
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 227 - 236
July 14, 2022 ©2022 Association for Computational Linguistics

Unified NMT models for the Indian subcontinent,
transcending script-barriers

Gokul NC
Devnagri AI

gokulnc@devnagri.com

Abstract

Highly accurate machine translation systems
are very important in societies and countries
where multilinguality is very common, and
where English often does not suffice. The In-
dian subcontinent (or South Asia) is such a re-
gion, with all the Indic languages currently be-
ing under-represented in the NLP ecosystem. It
is essential to thoroughly explore various tech-
niques to improve the performance of such low-
resource languages at least using the data avail-
able in open-source, which itself is something
not very explored in the Indic ecosystem. In our
work, we perform a study with a focus on im-
proving the performance of very-low-resource
South Asian languages, especially of countries
in addition to India. Specifically, we propose
how unified models can be built that can ex-
ploit the data from comparatively resource-rich
languages of the same region. We propose
strategies to unify different types of unexplored
scripts, especially Perso–Arabic scripts and In-
dic scripts to build multilingual models for all
the South Asian languages despite the script
barrier. We also study how augmentation tech-
niques like back-translation can be made use-
of to build unified models just using openly
available raw data, to understand what levels of
improvements can be expected for these Indic
languages.

1 Introduction

The Indian subcontinent is a well-studied linguis-
tic area (Emeneau, 1956), known as South Asian
sprachbund. The region is home to around a quar-
ter of the world’s population, with a total which is
projected to reach more than 2 billion in a decade.
Despite this, the progress in natural language pro-
cessing is significantly lacking for South Asian
languages (or Indic languages). Especially, ma-
chine translation is of core importance since South
Asia is largely a multilingual society, with more
than 25 languages recognized officially across the

subcontinent and more than 100s attested and spo-
ken. Although there are quite a few number of
works which have released datasets for languages
of India (Siripragada et al., 2020) and studied mul-
tilingual models for the same (Philip et al., 2019),
they are not exhaustively studied. In particular, the
Indic languages of other South Asian countries like
Pakistan, Nepal and Sri Lanka are almost never
studied together with the languages of India and
Bangladesh.

In this work, we aim to study all the available
Indic languages (of Indo-Aryan and Dravidian fam-
ilies) of all the above countries together, precisely
15 South Asian languages (listed in appendix A).
Especially, we propose a simple strategy to unify
digraphic languages like Hindi–Urdu, Sindhi and
Punjabi which are written in Indic scripts in In-
dia and Perso–Arabic scripts in Pakistan. We pro-
pose how one can build a script-agnostic encoder
which can generalize well across different types
of translation models, like code-mixed, roman (so-
cial media) and formal texts. We study for the first
time in literature backtranslation-based NMT for
all script-unified Indic languages together, which
provides significantly better performance than mod-
els trained only on parallel data, by using only
freely available monolingual data. We finally pro-
vide brief recommendations for researchers work-
ing in this Indic-NMT domain, and finally mention
how this work can be extended and its future scope.

2 Related works

Training multilingual models for neural machine
translation currently the go-to approach for signifi-
cantly improving the performance of low-resource
languages (Ngo et al., 2020). Especially sharing
of sub-word vocabulary among related languages
(of the same or similar families) is of more im-
portance to exploit the inter-relationships between
the languages (Khemchandani et al., 2021), so that
resource sharing from high-resource languages to

227

Dataset as bn gu hi kn ml mr ne or pa sd si ta te ur

Samanantar 0.14 8.52 3.05 8.57 4.08 5.85 3.32 1.00 2.42 5.17 4.84
CVIT-PIB 0.04 0.20
Anuvaad* .003 0.02 0.02
PMI* 0.01
OPUS 0.03 2.25 0.12 1.89 8.53 8.69
U.Kathmandu 0.02
Charles Univ 0.01
MTurks 2012 0.03

Total 0.21 8.52 3.05 8.57 4.07 5.85 3.32 2.28 1.14 2.42 1.89 8.53 5.17 4.84 8.97

Table 1: Open-source parallel Indic corpora (in millions), totalling around 69M sentence-pairs

low-resource languages is achieved. Recent works
(Ramesh et al., 2021) have explored strategies to
train multilingual NMT for 11 languages of India,
both with and without shared vocabulary across
languages, demonstrating that vocabulary sharing
by script unification is significantly beneficial. It
is also common to convert all the text across all
languages to IPA (International Phonetic Alphabet)
or any common script, especially in speech-to-text
(Javed et al., 2021) and text-to-speech (Zhang et al.,
2021) to obtain a universal representation of text
across any language/script. In the case of South
Asian languages, it is more convenient to map all
scripts to a common Indic script (like Devanagari)
which is capable of representing all phonemes used
in the Indic families (Khare et al., 2021).

3 Background

This section sets provides the background required
for the subsequent sections.

3.1 Datasets

As mentioned earlier, our work only focuses on
open-source datasets inorder to explore how per-
formance can be improved for low-resource lan-
guages just using openly available data. Overall,
the datasets used in this work are mostly from the
general domain, and hyperlinks are provided to
access all the datasets. The next sub-section men-
tions the list of all aligned datasets used in this work
and further, the we mention the list of all available
monolingual data sources which we exploit in this
work for improving performance.

3.1.1 Parallel datasets
Table 1 shows the list of all parallel datasets used
for training our models. It is to be noted that

the Samanantar (Ramesh et al., 2021) is the ma-
jor source of data, for languages of India. To ex-
plore more languages as well as to study how the
above data is useful for other similar Indic lan-
guages, especially focusing on other related South
Asian countries, we gather more data from different
sources shown in the same table. Specifically, we
aim at increasing the amount of data obtainable for
Indo-Aryan languages not covered in Samanantar,
viz. Nepali, Sinhala, Sindhi and Urdu which are
predominantly spoken in Nepal, Sri Lanka and Pak-
istan respectively. In addition, we also manually
add new sources of data (marked *) from Anuvaad
corpus and PM India corpus which were not cov-
ered in the latest Samanantar v0.2 for Assamese
and Odia, although relatively very small in size.

3.1.2 Benchmark dataset

For test set, we use the FLoRes101 benchmark
(Goyal et al., 2021) which has data for 14 Indic
languages, manually translated from various do-
mains of English Wikipedia. Since this new bench-
mark does not have data for Sinhala, we evaluate
it on the initial FLoRes benchmark (Guzmán et al.,
2019). Note that we do not use the WAT 2021
MultiIndicMT testset (Nakazawa et al., 2021) for
benchmarking, since we find the data quite very
close to the distribution of the corresponding train-
ing data, as also observed by IndicBART (Dabre
et al., 2021). All BLEU scores reported in this pa-
per are computed using sacreBLEU (Post, 2018)
after generating translations with a beam decod-
ing size of 4. Note that we compare our scores
only against IndicBART (and experiment only with
same architecture), as they already demonstrate su-
perior scores over fine-tuned models like mBART
and the chosen model is lighter than pretrained

228

https://indicnlp.ai4bharat.org/samanantar/
http://preon.iiit.ac.in/~jerin/bhasha/
https://github.com/project-anuvaad/anuvaad-parallel-corpus#english-assamese
https://github.com/project-anuvaad/anuvaad-parallel-corpus
http://data.statmt.org/pmindia/README
https://opus.nlpl.eu/
https://github.com/sharad461/nepali-translator
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2582
https://github.com/joshua-decoder/indian-parallel-corpora
https://github.com/project-anuvaad/anuvaad-parallel-corpus
https://github.com/project-anuvaad/anuvaad-parallel-corpus
http://data.statmt.org/pmindia/README
https://github.com/mjpost/sacrebleu

models like mT5 or mBART50.

3.1.3 Monolingual data
Table 2 shows list of all monolingual corpora used
in this work. It is to be noted again that the
AI4Bharat IndicCorp is the major source of data
(row 1), for languages of India. For Indo-Aryan
languages of other South Asian countries, we con-
solidate most of the available open-source corpora
from different sources as shown in other rows of the
table. We also try to consolidate more data for very-
low-resource languages of India like Assamese and
Odia.

3.2 Script Unification

As explained earlier, script unification is essential
for sub-word vocabulary sharing between related
languages. It is essential for the unification to be
lossless so that the resultant dataset quality is not
affected. In literature, it is common to use Devana-
gari as the common script to unify all the Brahmic
scripts of India, although any script (like IPA) can
be used as the pivot. For example, for models
trained only for Dravidian languages, we use the
Malayalam script as the common representation
for the 4 languages: Kannada, Malayalam, Tamil
and Telugu. But Devanagari is predominantly cho-
sen since it is used for many languages like Hindi,
Nepali, Marathi, etc. as well as due to the fact that
it is one of the few Indic scripts which supports
almost all phonemes required for both the Indic
language families, not just Indo-Aryan for which
the script is predominantly used. One important
aspect of Devanagari is a diacritic called nuqta,
which is essentially a dot mark placed below the
main consonants to represent non-native phonemes.
Its primary use is to represent consonants of other
languages, including from different families like
Dravidian, Iranic (for Persian), Semitic (for Ara-
bic). Hence, using Devanagari for all Indic lan-
guages as a common script is preferable, including
languages like Urdu, Sindhi and Kashmiri which
are written in Perso–Arabic scripts. In the subse-
quent section, we explain how the latter is achieved,
which is an unexplored track in research.

3.2.1 Mapping Devanagari and Perso–Arabic
The Perso–Arabic script is an abjad, meaning that
it is based on a writing system which mostly has
only consonants (in its purest form). In addition, in
Perso–Arabic, two of the same consonants (w & y)
are used to indicate few long-vowels (respectively:

/u/, /o/ and /i/, /e/). So the reader of the script
mentally fills-in / interprets most of the vowels as
they read, based on their knowledge of the language
and context. Devanagari is an abugida, meaning
that it is an alphasyllabary system where the script
is generally expected to be almost phonetic with
all consonants and vowels represented. This makes
a direct mapping of Perso–Arabic consonants to
Devanagari slightly illegible for readers of usual
Devanagari due to lack of any vowels. Figure 1
below shows an example of raw mapping for the
Hindostani language.

Urdu

Raw-Devanagari

Hindi

English

پلس نے چور کو پکڑ کے جیل مے ڈال دیا

पलस ने चवर कव पकड़ के जयल मे डाल दया

पुिलस ने चोर को पकड के जेल मे डाल िदया

The police caught the thief and put him in jail

Figure 1: Row-1: Perso–Arabic, Row-2: Devanagari-
transliteration, Row-3: Actual Hindi spelling, Row-4:
Translation

Despite this, we propose that NMT models are
capable of learning both abjad and abugida forms,
with a deeper understanding of the underlying lan-
guage. That is, we directly use the raw mapping
of Perso–Arabic consonants to Devanagari (with-
out any phonetic transcription) to train an unified
model. It is to be noted that there are some con-
sonants in Perso–Arabic for which, although the
phonemes are different, they represent the same
phone. Those consonants usually are mapped to
a single Devanagari phoneme. In our work, es-
pecially to generate Perso–Arabic texts, we re-
quire lossless mapping of each character from
Perso–Arabic. Hence we propose to map them
uniquely by creating new Devanagari consonants
using nuqta.We also open-source our transliterator
implementation as a python library1.

Upon training using the above unification, we
see that our model is capable of understanding that
the standard registers of Hindi & Urdu have the
same underlying language, with only differences
being in writing form and formal vocabulary. This
was verified by swapping the scripts used for Hindi
& Urdu to see if still produces legitimate outputs.
As later described in Section 5.1, while training,
we explicitly specify what is the expected output
script-type and language that is to be produced
by the model. Upon specifying Arabic as script
for Hindi and Devanagari as script for Urdu to the

1Indic-PersoArabic Script Converter

229

https://en.wikipedia.org/wiki/Nuqta
https://en.wikipedia.org/wiki/Hindustani_language
https://github.com/GokulNC/Indic-PersoArabic-Script-Converter

Dataset as bn gu hi kn ml mr ne or pa pnb sd si ta te ur

IndicCorp 2.38 77.7 46.6 77.3 56.5 67.9 41.6 10.1 35.3 47.8 60.5
Universitya 45 3.2 5.5
CC100 0.5 12.7 2.2 0.02 1.4 12.6 28
Wikipedia 0.3 0.4 0.3 1.2 0.4 0.6 1.3
Leipzig 0.06 4.2 0.04 0.06 0.007 0.4 1.1
Crawledb 2 4.8

Total 3.24 77.7 46.6 122.3 56.5 67.9 41.6 22.5 12.64 35.3 1.28 1.807 18.4 47.8 60.5 35.9

Table 2: Open-source monolingual Indic corpora (in millions), totalling 650M sentences

ahi: IIT-B Corpus, ne: JNU Corpus, ur: Charles University
bne: GitHub sources, si: FacebookDecade, News sources, SinMin

trained model, we found that the model still pro-
duced Urdu and Hindi sentences respectively. Now
we generate augmented data for Devanagari-Urdu
and Arabic-Hindi by transliterating 1M Hindi par-
allel data to PersoArabic (later unified again to
abjadi-Devanagari) and by transcribing 1M Urdu
parallel data to Devanagari using Sangam translit-
erator (Lehal and Saini, 2012). We fine-tune the
model for few epochs using this synthetic data. We
observe that even using such small fraction of data,
the model was able to easily generate translations
for Urdu in proper Devanagari and for Hindi in
proper-Arabic for unseen data, hence qualitatively
proving the hypothesis that the script-unified model
can also learn writing-system-agnostic features.

Furthermore, we perform something similar for
Sindhi language – Sindhi is majorly spoken in Pak-
istan by 30M people & written in Perso–Arabic
script; in India, it is spoken by around 2M people
& officially mandated to be written in Parivardhit-
Devanagari, an extended version of Devanagari.
Since all the Sindhi datasets available are in Perso–
Arabic, we use the same Sangam transliteration
API as mentioned above to generate Sindhi datasets
in Devanagari. We use data this as well to train
the models in Section 5, and find that the model
now was also able to produce (almost) same Sindhi
outputs for both the scripts. Note that we imple-
ment a similar but separate converter for Sindhi
script-unification, as the Perso–Arabic script for
Sindhi has significant difference from that of Urdu.
Also, since the amount of Sindhi corpus is very
low, we augment the dataset while training with
the following synthetic data – since Gujarati is
a closely-related language to Sindhi, we sample
2M random Gujarati translation-pairs and create
Arabic-Gujarati dataset and train for this artifical

language–script combination as well in the training
described in Section 5.1.

We would also like to point out that we do not
perform this for the Punjabi language, which is
written in an Indic script called Gurmukhi in India,
and using a Perso–Arabic alphabet called Shah-
mukhi in Pakistan. This is because all available
Punjabi datasets are in Gurmukhi, an almost pho-
netic script (similar to Devanagari). Hence we
directly use our transliterator to convert from Gur-
mukhi to Shahmukhi and return the translation if
required. But it was observed that due to the formal
nature of the Punjabi datasets, the generated trans-
lations were of Eastern-Punjabi literary standard,
hence the outputs may not always be mutually-
intelligible to speakers who are used to Western-
Punjabi literary standard. We do not find this is-
sue significant in the case of Sindhi, as the formal
Sindhi standards of both the countries do not differ
much.

3.2.2 Mapping Sinhala and Devanagari

Sinhala alphabet (of Sri Lanka) is mostly similar
in phonetics to most other alphabets of India, ex-
cept a couple of minor differences. Sinhala has
separate unicode points for representing 6 prenasal
consonants, whereas in Devanagari, they are repre-
sented as ligature of a nasal consonant with another
consonant, as shown in Figure 2. In addition, Sin-
hala also has short and long forms of the vowel
/æ/ which we also map to Devanagari uniquely, for
both dependent & independent vowels. The pub-
licly available transliterators (like the transliterate
sub-package in Indic-NLP-Library) are lossy, and
do not handle all these cases.

230

https://indicnlp.ai4bharat.org/corpora/
http://data.statmt.org/cc-100/
https://dumps.wikimedia.org/
https://wortschatz.uni-leipzig.de/en/download/
https://www.cfilt.iitb.ac.in/iitb_parallel/
https://ieee-dataport.org/open-access/large-scale-nepali-text-corpus
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://github.com/amitness/ml-datasets
https://github.com/LIRNEasia/FacebookDecadeCorpora
https://github.com/rksk/sinhala-news-analysis
https://osf.io/a5quv/
https://github.com/anoopkunchukuttan/indic_nlp_library

Sinhala ඟ ඦ ඥ ඬ ඳ ඹ
Devanagari � � � � � �

Figure 2: Example mapping of pre-nasal consonants
between Sinhala and Devanagari

3.2.3 Mapping between Indic scripts

For all the remaining scripts in this work, the map-
ping is mostly straightforward due to the fact that
they follow the ISCII encoding scheme in which
equivalent phonemes are mapped at same offsets
in the unicode blocks. We use the AksharaMukha2

tool to perform lossless transliteration between
these Indic scripts.

3.3 Romanization of Indic languages

We also experiment with romanized models for
all Indic languages in our work to translate to En-
glish. In this sub-section, we briefly explain the
different ways using which we perform the roman-
ization. Generally, there is no standard way to per-
form romanization for Indic languages, since the
way one types it colloquially is quite personal in
style. Hence we perform romanization using mul-
tiple ways. This includes machine learning-based
romanization as well as rule-based romanization
techniques which covers different possible ways of
romanizing, which will be open-sourced3.

In brief, for each language, we first generate 4
variants of romanization:

1. Raw & case-insensitive ASCII transliteration
of the script (a readable lossy variant of the
Velthuis scheme). For example, vowel diacrit-
ics are dropped (like ı̄→i, ū→u, etc.).

2. Approximate colloquial transcription of the
script (taking into consideration phonologi-
cal mapping to English, schwa deletion, etc.),
and also involving language-specific random
substitutions of related roman representations
of consonants (like ph→f, v→w, etc.) and
vowels (like ı̄→ee, ū→oo, etc.)

3. Consonant-only romanization (including ini-
tial vowels), to simulate (extreme) social me-
dia short-hand typing (not done for Urdu &
Sindhi, as the roman variant-1 already does

2https://github.com/virtualvinodh/
aksharamukha

3https://github.com/GokulNC/
Indic-Romanizer

the same for languages that use Perso–Arabic
scripts).

4. ML-based romanization using the python-
library: LibIndicTrans4.

We further generate generate 2 batches of the full
dataset by mixing different variants of the above 4
romanizations at the word-level.

4 Indic to English MT

In this section, we explore different models for In-
dic to English translation using datasets mentioned
in section 3.1.1. Note that before training, we per-
form text normalization of all datasets using the
Indic-NLP-Library.

4.1 Experimental settings

The input sentence to the models is prepended with
the language-tag token, "__langcode__ ", inorder
to explicitly provides cues to the model about what
the source language is. All the models experi-
mented above are transformer-based, with the same
network and hyperparameter configurations as in
transformer-big (Vaswani et al., 2017), which has
6 encoder layers and 6 decoder layers inorder to
be consistent with the scores comparison against
the previous work (Dabre et al., 2021). For all
experiments, we use the sentence-piece tokenizer
(Kudo and Richardson, 2018) to build our sub-word
vocabulary, with vocabulary sizes for input and
output sides respectively 32000 (Indic side) and
16000 (English side). We use Marian-NMT toolkit
(Junczys-Dowmunt et al., 2018) to train all our
models, with mean cross-entropy as the loss func-
tion. Note that all models are trained from scratch.

4.2 Unified models

First, we build models from English specific to
Indo-Aryan (ia2en) and Dravidian (dr2en) lan-
guages to compare how these models perform with
respect to a model which is trained for both the
Indic language families (in2en). As explained in
section 3.2, we use Malayalam as the common
script for Dravidian model and Devanagari for Indo-
Aryan and Indic models.

Table 3 presents the performance across lan-
guages (ia2en and dr2en models are shown in same
row for simplicity). We see that the Indic model
trained on both the families outperform the scores

4https://github.com/libindic/
indic-trans

231

https://en.wikipedia.org/wiki/Indian_Script_Code_for_Information_Interchange
https://en.wikipedia.org/wiki/Velthuis
https://github.com/virtualvinodh/aksharamukha
https://github.com/virtualvinodh/aksharamukha
https://github.com/GokulNC/Indic-Romanizer
https://github.com/GokulNC/Indic-Romanizer
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/libindic/indic-trans
https://github.com/libindic/indic-trans

Model as bn gu hi kn ml mr ne or pa sd si ta te ur
Indic-En

IndicBART - 30.7 33.6 36.0 27.4 30.4 30.0 - 28.6 34.2 - 8.5 27.7 32.7 -
ia2en, dr2en 21.4 30.2 32.8 36.1 25.3 27.7 28.9 35.1 28.4 34.2 24.1 12.8 22.5 29.6 24.9
in2en 23.9 31.8 33.9 36.8 28.1 30.7 30.7 36.2 31.3 35.3 24.1 15.1 27.7 33.0 25.1
rom_in2en 24.1 31.9 34.0 37.3 28.4 30.9 30.7 36.3 31.5 35.3 24.7 15.3 28.3 33.0 25.8

En-Indic
IndicBART - 17.3 22.6 31.3 16.7 14.2 14.7 - 10.1 21.9 - - 14.9 20.4 -
en2ia, en2dr 6.3 17.4 22.6 31.4 16.1 14.1 14.8 10.5 10.1 21.7 18.9 8.8 14.4 20.5 20.2
en2in 6.3 17.2 21.9 31.0 16.2 13.7 14.7 10.4 9.9 21.5 18.1 8.9 14.5 20.5 19.8
bt_en2in 9.9 18.9 23.1 34.2 18.7 16.2 16.1 17.1 14.3 23.9 23.7 14.1 17.2 22.3 22.3
bt_en2ia, bt_en2dr 10.8 19.8 23.7 36.1 20.0 17.3 16.8 17.6 16.7 24.3 24.2 14.1 17.2 22.9 23.6
t_bt_en2dr - - - - 20.1 17.5 - - - - - - 18.1 22.8 -

Table 3: Comparison of BLEU scores of different trained models of same network architecture on FLoRes101
benchmark (Goyal et al., 2021) along with the scores of the existing best open-source model trained on Samanantar,
taken from IndicBART paper (Dabre et al., 2021)

of family-specific models. This observation is con-
sistent with the results for many other languages,
where we see significant gains in accuracy with a
shared encoder, in-cases like many-to-one NMT
(Arivazhagan et al., 2019).

4.3 Script-agnostic model
We generate a romanized version of the paral-
lel dataset available as explained in Section 3.3,
which is typically 6x large in size due to different
ways of romanization the same data, and train a
Roman-Indic-to-English model (rom_in2en). Ta-
ble 3 shows the performance of this romanized
model. We see that the model is slightly better (on
the romanized benchmark) than the in2en model.
This can be attributed to the significant reduction
in alphabet size of the model: Devanagari usually
requires more than 80 characters (on average) to
represent all Indic languages; whereas in the ro-
man model, only 26 characters (though a bit lossy).
Based on manual analysis, we infer that romanized
models are slightly more robust to noise in inputs,
owing to the varied nature of the romanized data.
We also note that owing to increased amount of
data in abjad form (due to romanization variant-3,
shown in section 3.3), the performance of Sindhi
and Urdu (which use Arabic scripts) have signifi-
cantly improved.

In addition, to study how our model performs
with real-world code-switched (roman) data, we
attempt the Microsoft GLUECoS (Khanuja et al.,
2020) Machine Translation task5. We fine-tune our

5https://github.com/microsoft/

model on the training set of the above dataset, and
measure a validation BLEU score of 27.36. Un-
fortuanately, the leaderboard of the task is not yet
out. Upon manually checking the validation results,
we see that our model has performed reasonably
good despite the fact that the dataset is code-mixed
and romanization styles were somewhat different.
Although this is not a comparable result, we hope
that this is helpful in advancing further Indic-NMT
research on this benchmark.

5 English to Indic MT

In this section, we explore one-to-many NMT mod-
els for training English to Indic translator. We
initially train models using the parallel data, then
train few more models using synthetic data from
monolingual corpora to understand the level of im-
provement achievable using raw data.

5.1 Experimental settings
The input sentences to all the models is prepended
with a novel type of language-tag token, "__lang-
code__ __script-type__ ", inorder to explicitly pro-
vide cues to the model about what script-type is to
be produced (in-addition for the given language).
The possible script types are: 1. ’a’ to denote
Perso–Arabic writing system; 2. ’i’ to denote Indic
writing system; 3. ’t’ to denote Tamil alphabet,
which is a small subset of the Indic set.6

GLUECoS#code-mixed-machine-translation-task
6Tamil script is a lossy Indic alphabet, which has same

phonemes for unvoiced and voiced consonants (like ’k’ and
’g’), in-addition to a few other features (like aspirated con-
sonants) that are not explicitly supported in the script. In

232

https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task
https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task

All the trained models follow the same network
configuration (transformer-big) as in the previous
experiments; see section 4.1. The sub-word vocab-
ulary sizes for input and output sides respectively
16000 (English side) and 32000 (Indic side).

5.2 Models trained only on parallel data
We initially train 3 different models (from English)
just using the parallel data: Dravidian (en2dr), Indo-
Aryan (en2ia) and Indic (en2in). The results are
shown in Table 3. We see that the performance
does not vary much between the family-specific
models and the common model. This observation
is consistent with the results for many other lan-
guages, where we see trivial to almost-no gains
in accuracy with a shared decoder, in-cases like
one-to-many NMT (Arivazhagan et al., 2019).

We experiment in the next subsection to under-
stand if a common model could be more beneficial
than family-specific models when a huge backtrans-
lated data is augmented with the (upsampled) orig-
inal data.

5.3 Models trained on parallel and
back-translated data

Using all the Indic monolingual data listed in Sec-
tion 3.1.3, we generate English sentences using the
rom_in2en model with a beam-search width of 6.
We then train 4 models (from English) after up-
sampling the parallel data and concatenating with
the backtranslated dataset: 1. bt_en2in: To all In-
dic languages after 5× upsampling; 2. bt_en2ia:
To Indo-Aryan languages after 6× upsampling; 3.
bt_en2dr: To Dravidian languages after 10× up-
sampling; 4. t_bt_en2dr: To Dravidian languages
after 7× normal upsampling, and 3× Tamilized-
augmented upsampling (by converting other Dra-
vidian alphabets to Tamil subset and marking their
script_type as ’t’ when prepending language to-
ken). The upsampling scale is decided such that
the amount of original parallel data and backtrans-
lated data are in ratio 1:2.

Table 3 shows the performance of all the 4 mod-
els. We see that, family-specific models perform
notably better than a common model (given a fixed
model size). Moreover, for the t_bt_en2dr model,
we observe a significant boost in accuracy for Tamil
after the Tamilized-data is augmented, and a trivial
improvement for Malayalam and Kannada com-
pared to bt_en2dr.

Section 5.3, we further clarify on how treating Tamil as a
special case could be helpful to improve its performance.

It is also seen that, our model easily outperforms
models which are fine-tuned from language mod-
els like IndicBART (Dabre et al., 2021). This is
because we use the same entire monolingual data
(Kakwani et al., 2020) which was used to pretrain
IndicBART, but along with supervised translation
signals in the form of backtranslated data.

For very-low resource languages (like Sindhi and
Sinhala), we notice very significant improvements
with back-translation, even with relatively lesser
amount of monolingul data.

6 Discussions and Conclusion

We demonstrate in this paper various methods to
achieve improvement in performance, especially
across South Asian languages which were not pre-
viously explored along with the languages of In-
dia. We believe our presented contributions are
more of exploratory nature, and make fundamental
proposals (like always building romanized mod-
els when the source side is Indic). Although the
fact that a unified model results in better perfor-
mance in low-resource scenarios has been discov-
ered by many prior work and hence not surprising,
our work merely focuses on quantitatively studying
the improvement in the case of Indic languages.
In this section, we provide general suggestions for
research groups working on NMT for Indic lan-
guages.

In general, to train model for any low-resource
Indic language to English, we recommend that data
from all the languages is used to train a multilingual
model.7 Especially, training a romanized model
would be more beneficial, since it would be a script-
agnostic model, and hence easily generalize for
code-mixed and social media texts.

For training English to any low-resource Indic
language, it maybe be preferable to train family-
specific models when working under resource-
contrained settings. Especially for languages of
the countries Pakistan, Bangladesh, Nepal and
Sri Lanka, we highly recommend and encourage
them to exploit the datasets made available by re-
searchers of India. If possible, it is highly recom-
mended to exploit the abundant monolingual data
and train models using backtranslated data.

7Works like (Dabre et al., 2021) have already shown why
multilingual models are more preferable for Indic languages,
so we do not redemonstrate it in our work.

233

6.1 Limitations

As generally known, bigger models could push
the improvements even further than what we have
seen in our results. In fact, the recent work by
(Ramesh et al., 2022) show better results on the
FLoRes101 benchmark by using a transformer-4x
model even without using back-translated data. We
only benchmark on transformer-2x in this work for
consistent comparison, and to be more practical
during training and inference (as well as due to our
unaffordability of large infrastructure for such ex-
perimentations). Also, we only perform one round
of back-translation to study English to Indic mod-
els in Section 5.3. We encourage researchers to
study multiple rounds of back-translations (which
is out of scope for this paper).

Thorough anlaysis of the performance on code-
mixed (not code-switched) data using benchmarks
like PHINC (Srivastava and Singh, 2020) is re-
quired for the rom_in2en model in Section 4.3,
which is one of the on-going works in our research.

References
Naveen Arivazhagan, Ankur Bapna, Orhan Firat,

Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, Wolfgang Macherey, Zhifeng Chen, and
Yonghui Wu. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges.

Raj Dabre, Himani Shrotriya, Anoop Kunchukuttan,
Ratish Puduppully, Mitesh M. Khapra, and Pratyush
Kumar. 2021. Indicbart: A pre-trained model for
natural language generation of indic languages.

M. B. Emeneau. 1956. India as a lingustic area. Lan-
guage, 32(1):3–16.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2021. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. Two
new evaluation datasets for low-resource machine
translation: Nepali-english and sinhala-english.

Tahir Javed, Sumanth Doddapaneni, Abhigyan Raman,
Kaushal Santosh Bhogale, Gowtham Ramesh, Anoop
Kunchukuttan, Pratyush Kumar, and Mitesh M.
Khapra. 2021. Towards building asr systems for the
next billion users.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in c++.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. IndicNLPSuite:
Monolingual Corpora, Evaluation Benchmarks and
Pre-trained Multilingual Language Models for Indian
Languages. In Findings of EMNLP.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575–3585, Online. Association
for Computational Linguistics.

Shreya Khare, Ashish Mittal, Anuj Diwan, Sunita
Sarawagi, Preethi Jyothi, and Samarth Bharadwaj.
2021. Low Resource ASR: The Surprising Effec-
tiveness of High Resource Transliteration. In Proc.
Interspeech 2021, pages 1529–1533.

Yash Khemchandani, Sarvesh Mehtani, Vaidehi Patil,
Abhijeet Awasthi, Partha Talukdar, and Sunita
Sarawagi. 2021. Exploiting language relatedness
for low web-resource language model adaptation: An
Indic languages study. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1312–1323, Online. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.

Gurpreet Singh Lehal and Tejinder Singh Saini. 2012.
Development of a complete Urdu-Hindi transliter-
ation system. In Proceedings of COLING 2012:
Posters, pages 643–652, Mumbai, India. The COL-
ING 2012 Organizing Committee.

Toshiaki Nakazawa, Hideki Nakayama, Chenchen Ding,
Raj Dabre, Shohei Higashiyama, Hideya Mino, Isao
Goto, Win Pa Pa, Anoop Kunchukuttan, Shantipriya
Parida, Ondřej Bojar, Chenhui Chu, Akiko Eriguchi,
Kaori Abe, Yusuke Oda, and Sadao Kurohashi. 2021.
Overview of the 8th workshop on Asian translation.
In Proceedings of the 8th Workshop on Asian Trans-
lation (WAT2021), pages 1–45, Online. Association
for Computational Linguistics.

Thi-Vinh Ngo, Phuong-Thai Nguyen, Thanh-Le Ha,
Khac-Quy Dinh, and Le-Minh Nguyen. 2020. Im-
proving multilingual neural machine translation for
low-resource languages: French, English - Viet-
namese. In Proceedings of the 3rd Workshop on
Technologies for MT of Low Resource Languages,

234

http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/2109.02903
http://arxiv.org/abs/2109.02903
http://www.jstor.org/stable/410649
https://doi.org/10.48550/ARXIV.2106.03193
https://doi.org/10.48550/ARXIV.2106.03193
https://doi.org/10.48550/ARXIV.2106.03193
http://arxiv.org/abs/2111.03945
http://arxiv.org/abs/2111.03945
https://doi.org/10.48550/ARXIV.1804.00344
https://doi.org/10.48550/ARXIV.1804.00344
https://www.aclweb.org/anthology/2020.acl-main.329
https://www.aclweb.org/anthology/2020.acl-main.329
https://doi.org/10.21437/Interspeech.2021-2062
https://doi.org/10.21437/Interspeech.2021-2062
https://doi.org/10.18653/v1/2021.acl-long.105
https://doi.org/10.18653/v1/2021.acl-long.105
https://doi.org/10.18653/v1/2021.acl-long.105
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
https://aclanthology.org/C12-2063
https://aclanthology.org/C12-2063
https://doi.org/10.18653/v1/2021.wat-1.1
https://aclanthology.org/2020.loresmt-1.8
https://aclanthology.org/2020.loresmt-1.8
https://aclanthology.org/2020.loresmt-1.8
https://aclanthology.org/2020.loresmt-1.8

pages 55–61, Suzhou, China. Association for Com-
putational Linguistics.

Jerin Philip, Vinay P. Namboodiri, and C. V. Jawahar.
2019. A baseline neural machine translation system
for indian languages.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Ma-
halakshmi J, Divyanshu Kakwani, Navneet Ku-
mar, Aswin Pradeep, Kumar Deepak, Vivek Ragha-
van, Anoop Kunchukuttan, Pratyush Kumar, and
Mitesh Shantadevi Khapra. 2021. Samanantar: The
largest publicly available parallel corpora collection
for 11 indic languages.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Ma-
halakshmi J, Divyanshu Kakwani, Navneet Kumar,
Aswin Pradeep, Srihari Nagaraj, Kumar Deepak,
Vivek Raghavan, Anoop Kunchukuttan, Pratyush Ku-
mar, and Mitesh Shantadevi Khapra. 2022. Samanan-
tar: The Largest Publicly Available Parallel Corpora
Collection for 11 Indic Languages. Transactions
of the Association for Computational Linguistics,
10:145–162.

Shashank Siripragada, Jerin Philip, Vinay P. Nambood-
iri, and C V Jawahar. 2020. A multilingual parallel
corpora collection effort for Indian languages. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 3743–3751, Marseille,
France. European Language Resources Association.

Vivek Srivastava and Mayank Kumar Singh. 2020.
Phinc: A parallel hinglish social media code-mixed
corpus for machine translation. In WNUT.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Haitong Zhang, Haoyue Zhan, Yang Zhang, Xinyuan
Yu, and Yue Lin. 2021. Revisiting ipa-based cross-
lingual text-to-speech.

235

http://arxiv.org/abs/1907.12437
http://arxiv.org/abs/1907.12437
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
http://arxiv.org/abs/2104.05596v2
http://arxiv.org/abs/2104.05596v2
http://arxiv.org/abs/2104.05596v2
https://doi.org/10.1162/tacl_a_00452
https://doi.org/10.1162/tacl_a_00452
https://doi.org/10.1162/tacl_a_00452
https://aclanthology.org/2020.lrec-1.462
https://aclanthology.org/2020.lrec-1.462
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2110.07187
http://arxiv.org/abs/2110.07187

APPENDIX

A Indic languages

Language (& family) ISO code Script(s) Countries

Assamese (Indo-Aryan) as Eastern Nagari India
Bengali (Indo-Aryan) bn Eastern Nagari Bangladesh, India
Gujrati (Indo-Aryan) gu Gujarati India
Hindostani (Indo-Aryan)
→ Hindi hi Devanagari India
→ Urdu ur Perso–Arabic Pakistan, India

Kannada (Dravidian) kn Kannada–Telugu India
Malayalam (Dravidian) ml Malayalam India
Marathi (Indo-Aryan) mr Marathi India
Nepali (Indo-Aryan) ne Devanagari Nepal
Oriya (Indo-Aryan) or Odia India

Panjabi (Indo-Aryan) pa
Gurmukhi India
Shahmukhi Pakistan

Sindhi (Indo-Aryan) sd
Perso–Arabic Pakistan
Parivardhita Devanagari India

Sinhala (Indo-Aryan) si Sinhala Sri Lanka
Tamil (Dravidian) ta Tamil India, Sri Lanka
Telugu (Dravidian) te Telugu India

Figure 3: List of all 15 South Asian languages studied in this work

236

