). Samples with low prediction prob-
abilities for the correct choices are either annotated
incorrectly or are especially difficult instances for
the model. We define a low and high threshold for
the QAP filter and samples lying within this range
are retained in the dataset.

See supplementary for a comparison of QAP
with two other methods for filtering i.e. Energy
(Liu et al., 2020) and Model Confidence & Vari-
ability (Swayamdipta et al., 2020).

4 Experimental Setup

4.1 Datasets

SocialIQA (Sap et al., 2019b) and Common-
senseQA (Talmor et al., 2019) are annotated using
knowledge graphs, making them a suitable choice
for testing our approach. SocialIQA is a question
answering dataset based on ATOMIC (Sap et al.,
2019a), containing 33,410/1954/2224 samples in
training, development and test set, resp. Com-
monsenseQA (CQA) is a similarly crowd-sourced
dataset based on ConceptNet (Speer et al., 2017)
containing an official split of 9741/1221/1241 sam-
ples. Following Yang et al. (2020), we also test
our method on HellaSwag-2K (Zellers et al., 2019)
and CODAH (Chen et al., 2019) for low-resource
scenario. HellaSwag-2K is created by sampling
2000/1000/1000 examples from HellaSWAG train-
ing and validation sets. We test our approach on
the CoDAH folds (2.8k samples) released by Yang
et al. (2020) for comparison. Apart from these
four MCQ datasets, we also experiment with the
generative QA dataset ProtoQA (9762/52/102) (Bo-
ratko et al., 2020) and find that our approach works
especially well with it. See Appendix for details.

Data Preparation. To prepare graph-to-text
datasets for training GraphGPT2, we map the ques-
tions to multi-hop paths in ConceptNet (Bauer
et al., 2018). We use Spacy2 to tag the questions
with part-of-speech and extract verbs and nouns as

2https://spacy.io/

concepts, retaining those that appear in Concept-
Net as entities and the connecting relations (see
example in Fig. 4).3 We remove inverse relations
from the set of triples. The graphs extracted in
this manner are acyclic and can be linearized with
a depth-first search. For SocialIQA, we map the
questions to a combination of ATOMIC and Con-
ceptNet. ATOMIC events contain nouns and verbs
which are representative of the social scenario be-
ing described in the event and are further extended
in the context by SocialIQA annotators. We tok-
enize and stem the events and contexts to extract
these representative words, and compute the per-
centage of overlapping words in the context with
respect to each event. The event with maximum
overlap with context is selected as the correspond-
ing ATOMIC subject. The ATOMIC relation is
selected from the predefined map of ATOMIC rela-
tions to SocialIQA questions. This way, we recover
the ATOMIC alignments of nearly 20,000 samples
from training set of SocialIQA (88% acc.).

Generation of Synthetic Data. In order to pre-
pare synthetic datasets, we create a dataset of un-
seen input graphs by mutating the graphs from
training sets of graph-to-text datasets. One or two
entities are replaced by a randomly selected en-
tity (or relation-entity pair) with similar adjacency
to other entities in the input graph, to create a
mutated graph. The maximum sequence length
of graph contextualized embeddings is set to 64,
while that of GPT2 is set to 128. The synthetic
dataset size (pre-filtering) is 100k/50k/10k/10k/50k
for SocialIQA, CQA, HellaSwag-2K, Codah, and
ProtoQA respectively. For generation of synthetic
data for SocialIQA, we use the set of tuples from
ATOMIC that do not appear in the original dataset.
To prepare the synthetic dataset for Common-
senseQA, we select two adversarial choices from
ConceptNet and two choices generated by Option-
GAN. For ProtoQA, we find accurate answers by
generating 30 sets of answers for each synthetic
question, ranking the answer choices by frequency
and retaining the ones that appear at least 5 times
in the 30 sets. See example of synthetic context
generation in Fig. 4.

Evaluation. To evaluate graph-to-text generation,
we define an ORACLE score which measures the
semantic relevance of synthetic question when

3We use the question concept present in CQA annotations
as additional concept for the questions.
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paired with the original answer options. We re-
place the original question in validation set samples
with the synthetic question and re-evaluate mod-
els on this modified dataset. In addition, we adopt
the following NLG metrics: BLEU-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
CIDEr4 (Vedantam et al., 2015) and BERTScore
(F1 score) (Zhang et al., 2020). Models trained
on the synthetic and original commmonsense rea-
soning datasets are evaluated using their respective
task-specific accuracies (see Appendix). For Pro-
toQA, we report the accuracy in top-k answers
where k = 1, 3, 5. We also perform human evalu-
ation of the samples generated using GraphGPT2
and OptionGAN.

5 Results & Analysis

First, we present results from the complete GRADA
framework followed by results from ablation ex-
periments. Then, we discuss evaluation of the
various generative models in GRADA using au-
tomated metrics as well as human annotators. Fi-
nally, we evaluate the robustness of models trained
with and without GRADA to semantic adversaries
and discuss upper bounds of our data augmentation
pipeline. See Appendix for visualization of the
quality of the synthetic datasets.

5.1 Data Augmentation Results
Results from the best GRADA model are presented
in Table 1.5 The baseline row represents results
from the same task models used for GRADA but
trained without any data augmentation i.e. T5-3B
for ProtoQA and RoBERTa for all other datasets.
We see 1-2% improvements over baseline across
all multiple-choice datasets using GRADA. For the
best GRADA models (selected using validation re-
sults), synthetic samples are generated from struc-
tured GraphGPT2 and OptionGAN, and filtered us-
ing QAP.6 GRADA results in large improvements
for ProtoQA i.e. 4-6% higher values on the Max
Answers 1/3/5 metrics (see Appendix), suggesting
the effectiveness of our approach for similar gener-
ative tasks. We see 0.3%, 0.3% and 0.26% improve-
ment with GRADA over G-DAUG for CQA, Co-
dah and HellaSwag-2K respectively. Our approach
also performs similar to the Option Comparison

4https://github.com/Maluuba/nlg-eval
5It should be noted that the state-of-the-art UnifiedQA has

30x parameters in RoBERTaLARGE
6ProtoQA is not a multiple-choice dataset, so OptionGAN

is not used and we use sample perplexity as the only filter.

Network in HyKAS (Ma et al., 2019) for CQA
(row 3 in Table 1). Our approach is orthogonal
to HyKAS, KG-Fusion as their instance-level ap-
proach retrieves information for each sample while
GRADA augments knowledge on a global level.

Ablation results from the GRADA framework
on validation sets are presented in Table 2. The
first row of Table 2 presents results from baseline
task models i.e., trained without data augmenta-
tion. Next, we compare results from two-stage
training and see upto 1.7% (p<0.05 for all datasets)
improvements (row 1 vs. 4 in Table 2) with the
addition of synthetic data without filtering.7 Using
structured GraphGPT2 leads to 0.47% (p=0.043),
0.39% (p=0.078), 1.46% (p=0.12)8 improvements
over linearized GraphGPT2 for SocialIQA, CQA,
ProtoQA and diminishing improvements for the
smaller datasets. We see consistent but modest
improvements which are not significant, from ad-
dition of distractors generated from OptionGAN.
Even though improvements with OptionGAN are
marginal, it is necessary for the completeness of
the pipeline for synthetic generation. Next, adding
filter to denoise the synthetic pool unequivocally
improves results by large margins for all datasets
except CQA. Filtering by QAP (row 5 in Table 2)
provides additional benefit (p=0.069 and p=0.093
for SocialIQA and CQA, p<0.05 for other datasets)
to downstream task models over unfiltered syn-
thetic data augmentation (row 4).9 See examples of
high and low quality synthetic data samples filtered
using QAP in Table 7. Smaller datasets benefit the
most from GRADA.

Single-hop vs. Multi-hop Paths. Additionally,
we finetune GraphGPT2 with sub-graphs made
of single-hop paths only to generate the context.
We perform data augmentation using the synthetic
questions generated through this approach and com-
pare to the GRADA results on validation sets. See
results in Table 4. We observe 0.92%, 0.08%,
1.48% and 1.05% drops in performance for val-
idation sets of SocialIQA, CQA, CODAH and Hel-
laSwag respectively. The larger drops for smaller
datasets suggest that multi-hop paths are effective
in low-resource scenarios.

7Statistical significance is computed with 100K samples
using bootstrap (Noreen, 1989; Tibshirani and Efron, 1993).

8p-values are larger for improvements on ProtoQA valida-
tion set which has only 52 samples.

9We also ran experiments with MLM pretraining
(ATOMIC for SocialIQA and OMCS corpus for the rest) be-
fore finetuning on target dataset and saw <1% improvements.
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Method SocialIQA CQA Codah HellaSwag-2K ProtoQA
UnifiedQA-11B (Khashabi et al., 2020) 81.45 79.1 - - 41.49 / 24.95 / 21.77
RoBERTa + KG Fusion (Mitra et al., 2019) 78.00 - - - -
RoBERTa + HyKAS (Ma et al., 2019) - 73.2
BACKTRANSLATION (Yang et al., 2020) 70.2 81.8 -
G-DAUG (Yang et al., 2020) - 72.6 84.3 75.70 -
Baseline* (No Augmentation) 76.74 72.1 82.3 73.40 35.77 / 43.81 / 49.88
GRADA 77.85 72.9 84.7 75.96 42.02 / 48.90 / 54.23

Table 1: Results on test sets of commonsense datasets and comparative results from other approaches taken from
leaderboards. *We use T5-3B for ProtoQA baseline and GRADA results and RoBERTa for all other datasets.

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1

Synthetic Data Augmentation
Linearized 78.21 77.55 86.07 76.40 45.63
+ Structured 78.68 77.94 86.13 76.70 46.09
+ OptionGAN 78.82 78.02 86.19 76.70 -

Filtering
QAP* 79.12 78.06 86.81 77.60 50.34

Table 2: Ablation results on validation set of common-
sense reasoning datasets. *We use sample perplexity for
filtering ProtoQA samples.

Dataset Original GraphGPT2
Linearized Structured

SocialIQA 75.92 55.18 57.34
CQA 77.23 57.63 58.71
CODAH 82.19 46.23 46.78
HellaSWAG-2K 76.58 41.35 41.74
ProtoQA 41.10 28.21 23.47

Table 3: ORACLE scores for question generation. Origi-
nal represents the performance of baseline task models
on original dataset. The columns GPT2 and GraphGPT2
represent similar evaluation with synthetic questions
generated from linearized graphs and structure-aware
graph encoder respectively.

Generalization to Unseen Concepts. We looked
for %overlap of entity nodes and single-hop paths
(subject– relation– object) between the multi-hop
KGs spanning the questions of correctly answered
samples after GraDA training and the questions of
synthetic data, and observed 5-60% entity overlap
and <20% path overlap. This suggests GRADA
also promotes reasoning capabilities of the down-
stream models for unseen concepts.

5.2 Generative Model Evaluation Results

ORACLE scores for the two variations of
GraphGPT2 are presented in Table 3. The scores in
first column refer to the validation set performance
of baseline models on original datasets. These
models are re-evaluated on the questions generated
by GraphGPT2 (as described in Sec. 4.1). The
largest improvement i.e. 2.16% (p=0.068) is ob-
served for SocialIQA, which may be attributed to

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1
GraDA (single-hop) 78.70 77.31 85.96 76.05 45.67
GraDA (multi-hop) 79.12 78.06 86.81 77.60 50.34

Table 4: Results on validation set of commonsense rea-
soning datasets using single-hop vs. multi-hop graphs
for GRADA pipeline.

Dataset Question Answer Distractors
SocialIQA 96.1% 86.0% 50.0%
CommonsenseQA 100.0% 97.2% 25.0%
HellaSwag-2K 92.0% 88.1% 25.8%
CODAH 90.3 83.4% 30.6%
ProtoQA 97.2% 75.0% -

Table 5: Results from human evaluation of generated
questions, answers and distractors.

its large dataset size. We see diminishing improve-
ments for low-resource scenarios i.e. Codah and
HellaSwag-2K. We observe a similar trend when
the synthetic questions are evaluated using NLG
metrics (see Appendix). More importantly, since
phrase-matching metrics are not ideal for NLG
evaluation (Novikova et al., 2017), we also per-
form human evaluation to judge the quality of gen-
eration for SocialIQA and CQA as we see signif-
icant improvements from structured GraphGPT2
vs. linearized GraphGPT2. We ask annotators
on Amazon Mechanical Turk10 (AMT) to select
the sentence which is more representative of the
information encoded in input graph, for 100 sam-
ples from validation set. Questions generated from
GraphGPT2 are preferred 46% and 53% of the
times for SocialIQA and CQA resp., compared to
those from linearized inputs only, showing that the
addition of graph encoder improves integration of
knowledge in generated text.

We perform human evaluation (AMT)
of answerability of the generated ques-
tions/answers/distractors on 50 randomly
selected samples from the filtered augmentation

10Located in United States, HIT Approval Rate>98%,
Number of HITs Approved>10K, $15 per hour (approx.).
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G-Daug (Yang et al., 2020)
GRADA

Knowledge-Graph Generated Data
Tuple

A human enjoys putting rubber on furniture.
They should do this before .. front of the mirror.

S: PersonX provides __
for PersonY’s children

Taylor provided meals for Kendall’s children and they
all enjoyed it greatly.

There was a large, cold bite of ice on my where? R: xIntent Why did Taylor do this?
He hated flying, the controls were what? O: To be helpful [A] to be a bad friend [B] to be helpful [C] to be rude
What is a square leg made of made out of? S: weasel R: AtLocation The man was a weasel, he was part of a powerful what?
What country does a cow go to make a milk run? O: mafia organization [A] out of doors [b] terrarium [c] mafia organization [D]

farmyard [E] backyard

Table 6: Comparison of randomly generated synthetic data from G-Daug (Yang et al., 2020) (left) and knowledge-
grounded synthetic data generated using GRADA (right). (S=Subject, R=Relation, O=Object)

High-quality synthetic samples

SI
Q

A

Riley provided help to the community through
his many charity events over the years. How
would Others feel as a result? [A] selfish [B]
appreciative [C] bored

C
Q

A

When a child is upset by something, what may
they do? [A] fall down [B] wish to fly [C] start
crying [D] play tag [E] boy or girl

PQ
A

Name something you worry you’re still doing
when you’re not supposed to. drinking, smoking,
sleeping, working, using cell phone

Low-quality synthetic samples

SI
Q

A

Tracy raised her arm to her face to cover her eyes
during the scary movie. What does Tracy need
to dobefore this? [A] scared [B] be scared of the
movie [C] to have a fundraiser

C
Q

A

What will you do if you want to go public? [A]
prepare for worst [B] tell family first [C] own
private company [D] telegram [E] charming

PQ
A

Name a family tradition that has deep roots in
the dialect of suzh. cooking, caroling, knitting,
hunting, fishing

Table 7: High and low quality synthetic samples gener-
ated through GRADA for SIQA, CQA, ProtoQA (PQA)
and ranked using QAP scores (and perplexity for PQA).
Labels are marked in green.

data (see Table 5). Annotators were provided with
the question, answer and distractors, and asked
to evaluate a) if the question can be answered in
a few words (b) if the question can be answered
by the given answer and (c) if the distractors
are wrong answers for the question. More than
90% of the questions were judged as answerable,
75-90% of the answers were judged as correct
answers for the respective questions. The quality
of distractors ranged from 50% for SocialIQA
to 20-30% for smaller datasets. However, the
overall quality of distractors is high enough to
benefit data augmentation. See examples in
Table 7. We also perform human evaluation for
the factuality of samples generated using our
method GraDA and GDaug (Yang et al., 2020). We
picked a randomly sampled set of 100 synthetic

Figure 5: % improvement in accuracy over baseline with
different % of original dataset. Baseline is RoBERTa
finetuned on the same % of original dataset.

QA pairs from G-Daug for the datasets CQA,
Codah and HellaSWAG-2K. For a fair comparison,
we collected 100 synthetic pairs from GraDA
for the same datasets. We asked an annotator to
evaluate if each of the synthetic QA pair adheres
to a plausible real-world scenario, and found that
56% G-Daug samples were judged as factual as
compared to 68% of the GraDA samples (see
examples in Table 6).

5.3 Upper Bounds

We ran experiments for augmentation with 20%,
40%, 60%, 80% and 100% training data from the
original set (see Fig. 5). The improvement margins
from the augmentation dataset is upto 4% at 20%
of the original SocialIQA dataset. We see simi-
lar trends for CODAH, HellaSwag and ProtoQA,
while the improvements for CQA were <1.5%.

5.4 Robustness Evaluation

We expect that data augmentation exposes the task
model to diverse language and improves its robust-
ness to semantic adversaries in addition to boosting
its performance on the target task. To evaluate
this, we use the TextFooler system (Jin et al., 2020;
Yang et al., 2020; Wei and Zou, 2019) to gener-
ate adversarial text by computing word importance
ranking and replacing the most influential words
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Method SIQA CQA CDH H2K PQA
Baseline 21.7/10.3 14.9/12.5 31.3/16.1 19.4/10.6 5.1/16.2
GRADA 22.4/10.8 15.8/12.9 34.8/18.2 20.5/11.5 6.3/16.8

Table 8: Robustness Evaluation. Failure rate / perturba-
tion ratio (higher is better) from TextFooler experiments
are shown on development sets.

with their synonym in the vector space. Overall,
GRADA benefits the robustness of task models and
improves their failure rate by 1-3% (see Table 8).

6 Conclusion

We present GRADA, a graph-based data augmen-
tation framework for commonsense reasoning QA
datasets. We train a graph-to-text question genera-
tor and GAN-based adversarial choice generator for
creating synthetic data samples, which are used to
augment the original datasets. GRADA promotes
factuality in synthetic samples and improves results
on five downstream datasets.

7 Ethical Considerations

The usage of pretrained generative models in any
downstream application requires careful consider-
ation of the real-world impact of generated text.
In our approach, we provide concrete inputs for
grounding the generated text to specific entities and
relations which encode real-world facts, thereby re-
ducing the possibility of propagating unintended
stereotypical and social biases embedded within the
pretrained models. However, since these entities
and relations are derived from existing knowledge
bases like ConceptNet (Speer et al., 2017), there
is potential for transfer of bias present in these re-
sources to the generated texts. Additionally, the
graph-to-text generative models in GRADA pose
the same risk as other data-to-text generative mod-
els (Ribeiro et al., 2020; Hoyle et al., 2020; Mager
et al., 2020) i.e. the models can be made to gen-
erate incorrect facts by providing incorrect data as
input. Therefore, we recommend restricting the use
of GRADA to low-risk, unbiased graphs inputs.
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A Experiment Setup

Datasets: Social IQA (Sap et al., 2019b) and
CommonsenseQA (Talmor et al., 2019) are pop-
ular datasets based on knowledge graphs, making
them a suitable choice for testing our approach. So-
cial IQA is a multiple-choice question answering
dataset. Each sample consists of a context, ques-
tion and three multiple choices. CommonsenseQA
is also a multiple-choice QA dataset, wherein each
sample consists of a context and five multiple
choices. Of those 5 choices, three are taken from
ConceptNet and the other two are authored by anno-
tators. We only use the human-authored incorrect
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choices to train our adversarial choice generator
OptionGAN. The ATOMIC knowledge graph con-
tains 24K base events and 877K tuples describing
a variety of social scenarios. We use the 710K
training split introduced in Bosselut et al. (2019)
to randomly sample 100K tuples as the seed sub-
graphs for generation of synthetic data dataset for
Social IQA. For CommonsenseQA, we use the en-
tire ConceptNet knowledge graph, subject to prun-
ing as outlined in Talmor et al. (2019), to sample
seed tuples for synthetic dataset generation. For
SocialIQA, CQA, Codah and HellaSwag-2K, we
use simple accuracy for model evaluation.

ProtoQA (Boratko et al., 2020) is a generative
QA dataset which is evaluated by 7 different met-
rics11. We report the first 3 metrics i.e. Max An-
swers 1/3/5. For tables showing only one number
for ProtoQA, such as the ablation table in main
text, we report the Max Answer 1 metric. In order
to train T5-3B for ProtoQA, we concatenate the
ranked choices for each question and finetune the
model for conditional generation of this concate-
nated string from the input question.

All of the above datasets are being for their in-
tended purposes i.e. research only, in our work. All
of these datasets are in the English language.

Data Preparation: To prepare graph-to-text
datasets for training GraphGPT2, we map the ques-
tions to multi-hop paths in ConceptNet (Bauer
et al., 2018). We use Spacy12 to tag the ques-
tions with part-of-speech and extract verbs and
nouns as concepts, retaining those that appear in
ConceptNet as entities13. For SocialIQA, we map
the questions to a combination of ATOMIC and
ConceptNet. ATOMIC events contain nouns and
verbs which are representative of the social sce-
nario being described in the event and are further
extended in the context by Social IQA annotators
(see Table 6). We tokenize and stem the events and
contexts to extract these representative words, and
compute the percentage of overlapping words in
the context with respect to each event. The event
with maximum overlap with context is selected as
the corresponding ATOMIC subject. The ATOMIC
relation is selected from the predefined map of
ATOMIC relations to Social IQA questions. This
way, we recover the ATOMIC alignments of 20,000

11https://github.com/iesl/
protoqa-evaluator

12https://spacy.io/
13We use the question concept present in CQA annotations

as additional concept for the questions.

samples from training set of SocialIQA with 88%
accuracy.

Synthetic Data Generation. In order to prepare
synthetic datasets, we create a dataset of unseen
input graphs by mutating the graphs from train-
ing sets of graph-to-text datasets. One or two
entities are replaced by a randomly selected en-
tity (or relation-entity pair) with similar adjacency
to other entities in the input graph, to create a
mutated graph. The synthetic dataset size (pre-
fitering) is 100k/50k/10k/10k/50k for SocialIQA,
CQA, HellaSwag-2K, Codah, and ProtoQA respec-
tively. For generation of synthetic data, we use the
set of tuples from ATOMIC and ConceptNet that
do not appear in SocialIQA and CommonsenseQA
datasets respectively. To prepare the synthetic
dataset for CommonsenseQA, we select two ad-
versarial choices from ConceptNet and two choices
generated by OptionGAN. For ProtoQA, we find
accurate answers by generating 30 samples of an-
swers for each synthetic question, ranking the an-
swer choices by frequency and retaining the ones
that appear atleast 5 times in the 30 samples. After
this, the synthetic question and answer (concatena-
tion of high-frequency answer choices) is subjected
to filtering. Due to lack of option for supplemen-
tary in this submission, we have included a sample
of the generated synthetic examples in Table 9.

A.1 Filtering and Selection of Samples

Inspite of the careful construction of synthetic sam-
ples using knowledge graphs, the pool of synthetic
samples can be noisy and may consist of incoher-
ent text, incorrect question-answer pairs or out-
of-distribution samples. Hence, we compare the
effect of three different methods to filter samples
on downstream task performance.

Question Answering Probability (QAP). The
QAP score (µ) (Zhang and Bansal, 2019) is the
prediction probability of the true class by a model
with parameters θ which has been trained on the
original dataset i.e. µi = pθ(y

∗
i |xi). Samples with

low prediction probabilities for the correct choices
are either annotated incorrectly or are especially
difficult instances for the model. We define a low
and high threshold for the QAP filter and samples
lying within this range are retained in the dataset.

Model Confidence and Variability.
Swayamdipta et al. (2020) propose the model confi-
dence (µ̂i) and variability (σ̂i) measures to identify
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HellaSWAG-2K

Question Answer

A close up of a gymnast is shown. a gymnast
balances on beam as she sweeps __

(a) over obstacles. (b) around with other gymnast. (c) performs a front squat and
a flip, and crosses her arms. (d) performing multiple back and forth moves.

"We then search for a car by its model and make.
Once we get the car model __

(a) we determine what the tires are for. (b) we either buy a new or recycle it. If
we want to recycle the car, we simply (c) click the b̈uy now b̈utton. The seller
will then provide a description of the car and (d) we’ll add it to the computer so
we can make a list of the different models we’ll

A man in black robes is walking into a bar. He
__

(a) is telling several anecdotes about how he has been following other people
around and talking to them. (b) speaks to a group of workers and they all rise
and raise their arms in the air. (c) starts singing into the microphone. (D) begins
a beat down on a man standing behind him.

CODAH

Question Answer

I am feeling very hungry. I think that __ (a) I will have dinner. (b) I will drink some milk. (c) I will sleep a lot. (d) I will
play catch with my grandpa.

A man with no body hair was peacefully wallow-
ing in the sea of ocean. The man then __

(a) was surrounded by a flock of birds. (b) hung from the ceiling and sang (c)
began to carpet the beach. (d) watched a movie with his headphones on.

A man excitedly planned a surprise party for his
friend. He __

(a) got a shotgun. (b) put up a giant neon sign with his own hand painted on it.
(c) decided to end his life in front of his friend. (d) planned to brew a cup of
coffee and play chess.

ProtoQA

Question Answer

Name something you worry you’re still doing
when you’re not supposed to.

drinking, smoking, sleeping, working, using cell phone

Besides milk, name a popular product in the
dairy market.

cheese, ice cream, yogurt, butter

Name something you can disagree about. religion, politics, parenting, weight, money

If you sent a postcard from china what would be
pictured on the front?

great wall, temple, dragon

Name something a knight needs for a good day’s
work.

horse, armour, sword, lance, shield

Table 9: Examples of synthetic samples generated for HellaSWAG-2K, CODAH and ProtoQA datasets from the
GRADA pipeline. Correct answers for multiple-choice questions are marked in green.

the effect of data samples on the model’s general-
ization error. Specifically, µ̂i =

1
E

∑E
e=1 pθ(y

∗
i |xi)

and σ̂i =

√∑E
e=1 (pθ(y

∗
i |xi)−µ̂i)

2

E , where E is
training epochs. They find that ambiguous samples
i.e., high variability and mid-range confidence,
contribute the most to test performance on down-
stream task. Following this, we define low and
high thresholds for both confidence and variability
in order to find the most informative samples.

Energy. Liu et al. (2020) show that the energy
score can be reliably used for distinguishing be-
tween in- and out-of-distribution (OOD) samples,
as compared to the traditional approach of using the
softmax scores. We introduce an energy threshold
to select samples which are out-of-distribution i.e.
Ei = −log

∑C
j epθ(y

j
i |x) where C is the number of

choices in the QA sample, and measure the effect
of using OOD samples as augmentation data.

A.2 Training Details

Baselines: We use pretrained RoBERTaLARGE (Liu
et al., 2019) for multiple-choice datasets and T5-
3B (Raffel et al., 2020) for ProtoQA as the task
models. The baseline task model is finetuned on
original datasets with no data augmentation, and
is used as scoring model for filtering. We use
GPT2MEDIUM for GraphGPT2, GPT2SMALL as the
pretrained generator and discriminator for Option-
GAN. For GRADA, the model is first finetuned on
synthetic samples using label smoothing (Szegedy
et al., 2016) and then on original dataset. We refer
the reader to Koncel-Kedziorski et al. (2019) for
full implementation details of the Graph Encoder
in GraphGPT2.

OptionGAN: It is tricky to train GAN models,
especially with discrete data like text. We follow
the training method in Nie et al. (2019a) to fine-
tune the adversarial choice generator in a minimax
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Parameter Bounds
Filter Parameters

QAP/Model Confidence Lower Threshold [0.0, 0.49]
QAP/Model Confidence Higher Threshold [0.51, 1.0]
Energy Lower Threhsold [0.0, 1.0]
Energy Higher Threshold [0.0, 1.0]
Model Variability Lower Threshold [0.0, 0.5]
Model Variability Higher Threshold [0.0, 0.5]

Training Parameters
Learning Rate [1, 10]*1e-6
Batch Size (inc) [4, 8, 16]
Total Train Epochs [3, 5]

Table 10: Optimization bounds for grid-search based
tuning of training hyperparameters.

Method BLEU4 METEOR CIDEr BERTScore
Social IQA

GPT2 14.58 26.41 132.84 89.12
GraphGPT2 15.37 26.95 135.91 91.83

CommonsenseQA
GPT2 1.71 12.78 30.89 85.76
GraphGPT2 1.90 13.64 33.76 87.34

Table 11: Comparison of performance for GPT2 and
GraphGPT2 on development sets.

game with discriminator. In addition to the training
parameters mentioned in Table 17, we restrict the
number of training iterations to 5000, and perform
one gradient descent step on generator for every 5
gradient descent steps on discriminator.

Training & Hyperparameter Tuning. After
generation of synthetic examples, we perform two-
stage training of the task models. In the first phase,
the model is finetuned on synthetic data only, In
the second phase, the model is finetuned on the
original dataset. The model trained in first phase
is subject to bayesian optimization (Snoek et al.,
2012) of filter parameters.

A.3 Human Evaluation

Generative source of the sentences are omitted
when presented to annotators. The input graphs
are seed tuples from ATOMIC and ConceptNet for
samples from the development sets of Social IQA
and CommonsenseQA respectively. The annotators
can pick both the sentences if either of them are
equally relevant in their subjective opinion. We al-
low for a single hit for each assignment in Amazon
Mechanical Turk.

Dataset Wins Loses Tie
SocialIQA 46% 37% 17%
CommonsenseQA 53% 31% 16%

Table 12: Results from comparative human evaluation
of generated questions. Wins and Loses refer to the
%times synthetic question generated from structured
graph input was chosen over linearized graph.

B Results

B.1 Generative Model Evaluation
As shown in Table 11, we see small improvements
for BLEU-4 and METEOR, but larger improve-
ments in other metrics from GraphGPT2 i.e., 3.07%
(p=0.027), 2.87% (p=0.035) in CIDEr, and 2.71%
(p=0.042), 1.58% (p=0.056) in BERTScore for So-
cial IQA and CQA, resp. The phrase-matching
metric scores are low for CQA, which may be
attributed to its small sample size. However,
BERTScore for CQA lies between 85-88%, show-
ing that the model manages to convey similar mean-
ing as human-annotated context albeit with differ-
ent words.

More importantly, since phrase-matching met-
rics are not ideal for NLG evaluation (Novikova
et al., 2017), we also perform human evaluation
to judge the quality of generation for SocialIQA
and CommonsenseQA as we see significant im-
provements from structured GraphGPT2 vs. lin-
earized GraphGPT2. We ask annotators on Ama-
zon Mechanical Turk14 to select the sentence which
is more representative of the information encoded
in input graph, for 100 samples from validation
set. Results are shown in Table 12. Samples gener-
ated from structured input are selected significantly
more times than those from linearized inputs, for
both SocialIQA and CQA, showing that addition of
a graph encoder improves representation of knowl-
edge in generated sample.

Additionally, we perform human evaluation of
the samples generated using GraphGPT2 and Op-
tionGAN. We randomly select 50 samples from the
filtered augmentation datasets for each of the five
datasets, and ask 2 annotators to answer 3 yes/no
questions about the quality of the question, answer
and distractors respectively. We present results
from the survey in Table 5. More than 90% of
the questions in each dataset were judged as an-
swerable, showing the effectiveness of GraphGPT2
as well as the QAP-based filtering method. Simi-

14Located in United States, HIT Approval Rate>98%,
Number of HITs Approved>10K.
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Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1

Filtering
QAP* 79.12 78.06 86.81 77.60 50.34
Confidence 79.05 77.83 86.59 77.40 -
Energy 78.76 77.79 86.38 77.10 -

Table 13: Ablation results on validation set of common-
sense reasoning datasets using various filtering methods.
*We use sample perplexity for filtering ProtoQA sam-
ples.

larly, 75-90% of the answers were judged as correct
answers for the respective questions. The quality
of distractors were relatively lower, ranging from
50% for larger datasets like SocialIQA to 20-30%
for rest of the datasets. The inter-annotator agree-
ment was also low (<0.6) for distractor judgements,
suggesting the general difficulty of both tasks: dis-
tractor generation and measurement of distractor
quality. However, the overall quality of distrac-
tors in our datasets is high enough to benefit data
augmentation.

For both human evaluation annotation tasks, it
was made clear in the instructions that the data is
being collected for research purposes only.

B.2 Comparison of Filtering Methods
Table 13 demonstrates the effect of using vari-
ous methods of filtering i.e. QAP, Energy and
Model Confidence/Variability. Results are shown
on the validation sets the commonsense reasoning
datasets. We see largest improvements with using
QAP as the filter. Similar improvements are seen
with the confidence/variability scores; however, it
requires scores from multiple finetuned models
from various training checkpoints.

B.3 Robustness Evaluation
We expect that data augmentation exposes the task
model to diverse language and improves its robust-
ness to semantic adversaries in addition to boosting
its performance on the target task. To evaluate this,
we use the TextFooler system (Jin et al., 2020; Yang
et al., 2020; Wei and Zou, 2019) to generate adver-
sarial text by computing word importance ranking
and replacing the most influential words with their
synonym in the vector space. Failure rate is the
%examples for which TextFooler fails to change
the original model prediction, and average perturba-
tion ratio is the average % of words replaced when
TextFooler succeeds at changing the prediction. We
use our best GRADA models in comparison with
baseline models (Table 8). Overall, GRADA pos-

Figure 6: Plot of Confidence vs. Variability for GRADA
synthetic samples for CQA (left) and H2K (right).

itively impacts the robustness of task models to
TextFooler and improves the failure rate by >3%
for Codah and upto 1% for all other datasets. We
observe similar trends for the perturbation ratios
too. This shows that GRADA improves semantic
robustness of the models. It is also worthwhile
noting that generative task models like T5-3B for
ProtoQA are especially prone to adversarial attacks
like TextFooler with a mere 5-6% failure rate and
there needs to be more research towards improving
their robustness.

B.4 Cartography Quality Evaluation
We use dataset cartography Swayamdipta et al.
(2020) to visualize the quality of our synthetic
datasets. Samples in top left of figure are easy,
while samples towards bottom and right of the
figure are difficult and ambiguous respectively.
We can observe from the figure that the synthetic
dataset for CQA (left) has a higher % of easy sam-
ples than HellaSwag-2K, suggesting that the qual-
ity of synthetic samples generated by GRADA
improves with original dataset size. Moreover,
when applying QAP filtering, using the entire syn-
thetic dataset yields largest improvements for CQA
whereas for HellaSwag-2K (right), the lower cutoff
for QAP is 0.3 which filters out most of the samples
present in bottom part of the plot. This suggests
that in low-resource scenarios, it is important to
remove inaccurate samples, while larger datasets
benefit from ambiguous and inaccurate samples.
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Best Parameters Social IQA CQA Codah HellaSwag-2K ProtoQA
QAP Lower Threshold 0.49 0.32 0.43 0.49 0.27
QAP Higher Threshold 1.0 1.0 1.0 1.0 1.0

Table 14: Best Filter Hyperparameters.

Social IQA CommonsenseQA
Hyperparameter Baseline GRADA Phase 1 GRADA Phase 2 Baseline GRADA Phase 1 GRADA Phase 2
Learning Rate 5e-6 4e-6 3e-6 1e-5 5e-6 1e-5
Epochs 3 1 3 5 1 5
Max Gradient Norm 1.0 1.0 1.0 None None None
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 8 8 8 16 16 16
Max Length 128 128 128 70 70 70
Warmup Ratio 0.0 0.0 0.0 0.06 0.06 0.0
LR Decay Linear Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU Hours 5 hrs 1.5 hrs 5 hrs 2 hrs 0.5 hrs 2 hrs

Table 15: Training hyperparameters for baseline and two-stage GRADA training of SocialIQA and CQA

CODAH HellaSwag-2K
Hyperparameter Baseline GRADA Phase 1 GRADA Phase 2 Baseline GRADA Phase 1 GRADA Phase 2
Learning Rate 1e-5 4e-6 3e-6 5e-5 5e-6 1e-5
Epochs 5 1 5 5 1 5
Max Gradient Norm 1.0 1.0 1.0 None None None
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 16 8 16 8 8 8
Max Length 90 90 90 128 128 128
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR Decay Linear Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU Hours 2 hrs* 1 hr* hrs 2 hrs* 0.5 hr 0.2 hr 0.5 hr

Table 16: Training hyperparameters for baseline and two-stage GraDA training of RoBERTa models for HellaSwag-
2K and CODAH. *values reported for five-fold training

OptionGAN
Hyperparameter GraphGPT2 Generator Discriminator GAN
Learning Rate 4e-5 1e-5 1e-5 1e-6
Epochs 5 5 3 -
Max Gradient Norm 1.0 1.0 1.0 None
Weight Decay 0.0 0.01 0.01 0.01
Batch Size 8 8 8 4
Max Length 128 128 128 128
Warmup Ratio 0.0 0.0 0.0 0.06
LR Decay Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW

Table 17: Training hyperparameters for GraphGPT2, Generator, Discriminator and OptionGAN
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Abstract
Multi-label text classification (MLTC) is an
attractive and challenging task in natural
language processing (NLP). Compared with
single-label text classification, MLTC has a
wider range of applications in practice. In
this paper, we propose a label-interpretable
graph convolutional network model to solve the
MLTC problem by modeling tokens and labels
as nodes in a heterogeneous graph. In this way,
we are able to take into account multiple re-
lationships including token-level relationships.
Besides, the model allows better interpretabil-
ity for predicted labels as the token-label edges
are exposed. We evaluate our method on four
real-world datasets and it achieves competi-
tive scores against selected baseline methods.
Specifically, this model achieves a gain of 0.14
on the F1 score in the small label set MLTC,
and 0.07 in the large label set scenario.

1 Introduction

In the real world, we have seen an explosion of
information on the internet, such as tweets, micro-
blogs, articles, blog posts, etc. A practical issue
is to assign classification labels to those instances.
Such labels may be emotion tags for tweets and
micro-blogs (Wang et al., 2016; Li et al., 2020b), or
topic category tags for news, articles and blog posts
(Yao et al., 2019). Multi-label text classification
(MLTC) is the problem of assigning one or more
labels to each instance.

Deep learning has been applied for MLTC due to
their strong representation capacity in NLP tasks.
It has been shown that convolutional neural net-
works (CNNs) (Kim, 2014) achieve satisfying re-
sults for multi-label emotion classification (Wang
et al., 2016; Feng et al., 2018). Besides, many
recurrent neural networks (RNNs)-based models
(Tang et al., 2015) are also playing an important
role (Huang et al., 2019; Yang et al., 2018). Recent
breakthrough of pre-trained models, i.e., BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,

Text Labels

S1 我不知道类似这样的困惑到

底还要持续多久。 (I don’t
know how long the confusion
like this will last.)

Anxiety

S2 nothing happened to make me
sad but i almost burst into tears
like 3 times today

Pessimism,
Sadness

S3 ...The price of BASF AG shares
improved on Thursday due to its
better than expected half year re-
sults. At 0900 GMT BASF was
up 51 pfennigs at 42.75 marks...

C15, C151,
C152,
CCAT

Table 1: Examples of multi-label emotion classifica-
tion. Data source is explained in Sec. 4. Note that
in S3, the labels are: C15 (Performance), C151 (Ac-
counts/Earnings), C152 (Comment/Forecasts), CCAT
(Corporate/Industrial).

2019a), achieved large performance gains in many
NLP tasks. Existing work has applied BERT to
solve MLTC problem successfully with very com-
petitive performances (Li et al., 2019c). Moreover,
as a new type of neural network architecture with
growing research interest, graph convolutional net-
works (GCNs) (Kipf and Welling, 2017) have been
applied to multiple NLP tasks. Different from CNN
and RNN-based models, GCNs could capture the
relations between words and texts if modeled as
graphs (Yao et al., 2019; Li et al., 2019a, 2020a). In
the paper, we focus on emphasising a GCN-based
model to solve MLTC task.

A major challenge for MLTC is the class imbal-
ance. In practice, the number of labels may vary
across the training data, and the frequency of each
label may differ as well, bringing difficulties to
model training (Quan and Ren, 2010). In Table 1,
we show some examples of tweet, micro-blog and
news article, labeled with emotion tags or news
topics. As can be seen from those examples, there
is a various number of coexisting labels. Another
challenge is the interpretation of assigned class la-
bels by figuring out the trigger words and phrases
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to corresponding labels. In the table, it is easy to
tell that in S1, the emotion Anxiety is very likely to
be triggered by the word confusion. However, S2
might be more complicated, with two possible trig-
gering phrases makes me sad and burst into tears
and two emotion labels. There might be different
opinions on which phrase triggers which emotion.

To tackle the mentioned challenges and inves-
tigate different perspectives, we propose label-
interpretable graph convolutional networks for
MLTC. We model each token and class label as
nodes in a heterogeneous graph, considering vari-
ous types of edges: token-token, token-label, and
label-label. Then we apply graph convolution to
graph-level classification. As GCN works well in
semi-supervised learning (Ghorbani et al., 2019),
we can then ease the impact of data imbalance.
Finally, since the token-label relationships are ex-
posed in the graph, one can easily identify the trig-
gering tokens to a specific class, providing a good
interpretability for multi-label classification.

The contributions of our work are as follows:
(1) We transfer the MLTC task to a link predic-
tion task within a constructed graph to predict
output labels. In this way, our model is able
to provide token-level interpretation for classifi-
cation. (2) To the best of our knowledge, this
is the first work that considers token-label rela-
tionships within a manner of a graph neural net-
work for MLTC, allowing label interpretability. (3)
We conduct extensive experiments on four rep-
resentative datasets and achieve competitive re-
sults. We also demonstrate comprehensive anal-
ysis and ablation studies to show the effective-
ness of our proposed model for label nodes and
token-label edges. We release our code in https:
//github.com/IreneZihuiLi/LiGCN.

2 Related Work

Multi-label Text Classification Many existing
works focus on single-label text classification,
while limited literature is available for multi-label
text classification. In general, these methods fall
into three categories: problem transformation, label
adaptation and transfer learning. Problem transfor-
mation is to transform the muli-label classification
task into a set of single-label tasks (Jabreel and
Moreno, 2019; Fei et al., 2020), but this method
is not scalable when the label set is large. Label
adaptation is to rank the predicted classes or set
a threshold to filter the candidate classes. Chen

et al. (2017) proposed a novel method to apply an
RNN for multi-label generation with the help of
text features learned using CNNs. Transfer learning
focuses on utilizing knowledge learned to unknown
entries. Xiao et al. (2021) proposed a model which
transfers the meta-knowledge from data-rich labels
to data-poor labels. Moreover, some models also
take label correlations into consideration, such as
Seq2Emo (Huang et al., 2019) and EmoGraph (Xu
et al., 2020). However, some of them may ignore
the relationships between input tokens and class
labels, making them less interpretable. Please note
that there is a research topic named extreme multi-
label text classification (Liu et al., 2017), where the
pool of candidate labels is extremely large. How-
ever, we do not target on the extreme case.

Graph Neural Networks in NLP Previous re-
search has introduced GCN-based methods for
NLP tasks by formulating them as graph-structured
data tasks. A fundamental task is text classification.
Many works show that it is possible to utilize inter-
relations of documents or tokens to infer the labels
(Yao et al., 2019; Zhang et al., 2019). Besides,
some NLP tasks focus on learning relationships
between nodes in a graph, such as concept pre-
requisites (Li et al., 2019a) and leveraging depen-
dency trees predicted by GCNs for machine trans-
lation (Bastings et al., 2017). Recently, variations
of GCN models have been investigated for general
text classification tasks (Linmei et al., 2019; Tayal
et al., 2019; Ragesh et al., 2021). Limited efforts
have been made to apply GCNs for multi-label text
classification. For example, EmoGraph (Xu et al.,
2020) is a model that captures the dependencies
among emotions through graph networks.

3 Method

In this section, we first provide task definition and
preliminary, then we introduce the proposed model
for multi-label text classification.

3.1 Task Definition

In multi-label text classification task, we are given
the training data {D,Y } . For the i-th sample, Di

contains a list of tokens Di = {w1, w2, ...wm} and
Y i is a list of binary labels Y i = {y1, y2, ...yn}, y
is 1 if the class label is positive, 0 otherwise. The
size of label set n can be small or large. In testing,
we predict labels Ŷ i

test given Di
test .
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3.2 Preliminary
Graph convolutional network (GCN) (Kipf and
Welling, 2017) is a type of deep architecture for
graph-structured data. In a typical GCN model, we
define a graph as G = (V, E), where V is a set
of nodes and E is a set of edges. Normally, the
edges are represented as an adjacency matrix A,
and the node representation is defined as X . In a
multi-layer GCN, the propagation rule for layer l
is defined as:

H(l) = σ
(
norm(A(l−1))H(l−1)W (l−1)

)
, (1)

where norm(A) = D̃− 1
2 ÃD̃− 1

2 is a normalization
function, H denotes the node representation, and
W is the parameter matrix to be learned. Ã =
A + I|V|, D̃ denotes the degree matrix of Ã, In
general, in the very first layer, we have H(0) = X .

3.3 Label-interpretable Graph Convolutional
Networks

In this paper, we propose the LiGCN model, which
allows interpretation on the labels when doing
MLTC. For each training sample, we construct an
undirected graph. We define two types of nodes:
token node and label node, and the node represen-
tations are Xtoken and Xlabel. Therefore, there
are three types of relations between the nodes,
defined by the adjacency matrices: Atoken (be-
tween token nodes), Alabel (between label nodes)
and Atoken_label (between token nodes and label
nodes).

We show the model overview in Figure 1. It
consists of two main components: a pre-trained
BERT/RoBERTa encoder1 and label-node graph
convolutional layers. In the LiGCN model, we have
a list of token nodes Xtoken in orange ellipses, and
a list of label nodes Xlabel in blue ellipses. Besides,
there are edges between token nodes Atoken, edges
between label nodes Alabel, and edges between
token and label nodes Atoken_label. We explain
them in greater details below.

Node Representations X: In the very first layer,
to initialize token nodes, we encode the input data
Di = {w1, w2, ...wm} using a pre-trained BERT
or RoBERTa model and possible other BERT-based
ones, where we take the representation of each to-
ken including [CLS] token as Xtoken. For the
label nodes, we initialize them using one-hot vec-
tors.

1https://huggingface.co/bert-base-multilingual-cased,
https://huggingface.co/roberta-base

Adjacency Matrix A: In our experiments, to
initialize token node adjacency matrix Atoken, we
use the token nodes to construct an undirected
chain graph, where we consider an input sequence
as its natural order, i.e., in Atoken: Ai,i+1 = 1.
Since it is an undirected graph, the adjacency ma-
trix is symmetric, i.e., Ai+1,i = 1. We also add
self-loop to each token: Ai,i = 1. In other words,
Atoken is a symmetric m-by-m matrix with an up-
per bandwidth of 1, where m is the number of token
nodes.

We initialize Alabel with an identity matrix, and
Atoken_label with a zero matrix. In the later layers,
we reconstruct Atoken_label for layer l by applying
cosine similarity between Xtoken and Xlabel of the
current layer:

Al
token_label = cosine(X l

token, X
l
label). (2)

The value is normalized into the range of [0,1].
After this update, the model conducts graph convo-
lution operation as in Eq. 1.

In Figure 1, we are not showing self-loops, so
Alabel is not visible. We show only a subset of
edges from Atoken and Atoken_label. Note that we
use dashed lines at the first LiGCN layer because
Atoken_label is a zero matrix.

We also investigate other possible ways to build
Atoken including dependency parsing trees (Huang
et al., 2020) and random initialization, but our
method gives the best result. Such ways may not
bring useful information to the graph: the help from
dependency relations may be limited in the case
of classification, and random initialization brings
noises. As we focus more on the network convo-
lution, we leave investigating more methods for
initialization as future work.

Predictions In the last LiGCN layer, we are able
to reconstruct Alast

token_label using Eq. 2. For each
label node j, we sum up the edge weights from
Alast

token_label to get a score,

score(j) =
∑

vi∈Vtoken

Alast
i,j , (3)

where Vtoken is the set of all token nodes in the
last LiGCN layer. Then we apply a softmax func-
tion over all the labels, so that the scores are trans-
formed to probabilities of labels. Finally, to make
the prediction, we rank the probabilities in a de-
scending order, and keep the top k labels from the
ranking as predictions. As the predictions are in
forms of probabilities, we also convert the ground
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Labels: 
1: Joy  2: Hate  3: Love  
4:Sorrow    5: Anxiety  
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Figure 1: LiGCN model overview. (Best viewed in color.)

Dataset #train #dev #test #class #avg label #token max #token median #token mean

SemEval 6,839 887 3,260 11 2.37 499 26 32.08
RenCECps 27,299 - 7,739 8 1.37 36 17 16.42
RCV1 20,647 3,000 783,144 103 3.20 9,380 198 259.06
AAPD 54,840 - 1,000 54 2.41 500 157 166.41

Table 2: Dataset statistics on four selected corpora.

truths into probability distribution. We use the
mean square error (MSE) as the loss function. An-
other way is to apply the normal cross-entropy for
classification, but it achieves slightly worse results,
so we do not include it.

4 Experimental Results

We evaluate on four public datasets, summarized in
Table 2 and 3: SemEval (Mohammad et al., 2018)
contains a list of subtasks on labeled tweets data. In
our experiments, we focus on Task1 (E-c) challenge
on English corpus: multi-label classification tweets
on 11 emotions. RenCECps (Quan and Ren, 2010)
is a Chinese blog corpus which contains manual
annotation of eight emotional categories. It not
only provides sentence-level emotion annotations,
but also contains word-level annotations, where in
each sentence, emotional words are highlighted.
RCV1 (Lewis et al., 2004) consists of manually-
labeled English news articles from Reuters Ltd.
Each news article has a list of topic class labels, i.e.,
CCAT for Corporate/industrial, G12 for Internal
politics. We follow the same setting of Yang et al.
(2018) and Nam et al. (2017), and do MLTC on the
top 103 classes. AAPD (Yang et al., 2018) is a set
of English computer science paper abstracts and

#label SemEval RenCEPcs RCV1 AAPD

0 293 2,755 0 0
1 1,481 18,858 35,591 0
2 4,491 11,417 203,030 38,763
3 3,459 1,815 362,124 12,782
4 1,073 172 85,527 3,229

≥ 5 186 21 120,518 1,066

Avg. 2.37 1.37 3.20 2.41

Table 3: Label number distributions.

corresponding subjects from arxiv.org.
We report the following evaluation metrics:
Micro/Macro F1, Jaccard Index We report

micro-average and macro-average F1 scores as did
by previous works (Baziotis et al., 2018; Huang
et al., 2019) if the label set is small. Besides, we
follow the Jaccard index used by (Mohammad et al.,
2018; Baziotis et al., 2018; Huang et al., 2019), as
always referred as multi-label accuracy. The defini-
tion is given below:

J =
1

N

N∑

i=1

∣∣∣Y i ∩ Ŷ i
∣∣∣

∣∣∣Y i ∪ Ŷ i
∣∣∣
,

where N is the number of samples, Y i denotes
the ground truth labels and Ŷ i denotes system pre-
dicted labels.
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SemEval RenCECPs RCV1 AAPD

seq length 17 32 256 256
hid dim1 64 64 256 256
hid dim2 16 16 64 64
epoch num 5 3 10 10
top-k 2 1 5 5

Table 4: Hyper-parameters chosen in our experiments.

P@k and nDCG@k When the label set is large,
we also report widely-applied metrics P@K and
nDCG@K (k = 1, 3, 5).

We apply two graph convolutional layers for all
datasets by default for our LiGCN model. In Table
4, we show the hyper-parameters conducted in our
experiments. We use 4.00E-06 as the learning rate
for all experiments. Since we use two LiGCN lay-
ers, hid dim1 is the first layer hidden dimension
number, and hid dim2 is the second layer hid-
den dimension number. These hyper-parameters
were selected by dev sets (if exist), otherwise se-
lected by manual tuning with about 5-10 rounds for
search trials.

4.1 Small Label Sets

We first evaluate the proposed model on SemEval
and RenCECps in Table 5. Both of them have a
small label set, so we report Macro, Micro F1 and
Jaccard. We select the following baselines: SGM
(Yang et al., 2018) applies a sequence generation
model and a decoder structure; Seq2Emo (Huang
et al., 2019) is an LSTM-based model that takes
into account the correlations among target labels;
TECap (Fei et al., 2020) is a topic-enhanced cap-
sule network, which contains a variational autoen-
coder and a capsule module for multi-label emotion
detection; MEDA (Deng and Ren, 2020) is a multi-
label emotion detection architecture that focuses
on detecting all emotions shown in the text, and it
takes BERT for sentence encoding. Finally, Emo-
Graph (Xu et al., 2020) is a graph-based method
that learns dependencies among emotion nodes us-
ing GCNs. The result presented is based on our
implementation with optimized parameters, and is
slightly better than their original paper. We also
compare with a BERT and a RoBERTa model as
baselines (BERT, RoBERTa). We first take the
representation of [CLS] token from pre-trained
BERT/RoBERTa, on top of that, a linear layer is
connected. For the two datasets, we set the top-k
value to be the average number of labels in each
dataset.

We can observe that our model surpasses all the
selected baselines in most of the cases. Especially,
both MEDA and EmoGraph applied pre-trained
BERT model as our BERT-LiGCN model does,
and we significantly outperform those models on
all three metrics. Moreover, EmoGraph is a simi-
lar model with LiGCN but it only considers a sin-
gle node type (class node) while LiGCN considers
both class node and token node. This shows that,
with a much complex graph structure, LiGCN is
able to capture more information when doing clas-
sification. Besides, LiGCN benefits from using
RoBERTa as the encoder, as RoBERTa improves
upon BERT by a small margin.

4.2 Large Label Sets

We then evaluate large label sets using RCV1 and
AAPD, shown in Table 6. We compare with a
number of recent baselines: XML-CNN (Liu et al.,
2017) applied a CNN and dynamic pooling to learn
features for MLTC; Imprinting (Qi et al., 2018) is a
weight imprinting method that directly set the final
layer weights of deep models from new training
examples; DXML (Zhang et al., 2018) focused
on label co-occurrence graph to solve the multi-
label long-tail issue; OLTR (Liu et al., 2019b) is
a method that handles long-tail and imbalanced
classification problems; BBN (Zhou et al., 2020) is
a model that considers both representation learning
and classifier learning; HTTN (Xiao et al., 2021)
learns the meta-knowledge so as to transfer from
data-rich head labels to data-poor ones. We set the
top-k value to be k = 5 in the prediction so as to
evaluate P@k and nDCG@k.

Our model can also surpass the selected base-
lines in general, especially with a large im-
provement on the F1-score for the two datasets.
Surprisingly, BERT-LiGCN performs better than
RoBERTa-LiGCN on P@1, P@3 and nDCG@3 in
AAPD. In other words, BERT-LiGCN can predict
better top-3 candidates, while RoBERTa-LiGCN
can do well in predicting the 4-th and 5-th candi-
dates. But in both BERT and RoBERTa settings,
our model can perform close and better compared
with these recent baselines.

5 Analysis

In this section, we first focus on ablation study of
the proposed model. We then demonstrate the in-
terpretability for labels with several case studies
where we identify keywords that trigger certain la-
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SemEval RenCECps
Method Macro F1 Micro F1 Jaccard Macro F1 Micro F1 Jaccard

SGM (Yang et al., 2018) 0.4110 0.5750 0.4820 - 0.5560 -
Seq2Emo (Huang et al., 2019) - 0.7089 0.5919 - - -
TECap (Fei et al., 2020) 0.5760 0.6820 - 0.4550 0.5310 -
MEDA (Deng and Ren, 2020) - - - 0.4831 0.6076 -
EmoGraph (BERT-GCN)*(Xu et al., 2020) 0.6367 0.8108 0.6818 0.6129 0.8559 0.7481

BERT 0.5223 0.6454 0.4766 0.5344 0.6365 0.4669
RoBERTa 0.5039 0.6817 0.5171 0.5842 0.7987 0.6649
BERT-LiGCN (ours) 0.7368 0.8312 0.7111 0.7138 0.8615 0.7567
RoBERTa-LiGCN (ours) 0.7786 0.8579 0.7512 0.7429 0.8756 0.7787

Table 5: Evaluation results on SemEval-2018 and RenCECps. BERT/RoBERTa means the system which has
a linear layer on top of the original BERT/RoBERTa. EmoGraph*:we present results of our own optimized
implementation of EmoGraph. Underlined scores are the best ones among baselines.

Method P@1 P@3 P@5 nDCG@3 nDCG@5 F1-score

RCV1
XML-CNN (Liu et al., 2017) 95.75 78.63 54.94 89.89 90.77 75.92
Imprinting (Qi et al., 2018) 77.38 47.96 31.45 58.83 57.91 26.35
DXML (Zhang et al., 2018) 94.04 78.65 54.38 89.83 90.21 75.76
OLTR (Liu et al., 2019b) 93.79 61.36 44.78 74.37 77.05 56.44
BBN (Zhou et al., 2020) 94.61 77.98 54.25 88.97 89.68 78.65
HTTN (Xiao et al., 2021) 95.86 78.92 55.27 89.61 90.86 77.72
BERT-LiGCN (ours) 94.42 80.98 55.48 91.93 91.94 83.14
RoBERTa-LiGCN (ours) 95.61 82.40 56.31 93.40 93.26 83.66

AAPD
XML-CNN (Liu et al., 2017) 74.38 53.84 37.79 71.12 75.93 65.35
Imprinting (Qi et al., 2018) 68.68 38.22 23.71 55.30 55.67 25.58
DXML (Zhang et al., 2018) 80.54 56.30 39.16 77.23 80.99 65.13
OLTR (Liu et al., 2019b) 78.96 56.28 38.60 74.66 78.58 62.48
BBN (Zhou et al., 2020) 81.56 57.81 39.10 76.92 80.06 66.73
HTTN (Xiao et al., 2021) 83.84 59.92 40.79 79.27 82.67 69.25
BERT-LiGCN (ours) 84.10 61.33 40.88 80.77 83.68 75.89
RoBERTa-LiGCN (ours) 82.50 61.26 41.38 80.39 83.83 76.25

Table 6: Results on RCV1 and AAPD: note that BERT/RoBERETa baseline have a negative result in this case.

bels. Moreover, we study and examine the meaning
of label representations learned by the model.

5.1 Ablation Study

We first study the impact of graph convolutional
layer numbers in Table 7. We test with 1, 2 and
3 LiGCN layers on SemEval and RenCECps us-
ing BERT-LiGCN model. In general, we see that
2-layer is the best setting. Less layers may not
be enough for information exchange within nodes
in the GCN models. While increasing the layer
number results in training difficulties and lower
performances, as some other works (Li et al., 2018)
have shown.

5.2 Token-label Relations

As our proposed model provides token-label rela-
tions, we further study token-level explanations via
case studies and a quantitative analysis.

Case Study We show examples by visualizing
the token-label weights in Figure 2. Specifically,
we take the reconstructed Atoken_label and normal-
ize the matrix so that all values sum up to 1. We
select a sample from SemEval test set, as shown
in Figure 2a: haven’t been on a holiday abroad
in two years how depressing is that... (labels:
pessimism and sadness). In such a heatmap,
columns are tokens while rows are the emotion
labels. We can notice that our model computes
a higher score to the text chunk haven’t and hol-
iday abroad, and a relatively lower score to de-
pressing, by looking at the corresponding columns.
Therefore, the prediction being pessimism and
sadness is mostly triggered by haven’t and holi-
day abroad. This indicates that the emotion label
to be such a negative sentiment is because this
person ‘haven’t been on a holiday abroad.’Even
though there is a strong negative sentiment word
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SemEval RenCECps
BERT-LiGCN Macro F1 Micro F1 Jaccard Macro F1 Micro F1 Jaccard

1-layer 0.7131 0.8159 0.6891 0.7054 0.8091 0.6794
2-layer 0.7368 0.8312 0.7111 0.7138 0.8615 0.7567
3-layer 0.7109 0.8145 0.6871 0.7044 0.8085 0.6785

Table 7: Ablation study on number of layers: compare numbers of BERT-LiGCN layer.

(a) An example from SemEval.

(b) An example from RenCECps.

Figure 2: Visualization of word-label weights: brighter
color indicates a larger value.

depressing, LiGCN attempts to pick out implicit
and deeper reasons. Besides, one can see that our
model highlights other three close emotions anger,
disgust and fear. 2

We show another example from RenCECps test
set in Figure 2b: 阴沉的天，加上暗红色的地
板，让房间显得压抑异常。 (The gloomy sky,
together with the dark red floor, made the room
look very depressing.) The ground truth labels
are Sorrow and Anxiety. Our model success-
fully predicts these two class labels; moreover, the
model also suggests that Hate is a possible la-
bel, which is reasonable in this particular exam-
ple. Besides, in the annotation of the original
dataset by (Quan and Ren, 2010), we find that two
keywords are highlighted for this example: 阴沉
(gloomy) : Surprise=0, Sorrow=0, Love=0, Joy=0,
Hate=0, Expect=0, Anxiety=0.6, Anger=0; and压
抑 (depressing): Surprise=0, Sorrow=0.5, Love=0,

2When doing classification, both special tokens of BERT
[CLS] and [SEP] contain useful semantic information of
the whole sequence, so the color tends to be brighter.

Joy=0, Hate=0, Expect=0, Anxiety=0.7, Anger=0.
Our model also captures such a trend successfully
by showing a higher score near or on these token
columns.

Quantitative Analysis So far, we have demon-
strated that our model is able to identify the trig-
gering words for each individual class from the
confidence score of the token-label edges. To quan-
titatively show the quality of identified triggering
words, we compute MSE between our best per-
formed model and the ground truth annotations
for the test set of RenCECps. Similar to previ-
ous analysis, we first normalize the constructed
token-label adjacency matrix Atoken_label, then con-
struct a token-label matrix Agolden from ground
truth annotations (for each sentence, there is only
a few keywords, we assign zero to other non-
keyword tokens). Then we are able to compute
MSE score between the two aforementioned matri-
ces: MSE(Atoken_label, Agolden). We also recon-
struct the token-label matrix from the BERT+single
model as a comparison. RoBERTa has an MSE
score of 0.0901 and RoBERTa-LiGCN has 0.0020.
RoBERTa-LiGCN has a significant lower MSE
score compared with RoBERTa. The T-test be-
tween the two models based on the predictions is
0.016, showing a significant difference. Since other
datasets do not contain token-level annotations, so
we fail to conduct quantitative analysis on them.

Highlighted Tokens Additionally, in Table 8, we
show a case study selected from AAPD. We keep
the top tokens highlighted only. This article is cor-
rectly classified as logic in computer science(cs.lo),
programming languages (cs.pl) and software engi-
neering (cs.se), marked by different colors. One
can notice that the highlighted tokens are closely
related to the class fields: object-oriented software
and Object Programs are associated with cs.se;
reference expressions is associated with cs.pl; de-
scribing program semantics is associated with cs.lo.
Note that we omit highlighting of tokens that may
appear in more than two classes for simplicity.
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Verifying properties of object-oriented software requires a method for handling references in a simple and intuitive way, closely related to how

O-O programmers reason about their programs. The method presented here, a Calculus of Object Programs , combines four components:

compositional logic , a framework for describing program semantics and proving program properties; negative variables to address the specifics of

O-O programming , in particular qualified calls ;the alias calculus, which determines whether reference expressions can ever have the same value...

Classes: software engineering (cs.se) , programming languages (cs.pl) , logic in computer science (cs.lo)

Table 8: Highlighting tokens: two random paper abstracts in AAPD (Meyer, 2011). Dark color means a higher
correlation between token and classes.

5.3 Label Correlations

As we model class labels as nodes in the graph, we
can then investigate if and how the learned label
node representations are meaningful. After training
LiGCN, we take the label node representations of
the last LiGCN layer and calculate cosine similar-
ity between each label pair. We assume that the
meaningful representations of a label pair should
have a small angle in the latent space (i.e. their co-
sine similarity tends to the value of 1) if they have
a positive correlation, and a large angle if they have
a negative correlation. We also investigate label
correlations by looking at the model predictions.
We collect model predictions in the test set and
each label is represented as a binary vector with
the dimension equal to the size of test set, and then
calculate Pearson correlation between each label
pair. Similarly, if Pearson correlation value tends
to be 1, then it means a positive relationship; if
the value tends to be -1, then it means a negative
relationship.

Selected News Topics from RCV1 In RCV1
we select 9 topics to plot heatmaps randomly: gov-
ernment, financial performance, commodity mar-
ket, consumer prices, domestic markets, acquisi-
tions, funding and domestic politics. Due to the
limited space, we only show Pearson correlations
and cosine similarities between each pair of our
LiGCN model with the best performance in Figure
3. For the Pearson correlation, we could notice
that the model captures strong positive relation-
ships between the following pairs: commodity mar-
ket and market, government and domestic politics,
consumer prices and domestic markets. These re-
lationships are consistent with our real life, i.e.,
government news and domestic political news are
very similar. We see a similar trend in the heatmap
of cosine similarity for the mentioned label pairs.
And in this way, more positive relations are found
than negative ones, for example, negative correla-
tion between acquisitions and consumer prices.

(a) Pearson correlation.

(b) Label cosine similarity.

Figure 3: Visualization of selected topics on RCV1.

6 Conclusion

In this work, we propose a label-interpretable graph
model, LiGCN, to solve the MLTC problem as a
link prediction task. Our model is able to provide
token-level explanation for the classification and
therefore enjoys better label interpretability. Ex-
periments on four public datasets show that our
model achieved competitive scores. In the future,
we will experiment with more complex graph en-
coders, extend this idea to single-label and extreme
multi-label classification tasks (Li et al., 2019b).
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Abstract

Current graph-neural-network-based (GNN-
based) approaches to multi-hop questions in-
tegrate clues from scattered paragraphs in an
entity graph, achieving implicit reasoning by
synchronous update of graph node representa-
tions using information from neighbours; this
is poorly suited for explaining how clues are
passed through the graph in hops. In this paper,
we describe a structured Knowledge and con-
textual Information Fusion GNN (KIFGraph)
whose explicit multi-hop graph reasoning mim-
ics human step by step reasoning. Specifically,
we first integrate clues at multiple levels of
granularity (question, paragraph, sentence, en-
tity) as nodes in the graph, connected by edges
derived using structured semantic knowledge,
then use a contextual encoder to obtain the
initial node representations, followed by step-
by-step two-stage graph reasoning that asyn-
chronously updates node representations. Each
node can be related to its neighbour nodes
through fused structured knowledge and con-
textual information, reliably integrating their
answer clues. Moreover, a masked attention
mechanism (MAM) filters out noisy or redun-
dant nodes and edges, to avoid ineffective clue
propagation in graph reasoning. Experimen-
tal results show performance competitive with
published models on the HotpotQA dataset.

1 Introduction

Question Answering (QA) is amongst the most
commonly used tasks to quantify the reasoning
and understanding ability of artificially intelligent
systems. The performance of the most success-
ful approaches on QA tasks such as SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017),
SearchQA (Dunn et al., 2017), now far exceeds that
of humans (Wang et al., 2018). However, most stud-
ies on these tasks have focused on single-hop rea-
soning, where most questions can be answered with
a single document and without complex reasoning.

Q: In which 2015 British-American romantic drama film directed by Todd

Haynes did John Magaro star in?

Selected paragraphs:

P1 Title: John Magaro

S1 John Robert Magaro (born February 16, 1983) is an American film, ……

S2 He starred alongside James Gandolfini in "Not Fade Away" (2012),…...

S3 He also starred alongside Rooney Mara in "Carol" (2015).

P2 Title: Carol (film)

S4 Carol is a 2015 British-American romantic drama film directed by Todd Haynes.

S5 The screenplay, written by Phyllis Nagy, is based on the 1952 romance novel……

S6 The film stars Cate Blanchett, Rooney Mara, Sarah Paulson, Jake Lacy, and……

P3……

Supporting facts: S1, S4

Answer: Carol

Figure 1: An example of a multi-hop question showing the
utility of structured semantic knowledge for complex multi-
hop reasoning. The blue dotted line denotes a coreference link
between an entity John Magaro and a mention He. The green
dashed lines denote semantic links between entities extracted
from Open Information Extraction, i.e., (He, star in, Carol)
and (Carol, directed by, Todd Haynes).

For complex multi-hop reasoning, requiring multi-
ple steps, these prior tasks provide a poor test. The
multi-hop HotpotQA (Yang et al., 2018b) dataset,
by contrast, is designed for systems that integrate
information from multiple documents, reasoning
to an answer explained using supporting facts.

Figure 1 is an example from HotpotQA, showing
that structured knowledge, i.e., co-references and
RDF triples, are useful in complex multi-hop rea-
soning. To answer the question, the multi-hop QA
model must first use the coreference in which He
in S2 refers to John Robert Magaro in S1, allowing
it to integrate (He, star in, Carol) with question-
related structured knowledge (Carol, directed by,
Todd Haynes), thus reaching the final answer Carol.

Most multi-hop QA models extract entities re-
lated to the question to construct an entity graph,
and then apply a GNN-based model to integrate in-
formation across nodes and predict answers (Dhin-
gra et al., 2018; Qiu et al., 2019; Fang et al., 2020;
Shao et al., 2020). However, this kind of GNN-
based approach leaves challenges.

First, existing graph construction methods do
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not precisely capture the semantic relationships
between nodes, leading to unreliable integration
of neighbouring nodes’ information during graph
reasoning. Figure 1 shows how essential such struc-
tured semantic knowledge is in multi-hop reason-
ing. Thus, integrating the semantics of input doc-
uments within GNN-based QA models remains a
critical challenge. Moreover, graph reasoning over
noisy or redundant nodes and edges may lead to
ineffective information integration, of e.g., the spu-
rious (He, star in, Not Fade Away) in S1. This
necessitates filtering out such “noise” nodes and
edges unrelated to the question.

Second, most multi-hop QA models combine
all clues related to the question into a graph, and
then apply GNN-based inference to update all node
representations synchronously without considering
the order of clues in the reasoning chains. In this
type of approach, it is difficult to explain how the
models make decisions and how clues are passed
through the graph in hops (Du et al., 2019).

In this paper, we propose a structure knowledge
and contextual information fusion GNN for multi-
hop QA. Our approach involves three steps: clue ex-
traction, clue reasoning, and multi-task prediction.
For clue extraction, we extract clues at multiple lev-
els of granularity (question, paragraph, sentence,
entity) as nodes, connected by semantic edges de-
rived using structured knowledge. The motivation
is that semantic edges provide more reliable infor-
mation about neighbouring nodes for graph reason-
ing, compared to manually defined graph construc-
tion rules (Fang et al., 2020). For clue reasoning,
inspired by step-by-step reasoning from CogQA
(Ding et al., 2019), we first initialize all node rep-
resentations using a pretrained contextual encoder,
and then mimic human-like step-by-step reasoning
via asynchronous update of node representations
on the semantic graph. This update is a two-stage
process in which nodes directly related to the ques-
tion are updated first as direct clues, e.g., entities
Todd Haynes and John Magaro in Figure 1, fol-
lowed by the remaining nodes which are updated
as indirect clues, e.g., Coral. At this point, we also
apply a masked attention module to filter out noisy
or spurious nodes and edges to avoid ineffective
or deleterious clue propagation during GNN infer-
ence. Finally, the updated node representations are
passed to a multi-task layer that predicts the final
answer, the answer type, supporting facts and an
interpretable reasoning chain.

We evaluated our proposed KIFGraph on Hot-
potQA dataset and achieved a high rank amongst
published systems on the leaderboard. The main
contributions of this paper are as follows:

• We construct a graph based on information fu-
sion of structured knowledge, and contextual
information, at multiple levels of granularity.

• We propose applying two-stage graph reason-
ing for multi-hop QA, which introduces inter-
pretability to our reasoning model via a prop-
agation process of information from direct to
indirect clues that described by the model’s
outputs.

• We introduce a masked attention module to
filter out noisy nodes and edges to avoid inef-
fective clue propagation in graph reasoning.

Hence, KIFGraph1 provides a new perspective
on how to perform global interpretable reasoning
through GNN-based methods, and achieves com-
petitive performance on the HotpotQA benchmark.

2 Related work

Knowledge-based multi-hop QA. Knowledge-
based QA (KBQA) usually provide accurate an-
swers because they use reliable inference to search
structured knowledge curated by humans. CNNSM
(Yih et al., 2014) decomposes questions into an en-
tity mention and a relation pattern, then maps them
to the entities and relations in a knowledge base to
answer a question. HSP (Zhang et al., 2019) uses a
three-stage parsing architecture to generate a logi-
cal form for complex questions, and then queries
an existing database to arrive at an answer. Un-
fortunately, KBQA is constrained by the paucity
of available external knowledge bases and limited
ability to use contextual information.

Question decomposition for multi-hop QA. Re-
cent studies have focused on decomposing multi-
hop questions into single-hop sub-questions, en-
abling existing single-hop QA models to be applied.
DecompRC (Min et al., 2019) uses a pointer model
to split the question and generate sub-questions,
and then answers these sub-questions using an ex-
isting single-hop QA model. QDMR (Wolfson
et al., 2020) trains a seq-to-seq model to parse
multi-hop questions into a sequence of query steps.
These QA systems attempt to find the essential

1https://github.com/Tswinggg/KIFGraph
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clue for each sub-question, but largely ignore any
relationships between the sub-questions.

Graph Neural Networks for multi-hop QA. Mo-
tivated by work with GCNs (Kipf and Welling,
2017), recent studies have proposed that one should
construct entity graphs from relevant paragraphs
and apply GCNs to perform implicit reasoning by
propagating contextual information along graph
edges. Entity-GCN (Cao et al., 2019), MHQA-
GRN (Song et al., 2018), Coref-GRN (Dhingra
et al., 2018) and DFGN (Qiu et al., 2019) select
entity nodes and use rules to construct edges in the
entity graphs. HDE-Graph (Tu et al., 2020) and
HGN (Fang et al., 2020) construct a heterogeneous
graph at multiple levels of granularity to maximise
direct propagation of information via graph edges.

3 Methodology

In this section, we describe in overview the KIF-
Graph model in Figure 2. KIFGraph involves the
following three steps: i) clue extraction, includ-
ing use of a paragraph retrieval module and a se-
mantic graph construction module; ii) clue reason-
ing, including the masked attention and two-stage
graph reasoning module at the centre of the figure;
and iii) multi-task prediction, including answer-
span prediction, answer-type prediction, supporting
facts prediction and reasoning chain generation.

3.1 Clue Extraction
We first utilize a paragraph retriever to select para-
graphs related to the question. Then, we extract
multiple-granularity clues from these paragraphs
as nodes, and construct semantic edges between
nodes using multiple modules, in this case Named
Entity Recognition (NER), Coreference Resolution
(CR) and Open Information Extraction (OpenIE)
(Angeli et al., 2015). This architecture allows for
later extensions of the set of knowledge sources.

Paragraph Retriever. The task of the paragraph
retriever is to select relevant paragraphs that con-
tain clues related to the question Q from given input
paragraphs P, where P = {p0, p1, ..., pi, ..., pm}, m
is the number of paragraphs.

PQ = ParagraphRetriever(Q,P) (1)

The PQ should contain the multiple paragraphs
needed for complex multi-hop reasoning required
by the question. To obtain these paragraphs, all use-
ful clues in the question should be utilized. Similar

to HGN (Fang et al., 2020), we combine a two-step
hyperlink search and a paragraph ranker to retrieve
relevant paragraphs from Wikipedia. The two-step
hyperlink search contains two processes: i) select-
ing paragraphs whose title appears in the question
as the first-hop paragraphs; ii) selecting second-
hop paragraphs whose title appears in hyperlinks
(provided by Wikipedia) in the first-hop paragraph.
If this search also fails, we use the paragraph ranker,
which is based on a pre-trained RoBERTa model
(Liu et al., 2019), to select paragraphs with the
highest ranking score.

Semantic Graph Construction. Existing stud-
ies construct graphs in GNN based on manually
defined rules, e.g., HGN and DFGN. In these meth-
ods, the semantic relationships, at multiple lev-
els of granularity, between nodes have not ade-
quately been considered, so nodes lack reliable
neighbouring nodes for use during GNN node-
representation updates. To provide them, we ex-
tract clues at multiple levels of granularity (ques-
tion, paragraph, sentence, entity) as nodes N , and
then use structured knowledge extracted by multi-
ple modules (i.e., NER, CR and OpenIE) to gen-
erate semantic edges E and construct a semantic
graph G = (N , E). Specifically, we first use CR
techniques to extract entity-mention pairs in re-
trieved paragraphs.

corefpi(pairs) = CR(pi)
pairs = {(se, e), (sm1 ,m1), ..., (smk

,mk)}
(2)

where corefpi(pairs) denotes the set of entity-
mention pairs in paragraph pi, se is the sentence id
in which entity e is located, and smk

is the sentence
id of mention mk. Then, we iterate over the set
corefpi(pairs) to build semantic edges as follows:

edge(si, sj) =

{
1, if e in si andmk in sj

0, otherwise
(3)

edge(e, sj) =

{
1, if e in si and mk in sj

0, otherwise
(4)

where if entity e in sentence si and mention mk in
sentence sj , it indicates that there is a semantic rela-
tionship between these two sentences. In this way,
we build two types of semantic edges: edge(si, sj)
between sentence nodes and edge(e, sj) between
sentence nodes and entity nodes, i.e., blue dotted
lines in Figure 3.
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Figure 2: An overview of our proposed KIFGraph model. Specifically, it involves three key modules, i) Clue extraction extracts
clues related to the question into a graph; ii) Graph reasoning based on MAM performs two-stage graph reasoning, from direct
clue (white circle) graph to indirect clue (orange circle) graph, to asynchronous update node representations; iii) Multi-task
prediction conducts a multi-task layer to predict the span of answer, supporting facts, the type of question and reasoning chains.

Similarly, structured knowledge between entities
is important because it can represent semantic re-
lationships between entities accurately. To obtain
this, we first use OpenIE techniques to extract this
structured knowledge in the form of RDF triples.

Triplepi(S,O,R) = RDF(pi) (5)

where S, O and R represent Subject, Object and
Relationship respectively, and Triplepi(·) is the
set of RDF triples in paragraph pi. We then build se-
mantic edges between entity nodes based on these
RDF triples. Since both S and O may be a span of
text, we build edges between entities as follow:

edge(ei, ej) =

{
1, if ei in S and ej in O

0, otherwise
(6)

To sum up, the semantic graph G for the ex-
ample in Figure 3 consists of four types of nodes
(Question, Paragraph, Sentence, Entity), four di-
rect edges built by HGN (Fang et al., 2020), i.e., Q-
P, P-P, P-S, S-E, and three semantic edges that we
construct, i.e., S-S, S-E, E-E.

3.2 Clue Reasoning
Given the semantic graph, we perform two-stage
reasoning over the graph, where node representa-
tions are updated asynchronously by mimicking
human step-by-step reasoning from direct clues
to indirect clues. Specifically, we set node repre-
sentations q,pi, si, ei ∈ Rd and graph represen-
tation G = [q,P,S,E] ∈ Rt×d, where P =
{p1,p2, ...,pn1}, S = {s1, s2, ..., sn2}, E =

P1.S0

Q

P2
P1

John Robert

Magaro

He

Carol Todd Haynes

Hyperlink

P1.S2 P2.S0

Figure 3: Semantic graph construction for the example in
Figure 1. The graph consists of four types of nodes: Question
Q, Paragraph P, Sentence S and Named Entity. The blue dot-
ted lines represent semantic edges generated by coreference
resolution, the green dashed lines represent semantic edges
generated by OpenIE. The orange line was built using Hyper-
links as mentioned in the section Paragraph Retriever.

{e1, e2, ..., en3}, n1, n2, n3 denote the numbers
of paragraph/sentence/entity nodes in the graph,
t = n1 + n2 + n3 + 1 is the total number of nodes,
and d is the dimension of nodes.

Contextual Encoder. We first combine all re-
trieved paragraphs into context C, and then initial-
ize all representations by concatenating the ques-
tion Q and the context C and feeding them into
a pre-trained contextual encoder RoBERTa (Liu
et al., 2019) to obtain the question representation
Q = {q0,q1, ...,qm−1} ∈ Rm×d and the context
representation C = {co, c1, ..., cn−1} ∈ Rn×d,
where m and n are lengths of Q and C.

Q,C = RoBERTa(Q,C) (7)

According to the previous work on Graph Atten-
tion Networks (GATs) (Velickovic et al., 2017), at
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least one linear transformation is required to obtain
a more expressive context representation. To this
end, as an initial step in obtaining a node represen-
tation, we first apply a shared linear transformation
W ∈ Rd×2d to generate the higher-level context
representation C′ ∈ Rn×2d. We then apply an
LSTM layer to C′, obtaining the initial representa-
tions of all nodes q,pi, si, ei ∈ Rd.

pi = LSTM1(C
′,pstart

i ,pend
i )

si = LSTM2(C
′, sstarti , sendi )

ei = LSTM3(C
′, estarti , eendi )

q = MaxPooling(Q)

(8)

where pstart
i , sstarti and estarti denote the start posi-

tion of the i-th paragraph, sentence and entity node,
and pend

i , sendi , and eendi denote the correspond-
ing end position. MaxPooling is used to calculate
the question representation q. Finally, all node
representations q,pi, si, ei are concatenated as the
graph representation G = [g0,g1, ...,gt] ∈ Rt×d,
t is the total number of nodes.

Masked Attention Module (MAM) Since not ev-
ery node and edge contains useful information, a
masked attention module penalizes spurious nodes
and edges before graph reasoning. For nodes unre-
lated to the question, we use an attention network
between question representation q and graph node
representation gi to generate the mask module m
(Qiu et al., 2019). As a result, useful nodes related
to the question will be enhanced and noisy nodes
will be penalized by multiplying the mask m and
the initial node representations G.

γi = qWgi

m = σ([γ0, γ1, ..., γi, ..., γt])

G† = mG = [m0g0,m1g1, ...,mtgt]

(9)

where W is a linear projection matrix, σ is the
sigmoid function, gi is the initial representation
of node i and G† is the graph representation after
masking noisy nodes.

Since GNN-based methods update node repre-
sentations using information from their neighbour-
ing nodes, noisy edges will lead to erroneous infor-
mation propagation during graph reasoning. This
is addressed by applying GAT to compute attention
coefficients between nodes:

αij =
exp(σ(aT [Wg†

i ||Wg†
j ]))∑

k∈Gi∗ exp(σ(a
T [Wg†

i ||Wg†
k])

(10)

g′
i = σ(

∑
j∈Gi∗ αijWg†

j) (11)

where αij is the attention coefficient between node
i and node j, g†

i ∈ G† is the masked node represen-
tation of node i, W ∈ Rd×d is a weight matrix, σ
is an activation function and Gi∗ are neighbours of
the node i. Since the updated node representations
g′
i ∈ G′ is a linear combination of the representa-

tions of Gi∗, we can also enhance useful neighbour-
ing nodes or penalize noisy neighbouring nodes
through the attention coefficient between nodes.

In summary, MAM updates the graph representa-
tion by fusing structured knowledge and contextual
information, alleviating the propagation of erro-
neous information from noisy nodes and edges in
graph reasoning and the interference with subse-
quent answer prediction.

Graph Reasoning. To achieve explicit and inter-
pretable graph reasoning, we use two-stage graph
reasoning based on MAM to asynchronously up-
date all node representations according to their or-
der in the reasoning chain, mimicking human step-
by-step reasoning. Specifically, we first divide the
semantic graph G into the direct clue graph and the
indirect clue graph. The direct/indirect graph is ob-
tained by masking out nodes that are unrelated/re-
lated to the entities in the question, e.g., orange
circles in the graph are direct clue nodes directly
related to the question and white circles are indirect
nodes in Figure 2.

G1,G2 = Divide(G) (12)

where G1 and G2 are the direct clue graph and di-
rect clue graph, respectively. Then, we feed the
initial graph representations G and question repre-
sentation q into MAM to update the representation
of the direct clues, followed by the updated graph
representations G′ and question representation q′

are passed into MAM to update the representation
of the indirect clues.

G′ = MAM(G,G1,q)
q′ = G′[0]

G′′ = MAM(G′,G2,q′)

(13)

where G′ is the graph representation of direct clue
graph, G′′ is the graph representation of the overall
graph. In this way, we achieve human-like step-by-
step reasoning to update nodes asynchronously.

Finally, we use a gated attention mechanism
(Fang et al., 2020) to merge the graph represen-
tation G′′ and the context representation C′ for use
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in the final answer prediction step.

C̃ = Relu(C′Wm) · Relu(G′′W′
m)T

G̃ = Softmax(C̃) ·G′′

Ḡ = σ([C′; G̃]Ws) · Tanh([C′; G̃]Wt)

(14)

where Wm ∈ R2d×2d, W′
m ∈ R2d×2d, Ws ∈

R4d×4d and Wt ∈ R4d×4d are trainable weight
matrices. The gated representation Ḡ ∈ R4d×4d is
used for answer span prediction.

3.3 Multi-task prediction

We follow the cascade prediction module design
from (Fang et al., 2020), which contains six outputs,
including paragraph selection, supporting facts pre-
diction, entity prediction, the start and end position
of the answer and answer type prediction.

Opara = MLP1(P̄)

Osent = MLP2(S̄)

Oentity = MLP3(Ē)

Ostart = MLP4(Ḡ)

Oend = MLP5(Ḡ)

Otype = MLP6(Ḡ[0])

(15)

where P̄, S̄, Ē are updated node representations
which can be obtained from Ḡ, Ḡ[0] is the first
hidden representation of Ḡ and each MLPi is a
multi-layer perceptron (MLP) for different outputs.

Finally, we use cross entropy loss over each out-
put logits. The total loss function is a weighted
sum of this loss.

Ltotal =Lstart + Lend + λ1Lpara + λ2Lsent

+ λ3Lentity + λ4Ltype
(16)

where λ1, λ2, λ3, and λ4 are hyper-parameters,
and Lstart, Lend, Lpara, Lsent, Lentity, Ltype are
the cross entropy loss for the corresponding logit:
Ostart, Oend,Opara,Osent,Oentity,Otype.

Finally, we select nodes in the direct clue and
indirect clue graph that are not masked by MAM
to generate the reasoning chain:

Q→direct clues→indirect clues→Ans

4 Experiments

In this section, we compare our system KIFGraph
with state-of-the-art multi-hop QA approaches on
HotpotQA (Yang et al., 2018a) dataset.

4.1 Dataset and Setup

Dataset and Metrics. We evaluate our proposed
KIFGraph on HotpotQA in the distractor setting.
The distractor setting contains 2 golden paragraphs
and 8 distractor paragraphs. In HotoptQA dataset,
there are two types of questions—Bridge question
and Comparison question, and two types of answer-
spans of text and yes/no. Exact Match (EM) and
partial match (F1) between the prediction and the
golden answer are used as performance metrics.
Further, a joint metric is used to evaluate both tasks
simultaneously.

Setup. In semantic graph construction phase, we
use the Stanford CoreNLP toolkit (Manning et al.,
2014) to extract named entities, entity-mention
pairs and RDF triples from the input documents,
and set the number of question/paragraph/sen-
tence/entity nodes to 1/4/40/60. In the paragraph
retrieval phase, we follow HGN to select the top-K
(K=4) paragraphs for a fair comparison. In context
encoding phase, the maximum input sequence of
RoBERTa-large is set to 1024, the hidden layer is
set to 300, the batch size is 16 and the learning rate
of Adam is 1e-5. In the multi-task prediction phase,
the value of λ1/λ2/λ3/λ4 is set to 1/1/5/1.

4.2 Main Results

In Table 1, we compare KIFGraph with other pub-
lished baselines on the private test set of HotpotQA.
From Table 1, we observe that KIFGraph outper-
forms all baselines on EM/F1 metrics of the answer
and achieves the second best results on the Joint
EM/F1, demonstrating the progress made by KIF-
Graph in answer span prediction. Compared with
DFGN which constructs an entity graph and applies
GATs to achieve reasoning over the entity graph,
KIFGraph increase performance substantially from
59.82 to 74.12 in the Joint EM/F1 metrics. We be-
lieve this is because our model performs two-stage
graph reasoning based on masked attention mod-
ule, which mimics the logic of human reasoning.
Compared with HGN which constructs a hierarchi-
cal graph, KIFGraph improves its answer EM/F1
by constructing a semantic graph fusing structured
knowledge and contextual information. In ablation
studies reported below, we provide a detailed anal-
ysis to prove that the semantic graph and two-state
graph reasoning contribute to its performance.
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Model Ans Sup Joint

EM F1 EM F1 EM F1
Baseline Model (Yang et al., 2018a) 45.60 59.02 20.32 64.49 10.83 40.16
DecompRC (Min et al., 2019) 55.20 69.63 - - - -
OUNS (Perez et al., 2020) 66.33 79.34 - - - -
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82
IRC (Nishida et al., 2021) 58.54 72.67 36.56 79.53 23.57 59.43
TAP2 (Glass et al., 2020) 66.64 79.82 57.21 86.69 41.21 70.65
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86 45.36 71.45
C2F Reader (Shao et al., 2020) 67.98 81.24 60.81 87.63 44.67 72.73
Longformer (Beltagy et al., 2020) 68.00 81.25 63.09 88.34 45.91 73.16
FFReader-large (Alkhaldi et al., 2021) 68.89 82.16 62.10 88.42 45.61 73.78
HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47 47.11 74.21
KIFGraph 69.53 82.42 61.79 87.98 46.49 74.12

Table 1: Results on the private test of HotpotQA in the distractor setting. The proposed KIFGraph model outperforms all
baselines published on the leaderboard in answer prediction. “-” denotes the case where no results are available. Leaderboard:
https://hotpotqa.github.io/.

4.3 Ablation studies
In this section, we verify the effectiveness of the
following three aspects of the KIFGraph model on
the dev set in the distractor setting: i) The semantic
graph; ii) The masked attention module; iii) The
two-stage graph reasoning.

Semantic graph effectiveness. As shown in Table
2, we evaluate the impact of semantic graph by
adding three different types of edges we construct.
As described in the section on semantic graph
construction, above, we add “sentence-sentence”
and “sentence-entity” edges by CR, increasing the
Ans F1 by 0.12 compared to Hier.Grpah in HGN.
Adding “entity-entity” edges by OpenIE, increases
the Ans F1 0.22. The combination of CR and Ope-
nIE improves the Ans F1 by 0.28. This suggests
that adding semantic edges obtained by structured
knowledge is effective for multi-hop QA.

Model Ans F1 Sup F1 Joint F1
Hier.Graph 82.22 88.58 74.37
Hier.Graph + CR 82.34 88.21 74.36
Hier.Graph + OpenIE 82.44 88.29 74.41
Semantic Graph 82.50 88.30 74.45

Table 2: Ablation study for semantic graph (SR) on dev set.
Hier.Graph denotes a hierarchical graph. CR denotes adding
edges by coreference resolution. OpenIE denotes adding edges
by Open information extraction. Semantic Graph denotes
adding edges by combining CR and OpenIE.

Masked attention module effectiveness. To verify
the effectiveness of the masked attention module,
we conduct four experiments to analyse the im-
pact of punishing noisy nodes and edges: i) w/o
masked nodes and edges: noisy nodes and edges
are not penalized; ii) masked nodes: only noisy
nodes are penalized; iii) masked edges: only noisy
edges are penalized; iv) masked nodes and edges:
noisy nodes and edges are penalized. As shown

in Table 3, by penalizing noisy nodes unrelated
to the question and weakening noisy edges, the
Ans F1 is increased by 0.04 and 0.13, respectively.
The result of “masked nodes” shows that penalizing
noisy nodes unrelated to the question is helpful, but
all of nodes have been filtered by clue extraction,
thus improvement may not be obvious. The result
of “masked edges” indicates that fusing semantic
graph and contextual information to penalize noisy
edges can lead to significant performance improve-
ment. This indicates the importance of masked
attention mechanism for graph reasoning.

Model Ans F1 Sup F1 Joint F1
w/o masked nodes & edges 82.50 88.30 74.45
masked nodes 82.54 88.29 74.44
masked edges 82.63 88.32 74.52
masked nodes & edges 82.65 88.34 74.60

Table 3: Ablation study for masked attention module (MAM)
on dev set. “masked nodes” and “masked edges” denote pe-
nalizing noisy nodes and noisy edges respectively.

Two-Stage graph reasoning. To verify the effec-
tiveness of the two-stage graph reasoning (TS). We
compare two different TS schemes with graph rea-
soning. In Table 4, we observe that the inverse
TS (Inv TS, update node representations in order
from indirect clues to direct clues) yields poor re-
sults, below the original GAT. But our proposed TS
(update node representations in order from direct
clues to indirect clues) that aligns with the logic of
human reasoning increases the Ans F1 and Joint F1
by 0.17 and 0.19 respectively. This indicates that
the two-stage graph reasoning is an effective form
of explicit reasoning for multi-hop questions.

Overall ablation results of KIFGraph perfor-
mances on dev set in the development set of Hot-
potQA are shown in Table 5. We observe that our
three components improve the performance of KIF-

77



Q: In which 2015 British-American romantic drama film directed by Todd Haynes did John Magaro star in?

Selected Paragraphs:
P1 Title: John Magaro

S1 John Robert Magaro (born February 16, 1983) is an American film.
S2 He also starred alongside Rooney Mara in "Carol" (2015). 

P2 Title: Carol (film)
S4 Carol is a 2015 British-American romantic drama film directed by Todd Haynes.

Answer: Carol Supporting facts: S1, S4

Direct clues:      {Q, P1, P2, S1, S4, Todd Haynes, John Magaro}
Indirect clues:    {S2, Carol}
Reasoning chain:      Q → Direct clues (S1, S4)→ Indirect clues (S2) →Answer
Predicted Answer:    Carol Predicted Supporting facts: S1, S4, S2

Figure 4: An example of KIFGraph to answering multi-hop questions. Direct/Indirect clues are unmasked nodes in the
direct/indirect clue graph. Reasoning chain is generated by the intrinsic structure of KIFGraph. In this example, we only select
supporting sentences (S1,S4,S2) as clues for the final reasoning chain.

Model Ans F1 Sup F1 Joint F1
KIFGraph (GAT) 82.50 88.30 74.45
KIFGraph (Inv TS) 81.92 88.23 73.89
KIFGraph (TS) 82.67 88.39 74.64

Table 4: Ablation study for two-stage graph reasoning on dev
set. “GAT” denotes that we use GAT to update the representa-
tion of all nodes, “TS” denotes that we use two-stage graph
reasoning which aligns with the logic of human reasoning
to update all nodes representation. “Inv TS” is an inverted
two-stage graph reasoning.

Model Ans F1 Sup F1 Joint F1
DFGN 69.38 82.23 59.89
- Semantic Graph 74.34 84.65 66.41
- TS graph reasoning 72.49 83.14 64.76
HGN 82.22 88.58 74.37
- Semantic Graph 82.50 88.31 74.45
- Masked attention module 82.31 88.23 74.25
- TS graph reasoning 82.34 88.27 74.39
KIFGraph (SR) 82.50 88.30 74.45
KIFGraph (SR+MAM) 82.65 88.34 74.60
KIFGraph (SR+MAM+TS) 82.67 88.39 74.64

Table 5: Ablation study for KIFGraph on dev set. We take
DFGN and HGN as the baseline model. The upper part is the
model ablation results by adding different modules.The lower
part is our model’s final ablation results.

Graph to varying degrees. Adding our three com-
ponents into baseline models (DFGN, HGN and
KIFGraph), demonstrates obvious performance im-
provements from the semantic graph and masked
attention, and the utility of fusing structured knowl-
edge and contextual information.

4.4 Case Study
The example question in Figure 4, illustrates ex-
plicit reasoning in KIFGraph. The semantic graph
construction method first extracts relevant clues at
multiple levels of granularity. Then, clues nodes
related to the question are selected by MAM mod-
ule as direct clues, i.e., {Q, P1, P2, S1, S4, Todd
Haynes, John Magaro}. Next, nodes connected by

semantic edges to direct clue nodes become direct
clues, i.e., {S2, Carol}, and two-stage graph rea-
soning updates their representations. Finally, using
all updated graph node representations, the multi-
task prediction module yields the final answer and
supporting facts. We also generate an explicit rea-
soning chain “Question→Direct clues→Indirect
clue→Answer” to demonstrate interpretable rea-
soning for the multi-hop question. Moreover, we
found that our model provides larger supporting
facts, including sentences with coreferences, to
make reasoning more explainable, i.e., S2. Since
He in S2 refers to John Magaro in S1, explain-
able multi-hop reasoning requires coreference res-
olution; the “gold standard” supporting facts (S1
and S4) do not suffice as explanations. Unfortu-
nately, our extended supporting facts may slightly
lower performance on the HotpotQA evaluation
since they are not included in the gold-standard;
further analysis may show that HotpotQA dataset
changes are warranted.

5 Conclusion and Future work

In this paper, we apply explicit graph reasoning to
extracted knowledge and contextual information
for multi-hop reasoning. We extract clues at multi-
ple levels of granularity relating entity nodes, and
construct a semantic graph from these clues. We
then combine a masked attention mechanism and
two-stage graph reasoning to perform interpretable
inference over the semantic graph. Experimental
results on HotpotQA dataset show the effectiveness
of our model. In future work, we hope to extend
the range and precision of the entity relations used,
and we hope to extend our model to accommodate
more complex multi-hop questions with unknown
number of hops and non-linear reasoning.
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