Generating unlabelled data for a tri-training approach in a low resourced
NER task

Hugo Boulanger, Thomas Lavergne, Sophie Rosset
Université Paris-Saclay, CNRS,
Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France
first-name.last—-name@lisn.upsaclay.fr

Abstract

Training a tagger for Named Entity Recogni-
tion (NER) requires a substantial amount of
labeled data in the task domain. Manual label-
ing is a tedious and complicated task. Semi-
supervised learning methods can reduce the
quantity of labeled data necessary to train a
model. However, these methods require large
quantities of unlabeled data, which remains an
issue in many cases.

We address this problem by generating unla-
beled data. Large language models have proven
to be powerful tools for text generation. We use
their generative capacity to produce new sen-
tences and variations of the sentences of our
available data. This generation method, com-
bined with a semi-supervised method, is evalu-
ated on CoNLL and I2B2. We prepare both of
these corpora to simulate a low resource setting.
We obtain significant improvements for semi-
supervised learning with synthetic data against
supervised learning on natural data.

1 Introduction

Training models to solve NER tasks requires a con-
siderable amount of labeled data. In most NLP
tasks, this data needs to be related to the task do-
main and must be in the targeted language. While
English is a well-covered language, corpora are
still being built to cover new domains or expand
existing ones. For any other languages, corpora
cover fewer domains. Data in the private sector is
rarely shareable due to privacy reasons. It is also
the case in domains such as the medical domain.
Recent approaches tackle the issue of the ab-
sence of resources by leveraging knowledge or data
from other sources. Zero-shot learning is a learn-
ing paradigm trying to solve a target task without
any labeled data. It uses the knowledge of how to
predict labels of an adjacent task and applies it to
predict the unseen labels of the target task (Wang
et al., 2019). We do not aim to solve the NER prob-
lem in a situation with such strict data restrictions.

30

Labeling a few examples is almost always possi-
ble. Few-shot learning provides training methods
to generalize from a few labeled examples. These
methods use the labeled examples to build repre-
sentations of the class, which serve as comparison
points for inference (Dopierre et al., 2021). Trans-
fer learning leverages the knowledge learned on
tasks of the domain to improve the performance on
a specific task (Ruder, 2019). It is quite common
to see cross-lingual transfer from higher-resourced
languages where the task exists. However, the most
prominent use case of transfer learning in NLP is
the use of language models for data representa-
tion. We use this type of transfer learning to build
high-performing taggers from BERT models. Semi-
supervised learning is a paradigm where unlabeled
data is widely available. The unlabeled data is used
to improve the model’s performance by giving a
better topology of the data space.

We propose to use a semi-supervised learning
method in a context where data is scarce enough to
be fully labeled. We aim to achieve this by using
large language models to generate the necessary
unlabeled data. We test whether large language
models can generate data that make tri-training a
viable option in a low-resource context. The per-
formances of our baseline models are compared
against the performances of the ensembles of mod-
els trained with tri-training on CoNLL (Sang and
De Meulder, 2003) and 12B2 (Uzuner et al., 2011).
Significant improvements are observed using our
method on the reduced datasets.

Language modeling has already been used as
an augmentation method to generate labeled and
unlabeled examples for NER in DAGA (Ding et al.,
2020). However, our taggers overperform the tag-
gers presented on the gold standard by 30 points
at size 1000 and 9 points at full size. The semi-
supervised method used in DAGA, self-training, is
also prone to errors due to reinforcement of early
mistakes. In our case, we generate unlabeled sen-

Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 30 - 37
July 14, 2022 ©2022 Association for Computational Linguistics

tences using pre-trained large language models. We
test this method with subsets of data ranging from
50 examples to 1000 examples vs. over 1000 in
DAGA.

Thus, our main contribution is using out-of-the-
box large language models as tools to obtain un-
labeled data for semi-supervised learning in NER
in a low-resource setting. The code relative to the
experiment will be available in a public repository'.

Section 2 presents state of the art related to data
augmentation, semi-supervised learning in NER,
and language modeling. Section 3 presents tri-
training (Zhou and Li, 2005), and how we fit gen-
eration into it. Section 4 touches on the technical
details of the experiments. Section 5 and 6 are the
discussion and the conclusion of the article.

2 Related Works

Learning models in a low-resource setting require
extracting every possible information from the
available data. Data augmentation is a common
technique that creates synthetic data from available
data. In Natural Language Processing, augmenta-
tion is used across various tasks to help achieve
better performances. In classification, techniques
such as back-translation (Sennrich et al., 2016) or
Easy Data Augmentation (Wei and Zou, 2019) are
used. However, in tagging, paraphrasing using
back-translation (Neuraz et al., 2018) is not bring-
ing significant improvements. Recent works show
that using language models learned on the training
data to generate labeled and unlabeled examples
can bring improvements (Ding et al., 2020).
Inductive semi-supervised learning (Van Enge-
len and Hoos, 2020) aims at improving the per-
formances of models through the addition of unla-
beled data. For Named Entity Recognition, pseudo-
labeling is a method that has been used (Chen
et al., 2019). Pseudo-labeling is one of the semi-
supervised learning methods. The unlabeled data
receives pseudo-labels from the models trained.
This pseudo-labeled data is then used alongside
labeled data to train the models. Variants of the
method exists (Yarowsky, 1995) (McClosky et al.,
2006) (Blum and Mitchell, 1998) with varying
quantities of models trained. The separation of
the data between the different models trained and
how the models are used to produce pseudo-labels
also creates variants to this method. In our case,

"https://github.com/HugoBoulanger/
Tritraining-Gen

31

we use tri-training (Zhou and Li, 2005), which
uses three models. This method has been used to
solve Clinical Concept Extraction in the medical
domain (Chen et al., 2019) on new data.

Semi-supervised learning methods still require
a significant amount of unlabeled data. However,
with current advances in language modeling, this
method could be improved. Transformer-based
models (Vaswani et al., 2017) have been a revo-
lution in the language modeling landscape. From
their first iterations like GPT (Radford et al., 2018)
to their more recent ones like TS5 (Raffel et al.,
2020) and GPT-3 (Brown et al., 2020), transformer-
based models have become a staple of Natural
Language Processing as fine-tuning or transferring
knowledge from these models often outperforms
learning a model on the task directly. While our
taggers are based on BERT models (Devlin et al.,
2018), we otherwise use the generative power of
GPT2 (Radford et al., 2019) to provide unlabeled
data for the semi-supervised training. GPT?2 has
been finetuned and used to generate unlabeled data
for classification in a high resource context (He
et al., 2021).

3 Methods

This section provides details on the tri-training pro-
cess for sentence tagging and how we levy lan-
guage modeling as an unlabeled data provider.

3.1 Tri-training

Algorithm 1 Tri-training ((Zhou and Li, 2005),
(Ruder and Plank, 2018))

1: foric {1..3} do

2: m; < train_model(sampling(L), m;)
3: while Any m; still learns do

4: fori c {1..3} do

5: L; +— 0

6: gk {1.3} — i

7: forz € U do

8: if m;(z) = my(x) then

9: L; <—L1U{(:E,mj(:13))}

10: fori € {1..3} do

s
.

m; < train_model(L; U L, m;)

Tri-training is an inductive semi-supervised
learning (Van Engelen and Hoos, 2020) method
using an ensemble of three models. The models are
trained in a supervised learning manner on a set of
labeled and pseudo-labeled data. As we try to solve

https://github.com/HugoBoulanger/Tritraining-Gen
https://github.com/HugoBoulanger/Tritraining-Gen

-————

LUL;

time = ¢, tagger = m;

Figure 1: Tri-training with unlabeled data U generation.
In rectangles are the data sets, and in rounded rectangles
are the different models. The procedure is shown at
episode ¢ for model m;. The initialization is not repre-
sented and is done by sampling with replacement from
L.

a NER task, the models we use for the ensemble
are taggers. Further description of the taggers can
be found in the experiments section. We describe
the Algorithm 1 in the following paragraphs, and
we show our additions in Figure 1.

Tri-training. Tri-training is an episodic training
method that stops when each model of the ensem-
ble has stopped improving. The most crucial fea-
ture of tri-training is the construction of the training
set of the models. This is shown from line 4 to line
9 in Algorithm 1 and in the second line of Figure 1.
For each model m;, a pseudo-labeled set L; is con-
structed. L; is composed of the unlabeled sentences
x € U for which the predictions of the models m;;
and my i ¢ {j, k} are equal. These predictions
are added to L; alongside x as their pseudo-labels.
A threshold can also be used to remove uncertain
annotations. However, it was concluded that it
was not necessary for simple tri-training (Ruder
and Plank, 2018). The models are then trained on
both the natural and synthetic data L U L;. L is
the labeled training data. In our case, it represents
any subset of the training corpus made for the low
resource setting as explained in section 4.2. The
operations described above are repeated until all
models have stopped learning.

Initialization. The central part of Algorithm 1 de-
scribed above assumes that models are sufficiently
trained and different to create varied pseudo-labels.

32

To achieve these prerequisites, we pre-train the
models. The models m; are pre-trained on differ-
ent random subsets of the labeled data L. These
subsets are made by sampling with replacement
from the training set. This operation is also re-
ferred to as bootstrap sampling in (Zhou and Li,
2005). Sampling the pre-training data is done to in-
troduce variety in the train sets of the three models
without incurring performance losses.

Inference. For inference, we obtain an ensemble
of 3 different models that can be used together
with a voting system. We keep the labels with the
highest summed score across the three models.

As a semi-supervised learning algorithm, tri-
training requires a substantial amount of unlabeled
examples. The specificity of our study is the use of
a generator to create the unlabeled examples.

3.2 Generation

Applying semi-supervised learning methods is
more complicated when there is no unlabeled data.
We used the text of the labeled data as the context
for the generation model. We use the generation
model in two different ways: (i) follow-up sentence
generation and (ii) sentence completion, as shown
in Figure 2.

The first generation method we use is follow-up
sentence generation. Large language models like
GPT-2 (Radford et al., 2019) are trained on texts
containing multiple sentences. This kind of model
should be able to generate the follow-up sentence
from the context. Using these models out-of-the-
box should work without any finetuning. We apply
follow-up sentence generation to generate new ex-
amples. With this method, we aim to generate new
sentences that are within the same domain but have
different structures.

The second method we use is sentence comple-
tion. We remove the end of the sentence and com-
plete it using the language model for this method.
We aim to generate alternative contexts to the part
of the sentence we keep with this method. While
this method might bring more variations by taking
out random portions of the sentences, it is easier to
use this way.

3.3 Evaluation

We aim at evaluating whether the data generated
with large language models is of sufficient quality
to serve as unlabeled data in a tri-training scenario.
To that end, we evaluate the performances of the

This is an example

That would be it’s follow-up

This is the completion

Figure 2: Generation methods examples. In blue is the
initial example and in red is the generated text. The first
generated example is from sentence follow-up, and the
second is from sentence completion.

tri-trained models against the performances of a
single model trained on the same amount of labeled
natural data.

We do not reduce the size of our testing sets
as we aim to compare our method to existing re-
sults. Our evaluation is comparative between our
tri-training method and no augmentation method.
We want to see whether there are increases in per-
formance in a low-resource setting. Comparisons
are made between a tagger trained on one subset
against the ensemble of taggers obtained via our tri-
training and generation method on the same subset.
The sampling of subsets is seeded as explained in
Section 4.2. We average results over those seeds to
reduce the impact of selection biases.

4 Experiments

In this section, we describe the technical details of
the experiments and explain the variants tested.

4.1 Datasets

The task we are working on is the Named Entity
Recognition (NER) task. The goal of this task is
to find mentions associated with certain concepts
in sequences of text. In practice, this is done by
assigning labels representing the concepts and the
position within the mention to each of the tokens
of the text. The corpora we are using are CoNLL
2003 English (Sang and De Meulder, 2003) and
12B2 (Uzuner et al., 2011). CoNLL is a corpus
of Reuters news annotated with four different con-
cepts: person, location, organization, and miscel-
laneous. The difficulties of this corpus reside in
the various types of information portrayed within.
From geopolitical news to tables of sports results,
the input format varies greatly. 12B2 is a corpus
of medical records annotated with three different
concepts: problem, treatment, and test. These cor-
pora are classic corpora for the NER task and cover

33

12B2 | CoNLL
Train line count || 11482 14986
Test line count 27625 3683
BERT base 84.0 90.0
BERT large 85.0 92.0
BioBERT 86.6

Table 1: Reference models used as topline for our work
and viability check against current state of the art. F}
of BERT + classifier models on I12B2 and CoNLL using
different pre-trained models. Metrics computed by se-
geval (Ramshaw and Marcus, 1995) (Nakayama, 2018).
Best model based on development set F1, trained on 50
epochs, with batch size of 32.

diverse specialty domains. These complete datasets
contain enough data to be considered an ideal case
for their respective tasks. We have tested our tagger
architecture (see 4.3) on the full-sized data in order
to verify its quality and select the best pre-trained
BERT model available. This topline can be seen in
Table 1. Our experiment focuses on low resources;
the maximum size of the training data is less than
10% of the full set. We do not expect to reach
topline results with our method at this quantity of
data. However, we have to look at how much of the
gap between topline and baseline is bridged by our
method.

4.2 Low resource setting

The purpose of our method is to be used in a low-
resource setting. We simulate such a setting by
sampling a small number of labeled examples from
the training set to create a new training set. We also
consider that the quantity of data is small enough
that all of the data is labeled. For our experiment,
we reduce the training set to a subset Sy of size
1000 by sampling without replacement using ten
different seeds. This is where the sampling bias
is induced. S7ggo contains less than 10% of each
of our sets. The seeding is done to reduce the
variability of results due to sampling biases. Most
of the results will be averaged over the ten seeds.
We cut each subset Siggg in a series of subsets:
S50 C S100 C Sos0 € Ss00 € Sioo0p. This is
useful to evaluate the impact of the addition of new
examples. For each seed, we obtain five subsets of
labeled data.

4.3 Tagger

This section presents the architecture shared by
all the taggers we train. It is a simple BERT +

S50 S100 S250 S500 S1000
~ baseline 36.23+5.80 49.2243.23 64.34+1.43 71.39+0.75 77.384+0.64
égl Aunique +3.93+1.89 +2.56+2.37 +1.89+1.25 +1.93+0.70 +1.28+0.84
— Aensemble | +4.32+1.82 +3.0842.38 +2.45+1.23 +2.4940.73 +1.80+0.84
j baseline 59.87+3.32 69.20+3.92 80.65+1.99 84.74+0.89 87.70+0.38
% Aunique +2.334+2.01 +0.08+3.64 +1.06+1.11 +0.544+0.83 +0.274+0.37
O Aensemble | +2.98+1.98 +0.84+3.68 +1.774+1.17 +1.144+0.71 +0.71£0.40

Table 2: F score on baseline averaged across seeds. Average of the deltas between the performances of each
individual tri-trained tagger and their respective baselines at Aunique lines. Average of the deltas between the
performances of tri-trained ensembles and their respective baselines at Aensemble lines. Corpora used are 12B2 and

CoNLL.

classifier architecture. The classifier is a two-layer
feed-forward network with a hidden size of 768 and
ReL.U (rectified linear unit) activation. Dropout
with p = 0.1 is applied between BERT and the
classifier during training. The model is trained
with the Adam optimizer with an initial learning
rate of 1075, We train all taggers for tri-training
and baseline for 1000 epochs with early stopping
when the development set F} score stops increasing
for 20 epochs (40 epochs for a subset of size 50).
The sentence batch size is 16.

While we refer to our tagger architecture as
BERT + classifier, we have tried different pre-
trained BERT models?** as shown in Table 1 and
have settled on two different models. For CoNLL,
the best results were obtained with BERT large
cased (Devlin et al., 2018), and for I12B2, with
BioBERT base cased (Lee et al., 2020).

4.4 Generation

We generate the unlabeled set U with GPT-2 (Rad-
ford et al., 2019). We use HuggingFace’s imple-
mentation®. The text from the labeled train set
is used as the context to generate entailed exam-
ples. With each labeled example, we generate five
follow-up sentences. We also use the language
model for sentence completion. In this case, we cut
the original text and complete it using the model.
Each labeled example is cut to 75%, 50%, and 25%
of its length. In each of these cases, we generate
five completed sentences. This amounts to a total
of 20 synthetic examples per natural example. It
is, in practice, slightly less than that because we

https://huggingface.co/
bert-base—uncased
‘https://huggingface.co/
bert-large—-cased
*https://huggingface.co/dmis-1lab/
biobert-base-cased-vl.1
Shttps://huggingface.co/gpt2

34

filter out sequences made exclusively of different
types of whitespace, newlines, and other such noise.
Generated examples can be seen in Figure 3

4.5 Tri-training

The main focus of this article is the use of tri-
training without natural unlabeled data. We use the
unlabeled data generated, as explained previously,
as the unlabeled data of tri-training. Tri-training
requires one development set and one validation
set: the first for the training of each model m;,
the second to validate the stagnation of the models
across episodes. We chose to split the corpora’s ini-
tial development set in half to fulfill each of those
purposes. As this is a first experiment, we exclude
sentences without tags from the pseudo-labeled set.
This is done to avoid a possible problem at very
low resources where the pre-trained models are not
trained enough and produce sentences with empty
tag sequences where they should not. However, our
results show that these precautions might not be
necessary. The result of the tri-training procedure
is an ensemble of three models. Inference using
this ensemble is done with a simple voting system.
Voting is done by summing the scores output of
each tag across all models and picking the highest.

4.6 Results

In this section, we present the results obtained
across the different subsets.

Baseline. Baseline are the results of models
trained in a supervised manner only on the natural
training data. For each subset 5,,, it is an average
of 10 scores. The results in Table 2 show consistent
performance increases between each subset sizes.
Seqeval (Ramshaw and Marcus, 1995) (Nakayama,
2018) is used to compute the results. 12B2 F'1
range from 36.2 (size 50) to 77.4 (size 1000), and

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-cased
https://huggingface.co/bert-large-cased
https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
https://huggingface.co/gpt2

ORG
MDS was founded in 1978.
PER
And it was then that Jussi Graf’s
MISC
3_x86_64.tar.gz"") ; // We’ll add this [...]

problem

FOLLOW US ON TWITTER!
test treatment
Disease tolerance test|for benz
treatment

-12 10:27:28 1 RavenQueen > she’s been so [...]

Figure 3: Examples of generation. The three first ex-
amples are from CoNLL and the three last from 12B2.
Each series is formed of an example of completion and
two examples of sentence follow-up. The examples
were cherry-picked to show both positive and negative
aspects of generation, be of short length, and be labeled
by the models. On CoNLL’s completion example, only
a full stop was added. On I2B2’s completion exam-
ple, the context was "FOLLOW" and was too short and
generic to bring the sentence to the medical domain.
The second examples for both corpora are okay. The
third examples for both corpora happen when short for-
mulaic sentences are used as context. For CoNLL, it is
the common -DOCSTART- and for I2B2, it was a date.

CoNLL F'1 range from 59.9 (size 50) to 87.7 (size
1000). As discussed in Section 3.3, smaller sizes
show a higher standard deviation with 5.8 for I2B2
and 3.3 for CoNLL at size 50.

Aunique. Tri-training produces three trained
models supposed to be used as an ensemble of mod-
els. With constraints such as memory consumption
or inference time, one might want to use a single
model for inference. For such cases, we have re-
ported the results of single models. The Aunique
results show the deltas between each of the three
individual models m; and the baseline. For each
subset Sy, it is an average of 30 deltas.

Aensemble. The purpose of tri-training is to ob-
tain an ensemble of three models. We report the
results of the ensembles by computing the deltas
between the performances of the ensembles and
their respective baselines. These results can be
found within Table 2 at the Aensemble line and in
Figure 4.

Our method obtains higher results on average
on all subsets and on both corpora. Generally, on

35

F1 delta between tritrained ensemble and baseline

CoNLL
12B2

F1

i

—{

250 500 1000

Size of subset

50 100

Figure 4: Boxplot of CoNLL and I12B2 deltas between
tri-trained ensemble and baseline (Aensemble). For
each subset size, the left boxplot is CoNLL, the right
boxplot is [2B2.

12B2, tri-training allows for a Aensemble to range
from +4.32 (S50) to +1.80 (S190p). On CoNLL, it
otherwise ranges from +2.98 (S50) to +0.71 (S1000)-
The Aunique shows, as expected, lower gains than
Aensemble, ranging from +3.93 (S50) to +1.28
(S1000) for I2B2 and +2.33 (S50) to +0.27 (S1000)
for CoNLL.

Out of the 50 individual runs for each corpus,
one is negative for I2B2, and five are negative for
CoNLL. Impacts of the negative results are seen
on the average results of CoNLL at subset size 100.
Three seeds yield negative gains at this size, with
one having extreme (-8.6 points) negative gains.
Removing this extreme result in the average cal-
culation brings the Aensemble score closer to ex-
pected values (+1.89). Performances of individual
models on CoNLL are within the standard devia-
tion of negative results. This is not the case for
12B2. These results show that using the ensemble
is a more stable solution. Overall, the method is
most consistent with subsets of size 250 plus, as
the average performance of tri-trained ensembles
is above the standard deviation of the baseline.

5 Discussion

While our low-resource setting allows us to com-
pare the impact of the training method in an other-
wise similar context, it does not fully represent the
nature of the problem. Building the development
and test set is also a low resource problem. Reduc-
ing the test set to simulate low-resource will only
make any comparison meaningless. Simulating the
development set in the low resource context is an

improvement that could be made.

It is also to note that while the application do-
main is low resource, it is necessary to have a size-
able open-domain language model in the target
language. Trying this method in languages other
than English must be tested. Multilingual models
might be the solution to the generalization of this
method. As it stands, availability of large language
model is the hardest limitation of this method.

6 Conclusion

Leveraging pre-trained models to improve perfor-
mances on specific tasks is a common approach.
With recent improvements to language modeling,
recent models are often used directly to solve tasks.
Direct usage is the method we use to build our tag-
gers. However, we propose a new use for these
sizeable models. They can serve as unlabeled data
generators for semi-supervised learning. In particu-
lar, we have shown that we can use this method to
gain significant improvements to the performances
of taggers on NER and Clinical Concept Extrac-
tion in a low resource context. We gain between 3
and 4 points of Fj score on subsets of data of size
50. Gains are overall positive on the sizes of the
subsets we have tested. The higher the gains, the
lower the data size is. We have shown that large
language models are suitable tools to generate un-
labeled examples for semi-supervised learning for
NER.

Acknowledgements

This work was granted access to the HPC resources
of IDRIS under the allocation 2021-AD011013018
made by GENCI. This work was granted access
to the HPC resources of Saclay-IA through the
Lab-IA machine. This work has been supported by
the project PSPC AIDA: 2019-PSPC-09 funded by
BPI-France.

References

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92—-100.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

36

Y Chen, C Zhou, T Li, H Wu, X Zhao, K Ye, and
J Liao. 2019. Named entity recognition from chinese
adverse drug event reports with lexical feature based

bilstm-crf and tri-training. Journal of Biomedical
Informatics, 96:103252-103252.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-
engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and
Chunyan Miao. 2020. Daga: Data augmentation with
a generation approach for low-resource tagging tasks.
arXiv preprint arXiv:2011.01549.

Thomas Dopierre, Christophe Gravier, and Wilfried
Logerais. 2021. Protaugment: Intent detection meta-
learning through unsupervised diverse paraphrasing.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2454-2466.

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza Haf-
fari, and Mohammad Norouzi. 2021. Generate, an-
notate, and learn: Generative models advance self-
training and knowledge distillation. arXiv preprint
arXiv:2106.06168.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234-1240.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the main conference on human language
technology conference of the North American Chap-
ter of the Association of Computational Linguistics,
pages 152-159. Citeseer.

Hiroki Nakayama. 2018. segeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Antoine Neuraz, Leonardo Campillos Llanos, Anita
Burgun, and Sophie Rosset. 2018. Natural language
understanding for task oriented dialog in the biomedi-
cal domain in a low resources context. arXiv preprint
arXiv:1811.09417.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. Journal of Machine Learning Research, 21:1—
67.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Sebastian Ruder. 2019. Neural Transfer Learning for
Natural Language Processing. Ph.D. thesis, National
University of Ireland, Galway.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044—1054.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142—-147.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86-96.

Ozlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Associ-
ation: JAMIA, 18(5):552.

Jesper E Van Engelen and Holger H Hoos. 2020. A sur-
vey on semi-supervised learning. Machine Learning,
109(2):373-440.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Wei Wang, Vincent W Zheng, Han Yu, and Chunyan
Miao. 2019. A survey of zero-shot learning: Settings,
methods, and applications. ACM Transactions on
Intelligent Systems and Technology (TIST), 10(2):1-
37.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382-6388, Hong Kong, China. As-
sociation for Computational Linguistics.

37

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational
linguistics, pages 189-196.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Ex-
ploiting unlabeled data using three classifiers. IEEE

Transactions on knowledge and Data Engineering,
17(11):1529-1541.

https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670

