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Abstract

Recent advances in commonsense reasoning
have been fueled by the availability of large-
scale human annotated datasets. Manual an-
notation of such datasets, many of which are
based on existing knowledge bases, is expen-
sive and not scalable. Moreover, it is challeng-
ing to build augmentation data for common-
sense reasoning because the synthetic questions
need to adhere to real-world scenarios. Hence,
we present GRADA, a graph-generative data
augmentation framework to synthesize factual
data samples from knowledge graphs for com-
monsense reasoning datasets. First, we train
a graph-to-text model for conditional genera-
tion of questions from graph entities and rela-
tions. Then, we train a generator with GAN
loss to generate distractors for synthetic ques-
tions. Our approach improves performance for
SocialIQA, CODAH, HellaSwag and Common-
senseQA, and works well for generative tasks
like ProtoQA. We show improvement in robust-
ness to semantic adversaries after training with
GRADA and provide human evaluation of the
quality of synthetic datasets in terms of fac-
tuality and answerability. Our work provides
evidence and encourages future research into
graph-based generative data augmentation. 1

1 Introduction

Recent work has seen the emergence of several
datasets for improving commonsense reasoning of
language models through tasks like question an-
swering (QA) (Sap et al., 2019b; Talmor et al.,
2019; Bisk et al., 2020) and natural language infer-
ence (Bhagavatula et al., 2020; Zellers et al., 2019;
Sakaguchi et al., 2020). Some of these datasets
are based on existing knowledge graphs that rep-
resent different aspects of commonsense through
entities and relations. For example, annotators for
SocialIQA (Sap et al., 2019b) were shown an event

1Code and synthetic data files are available at https:
//github.com/adymaharana/GraDA.
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Figure 1: GRADA framework: The original dataset
is used to train GraphGPT2, a graph-to-text question
generator and OptionGAN, a distractor generator. The
synthetic dataset is subjected to filtering and used to
train the model in combniation with the original dataset.

from the inferential knowledge graph ATOMIC
(Sap et al., 2019a) and instructed to turn it into
a sentence by adding names, filling placeholders
and adding context, etc. For multiple-choice QA
datasets, annotators are also instructed to write dis-
tractor choices for each question. These useful
datasets are collected through a time-taking and
money-intensive crowdsourcing process which is
hard to scale. Large pretrained models like GPT2
(Radford et al., 2018) can be finetuned to generate
sentences from narrow data distributions, and it
has recently been leveraged to augment datasets
for text classification (Anaby-Tavor et al., 2020)
and question answering (Puri et al., 2020; Yang
et al., 2020). However, it is challenging to gener-
ate augmentation data for commonsense reasoning
because the generated questions and answers (re-
ferred to as “synthetic” in rest of the paper) need
to depict plausible real-world scenarios accurately.
Hence, we develop GRADA, a graph-based gen-
erative data augmentation framework to generate

43

https://github.com/adymaharana/GraDA
https://github.com/adymaharana/GraDA


synthetic samples from existing knowledge graphs
that encode information about the real world.

Each sample in commonsense reasoning datasets
comprises a question which describes a real-world
scenario and can be mapped to a set of predefined
entities and relations from knowledge bases like
ConceptNet and ATOMIC. For instance, the ques-
tion “Besides a mattress, name something people
sleep on.” from the ProtoQA dataset (Boratko et al.,
2020) can be mapped to the single-hop path (mat-
tress, RelatedTo, people) using ConceptNet. If
a pretrained language model is trained to condi-
tionally generate questions from such input paths,
we can expect it to generate sensible questions
when it is provided new paths with similar relations.
The model will likely generalize to unseen entity
nodes and generate questions containing unique
commonsense knowledge. Following this intu-
ition, we finetune GPT2 (Radford et al., 2019) to
generate questions which explicitly depict the en-
tities and relations in input path. When trained
on the aforementioned example (alongside other
similar examples) and provided with the new path
(mattress, RelatedTo, soft), our model generates
“Besides a mattress, name something that’s soft.”,
which is a valid question for probing real-world
commonsense. Usually, these paths contain multi-
ple nodes with several hops and hence are referred
to as graphs in rest of the paper. In order to rep-
resent the graph, we explore both (a) encoding of
linearized graph and (b) augmentation of linear en-
codings with structure-aware encoding of graph,
and find that the latter improves the transfer of
semantic knowledge from graph to text.

Synthetic questions need to be accompanied
by synthetic answers and distractor choices (for
multiple-choice datasets), which are similarly gen-
erated by finetuning GPT2 for conditional genera-
tion of answers/distractors from the question. How-
ever, Yang et al. (2020) report that human anno-
tators find it hard to pick a unique/unambiguous
answer in more than 50% of the synthetic dataset
generated in this manner. Therefore, we explore
an alternative where we finetune the generative
model within a GAN framework (Nie et al., 2019a)
where it is continuously challenged by a discrimi-
nator model to generate unique distractors that can
fool the discriminator (see OptionGAN, Figure 1).
The synthetic questions and answers thus gener-
ated are assembled into synthetic samples which
are then used in a two-stage training pipeline (Mi-

tra et al., 2019). Additionally, since the generative
pipeline is only an approximate imitation of the
human annotation process, we are left with several
ambiguous and inaccurate samples in the synthetic
pool. Hence, we retain the most informative data
samples from the synthetic pool by using Question
Answering Probability (Zhang and Bansal, 2019)
to measure accuracy by answerability. Our contri-
butions can be summarized as follows:

• We present a generative framework consisting of
(i) a graph-to-text model to convert knowledge
graphs to questions, (ii) a model finetuned with
GAN loss to generate distractors for common-
sense reasoning QA datasets, and (iii) combined
with a filter for selecting the most informative
samples from synthetic datasets.

• We improve performance on commonsense rea-
soning datasets, and perform ablation analysis to
show the impact of various modules in our frame-
work as well as human evaluation of synthetic
dataset quality.

2 Related Work

Explicit reasoning over knowledge graphs has been
a popular approach for improving commonsense
understanding of QA models. Bauer et al. (2018);
Lin et al. (2019); De Cao et al. (2019); Feng
et al. (2020) and Lv et al. (2020) extract relevant
multi-hop relational commonsense from knowl-
edge graphs and show significant improvements
over models that operate solely on text. Devlin et al.
(2019); Yang et al. (2019); Ye et al. (2019) expand
the rich latent knowledge of large pretrained mod-
els by finetuning on similar corpora (Havasi et al.,
2010) before finetuning on the target dataset. Mitra
et al. (2019) convert external resources (Koupaee
and Wang, 2018) to QA samples for data augmen-
tation. Yang et al. (2020) generate randomly initial-
ized samples from finetuned GPT2 as augmentation
data for target datasets. We ground the generated
samples to real-world facts by providing knowl-
edge graphs as input to the model.

There has been a surge of efforts in neural graph-
to-text modeling in the recent years. Marcheggiani
and Perez-Beltrachini (2018) encode input graphs
using a graph convolutional encoder (Kipf and
Welling, 2017). Koncel-Kedziorski et al. (2019)
propose the model GraphWriter which improves on
the graph attention networks presented in Velick-
ovic et al. (2018) by replacing self-attention en-
coder with Transformer blocks (Vaswani et al.,
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2017). Several recent works have shown that pre-
trained generative models can be finetuned with
or without structure-aware graph encoding to im-
prove graph-to-text generation (Mager et al., 2020;
Ribeiro et al., 2020; Hoyle et al., 2020; He et al.,
2020; Ke et al., 2021). Query or question genera-
tion has also been shown to benefit from knowledge
graphs in Shen et al. (2022); Bi et al. (2020). We
combine the structure-aware encoding capabilities
of graph-to-text models with the rich contextual
knowledge of pretrained models in GraphGPT2
and generate rich real-world scenarios from sparse
sub-graphs (Shen et al., 2022; Chen et al., 2020;
Kumar et al., 2019).

Good distractors are necessary for a task model
to learn the right reasoning towards answering
multiple-choice datasets. To this end, Liang et al.
(2018) rank distractors using feature-based en-
semble methods. Offerijns et al. (2020); Yang
et al. (2020) finetune GPT2 to generate distractors.
Chung et al. (2020) approach distractor genera-
tion as a coverage problem and select distractors
for maximizing sample difficulty. Cai and Wang
(2018) use adversarial training to sample high qual-
ity negative training examples for knowledge graph
embeddings. In a similar line of work, we use gen-
erative adversarial networks (GANs) (Goodfellow
et al., 2014) with the Gumbel-Softmax relaxation
(Kusner and Hernández-Lobato, 2016; Nie et al.,
2019b) and train a generator with GAN loss to
imitate the creation of human-authored tricky, in-
correct answer options. Most NLP applications use
REINFORCE (Sutton et al., 2000) algorithm and
its variants (Yu et al., 2017; Cai and Wang, 2018;
Qin et al., 2018; Zhang et al., 2018) to circumvent
the discrete sampling issue for text-based GANs.

3 Methods

In this section, we describe the various modules in
the GRADA framework.

3.1 Graph-to-Text Generation

In the first module of our pipeline, we generate
synthetic questions by using knowledge graphs as
input. Given a dataset of input graphs (gi), we fine-
tune GPT2 with cross-entropy loss for conditional
generation of questions (qi) from the graphs i.e.,
Lq =

∑N
i=1 log p(qi|f(gi)), where f(.) is the func-

tion for encoding the graph and p(.) represents the
probabilities. We explore linearized graph encod-
ing as well as structure-aware encoding of graph.

Linearized Graph Input. Graph linearization
is a simple way to use graphs like text when
finetuning GPT2. We adopt depth-first-search
to linearize the input graphs and preserve edge
information to some extent by augmenting GPT2
vocabulary with special tokens for edges. GPT2
is finetuned for conditional generation of target
question from this linearized graph input.

Using linearized graphs with pretrained lan-
guage models (PTLMs) surpasses graph-based ar-
chitectures at data-to-text generation by a large mar-
gin (Ribeiro et al., 2020). However, Mager et al.
(2020) show that omitting the edge information
from linearized graphs notably degrades perfor-
mance, implying that graph structure is beneficial
for generation. Hence, we propose GraphGPT2.

GraphGPT2 for Structure-aware Graph Input.
Instead of linearizing the input graph, we encode
the graph using a Transformer-based graph
encoder fs(.) which preserves the graph structure
by performing masked self-attention over edges
and nodes. We use the Transformer-based graph
encoder from Graph Writer (Koncel-Kedziorski
et al., 2019) for structure-preserving encoding
of graphs. First, we convert the input graphs
gi into unlabeled connected bipartite graphs
Gi = (vi, ei), where vi is the list of entities,
relations and global vertex, and ei is the adjacency
matrix describing the directed edges (Beck et al.,
2018). The global vertex is connected to all entity
vertices and promotes global context modelling
by allowing information flow between all parts
of the graph. Next, vi is projected to a dense,
continuous embedding space Vi and is sent as input
to the graph encoder (see Figure 2). The encoder
is composed of L stacked Transformer blocks;
each Transformer block consists of a N -headed
self-attention layer followed by normalization and
a two-layer feed-forward network. The resulting
encodings i.e. fs(gi), are referred to as graph
contextualized vertex encodings. These encodings
are prepended to the embedded representation
of linearized graph in the form of past key
values, and sent as input to the decoder. The
decoder i.e., pretrained GPT2, is finetuned to
generate a coherent question from the combined
embeddings. The graph encoder is initialized with
GPT2 embeddings to force continuity in word
representation across modules. Figure 2 shows the
integration of graph contextualized encodings with
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Figure 2: GraphGPT2: The Graph Encoder is composed
of L Transformer blocks and its output is concatenated
with GPT2 embeddings for input to GPT2.

GPT2 in GraphGPT2. The combined generative
model is finetuned end-to-end for maximizing the
conditional log-likelihood of target question qi i.e.
Lq =

∑N
i=1 log p(qi | [fl(gi); fs(gi)]), where fl(.)

represents the linearized graph embeddings.

During inference, both of the above models are
provided with graphs that do not appear in training
dataset to generate synthetic questions containing
new knowledge. See Sec. 4.1 for details on creation
of training and inference datasets.

3.2 Answer & Distractor Generation

We finetune a GPT2 model for conditional gen-
eration of answers from questions i.e., La =∑N

i=1 log p(ai|qi). However, as we discussed in
Sec. 1, a similar method for conditional generation
of distractors does not guarantee good distractors.
Hence, we finetune GPT2 within a GAN frame-
work to generate maximally adversarial distractors,
in a bid to imitate the best human annotator.

OptionGAN for Adversarial Choices. We train
a model to generate distractors (in the multiple-
choice QA task) for the synthetic questions ob-
tained from GraphGPT2 (see Figure 1) using
a generator-discriminator adversarial framework.
The discriminator D is a sequential classification
model that takes the question qi, concatenated with
the ground truth correct answer ai i.e., [qi; ai] or
the distractor d̂i generated by generator G i.e.,
[qi; d̂i] as input and classifies the pair as correct
or otherwise. While training, the generator runs
the risk of learning to generate correct answers in-
stead of distractors, since it’s goal is to be able to
fool the discriminator into classifying the question-
distractor pair [qi; d̂i] as correct. To prevent this,
we heavily bias the model by first pretraining it

Context
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Figure 3: Training process for OptionGAN.

to generate only distractors using the conditional
cross-entropy loss and then continue with adver-
sarial training from the saved weights. Mathemat-
ically, we pretrain the generator G with the loss
Lg =

∑N
i=1 log p(di|qi), where qi, di are ques-

tion and distractor, respectively. We use the ques-
tion as input instead of the knowledge sub-graph,
since most generated questions contain additional
semantics from the latent knowledge of the pre-
trained generative model which is not present in
the original sub-graph. Then, the pretrained gener-
ator is finetuned within an adversarial framework
to produce distractors that successfully fool the dis-
criminator, so that we get adversarial options that
are as tricky as human-annotated options (see Fig-
ure 3). We use the Gumbel-Softmax relaxation
(Nie et al., 2019a) while sampling from gener-
ator to allow flow of gradients through the dis-
criminator model i.e. z = softmax( 1τ (h + g)),
where h, g and τ are the logits generated from G,
Gumbel distribution sample and temperature re-
spectively. The temperature is annealed using an
exponential function during training. Following
RelGAN (Nie et al., 2019a), we use the Relativistic
standard GAN loss for the adversarial training i.e.
min
G

max
D

log sigmoid(D([qi; ai]) − D([qi; d̂i])).

Generator G is trained to minimize the loss while
discriminator D is trained to maximize the loss. In
practice, we use GPT2 for both roles i.e., generator
as well as discriminator.

3.3 Filtering and Selection of Samples

Inspite of the careful construction of synthetic sam-
ples using knowledge graphs, the pool of synthetic
samples can be noisy and may consist of incoher-
ent text, incorrect question-answer pairs or out-
of-distribution samples. Hence, we use Question
Answering Probability (QAP) (Zhang and Bansal,
2019) to measure accuracy of synthetic samples.
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Figure 4: Example of synthetic context generated from
GraphGPT2 for the CODAH dataset.

The QAP score (µ) is the prediction probability
of the true class by a model with parameters θ
which has been trained on the original dataset i.e.
µi = pθ(ai|xi). Samples with low prediction prob-
abilities for the correct choices are either annotated
incorrectly or are especially difficult instances for
the model. We define a low and high threshold for
the QAP filter and samples lying within this range
are retained in the dataset.

See supplementary for a comparison of QAP
with two other methods for filtering i.e. Energy
(Liu et al., 2020) and Model Confidence & Vari-
ability (Swayamdipta et al., 2020).

4 Experimental Setup

4.1 Datasets

SocialIQA (Sap et al., 2019b) and Common-
senseQA (Talmor et al., 2019) are annotated using
knowledge graphs, making them a suitable choice
for testing our approach. SocialIQA is a question
answering dataset based on ATOMIC (Sap et al.,
2019a), containing 33,410/1954/2224 samples in
training, development and test set, resp. Com-
monsenseQA (CQA) is a similarly crowd-sourced
dataset based on ConceptNet (Speer et al., 2017)
containing an official split of 9741/1221/1241 sam-
ples. Following Yang et al. (2020), we also test
our method on HellaSwag-2K (Zellers et al., 2019)
and CODAH (Chen et al., 2019) for low-resource
scenario. HellaSwag-2K is created by sampling
2000/1000/1000 examples from HellaSWAG train-
ing and validation sets. We test our approach on
the CoDAH folds (2.8k samples) released by Yang
et al. (2020) for comparison. Apart from these
four MCQ datasets, we also experiment with the
generative QA dataset ProtoQA (9762/52/102) (Bo-
ratko et al., 2020) and find that our approach works
especially well with it. See Appendix for details.

Data Preparation. To prepare graph-to-text
datasets for training GraphGPT2, we map the ques-
tions to multi-hop paths in ConceptNet (Bauer
et al., 2018). We use Spacy2 to tag the questions
with part-of-speech and extract verbs and nouns as

2https://spacy.io/

concepts, retaining those that appear in Concept-
Net as entities and the connecting relations (see
example in Fig. 4).3 We remove inverse relations
from the set of triples. The graphs extracted in
this manner are acyclic and can be linearized with
a depth-first search. For SocialIQA, we map the
questions to a combination of ATOMIC and Con-
ceptNet. ATOMIC events contain nouns and verbs
which are representative of the social scenario be-
ing described in the event and are further extended
in the context by SocialIQA annotators. We tok-
enize and stem the events and contexts to extract
these representative words, and compute the per-
centage of overlapping words in the context with
respect to each event. The event with maximum
overlap with context is selected as the correspond-
ing ATOMIC subject. The ATOMIC relation is
selected from the predefined map of ATOMIC rela-
tions to SocialIQA questions. This way, we recover
the ATOMIC alignments of nearly 20,000 samples
from training set of SocialIQA (88% acc.).

Generation of Synthetic Data. In order to pre-
pare synthetic datasets, we create a dataset of un-
seen input graphs by mutating the graphs from
training sets of graph-to-text datasets. One or two
entities are replaced by a randomly selected en-
tity (or relation-entity pair) with similar adjacency
to other entities in the input graph, to create a
mutated graph. The maximum sequence length
of graph contextualized embeddings is set to 64,
while that of GPT2 is set to 128. The synthetic
dataset size (pre-filtering) is 100k/50k/10k/10k/50k
for SocialIQA, CQA, HellaSwag-2K, Codah, and
ProtoQA respectively. For generation of synthetic
data for SocialIQA, we use the set of tuples from
ATOMIC that do not appear in the original dataset.
To prepare the synthetic dataset for Common-
senseQA, we select two adversarial choices from
ConceptNet and two choices generated by Option-
GAN. For ProtoQA, we find accurate answers by
generating 30 sets of answers for each synthetic
question, ranking the answer choices by frequency
and retaining the ones that appear at least 5 times
in the 30 sets. See example of synthetic context
generation in Fig. 4.

Evaluation. To evaluate graph-to-text generation,
we define an ORACLE score which measures the
semantic relevance of synthetic question when

3We use the question concept present in CQA annotations
as additional concept for the questions.
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paired with the original answer options. We re-
place the original question in validation set samples
with the synthetic question and re-evaluate mod-
els on this modified dataset. In addition, we adopt
the following NLG metrics: BLEU-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
CIDEr4 (Vedantam et al., 2015) and BERTScore
(F1 score) (Zhang et al., 2020). Models trained
on the synthetic and original commmonsense rea-
soning datasets are evaluated using their respective
task-specific accuracies (see Appendix). For Pro-
toQA, we report the accuracy in top-k answers
where k = 1, 3, 5. We also perform human evalu-
ation of the samples generated using GraphGPT2
and OptionGAN.

5 Results & Analysis

First, we present results from the complete GRADA
framework followed by results from ablation ex-
periments. Then, we discuss evaluation of the
various generative models in GRADA using au-
tomated metrics as well as human annotators. Fi-
nally, we evaluate the robustness of models trained
with and without GRADA to semantic adversaries
and discuss upper bounds of our data augmentation
pipeline. See Appendix for visualization of the
quality of the synthetic datasets.

5.1 Data Augmentation Results
Results from the best GRADA model are presented
in Table 1.5 The baseline row represents results
from the same task models used for GRADA but
trained without any data augmentation i.e. T5-3B
for ProtoQA and RoBERTa for all other datasets.
We see 1-2% improvements over baseline across
all multiple-choice datasets using GRADA. For the
best GRADA models (selected using validation re-
sults), synthetic samples are generated from struc-
tured GraphGPT2 and OptionGAN, and filtered us-
ing QAP.6 GRADA results in large improvements
for ProtoQA i.e. 4-6% higher values on the Max
Answers 1/3/5 metrics (see Appendix), suggesting
the effectiveness of our approach for similar gener-
ative tasks. We see 0.3%, 0.3% and 0.26% improve-
ment with GRADA over G-DAUG for CQA, Co-
dah and HellaSwag-2K respectively. Our approach
also performs similar to the Option Comparison

4https://github.com/Maluuba/nlg-eval
5It should be noted that the state-of-the-art UnifiedQA has

30x parameters in RoBERTaLARGE
6ProtoQA is not a multiple-choice dataset, so OptionGAN

is not used and we use sample perplexity as the only filter.

Network in HyKAS (Ma et al., 2019) for CQA
(row 3 in Table 1). Our approach is orthogonal
to HyKAS, KG-Fusion as their instance-level ap-
proach retrieves information for each sample while
GRADA augments knowledge on a global level.

Ablation results from the GRADA framework
on validation sets are presented in Table 2. The
first row of Table 2 presents results from baseline
task models i.e., trained without data augmenta-
tion. Next, we compare results from two-stage
training and see upto 1.7% (p<0.05 for all datasets)
improvements (row 1 vs. 4 in Table 2) with the
addition of synthetic data without filtering.7 Using
structured GraphGPT2 leads to 0.47% (p=0.043),
0.39% (p=0.078), 1.46% (p=0.12)8 improvements
over linearized GraphGPT2 for SocialIQA, CQA,
ProtoQA and diminishing improvements for the
smaller datasets. We see consistent but modest
improvements which are not significant, from ad-
dition of distractors generated from OptionGAN.
Even though improvements with OptionGAN are
marginal, it is necessary for the completeness of
the pipeline for synthetic generation. Next, adding
filter to denoise the synthetic pool unequivocally
improves results by large margins for all datasets
except CQA. Filtering by QAP (row 5 in Table 2)
provides additional benefit (p=0.069 and p=0.093
for SocialIQA and CQA, p<0.05 for other datasets)
to downstream task models over unfiltered syn-
thetic data augmentation (row 4).9 See examples of
high and low quality synthetic data samples filtered
using QAP in Table 7. Smaller datasets benefit the
most from GRADA.

Single-hop vs. Multi-hop Paths. Additionally,
we finetune GraphGPT2 with sub-graphs made
of single-hop paths only to generate the context.
We perform data augmentation using the synthetic
questions generated through this approach and com-
pare to the GRADA results on validation sets. See
results in Table 4. We observe 0.92%, 0.08%,
1.48% and 1.05% drops in performance for val-
idation sets of SocialIQA, CQA, CODAH and Hel-
laSwag respectively. The larger drops for smaller
datasets suggest that multi-hop paths are effective
in low-resource scenarios.

7Statistical significance is computed with 100K samples
using bootstrap (Noreen, 1989; Tibshirani and Efron, 1993).

8p-values are larger for improvements on ProtoQA valida-
tion set which has only 52 samples.

9We also ran experiments with MLM pretraining
(ATOMIC for SocialIQA and OMCS corpus for the rest) be-
fore finetuning on target dataset and saw <1% improvements.
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Method SocialIQA CQA Codah HellaSwag-2K ProtoQA
UnifiedQA-11B (Khashabi et al., 2020) 81.45 79.1 - - 41.49 / 24.95 / 21.77
RoBERTa + KG Fusion (Mitra et al., 2019) 78.00 - - - -
RoBERTa + HyKAS (Ma et al., 2019) - 73.2
BACKTRANSLATION (Yang et al., 2020) 70.2 81.8 -
G-DAUG (Yang et al., 2020) - 72.6 84.3 75.70 -
Baseline* (No Augmentation) 76.74 72.1 82.3 73.40 35.77 / 43.81 / 49.88
GRADA 77.85 72.9 84.7 75.96 42.02 / 48.90 / 54.23

Table 1: Results on test sets of commonsense datasets and comparative results from other approaches taken from
leaderboards. *We use T5-3B for ProtoQA baseline and GRADA results and RoBERTa for all other datasets.

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1

Synthetic Data Augmentation
Linearized 78.21 77.55 86.07 76.40 45.63
+ Structured 78.68 77.94 86.13 76.70 46.09
+ OptionGAN 78.82 78.02 86.19 76.70 -

Filtering
QAP* 79.12 78.06 86.81 77.60 50.34

Table 2: Ablation results on validation set of common-
sense reasoning datasets. *We use sample perplexity for
filtering ProtoQA samples.

Dataset Original GraphGPT2
Linearized Structured

SocialIQA 75.92 55.18 57.34
CQA 77.23 57.63 58.71
CODAH 82.19 46.23 46.78
HellaSWAG-2K 76.58 41.35 41.74
ProtoQA 41.10 28.21 23.47

Table 3: ORACLE scores for question generation. Origi-
nal represents the performance of baseline task models
on original dataset. The columns GPT2 and GraphGPT2
represent similar evaluation with synthetic questions
generated from linearized graphs and structure-aware
graph encoder respectively.

Generalization to Unseen Concepts. We looked
for %overlap of entity nodes and single-hop paths
(subject– relation– object) between the multi-hop
KGs spanning the questions of correctly answered
samples after GraDA training and the questions of
synthetic data, and observed 5-60% entity overlap
and <20% path overlap. This suggests GRADA
also promotes reasoning capabilities of the down-
stream models for unseen concepts.

5.2 Generative Model Evaluation Results

ORACLE scores for the two variations of
GraphGPT2 are presented in Table 3. The scores in
first column refer to the validation set performance
of baseline models on original datasets. These
models are re-evaluated on the questions generated
by GraphGPT2 (as described in Sec. 4.1). The
largest improvement i.e. 2.16% (p=0.068) is ob-
served for SocialIQA, which may be attributed to

Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1
GraDA (single-hop) 78.70 77.31 85.96 76.05 45.67
GraDA (multi-hop) 79.12 78.06 86.81 77.60 50.34

Table 4: Results on validation set of commonsense rea-
soning datasets using single-hop vs. multi-hop graphs
for GRADA pipeline.

Dataset Question Answer Distractors
SocialIQA 96.1% 86.0% 50.0%
CommonsenseQA 100.0% 97.2% 25.0%
HellaSwag-2K 92.0% 88.1% 25.8%
CODAH 90.3 83.4% 30.6%
ProtoQA 97.2% 75.0% -

Table 5: Results from human evaluation of generated
questions, answers and distractors.

its large dataset size. We see diminishing improve-
ments for low-resource scenarios i.e. Codah and
HellaSwag-2K. We observe a similar trend when
the synthetic questions are evaluated using NLG
metrics (see Appendix). More importantly, since
phrase-matching metrics are not ideal for NLG
evaluation (Novikova et al., 2017), we also per-
form human evaluation to judge the quality of gen-
eration for SocialIQA and CQA as we see signif-
icant improvements from structured GraphGPT2
vs. linearized GraphGPT2. We ask annotators
on Amazon Mechanical Turk10 (AMT) to select
the sentence which is more representative of the
information encoded in input graph, for 100 sam-
ples from validation set. Questions generated from
GraphGPT2 are preferred 46% and 53% of the
times for SocialIQA and CQA resp., compared to
those from linearized inputs only, showing that the
addition of graph encoder improves integration of
knowledge in generated text.

We perform human evaluation (AMT)
of answerability of the generated ques-
tions/answers/distractors on 50 randomly
selected samples from the filtered augmentation

10Located in United States, HIT Approval Rate>98%,
Number of HITs Approved>10K, $15 per hour (approx.).
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G-Daug (Yang et al., 2020)
GRADA

Knowledge-Graph Generated Data
Tuple

A human enjoys putting rubber on furniture.
They should do this before .. front of the mirror.

S: PersonX provides __
for PersonY’s children

Taylor provided meals for Kendall’s children and they
all enjoyed it greatly.

There was a large, cold bite of ice on my where? R: xIntent Why did Taylor do this?
He hated flying, the controls were what? O: To be helpful [A] to be a bad friend [B] to be helpful [C] to be rude
What is a square leg made of made out of? S: weasel R: AtLocation The man was a weasel, he was part of a powerful what?
What country does a cow go to make a milk run? O: mafia organization [A] out of doors [b] terrarium [c] mafia organization [D]

farmyard [E] backyard

Table 6: Comparison of randomly generated synthetic data from G-Daug (Yang et al., 2020) (left) and knowledge-
grounded synthetic data generated using GRADA (right). (S=Subject, R=Relation, O=Object)

High-quality synthetic samples

SI
Q

A

Riley provided help to the community through
his many charity events over the years. How
would Others feel as a result? [A] selfish [B]
appreciative [C] bored

C
Q

A

When a child is upset by something, what may
they do? [A] fall down [B] wish to fly [C] start
crying [D] play tag [E] boy or girl

PQ
A

Name something you worry you’re still doing
when you’re not supposed to. drinking, smoking,
sleeping, working, using cell phone

Low-quality synthetic samples

SI
Q

A

Tracy raised her arm to her face to cover her eyes
during the scary movie. What does Tracy need
to dobefore this? [A] scared [B] be scared of the
movie [C] to have a fundraiser

C
Q

A

What will you do if you want to go public? [A]
prepare for worst [B] tell family first [C] own
private company [D] telegram [E] charming

PQ
A

Name a family tradition that has deep roots in
the dialect of suzh. cooking, caroling, knitting,
hunting, fishing

Table 7: High and low quality synthetic samples gener-
ated through GRADA for SIQA, CQA, ProtoQA (PQA)
and ranked using QAP scores (and perplexity for PQA).
Labels are marked in green.

data (see Table 5). Annotators were provided with
the question, answer and distractors, and asked
to evaluate a) if the question can be answered in
a few words (b) if the question can be answered
by the given answer and (c) if the distractors
are wrong answers for the question. More than
90% of the questions were judged as answerable,
75-90% of the answers were judged as correct
answers for the respective questions. The quality
of distractors ranged from 50% for SocialIQA
to 20-30% for smaller datasets. However, the
overall quality of distractors is high enough to
benefit data augmentation. See examples in
Table 7. We also perform human evaluation for
the factuality of samples generated using our
method GraDA and GDaug (Yang et al., 2020). We
picked a randomly sampled set of 100 synthetic

Figure 5: % improvement in accuracy over baseline with
different % of original dataset. Baseline is RoBERTa
finetuned on the same % of original dataset.

QA pairs from G-Daug for the datasets CQA,
Codah and HellaSWAG-2K. For a fair comparison,
we collected 100 synthetic pairs from GraDA
for the same datasets. We asked an annotator to
evaluate if each of the synthetic QA pair adheres
to a plausible real-world scenario, and found that
56% G-Daug samples were judged as factual as
compared to 68% of the GraDA samples (see
examples in Table 6).

5.3 Upper Bounds

We ran experiments for augmentation with 20%,
40%, 60%, 80% and 100% training data from the
original set (see Fig. 5). The improvement margins
from the augmentation dataset is upto 4% at 20%
of the original SocialIQA dataset. We see simi-
lar trends for CODAH, HellaSwag and ProtoQA,
while the improvements for CQA were <1.5%.

5.4 Robustness Evaluation

We expect that data augmentation exposes the task
model to diverse language and improves its robust-
ness to semantic adversaries in addition to boosting
its performance on the target task. To evaluate
this, we use the TextFooler system (Jin et al., 2020;
Yang et al., 2020; Wei and Zou, 2019) to gener-
ate adversarial text by computing word importance
ranking and replacing the most influential words
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Method SIQA CQA CDH H2K PQA
Baseline 21.7/10.3 14.9/12.5 31.3/16.1 19.4/10.6 5.1/16.2
GRADA 22.4/10.8 15.8/12.9 34.8/18.2 20.5/11.5 6.3/16.8

Table 8: Robustness Evaluation. Failure rate / perturba-
tion ratio (higher is better) from TextFooler experiments
are shown on development sets.

with their synonym in the vector space. Overall,
GRADA benefits the robustness of task models and
improves their failure rate by 1-3% (see Table 8).

6 Conclusion

We present GRADA, a graph-based data augmen-
tation framework for commonsense reasoning QA
datasets. We train a graph-to-text question genera-
tor and GAN-based adversarial choice generator for
creating synthetic data samples, which are used to
augment the original datasets. GRADA promotes
factuality in synthetic samples and improves results
on five downstream datasets.

7 Ethical Considerations

The usage of pretrained generative models in any
downstream application requires careful consider-
ation of the real-world impact of generated text.
In our approach, we provide concrete inputs for
grounding the generated text to specific entities and
relations which encode real-world facts, thereby re-
ducing the possibility of propagating unintended
stereotypical and social biases embedded within the
pretrained models. However, since these entities
and relations are derived from existing knowledge
bases like ConceptNet (Speer et al., 2017), there
is potential for transfer of bias present in these re-
sources to the generated texts. Additionally, the
graph-to-text generative models in GRADA pose
the same risk as other data-to-text generative mod-
els (Ribeiro et al., 2020; Hoyle et al., 2020; Mager
et al., 2020) i.e. the models can be made to gen-
erate incorrect facts by providing incorrect data as
input. Therefore, we recommend restricting the use
of GRADA to low-risk, unbiased graphs inputs.
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A Experiment Setup

Datasets: Social IQA (Sap et al., 2019b) and
CommonsenseQA (Talmor et al., 2019) are pop-
ular datasets based on knowledge graphs, making
them a suitable choice for testing our approach. So-
cial IQA is a multiple-choice question answering
dataset. Each sample consists of a context, ques-
tion and three multiple choices. CommonsenseQA
is also a multiple-choice QA dataset, wherein each
sample consists of a context and five multiple
choices. Of those 5 choices, three are taken from
ConceptNet and the other two are authored by anno-
tators. We only use the human-authored incorrect
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choices to train our adversarial choice generator
OptionGAN. The ATOMIC knowledge graph con-
tains 24K base events and 877K tuples describing
a variety of social scenarios. We use the 710K
training split introduced in Bosselut et al. (2019)
to randomly sample 100K tuples as the seed sub-
graphs for generation of synthetic data dataset for
Social IQA. For CommonsenseQA, we use the en-
tire ConceptNet knowledge graph, subject to prun-
ing as outlined in Talmor et al. (2019), to sample
seed tuples for synthetic dataset generation. For
SocialIQA, CQA, Codah and HellaSwag-2K, we
use simple accuracy for model evaluation.

ProtoQA (Boratko et al., 2020) is a generative
QA dataset which is evaluated by 7 different met-
rics11. We report the first 3 metrics i.e. Max An-
swers 1/3/5. For tables showing only one number
for ProtoQA, such as the ablation table in main
text, we report the Max Answer 1 metric. In order
to train T5-3B for ProtoQA, we concatenate the
ranked choices for each question and finetune the
model for conditional generation of this concate-
nated string from the input question.

All of the above datasets are being for their in-
tended purposes i.e. research only, in our work. All
of these datasets are in the English language.

Data Preparation: To prepare graph-to-text
datasets for training GraphGPT2, we map the ques-
tions to multi-hop paths in ConceptNet (Bauer
et al., 2018). We use Spacy12 to tag the ques-
tions with part-of-speech and extract verbs and
nouns as concepts, retaining those that appear in
ConceptNet as entities13. For SocialIQA, we map
the questions to a combination of ATOMIC and
ConceptNet. ATOMIC events contain nouns and
verbs which are representative of the social sce-
nario being described in the event and are further
extended in the context by Social IQA annotators
(see Table 6). We tokenize and stem the events and
contexts to extract these representative words, and
compute the percentage of overlapping words in
the context with respect to each event. The event
with maximum overlap with context is selected as
the corresponding ATOMIC subject. The ATOMIC
relation is selected from the predefined map of
ATOMIC relations to Social IQA questions. This
way, we recover the ATOMIC alignments of 20,000

11https://github.com/iesl/
protoqa-evaluator

12https://spacy.io/
13We use the question concept present in CQA annotations

as additional concept for the questions.

samples from training set of SocialIQA with 88%
accuracy.

Synthetic Data Generation. In order to prepare
synthetic datasets, we create a dataset of unseen
input graphs by mutating the graphs from train-
ing sets of graph-to-text datasets. One or two
entities are replaced by a randomly selected en-
tity (or relation-entity pair) with similar adjacency
to other entities in the input graph, to create a
mutated graph. The synthetic dataset size (pre-
fitering) is 100k/50k/10k/10k/50k for SocialIQA,
CQA, HellaSwag-2K, Codah, and ProtoQA respec-
tively. For generation of synthetic data, we use the
set of tuples from ATOMIC and ConceptNet that
do not appear in SocialIQA and CommonsenseQA
datasets respectively. To prepare the synthetic
dataset for CommonsenseQA, we select two ad-
versarial choices from ConceptNet and two choices
generated by OptionGAN. For ProtoQA, we find
accurate answers by generating 30 samples of an-
swers for each synthetic question, ranking the an-
swer choices by frequency and retaining the ones
that appear atleast 5 times in the 30 samples. After
this, the synthetic question and answer (concatena-
tion of high-frequency answer choices) is subjected
to filtering. Due to lack of option for supplemen-
tary in this submission, we have included a sample
of the generated synthetic examples in Table 9.

A.1 Filtering and Selection of Samples

Inspite of the careful construction of synthetic sam-
ples using knowledge graphs, the pool of synthetic
samples can be noisy and may consist of incoher-
ent text, incorrect question-answer pairs or out-
of-distribution samples. Hence, we compare the
effect of three different methods to filter samples
on downstream task performance.

Question Answering Probability (QAP). The
QAP score (µ) (Zhang and Bansal, 2019) is the
prediction probability of the true class by a model
with parameters θ which has been trained on the
original dataset i.e. µi = pθ(y

∗
i |xi). Samples with

low prediction probabilities for the correct choices
are either annotated incorrectly or are especially
difficult instances for the model. We define a low
and high threshold for the QAP filter and samples
lying within this range are retained in the dataset.

Model Confidence and Variability.
Swayamdipta et al. (2020) propose the model confi-
dence (µ̂i) and variability (σ̂i) measures to identify
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HellaSWAG-2K

Question Answer

A close up of a gymnast is shown. a gymnast
balances on beam as she sweeps __

(a) over obstacles. (b) around with other gymnast. (c) performs a front squat and
a flip, and crosses her arms. (d) performing multiple back and forth moves.

"We then search for a car by its model and make.
Once we get the car model __

(a) we determine what the tires are for. (b) we either buy a new or recycle it. If
we want to recycle the car, we simply (c) click the b̈uy now b̈utton. The seller
will then provide a description of the car and (d) we’ll add it to the computer so
we can make a list of the different models we’ll

A man in black robes is walking into a bar. He
__

(a) is telling several anecdotes about how he has been following other people
around and talking to them. (b) speaks to a group of workers and they all rise
and raise their arms in the air. (c) starts singing into the microphone. (D) begins
a beat down on a man standing behind him.

CODAH

Question Answer

I am feeling very hungry. I think that __ (a) I will have dinner. (b) I will drink some milk. (c) I will sleep a lot. (d) I will
play catch with my grandpa.

A man with no body hair was peacefully wallow-
ing in the sea of ocean. The man then __

(a) was surrounded by a flock of birds. (b) hung from the ceiling and sang (c)
began to carpet the beach. (d) watched a movie with his headphones on.

A man excitedly planned a surprise party for his
friend. He __

(a) got a shotgun. (b) put up a giant neon sign with his own hand painted on it.
(c) decided to end his life in front of his friend. (d) planned to brew a cup of
coffee and play chess.

ProtoQA

Question Answer

Name something you worry you’re still doing
when you’re not supposed to.

drinking, smoking, sleeping, working, using cell phone

Besides milk, name a popular product in the
dairy market.

cheese, ice cream, yogurt, butter

Name something you can disagree about. religion, politics, parenting, weight, money

If you sent a postcard from china what would be
pictured on the front?

great wall, temple, dragon

Name something a knight needs for a good day’s
work.

horse, armour, sword, lance, shield

Table 9: Examples of synthetic samples generated for HellaSWAG-2K, CODAH and ProtoQA datasets from the
GRADA pipeline. Correct answers for multiple-choice questions are marked in green.

the effect of data samples on the model’s general-
ization error. Specifically, µ̂i =

1
E

∑E
e=1 pθ(y

∗
i |xi)

and σ̂i =

√∑E
e=1 (pθ(y

∗
i |xi)−µ̂i)

2

E , where E is
training epochs. They find that ambiguous samples
i.e., high variability and mid-range confidence,
contribute the most to test performance on down-
stream task. Following this, we define low and
high thresholds for both confidence and variability
in order to find the most informative samples.

Energy. Liu et al. (2020) show that the energy
score can be reliably used for distinguishing be-
tween in- and out-of-distribution (OOD) samples,
as compared to the traditional approach of using the
softmax scores. We introduce an energy threshold
to select samples which are out-of-distribution i.e.
Ei = −log

∑C
j epθ(y

j
i |x) where C is the number of

choices in the QA sample, and measure the effect
of using OOD samples as augmentation data.

A.2 Training Details

Baselines: We use pretrained RoBERTaLARGE (Liu
et al., 2019) for multiple-choice datasets and T5-
3B (Raffel et al., 2020) for ProtoQA as the task
models. The baseline task model is finetuned on
original datasets with no data augmentation, and
is used as scoring model for filtering. We use
GPT2MEDIUM for GraphGPT2, GPT2SMALL as the
pretrained generator and discriminator for Option-
GAN. For GRADA, the model is first finetuned on
synthetic samples using label smoothing (Szegedy
et al., 2016) and then on original dataset. We refer
the reader to Koncel-Kedziorski et al. (2019) for
full implementation details of the Graph Encoder
in GraphGPT2.

OptionGAN: It is tricky to train GAN models,
especially with discrete data like text. We follow
the training method in Nie et al. (2019a) to fine-
tune the adversarial choice generator in a minimax
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Parameter Bounds
Filter Parameters

QAP/Model Confidence Lower Threshold [0.0, 0.49]
QAP/Model Confidence Higher Threshold [0.51, 1.0]
Energy Lower Threhsold [0.0, 1.0]
Energy Higher Threshold [0.0, 1.0]
Model Variability Lower Threshold [0.0, 0.5]
Model Variability Higher Threshold [0.0, 0.5]

Training Parameters
Learning Rate [1, 10]*1e-6
Batch Size (inc) [4, 8, 16]
Total Train Epochs [3, 5]

Table 10: Optimization bounds for grid-search based
tuning of training hyperparameters.

Method BLEU4 METEOR CIDEr BERTScore
Social IQA

GPT2 14.58 26.41 132.84 89.12
GraphGPT2 15.37 26.95 135.91 91.83

CommonsenseQA
GPT2 1.71 12.78 30.89 85.76
GraphGPT2 1.90 13.64 33.76 87.34

Table 11: Comparison of performance for GPT2 and
GraphGPT2 on development sets.

game with discriminator. In addition to the training
parameters mentioned in Table 17, we restrict the
number of training iterations to 5000, and perform
one gradient descent step on generator for every 5
gradient descent steps on discriminator.

Training & Hyperparameter Tuning. After
generation of synthetic examples, we perform two-
stage training of the task models. In the first phase,
the model is finetuned on synthetic data only, In
the second phase, the model is finetuned on the
original dataset. The model trained in first phase
is subject to bayesian optimization (Snoek et al.,
2012) of filter parameters.

A.3 Human Evaluation

Generative source of the sentences are omitted
when presented to annotators. The input graphs
are seed tuples from ATOMIC and ConceptNet for
samples from the development sets of Social IQA
and CommonsenseQA respectively. The annotators
can pick both the sentences if either of them are
equally relevant in their subjective opinion. We al-
low for a single hit for each assignment in Amazon
Mechanical Turk.

Dataset Wins Loses Tie
SocialIQA 46% 37% 17%
CommonsenseQA 53% 31% 16%

Table 12: Results from comparative human evaluation
of generated questions. Wins and Loses refer to the
%times synthetic question generated from structured
graph input was chosen over linearized graph.

B Results

B.1 Generative Model Evaluation
As shown in Table 11, we see small improvements
for BLEU-4 and METEOR, but larger improve-
ments in other metrics from GraphGPT2 i.e., 3.07%
(p=0.027), 2.87% (p=0.035) in CIDEr, and 2.71%
(p=0.042), 1.58% (p=0.056) in BERTScore for So-
cial IQA and CQA, resp. The phrase-matching
metric scores are low for CQA, which may be
attributed to its small sample size. However,
BERTScore for CQA lies between 85-88%, show-
ing that the model manages to convey similar mean-
ing as human-annotated context albeit with differ-
ent words.

More importantly, since phrase-matching met-
rics are not ideal for NLG evaluation (Novikova
et al., 2017), we also perform human evaluation
to judge the quality of generation for SocialIQA
and CommonsenseQA as we see significant im-
provements from structured GraphGPT2 vs. lin-
earized GraphGPT2. We ask annotators on Ama-
zon Mechanical Turk14 to select the sentence which
is more representative of the information encoded
in input graph, for 100 samples from validation
set. Results are shown in Table 12. Samples gener-
ated from structured input are selected significantly
more times than those from linearized inputs, for
both SocialIQA and CQA, showing that addition of
a graph encoder improves representation of knowl-
edge in generated sample.

Additionally, we perform human evaluation of
the samples generated using GraphGPT2 and Op-
tionGAN. We randomly select 50 samples from the
filtered augmentation datasets for each of the five
datasets, and ask 2 annotators to answer 3 yes/no
questions about the quality of the question, answer
and distractors respectively. We present results
from the survey in Table 5. More than 90% of
the questions in each dataset were judged as an-
swerable, showing the effectiveness of GraphGPT2
as well as the QAP-based filtering method. Simi-

14Located in United States, HIT Approval Rate>98%,
Number of HITs Approved>10K.
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Method SIQA CQA CDH H2K PQA
Baseline 77.78 77.23 84.48 75.10 41.1

Filtering
QAP* 79.12 78.06 86.81 77.60 50.34
Confidence 79.05 77.83 86.59 77.40 -
Energy 78.76 77.79 86.38 77.10 -

Table 13: Ablation results on validation set of common-
sense reasoning datasets using various filtering methods.
*We use sample perplexity for filtering ProtoQA sam-
ples.

larly, 75-90% of the answers were judged as correct
answers for the respective questions. The quality
of distractors were relatively lower, ranging from
50% for larger datasets like SocialIQA to 20-30%
for rest of the datasets. The inter-annotator agree-
ment was also low (<0.6) for distractor judgements,
suggesting the general difficulty of both tasks: dis-
tractor generation and measurement of distractor
quality. However, the overall quality of distrac-
tors in our datasets is high enough to benefit data
augmentation.

For both human evaluation annotation tasks, it
was made clear in the instructions that the data is
being collected for research purposes only.

B.2 Comparison of Filtering Methods
Table 13 demonstrates the effect of using vari-
ous methods of filtering i.e. QAP, Energy and
Model Confidence/Variability. Results are shown
on the validation sets the commonsense reasoning
datasets. We see largest improvements with using
QAP as the filter. Similar improvements are seen
with the confidence/variability scores; however, it
requires scores from multiple finetuned models
from various training checkpoints.

B.3 Robustness Evaluation
We expect that data augmentation exposes the task
model to diverse language and improves its robust-
ness to semantic adversaries in addition to boosting
its performance on the target task. To evaluate this,
we use the TextFooler system (Jin et al., 2020; Yang
et al., 2020; Wei and Zou, 2019) to generate adver-
sarial text by computing word importance ranking
and replacing the most influential words with their
synonym in the vector space. Failure rate is the
%examples for which TextFooler fails to change
the original model prediction, and average perturba-
tion ratio is the average % of words replaced when
TextFooler succeeds at changing the prediction. We
use our best GRADA models in comparison with
baseline models (Table 8). Overall, GRADA pos-

Figure 6: Plot of Confidence vs. Variability for GRADA
synthetic samples for CQA (left) and H2K (right).

itively impacts the robustness of task models to
TextFooler and improves the failure rate by >3%
for Codah and upto 1% for all other datasets. We
observe similar trends for the perturbation ratios
too. This shows that GRADA improves semantic
robustness of the models. It is also worthwhile
noting that generative task models like T5-3B for
ProtoQA are especially prone to adversarial attacks
like TextFooler with a mere 5-6% failure rate and
there needs to be more research towards improving
their robustness.

B.4 Cartography Quality Evaluation
We use dataset cartography Swayamdipta et al.
(2020) to visualize the quality of our synthetic
datasets. Samples in top left of figure are easy,
while samples towards bottom and right of the
figure are difficult and ambiguous respectively.
We can observe from the figure that the synthetic
dataset for CQA (left) has a higher % of easy sam-
ples than HellaSwag-2K, suggesting that the qual-
ity of synthetic samples generated by GRADA
improves with original dataset size. Moreover,
when applying QAP filtering, using the entire syn-
thetic dataset yields largest improvements for CQA
whereas for HellaSwag-2K (right), the lower cutoff
for QAP is 0.3 which filters out most of the samples
present in bottom part of the plot. This suggests
that in low-resource scenarios, it is important to
remove inaccurate samples, while larger datasets
benefit from ambiguous and inaccurate samples.
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Best Parameters Social IQA CQA Codah HellaSwag-2K ProtoQA
QAP Lower Threshold 0.49 0.32 0.43 0.49 0.27
QAP Higher Threshold 1.0 1.0 1.0 1.0 1.0

Table 14: Best Filter Hyperparameters.

Social IQA CommonsenseQA
Hyperparameter Baseline GRADA Phase 1 GRADA Phase 2 Baseline GRADA Phase 1 GRADA Phase 2
Learning Rate 5e-6 4e-6 3e-6 1e-5 5e-6 1e-5
Epochs 3 1 3 5 1 5
Max Gradient Norm 1.0 1.0 1.0 None None None
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 8 8 8 16 16 16
Max Length 128 128 128 70 70 70
Warmup Ratio 0.0 0.0 0.0 0.06 0.06 0.0
LR Decay Linear Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU Hours 5 hrs 1.5 hrs 5 hrs 2 hrs 0.5 hrs 2 hrs

Table 15: Training hyperparameters for baseline and two-stage GRADA training of SocialIQA and CQA

CODAH HellaSwag-2K
Hyperparameter Baseline GRADA Phase 1 GRADA Phase 2 Baseline GRADA Phase 1 GRADA Phase 2
Learning Rate 1e-5 4e-6 3e-6 5e-5 5e-6 1e-5
Epochs 5 1 5 5 1 5
Max Gradient Norm 1.0 1.0 1.0 None None None
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 16 8 16 8 8 8
Max Length 90 90 90 128 128 128
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR Decay Linear Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU Hours 2 hrs* 1 hr* hrs 2 hrs* 0.5 hr 0.2 hr 0.5 hr

Table 16: Training hyperparameters for baseline and two-stage GraDA training of RoBERTa models for HellaSwag-
2K and CODAH. *values reported for five-fold training

OptionGAN
Hyperparameter GraphGPT2 Generator Discriminator GAN
Learning Rate 4e-5 1e-5 1e-5 1e-6
Epochs 5 5 3 -
Max Gradient Norm 1.0 1.0 1.0 None
Weight Decay 0.0 0.01 0.01 0.01
Batch Size 8 8 8 4
Max Length 128 128 128 128
Warmup Ratio 0.0 0.0 0.0 0.06
LR Decay Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW

Table 17: Training hyperparameters for GraphGPT2, Generator, Discriminator and OptionGAN
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