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Abstract

Language models encode linguistic proprieties
and are used as input for more specific mod-
els. Using their word representations as-is for
specialised and low-resource domains might
be less efficient. Methods of adapting them
exist, but these models often overlook global
information about how words, terms, and con-
cepts relate to each other in a corpus due to
their strong reliance on attention. We consider
that global information can influence the re-
sults of the downstream tasks, and combination
with contextual information is performed us-
ing graph convolution networks or GCN built
on vocabulary graphs. By outperforming base-
lines, we show that this architecture is prof-
itable for domain-specific tasks.

1 Introduction

Numerous types of word vectors are used as word
representations for NLP tasks. These vectors en-
code useful semantic proprieties and are often used
as weights or input of generic task models. For
quite some time, Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) were the go-to
off-the-shelf embeddings that many systems used.
FastText (Bojanowski et al., 2017) came as a way
to deal with OOV words and still offers a better
representation for words than most systems since
it takes into account the morphological complexity
of words by dealing with n-grams instead of whole
words. Over the last few years, a new generation
of deep neural approaches brought forth by trans-
formers has brought significant improvements in
many downstream applications. Language models,
like BERT (Devlin et al., 2019), already encode so
much knowledge and can capture semantic and syn-
tactic information remarkably well (Coenen et al.,
2019). They can be further trained on new tasks
for adapting it to a new task or more specialised
domains and further improve the quality of the rep-
resentations (Peters et al., 2019).
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Language models are trained over massive gen-
eral domain corpora (Graff et al., 2003; Zhu et al.,
2015) by optimising an objective that predicts the
local contexts, captures linguistic units’ distribu-
tional properties along the way, and address pol-
ysemy issues. Their quality can thus be arguably
correlated to the volume of data available. How-
ever, in the case of specialised domains, the cor-
pora are generally relatively modest in size, and
these methods might be less efficient. It must be
noted that if this claim is not always valid for all
domains, especially for the English language, it
is undoubtedly almost always true for other much
less-resourced languages (Eisenschlos et al., 2019).

When using neural-based models, the conven-
tional way of integrating further knowledge about
specialised domains into models pre-trained on gen-
eral corpora is to leverage pre-training by doing
transfer learning and fine-tuning the model, tweak-
ing its original weights to suit the tasks at hand
better. If fine-tuning BERT is the most used adapta-
tion method, it will rapidly hit a performance ceil-
ing if the domain is too specialised or small, and
some methods (Schick and Schiitze, 2020) exist to
tackle this problem. BERT will heavily rely on the
context to build representations of too specialised
or rare words. Each layer of the encoder’s attention
mechanism enriches the new representation of the
input data with contextual information by paying
attention to different parts of the text. Nonethe-
less, this particular feature of BERT may make it
more challenging for it to consider the more global
place a word occupies within a corpus’s vocabulary,
especially for these words.

Many data structures are hierarchical or graph
structures in nature, such as social networks, paper
citation networks, ontologies and semantic rela-
tions, such as hypernymy of hyponymy. Global
relations between words within a sentence, a doc-
ument or a corpus can be represented as a graph.
Using such graphs as inputs, Graph Neural Net-
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work (GNN) (Wu et al., 2021) captures general
knowledge about the words and how they inter-
act in a corpus. Several variants of GNN for text
classification tasks exist. As presented by (Kipf
and Welling, 2017), Graph Convolutional networks
(GCN) is an approach for semi-supervised learn-
ing on graph-structured data based on an efficient
variant of convolutional neural networks that op-
erate directly on graphs. GCN is typically built
using an adjacency matrix (based on a given rela-
tionship graph). The GCN’s central idea is to take
the weighted average of a node and all its neigh-
bours during the convolution operation and uses
both node features and the structure for the train-
ing. Text GCN (Yao et al., 2019) is a particular
version of GCN, jointly learning both words and
documents embeddings, and suited for situations
with less training data. Graph methods do not en-
code positional information, and when information
about position or context is needed, it might not
be enough. Hence, pairing a GCN with a model
that can grasp contextual information, like BERT,
seems necessary.

There has not been much work trying to combine
BERT and GNN. Since experts make inferences
with relevant domain knowledge when performing
domain-specific tasks, previous work has been con-
ducted to integrate this knowledge into language
models using knowledge graphs. Knowledge-
enabled language representation model K-BERT
(Liu et al., 2019) injects triples from a knowledge
graph into the sentences as domain knowledge.
BERT-MK (He et al., 2020) also takes into ac-
count knowledge graph contextualised knowledge.
(Shang et al., 2019) embedded a medical ontol-
ogy with Graph Attention Networks (GAT) and
combined it with BERT for medication recommen-
dation. (Jeong et al., 2020) concatenates the output
of GCN and the output of BERT for citation recom-
mendation tasks. Obviously, these methods presup-
pose the existence of a knowledge graph or an on-
tology. These resources are expensive to build and
do not always exist for the domain and task at hand.
Vocabulary graphs, on the other hand, are easy to
build. (Lu et al., 2020) propose VGCN-BERT, a
model which combines BERT with a Vocabulary
GCN (VGCN), and where local and global infor-
mation interacts from the first layer of BERT down,
building an augmented representation jointly.

We build upon their work to adapt BERT to our
specialised tasks and corpora. As (Lu et al., 2020)
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conveniently pointed out in their work, the utility of
capturing global dependencies with a graph embed-
ding instead of conventional non-contextualised
embedding models (Mikolov et al., 2013; Pen-
nington et al., 2014; Bojanowski et al., 2017)
can be questioned (Srinivasan and Ribeiro, 2020).
These methods provide additional information, but
these models’ small text window limits the con-
nections between words. Long-range connections
are more easily captured with GCN. In addition,
by building a graph on a task-specific corpus, task-
dependent dependencies are captured, in addition
to the general dependencies already encoded in the
pre-trained models.

2 Intrintic Evaluation Tasks

12B2 (Uzuner et al., 2011) deals with automatic
medical concept extraction and deals with the ex-
traction of concepts (problems, tests and treat-
ments) from anonymised medical reports. This task
was proposed by the 2010 edition of the I2B2/VA
Natural Language Processing Challenges for Clini-
cal Records !. Medical reports tend to be unstruc-
tured, arbitrarily expressed, and sometimes roughly
thrown together, leading the NLP practitioner to
deal with noisy documents.

Concept Training Test

Problem 7,073 12,592
Test 4,608 9,225
Treatment 4,844 9,344
Total 16,525 31,161

Table 1: Frequencies of concept types in the I12B2 2010
annotated corpus

BioCreative V CDR (BC5CDR) is a collection
of 1,500 PubMed titles and abstracts selected from
the CTD-Pfizer corpus and was used in the BioCre-
ative V chemical-disease relation task. We use
the standard training and test set in the BCSCDR
shared task to extract the entities, and we do not
perform entity linking.

3 Experimental Methodology

Transfer Learning Pre-trained word vectors
have been an essential component in many NLP
systems. Word representations are fed into a task-
specific model, often improving the results. Re-

"https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/



Dataset Training  Dev Test
Disease 4,182 4,244 4,424
Chemical 5,203 5,347 5,385
Total 9,385 9,591 9,809

Table 2: Frequencies of entities in BCSCDR (chemical
and disease) annotated corpus

cently, contextual word representations have signifi-
cantly improved state of the art over non-contextual
vectors. Transfer learning is leveraged here with
the usage of BERT embeddings.

Domain Adaptation Adaptation can often take
two forms: feature extraction, where the model’s
weights are used as-is as inputs of another system
in a similar fashion to classic feature-based models
and fine-tuning, where the model’s weights con-
tinue to be trained on the new data for a specific
task.

Graph Convolutional Networks Graph Convo-
lutional Networks (GCNs) are often used for hi-
erarchical representation problems. By perform-
ing convolution operations on neighbouring nodes
(words) in the graph, a representation of a word
will be enriched with information about its neigh-
bours, which will allow the integration of informa-
tion about the global context of the word. Since we
are using the vocabulary to build the graph, we use
VGCN (Lu et al., 2020). VGCN are able to take
into account more global information about the vo-
cabulary but often fail to capture some of the local
information, which is why we use them combined
with BERT. This paper considers lexical relations
in a language, namely, the vocabulary graph, to
be global information about the task-specific lan-
guage. This vocabulary graph is constructed using
both wordpieces (Wu et al., 2016) and word’s co-
occurrences alongside documents. We first select
the relevant part of the global vocabulary graph
according to the input token or sentence and trans-
form it into an embedding representation. We then
combine it with BERT token embedding and use
multiple layers of attention mechanism to fuse the
two.

The vocabulary graph is constructed using
weighted positive point-wise mutual information
(PPMI) (Levy and Goldberg, 2014). A higher
PPMI indicate a higher semantic correlation be-
tween words. For each pair of words (w, ¢), we
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have:
count(c)®

- > count(c)®
with the context probabilities raised to o = 0.75,
giving rare words are slightly higher probability.

P,(c)

P(w,c)

PMI,(w,c) = mam(loggm,

0)

With this subword segmentation method, the
word epistaxis, for example, will be represented
as five tokens by BERT: ep, ##ista, ##xi and ##s),
since it is not in the model’s training vocabulary.
We are left with having to average or sum these em-
beddings to get a final embedding for our word.
It puts us at a disadvantage when dealing with
domain-specific corpora because most of the words
in the area do not exist in the model’s vocabulary.
The model will rely heavier on the context to get
embeddings for these wordpieces. We use both
full words and wordpieces to build the vocabulary
graphs in order to counteract this.

Given an undirected graph G = (V, E) with a
set N nodes v; € V, a set of edges (v;,v;), re-
spectively, an adjacency matrix A € RV*N a
degree matrix D;; = > y A;; and a feature matrix
X € RV*C with C the number of dimensions of
a feature vector, a forward 2-layer GCN model is
computed as follow :

Z = f(X,A)
f(X,A) = softmaz(A- ReLU(AXW)Ww 1)

with A = (D_%A)(D_%X), the average of all
neighbours feature vectors, scaled over both the
rows and the columns of the matrix, putting more
weights on low-degree nodes and reducing the
impact of high-degree ones, and computed using
A=A+ ~ (usually, A = 1, but it can be treated
as a trainable parameter) and D, its degree ma-
trix. The adjacency matrix A corresponds to the
weighted PPMI as the vocabulary graph and the
feature matrix X to pre-trained embedding from
BERT.

In the equation aforementioned, the GCN has
two layers, as it is usually the standard (Kipf and
Welling, 2017; Lu et al., 2020). With one layer
GCN, each node can only get the information from
its immediate neighbours. By adding another con-
volutional layer on top of it, we repeat the ag-
gregation (or pooling process), but this time, the
neighbours already have information about their



12B2 BCSCDR

Model P R F1 P R F1

BiLSTM-CRF 812+04 844+06 820+£03 782+0.1 80.1+08 792+0.2
GCN 714+£05 521+£02 63701 799£09 772+£1.0 78.6=+09
BERT 874£03 87.0£01 872+£08 86.0£07 85.0+£08 855+£0.1
+ GCNyanilla 877+12 865+02 874£02 863+£06 86.1+0.7 862+03
+ GCNagqa 89.7+04 860+07 87701 87.7£04 857+£03 863102
+ GCNembedding 89.04+:0.2 888 1.0 889102 87.9+05 857+0.1 86.7+04

Table 3: Analysis (in % F1-Score) of the outputs of our different models for the sequence labelling. This is an

averaging of 3 runs for each experiment.

neighbours from the previous step. The number
of layers is really the maximum number of hops
that each node can reach to capture global informa-
tion. However, we usually do not want to go too far
in the graph. Otherwise, we may smooth out the
graph, erasing important information entirely, mak-
ing the representation less meaningful and resulting
in a drop of performance (Kipf and Welling, 2017).
Since the GCN’s nodes are task entities, such as
words, wordpieces or documents, this architecture
requires all entities, including those from the train-
ing set, validation set, and test set, to be present in
the graph during all the phases 2.

In the same fashion as (Lu et al., 2020), to com-
bine these representations with BERT and to lever-
age both local and global information, we combine
the vocabulary graph embedding obtained by our
GCN and the BERT embedding and feed them to
the first encoder. It will allow for the words’ order
in the sentence to be maintained and local infor-
mation to be used, all the while the global infor-
mation obtained by GCN will interact with BERT
representation over the 12 layers of encoders. We
also test two other combination methods: as for
the first one, instead of integrating the GCN into
the BERT embedding module, we simply add it to
BERT embedding before passing it to the encoder.
The second one consists of producing two outputs,
one of the GCN and one of BERT, concatenating it
just before applying a RELU and feeding it to the
fully connected classification layer.

To summarise, multiple models are tested here,
with several baselines in addition to the BERT and
GCN combinations:

* Bi-LSTM model: BERT embeddings are
used as input of a 256 hidden units and 2-

*Masks are used during training to only use training nodes.
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layers bidirectional LSTM with an additional
CRF layer.

GCN: 2-layer GCN with BERT embeddings
as input, with a simple fully-connected layer
as output. This model only leverages global
informations.

BERT: pre-trained BERT for token classifi-
cation, with a simple fully-connected layer as
output. For all tasks, bert-base-cased is used.

BERT+GCNyqq or BERT with added graph
embedding: Two representations are gen-
erated using BERT and GCN and are then
summed. The combined representation is
passed through a fully-connected layer for
classification.

BERT+GCNempedding or BERT with inte-
grated graph embedding: Instead of only
using the regular BERT embeddings as input,
we feed both the graph embedding obtained
by the GCN and the BERT embedding to the
BERT encoders.

BERT+GCNyanina or BERT with concate-
nated graph embedding: Two representa-
tions are generated using BERT and GCN and
are then concatenated. The combined repre-
sentation is passed through a fully-connected
layer for classification.

3.1 Pre-processings and Experimental settings

For all tasks, non-ASCII values, special charac-
ters and HTML tags are removed. Tokens from
12B2 and BC5CDR are then represented in the In-
side—Outside—Beginning (I0OB) tagging format for
token classification. For the experimental settings,



we implemented the models in PyTorch and Py-
Torch Geometric for the GCN part. All our experi-
ments were run on a single GPU GEFORCE GTX
1080 for about 4 40 minutes per run (on average,
over all the experiments).

4 Results

The results of the experiments are shown in Table 3.
Performance is measured in macro-averaged scores
(exact match). We report our results for the stan-
dard approaches first, and we contrast them with
different combinations and architectures. Over-
all, all the BERT models with additional GCN
global information perform better than the other
baseline models, namely, the BiLSTM-CRF, the
simple GCN and BERT. This confirms our intu-
itions and shows that it is beneficial to merge local
and global information, and those resulting rep-
resentations seem more worthwhile for the down-
stream tasks. A tendency seems to be showing (see
Table 3): while getting a better F1-score, most of
the boost in the overall score for the BERT with
added global information goes to have better pre-
cision than the vanilla BERT and a lower recall
simultaneously. This indicates an actual decrease
in false positives, and these tendencies are similar
across the board.

Future analysis can also be conducted on sub-
words since BERT breaks words down into word-
pieces. The problem for specialised domains is
that a more domain-oriented subword tokenisation
method is probably more appropriate. For exam-
ple, with BERT wordpieces tokeniser, "adenocar-

", "oca

cinoma" will be broken into "aden", rc”,
ne " "

ino", "ma" and, surprisingly, "carcinoma" will
be broken into "car”, "cino", "ma", making "ma"
the only subword that they share, even if the two
words are semantically very close. Some methods
have been developed, particularly for clinical text
(Nguyen et al., 2019). However, using them means
that we have to retrain the whole BERT model (sim-
ilar to Clinical BERT, for example), which defeats
the purpose of adaptation. We rely on the GCN
to fetch these missing pieces of information, con-
nect them and integrate them back into the BERT
model.

In this work, we wanted to examine if we can
improve results for languages and domains for
which there are no BioBERT and Clinical BERT,
e.g. there are no WindBERT or Political BERT for
hypothetical wind energy or politics related tasks.

"o
>
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This step of adaptation to the domain would make
sense and even be necessary. Using a graph neural
network constructed over the corpus’ vocabulary
exclusively follows the same logic. It comes from
our decision to find a way to improve the model
intrinsically without using external resources. Even
if many resources exist for the English language,
it is still crucial to explore ways to adapt existing
models to our downstream specialised tasks where
the volume of data is often insufficient. There is
still a lot of room for improvement. One major lim-
itation of this work — and work on graph neural
networks in general, is the need to use all entities,
including those from the training set, validation set,
and test set, to build the vocabulary graph.

5 Conclusion

The quality of word representations obtained
through language models is often correlated to
the volume of data available. In the case of spe-
cialised domains, these methods might be less effi-
cient due to the usually modest size of the corpora.
This is particularly exacerbated in the case of spe-
cialised and low-resource domains, and the models
might need to go through an adaptation phase. This
work seeks to understand how these methods can
be adapted on the fly by using additional features
from GCN. The achieved results outperform the
baselines across the board. It shows that it is ben-
eficial to merge local and global information, and
those resulting representations yield some addi-
tional advantages and are more worthwhile for the
downstream task. Future work will cover analysis
of attention layers before and after adding more
global information. It will also involve considering
more sophisticated relations than simple mutual
information into the GCN, such as exploiting ori-
ented graphs to encode dependencies, synonymy,
hypo- and hyperonymy, and different architecture
such as Graph Attention Networks.
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