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Abstract

In this work, we propose the application
of abstract meaning representation (AMR)
based semantic parsing models to parse
textual descriptions of a visual scene into
scene graphs, which is the first work to
the best of our knowledge. Previous works
examined scene graph parsing from tex-
tual descriptions using dependency pars-
ing and left the AMR parsing approach
as future work since sophisticated meth-
ods are required to apply AMR. Hence,
we use pre-trained AMR parsing models
to parse the region descriptions of visual
scenes (i.e. images) into AMR graphs and
pre-trained language models (PLM), BART
and T5, to parse AMR graphs into scene
graphs. The experimental results show that
our approach explicitly captures high-level
semantics from textual descriptions of vi-
sual scenes, such as objects, attributes of
objects, and relationships between objects.
Our textual scene graph parsing approach
outperforms the previous state-of-the-art
results by 9.3% in the SPICE metric score.

1 Introduction

Understanding and representing a scene is straight-
forward for humans, but an AI system requires vari-
ous techniques to implement it. One such technique
is scene graph proposed by (Johnson et al., 2015).
Scene graph is a graph-structured representation
that captures high-level semantics of visual scenes
(i.e. images) by explicitly modeling objects along
with their attributes and relationships with other
objects. Scene graph is demonstrated effective in
various tasks including semantic image retrieval
(Wang et al., 2020; Schroeder and Tripathi, 2020),
image captioning (Yang et al., 2019; Zhong et al.,
2020), and visual question answering (Hildebrandt
et al., 2020; Damodaran et al., 2021).

Figure 1: An example of (a) dependency parsing and (b)
abstract meaning representation (AMR) parsing from
textual description (i.e. region description) of "White
street sign with black writing".

Approaches for scene graph generation are clas-
sified into two categories: 1) scene graph genera-
tion based on image as input and 2) scene graph
generation based on text (i.e. image caption) as in-
put. Various approaches (Xu et al., 2017; Zellers
et al., 2018; Gu et al., 2019; Zhong et al., 2021)
are proposed for the former category. On the other
hand, only a fewer approaches (Schuster et al.,
2015; Anderson et al., 2016; Wang et al., 2018;
Andrews et al., 2019) are proposed for the latter. In
this paper, we focus on the latter category, which
is also called textual scene graph parsing. Textual
scene graph parsing has the advantage of being
able to capture the high-level meaning of the image
scene from the text.

Most of previous works (Schuster et al., 2015;
Anderson et al., 2016; Wang et al., 2018) for scene
graph parsing generated scene graphs using depen-
dency parsing to acquire the dependency relation-
ships for all words in a text, as shown in Figure 1
(a). Apart from dependency parsing, there is also
another approach for parsing semantic graphs from
textual descriptions, which is called abstract mean-
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ing representation (AMR) proposed by (Banarescu
et al., 2013). AMR abstracts semantic concepts
from words, and we therefore consider AMR is
more suitable for scene graph parsing. However,
the use of dependency parsing appeared to be a
common theme in the literature rather than AMR,
hence scene graph parsing with AMR has been left
as future work in (Anderson et al., 2016; Wang
et al., 2018).

To this end, we investigate the use of AMR with
pre-trained language models (PLM), such as BART
(Lewis et al., 2020) and T5 (Raffel et al., 2020),
for parsing scene graphs from textual descriptions
of visual scenes. We first parse sentences to AMR
graphs using a pre-trained AMR parsing model,
and then we generate scene graphs from AMR
graphs using the PLM.

Our contributions are the following: i) To the
best of our knowledge, ours is the first work for
parsing scene graphs from texts using abstract
meaning representation (AMR) contrary to the pre-
vious works (Schuster et al., 2015; Anderson et al.,
2016; Wang et al., 2018). ii) We extend pre-trained
language models such as BART and T5 to generate
scene graphs from texts and AMR graphs. iii) Our
approach outperforms the previous state-of-the-art
result by 9.3% on SPICE metric for scene graph
parsing task on intersection of Visual Genome and
MS COCO datasets.

2 Related Works

2.1 Abstract Meaning Representation

Abstract meaning representation (AMR) (Ba-
narescu et al., 2013) is a graph-based semantic
representation which captures semantics "who is
doing what to whom" in a sentence. Each sen-
tence is represented as a rooted, directed, acyclic
graph with labels on nodes (e.g. semantic con-
cepts) and edges (e.g. semantic relations). Repre-
sentative tasks for AMR are Text-to-AMR, captur-
ing the meaning of a sentence within a semantic
graph, and AMR-to-Text, generating text from such
a graph. AMR2.0 (LDC2017T10) and AMR3.0
(LDC2020T02) datasets are currently actively used,
which contain a semantic treebank of over 39, 260
and 59, 255 English natural language sentences, re-
spectively from broadcast conversations, newswire,
weblogs and web discussion forums.

To address these tasks, earlier studies used sta-
tistical methods. With the development of deep
learning, researchers have proposed neural mod-

els such as graph-to-sequence (Zhu et al., 2019),
sequence-to-graph (Cai and Lam, 2020), and neural
transition-based parser models (Zhou et al., 2021).
Recently, with the advent of pre-trained language
models (PLM), AMR-based models incorporating
the generation capability of PLM have been pro-
posed and shown interesting results for various
NLP tasks such as information extraction (Huang
et al., 2018; Zhang and Ji, 2021), text summariza-
tion (Liu et al., 2015; Dohare and Karnick, 2017),
and dialogue systems (Bonial et al., 2020).

(Lam et al., 2021) proposed an efficient heuris-
tic algorithm to approximate the optimal solution
by formalizing ensemble graph prediction as min-
ing the largest graph that is the most supported
by a collection of graph predictions. (Bevilacqua
et al., 2021) proposed symmetric parsing and gen-
eration (SPRING), which casts AMR tasks as a
symmetric transduction task by devising graph lin-
earization and extending the pre-trained encoder-
decoder model, BART. In this paper, we utilize
pre-trained AMR parsing (i.e. Text-to-AMR) mod-
els from (Bevilacqua et al., 2021) to parse AMR
graph from sentences since the SPRING model has
the best performance among the publicly available
pre-trained AMR parsing models1.

2.2 Scene Graph Parsing

Scene graph proposed by (Johnson et al., 2015) is
a graph-structured representation that represents
rich structured semantics of visual scenes (i.e. im-
ages). Nodes in the scene graph represent either
an object, an attribute for an object, or a relation-
ship between objects. Edges depict the connection
between two nodes. In this subsection, we intro-
duce the study of scene graph parsing based on text.
Most of the previous studies (Schuster et al., 2015;
Anderson et al., 2016; Wang et al., 2018) used de-
pendency parsing as a common theme. (Schuster
et al., 2015) proposed a rule-based and a learned
classifier with dependency parsing. (Wang et al.,
2018) proposed a customized dependency parser
with end-to-end training to parse scene graph. (An-
drews et al., 2019) proposed a customized atten-
tion graph mechanism using the OpenAI Trans-
former2 (Radford and Narasimhan, 2018). Unlike
these studies, we use the AMR approach to parse
scene graphs and demonstrate better quantitative

1https://github.com/SapienzaNLP/spring
2This model consists of a BPE (Byte-Pair-Encoding) sub-

word embedding layer followed by 12-layers of decoder-only
transformer with masked self-attention heads.
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performance.

2.3 Pre-trained Language Model

BART (Lewis et al., 2020) is a denoising au-
toencoder for pretraining sequence-to-sequence
(seq2seq) models. It uses the standard Transformer
(Vaswani et al., 2017)-based neural machine trans-
lation (NMT) architecture. It is constructed based
on seq2seq/NMT architecture by combining a bidi-
rectional encoder (Devlin et al., 2019) and a left-
to-right decoder (Radford et al., 2019). BART is
trained by corrupting text with an arbitrary nois-
ing function (i.e. token masking, infilling, deletion,
and sentence permutation) and learning a model to
reconstruct the original text. We use both BART-
base (BART model with 6 encoder and decoder
layers and around 140M parameters) and BART-
large (BART model with 12 encoder and decoder
layers and nearly 400M parameters) models for our
investigation.

T5 (Raffel et al., 2020) is an encoder-decoder
unified framework that is pre-trained on a multi-
task mixture of unsupervised and supervised tasks
and for which a wide range of NLP tasks such as
translation, classification, and question answering
are cast as feeding the model text as input and train-
ing it to generate some target text. We use both
T5-base (T5 model with 12 encoder and decoder
layers and nearly 220M parameters) and T5-large
(T5 model with 24 encoder and decoder layers and
nearly 770M parameters) models for our examina-
tion.

3 Methodology

In this section, we use pre-trained language models
(PLM), BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020), as baselines to parse scene graph (SG)
from text directly (Text-to-SG). We then describe
how to generate scene graphs from AMR graphs
(AMR-to-SG) using PLM models.

3.1 Text-to-SG Parsing

We train the pre-trained language models to take
each region description of an image as input and
generate scene graphs. The PLM models take
text as input and map it into a task-specific out-
put sequence. For instance, if the region descrip-
tion "White street sign with black writing" is
an input, the parsed output, {(street sign, writ-
ing), (white-street sign, black-writing), (street sign-

with-writing)} will be in the form of {(objects),
(attribute-object), (object-relationship-object)}.

3.2 AMR-to-SG Parsing

First, we parse the region descriptions into AMR
graphs. Then, we parse the AMR graphs into the
scene graphs. For this, we use the two AMR parsing
models of SPRING (Bevilacqua et al., 2021), which
are pre-trained on AMR2.0 (LDC2017T10) and
AMR3.0 (LDC2020T02) datasets.

We linearize the AMR graph into a sequence
of symbols which will be the input to pre-trained
language models, BART and T5, for training. For
the linearization technique, we adopt the depth-first
search (DFS) based algorithm used in (Konstas
et al., 2017), as it is closely related to the way
how natural language syntactic trees are linearized
(Bevilacqua et al., 2021). Thus, as shown in Figure
1 (b), the input of BART and T5 will be "(z0 / sign
:mod (z1 / street) :ARG1-of (z2 / white-03) :ARG1-
of (z3 / write-01 :ARG1-of (z4 / black-04)))", where
zo, z1, z2, z3 and z4 are special tokens to handle
co-referring nodes, and the output will be in the
same format as Text-to-SG parsing output.

4 Experiments

4.1 Implementation Details

Datasets For fair comparisons with the existing
models, we train and validate our models with the
subsets of Visual Genome (VG) (Krishna et al.,
2016) and MS COCO (Lin et al., 2014) datasets.
The training set is the intersection of the VG and
MS COCO train2014 set (34,027 images with
1,070,145 regions). The evaluation set is the inter-
section of VG and MS COCO val2014 set (17,471
images with 547,795 regions). We follow the same
preprocessing steps as in (Wang et al., 2018) for
setting the training/test splits.

Evaluation To evaluate parsed scene graphs from
region descriptions with the ground truth region
scene graphs, we use SPICE metric (Anderson
et al., 2016) which calculates a F-score over tu-
ples. As mentioned in (Wang et al., 2018), there is
an issue that a node in one graph could be matched
to several nodes in the other when SPICE calcu-
lates the F-score. Thus, following previous works,
we enforce one-to-one matching while calculating
the F-score and report the average F-score for all
regions.
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Scene graph parser F-score
Text-to-SG
Stanford (Schuster et al., 2015) 0.3549
SPICE (Anderson et al., 2016) 0.4469
CDP (Wang et al., 2018) 0.4967
AG (Andrews et al., 2019) 0.5221
BART-base 0.5071
BART-large 0.5073
T5-base 0.5093
T5-large 0.5101
AMR-to-SG

BART-base
AMR2.0
AMR3.0

0.6112
0.6096

BART-large
AMR2.0
AMR3.0

0.6062
0.6092

T5-base
AMR2.0
AMR3.0

0.6128
0.6114

T5-large
AMR2.0
AMR3.0

0.6151
0.6149

Table 1: F-score (i.e. SPICE metric) comparison be-
tween pre-trained language models (for Text-to-SG and
AMR-to-SG) and existing parsers on the intersection of
VG (Krishna et al., 2016) and MS COCO (Lin et al.,
2014) validation set. CDP and AG are abbreviations of
Customized Dependency Parser and Attention Graph,
respectively.

Experimental Settings In our experiments, We
set the number of epoch to 5, the batch size to 32,
and learning rate to 0.0005 with a weight decay
of 0.004. It takes about a day to train BART-base,
BART-large, and T5-base models and around four
days to train T5-large model using two Tesla V100
with 32 GB graphic memory.

4.2 Results and Analysis

Table 1 shows results of the F-score comparison be-
tween pre-trained language models (PLM) with
both Text-to-SG and AMR-to-SG and existing
parsers on the intersection of VG and MS COCO
validation set.

Text-to-SG We observe that the performance of
PLM models is relatively higher than dependency
parsing based models (i.e. Stanford, SPICE and
Customized Dependency Parser) and shows com-
parable results with the previous state-of-the-art
model, Attention Graph (AG), which used cus-
tomized attention graph with pre-trained trans-
former model. Furthermore, we find that the larger
the model size, the better the performance. We ex-
pect to improve the performance of PLM models
with hyperparameter tuning, which we perform as
our future work.

AMR-to-SG All parsing models using AMR
(AMR-to-SG) not only outperform the previous
state-of-the-art model, Attention Graph (AG), but
also show better performance than Text-to-SG
PLM-based models. All of AMR-to-SG models
for AMR 2.0 achieves an average of 8.92% perfor-
mance improvement, and 8.91% for AMR 3.0. In
particular, our best model (T5-large for AMR 2.0)
outperforms the previous state-of-the-art model by
9.3%. Interestingly, despite the same PLM model,
when comparing the case where AMR graph is
input instead of text, BART shows an average of
10.32% performance improvement for AMR 2.0
and 10.22% for AMR 3.0, respectively. T5 shows
an average of 10.43% performance improvement
for AMR 2.0 and 12.87% for AMR 3.0, respec-
tively. In consequence, we find that the AMR based
approach captures high-level abstract semantics of
text better than dependency parsers and the other
baseline models.

5 Conclusion

In this work, we investigate the application of ab-
stract meaning representation (AMR) for parsing
scene graph by using pre-trained language models
(PLM), BART and T5, with AMR parsing model of
SPRING. We conducted two sets of experiments:
1) scene graph parsing using PLM models, directly
from region descriptions, and 2) scene graph pars-
ing using PLM models from AMR graphs parsed
from region descriptions via AMR parsing pre-
trained models. Our results show AMR graphs cap-
ture high-level abstract semantics of region descrip-
tions. We evaluate our approach using the SPICE
metric score. The results of Text-to AMR are com-
parable and of AMR-to-Text outperform the exist-
ing state-of-the-art models by 9.3%.

In our future work, we will investigate an
adapter-based method (Ribeiro et al., 2021) to en-
code graph structures into PLM models to improve
the performance of textual scene graph parsing.
Furthermore, we will examine our approach based
on the lately published, pre-trained AMR parsing
model, AMRBART3 (Bai et al., 2022). As our
scene graph parser performance improves further,
we expect to be able to use it to automatically gen-
erate either an image scene graph or video scene
graph datasets with less biased and more diverse
labels.

3https://github.com/muyeby/AMRBART
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