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Introduction

We are delighted to welcome to you DaSH 2022, the Fourth Workshop on Data Science with Human-in-
the-loop at EMNLP 2022!

The aim of this workshop is to stimulate research on the cooperation between humans and computers
within the broad area of natural language processing, including but not limited to information extraction,
information retrieval and text mining, machine translation, dialog systems, question answering, language
generation, summarization, model interpretability, evaluation, fairness, and ethics. We invite researchers
and practitioners interested in understanding how to optimize human-computer cooperation and how to
minimize human effort along an NLP pipeline in a wide range of tasks and applications.

This year, the workshop program includes three keynote talks, two invited talks, fourteen accepted pa-
pers, and three ‘Findings of EMNLP’ papers. We received 22 submissions, each of which received at
least two reviews from our distinguished program committee. The submissions and accepted papers
show a strong mix of participation both from the academia and industry: 50% of the accepted papers
have an academic provenance (the primary affiliation of the lead author is a university), while 50% ori-
ginate in industry labs.

We hope to bring together interdisciplinary researchers from academia, research labs and practice to sha-
re, exchange, learn, and develop preliminary results, new concepts, ideas, principles, and methodologies
on understanding and improving human-computer interaction in natural language processing. We expect
the workshop to help develop and grow a strong community of researchers who are interested in this to-
pic and to yield future collaborations and scientific exchanges across the relevant areas of computational
linguistics, natural language processing, data mining, machine learning, data and knowledge manage-
ment, human-machine interaction, and intelligent user interfaces. We are thankful to IBM research for
sponsoring the workshop and best paper awards.

We hope you have a wonderful time at the workshop.

Cheers!

DaSH 2022 Organizers
Eduard Dragut, Temple University
Yunyao Li, Apple Inc.
Lucian Popa, IBM Research
Shashank Srivastava, UNC Chapel Hill
Slobodan Vucetic, Temple University
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Keynote Talk: Decision-making in an uncertain world
Azza Abouzied
NYU Abu Dhabi

Abstract: Decision-makers in a broad range of domains, such as finance, and healthcare, need to derive
optimal decisions given a set of constraints and objectives over uncertain data or models. Traditional
solutions to such problems are typically complex, do not generalize, and do not scale to our modern-day
massive data scales. The emerging research area of prescriptive analytics aims to provide declarative,
and scalable approaches. In this talk, I discuss some strategies for addressing key challenges related to
usability, scalability, data uncertainty, dynamic environments with changing data and models, and the
need to support decision-making agents with emphasis on a real-life application of supporting policy-
makers with epidemic intervention planning.

Bio: Azza Abouzied’s research work focuses on designing intuitive data querying tools. Today’s techno-
logies are helping people collect and produce data at phenomenal rates. Despite the abundance of data,
it remains largely inaccessible due to the skill required to explore, query and analyze it in a non-trivial
fashion. While many users know exactly what they are looking for, they have trouble expressing sophi-
sticated queries in interfaces that require knowledge of a programming language or a query language.
Azza designs novel interfaces, such as example-driven query tools, that simplify data querying and ana-
lysis. Her research work combines techniques from various research fields such as UI-design, machine
learning, and databases. Azza Abouzied received her doctoral degree from Yale in 2013. She spent a
year as a visiting scholar at UC Berkeley. She is also one of the co-founders of Hadapt – a Big Data
analytics platform.
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Keynote Talk: Measuring what matters for human-AI teams
Saleema Amershi
Microsoft Research

Abstract: There is a significant discrepancy between the success metrics driving the AI industry and
what people value in the real world. In the AI-assisted programming scenario, for example, a key value
proposition is the potential for code generation models to dramatically improve developer productivity.
Yet, offline metrics used to inform model development decisions and gate which models are deployed
to people in the real world currently focus on generation correctness rather than correctness or effort
with a developer-in-the-loop. Similarly, online metrics currently focused on acceptance rates overlook
interaction costs to developers in prompting, reviewing, and editing generated code. In this talk, I will
describe ongoing work from the HAX team at Microsoft Research to develop metrics and measurement
tools that more faithfully reflect the needs and effectiveness of human-AI teams.

Bio: Saleema Amershi is a Senior Principal Research Manager at Microsoft Research where she leads
the Human-AI eXperiences (HAX) team, building tools for creating responsible AI experiences. She also
currently chairs Microsoft’s Aether Working Group on Human-AI Interaction and Collaboration. Aether
is Microsoft’s advisory committee on responsible and ethical AI. Saleema holds a PhD in Computer
Science & Engineering from the Paul G. Allen School of Computer Science and Engineering. Prior to
UW, she completed a MSc in Computer Science and a BSc in Computer Science and Mathematics at the
University of British Columbia.
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Keynote Talk: Data Preparation with human in the loop - The
Case for a commodity crowdsourcing system

Mourad Ouzzani
Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar

Abstract: Data science is becoming central to many industries as it helps extract insights from large
amounts of data that in turn lead to critical actions in many applications. An important aspect of data
science is data preparation that we broadly define to include data cleaning, extraction, matching, mer-
ging, labeling, and so on. It is often the case that these tasks are performed collaboratively by multiple
users. Such collaborative work is often referred to as crowdsourcing. While much work has been pu-
blished in this area, most focus on developing algorithmic solutions for point problems. There is very
little work on how to build crowdsourcing systems that can be used widely. In this talk, I will describe
our current efforts to build Cymphony, a commodity collaborative management system that effectively
supports various collaborative data preparation tasks. We aim to build a platform that enables a uniform
specification as well as efficient execution of data preparation tasks that require collaboration among a
group of users. While existing systems may cover some aspects of data collaboration, they do not pro-
vide easy ways to express and execute the many collaboration scenarios that are often found in practice.
In a nutshell, we define a simple workflow consisting of three basic operators, namely Assign, Annotate,
and Aggregate. Multiple simple workflows along with basic data manipulation operations (e.g., SQL
queries, sampling) can be composed to build more complex workflows. In addition to in-house users
who can connect to Cymphony, we also provide integration with public crowdsourcing platforms such
as Amazon Mechanical Turk. Early experiments show that Cymphony allows the easy specification and
automatic execution of many practical workflows without having to write code to run them or manually
connect parts of these workflows.

Bio: Mourad Ouzzani is a Research Director with the Qatar Computing Research Institute at Hamad
Bin Khalifa University, Qatar Foundation. Before joining QCRI, he was a research associate professor at
Purdue University. Mourad has played a key role in establishing the data analytics group within QCRI.
He is now leading the Research Engineering Group whose mission is to productize QCRI’s research.
Mourad’s research interests lie in the fields of data management and analytics with a focus on data
integration, data cleaning, and collaborative data science. He was the project lead of Rayyan, the leading
systematic reviews web and mobile app, which is now being used by more than 250k users worldwide.
Rayyan has since graduated from QCRI to a start-up, Rayyan Systems Inc. His work has led to numerous
publications in top tier venues including PVLDB, TKDE, SIGMOD, and ICDE. He holds a PhD from
Virginia Tech, and a BSc and MSc from USTHB, Algiers, all in computer science.
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Keynote Talk: Enabling domain experts to create their own
NLP models: Notes from our journey

Yannis Katsis
IBM Research - Almaden

Abstract: Creating AI models for Natural Language Processing (NLP) tasks remains a daunting task for
domain experts that have the need but lack the technical expertise and resources to create such models.
To address this issue, at IBM Research we have been designing and developing human-in-the-loop syste-
ms that enable domain experts to interactively build their own NLP models. In this talk I will summarize
our experience with building two such systems focusing on text classification and information extrac-
tion, respectively. After a brief description of the systems, I will focus on the lessons learned during this
process and interesting research challenges that lie ahead in our journey to lowering the barrier of entry
to NLP.

Bio: Yannis Katsis is a Senior Research Scientist at IBM Research - Almaden with expertise in the ma-
nagement, integration, and extraction of knowledge from structured, semi-structured, and unstructured
data. In his recent work, Yannis focuses on lowering the barrier of entry to knowledge extraction by de-
signing, analyzing, and building human-in-the-loop systems that enable domain experts to interactively
generate knowledge extraction AI models that serve their needs. Yannis received his PhD in Computer
Science from UC San Diego. His work has appeared in top conferences and journals in the areas of data
management, natural language processing, and human-computer interaction, and has been leveraged for
multiple IBM products.
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Keynote Talk: Understanding and Addressing Uncertainty in
Crowd Annotation on Subjective Tasks

Amy Zhang
University of Washington

Abstract: Uncertainty is an important factor that is crucial when it comes to understanding human judg-
ments in subjective and nuanced domains. Whether it’s annotators producing data used to train and
evaluate machine learning systems for subjective tasks or online communities adjudicating moderation
actions on nuanced content, many groups and individuals need to account for and address the uncertainty
that comes along with conducting judgments. This issue is exacerbated as the application of computing
technology expands to more areas that depend on social and cultural factors. I will present an over-
view of work consisting of a set of novel annotation tools and workflow designs that support capturing,
distinguishing, and addressing uncertainty throughout each step involved in making group judgments.
Specifically, I will talk about: (1) how we can use ranges to better capture and distinguish sources of un-
certainty in scalar rating tasks; (2) how we can use precedents to interact with uncertainty in categorical
decision tasks; (3) how we can address disagreements to reduce uncertainty through pairwise multi-turn
deliberation; and (4) how we can dynamically select targeted interventions for reducing uncertainty.

Bio: Amy X. Zhang is an assistant professor at University of Washington’s Allen School of Computer
Science and Engineering. Previously, she was a 2019-20 postdoctoral researcher at Stanford University’s
Computer Science Department after completing her Ph.D. at MIT CSAIL in 2019, where she received
the George Sprowls Best Ph.D. Thesis Award at MIT in computer science. During her Ph.D., she was an
affiliate and 2018-19 Fellow at the Berkman Klein Center at Harvard University, a Google Ph.D. Fellow,
and an NSF Graduate Research Fellow. Her work has received a best paper award at ACM CSCW,
a best paper honorable mention award at ACM CHI, and has been profiled on BBC’s Click television
program, CBC radio, and featured in articles by ABC News, The Verge, New Scientist, and Poynter.
She is a founding member of the Credibility Coalition, a group dedicated to research and standards
for information credibility online. She has interned at Microsoft Research and Google Research. She
received an M.Phil. in Computer Science at the University of Cambridge on a Gates Fellowship and a
B.S. in Computer Science at Rutgers University, where she was captain of the Division I Women’s tennis
team.
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MEGAnno: Exploratory Labeling for NLP in Computational Notebooks

Dan Zhang∗, Hannah Kim∗, Rafael Li Chen, Eser Kandogan, Estevam Hruschka
Megagon Labs

{dan_z,hannah,rafael,eser,estevam}@megagon.ai

Abstract
We present MEGAnno, a novel exploratory
annotation framework designed for NLP re-
searchers and practitioners. Unlike existing
labeling tools that focus on data labeling only,
our framework aims to support a broader, iter-
ative ML workflow including data exploration
and model development. With MEGAnno’s
API, users can programmatically explore the
data through sophisticated search and auto-
mated suggestion functions and incrementally
update labeling schema as their project evolve.
Combined with our widget, the users can in-
teractively sort, filter, and assign labels to mul-
tiple items simultaneously in the same note-
book where the rest of the NLP project re-
sides. We demonstrate MEGAnno’s flexible,
exploratory, efficient, and seamless labeling ex-
perience through a sentiment analysis use case.

1 Introduction

Data labeling is an important step in the machine
learning life cycle since the quality and quantity
of training data directly affect the model perfor-
mance (Geiger et al., 2021). Unfortunately, existing
annotation tools tend to consider the data labeling
step in isolation from the broader ML life cycle,
ignoring the iterative workflow of researchers and
practitioners. However, activities such as data se-
lection, exploratory data analysis, data labeling,
model training, and evaluation do not happen se-
quentially (Rahman and Kandogan, 2022). Instead,
continuous iterations are required to improve data,
annotation, and models (Hohman et al., 2020).

To further investigate this gap, we examine the
data annotation practices within the ML model de-
velopment life cycle. Based on a formative study
with six researchers from our organization, we char-
acterize their annotation practices as a “dual-loop”
model shown in Fig. 1. After data preprocess-
ing (Fig. 1 1⃝), researchers define their annota-
tion schema in terms of what labels to collect, how

∗ Equal contribution.
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Figure 1: Dual-loop model for data annotation: (1) data
understanding/exploration loop (yellow): iteratively up-
date annotation schema while exploring and annotating
data and (2) model evaluation loop (green): train and
improve a downstream model over iterations by debug-
ging data. Most tools are focused on the labeling step
only (red box). MEGAnno aims to capture both loops
seamlessly within the framework (green box).

many data points are needed, and so on (Fig. 1 2⃝).
As they explore and annotate the data (Fig. 1 3⃝),
they often go back and refine the annotation schema
due to their improved understanding of the data and
updated mental models for the tasks (Fig. 1 4⃝).
For example, in a document classification task, a
user may start with loosely defined category labels
and add more choices as she discovers relevant
documents (Felix et al., 2018). Throughout this
paper, we refer to this cycle as data understand-
ing/exploration loop. Next, the labeled data is
exported from the annotation tool and is used to
train a model (Fig. 1 5⃝). However, in practice, ML
model training is rarely completed in one pass and
usually goes through many iterations of labeling,
training, data, and model debugging (Pustejovsky
and Stubbs, 2012). Fig. 1 6⃝ refers to the cases
where researchers may need to collect more data
(e.g., for the less represented classes due to a sub-
optimal prediction performance of the downstream
model) or further refine the schema. We call this cy-
cle (i.e., model training, evaluating and debugging,
collecting more data, and training again) model
evaluation loop.

We find that the iterative dual-loop workflow

1



of NLP researchers and practitioners is rarely sup-
ported in most existing tools. More specifically, we
identified three main challenges towards supporting
the full annotation life cycle:

• Gaps between ML toolings. Most of the ex-
isting tools are standalone and designed for
a specific ML step, which results in frequent
context switching and data migration over-
head in the researchers’ daily workflow.

• Lack of customizable and granular con-
trol. Not all data points are equally impor-
tant. There are often cases where users might
want to prioritize a particular batch (e.g., to
achieve better class or domain coverage or
focus on the data points that the downstream
model cannot predict well). Although some
recent active learning based tools (Montani
and Honnibal, 2018; hua) can provide sugges-
tions for the next batch, most tools do not offer
customizable and fine-grained control with or
with a downstream model (i.e., covering both
loops).

• Lack of support for project evolution. Cur-
rent annotation tools usually work with the
assumption that the data collection task is
well-defined and immutable and ignore that
annotation projects can evolve as explorations
happen and insights are gathered. Thus they
lack the support to help users make evolution
decisions, and their immutable nature makes
it hard to apply these changes.

To address the challenges, we present
MEGAnno, a flexible, exploratory, efficient, and
seamless labeling framework for NLP researchers
and practitioners. It provides a seamless expe-
rience where data pre-processing, annotation,
analysis, model development and evaluation can
happen in the same notebook, a popular daily
working environment for data science practitioners.
MEGAnno provides customizable interfaces
to help users drive their project to the desired
directions through rich heuristic-based search,
automatic suggestion, and active learning based
suggestions of the next data batch. With project
evolution in mind, MEGAnno is designed to work
with flexible task schema and provides a built-in
analysis dashboard to aid decision-making. To
our knowledge, MEGAnno is the first flexible,
exploratory labeling framework that can support
ML workflow seamlessly in computational
notebooks (Fig. 1: green box).

2 MEGAnno

2.1 Framework Overview

Database 
 server

Web  
Server

Jupyter  
Server

Jupyter Notebook

Python API

Direct REST requests

MEGAnno
service

MEGAnno 
 toolkit

In [1]: MEGAnno 
 toolkit

Widget

Figure 2: The MEGAnno framework provides ex-
ploratory annotation services through a toolkit (instal-
lable as Python libraries) providing programmatic inter-
faces, a web server providing language-agnostic REST
APIs, and an internal database to store data, annotation,
and related artifacts. Solid lines show programmatic
interactions through Python APIs calls and REST calls
delegated by our notebook widget or directly issued by
authenticated applications. Dotted lines show internal
interfaces where MEGAnno toolkit handles communi-
cation with the database and are hidden from the users.

MEGAnno provides service through 1) an inter-
nal database that stores the data, annotations, and
various artifacts produced in the annotation pro-
cess, 2) a MEGAnno toolkit that provides python
API for programmatic and visual data exploration
and labeling, and 3) a web server that provides
language-agnostic REST APIs (Fig 2). After in-
stalling the toolkit on a Jupyter server, users will
have access to our Python APIs and React-based
widget to manage their project, explore and anno-
tate their data from any connected notebook.
Data model A Data record refers to an item
in the pre-processed data corpus for labeling. It
can be a sentence, a paragraph, a document, or a
flattened text from multiple texts such as a question-
answer pair. A Label is the smallest unit of user
labeling output. MEGAnno currently supports
record-level (e.g., topics for document or sentence)
and span-level (e.g., named entities) labels. An
Annotation is a set of labels given to a data
record by an annotator. Metadata refers to addi-
tional information related to the content of a data
record (e.g., externally generated part-of-speech
tags, embeddings) or of an annotation (e.g., time
taken to label, disagreement among annotators).
Such information can be helpful in various steps of
the ML iterations. A Subset is a slice of the data
records in the database. Subsets can be of random
data records or can be generated through search
queries that match certain characteristics.
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Figure 3: The table view to show multiple data records.
Hovering over a data record shows its full text in a pop-
up. This view allows exploration by searching, sorting,
and filtering over labels and single/bulk annotation.

Task schema We support a wide variety of tasks
through our customizable schema in JSON format.
To collect a label, users need to specify the level
(i.e., record or span) and provide a list of options
to choose from. For a task, MEGAnno supports
arbitrary numbers of both types of labels. We’ll
see concrete schema examples for a sentiment pre-
diction and extraction task in Section 3. At any
stage, users can always update the schema to re-
flect the evolution of the project. There are certain
constraints to schema updates to keep the consis-
tency of data. Adding new labels or new label
options will always be allowed. Removal of la-
bels and options will trigger a database query and
MEGAnno will warn the user if there exist such
labeled instances. 1

2.2 MEGAnno Jupyter Notebook Widget

MEGAnno’s interactive notebook widget features
1) our novel table view to facilitate exploratory
and batch labeling and 2) the single view, which is
similar to traditional labeling UIs.

Table view The table view (Fig. 3) shows data
items in a Subset and their annotations if any.
Each record-level label is shown as a column, and
span-level labels are shown together with the high-
lighted textual span in the data column. Users can
hover over an item to see full text in a pop-up. The
search box supports three types of search (exact,
fuzzy, and regex-based) to filter the data subset fur-
ther. Users can sort and filter rows based on any
record-level labels using the dropdown menu. To
assign a record-level label, the users can click on
the cell’s arrow button and select from the drop-
down options. Alternatively, the users can assign
the same label to multiple records simultaneously

1MEGAnno provides an option to clean up legacy labels
and retry automatically.

by selecting those records and clicking the bulk
label button.

Single view The table view is good for explo-
ration, but the limited space makes span-level an-
notation cumbersome. So we also provide a single
view where users can have a more zoomed-in ex-
perience. By clicking the “Single” button on the
top-right corner or double-clicking on a data record,
the widget switches to the single view (Fig. 4). In
this view, users can assign record-level labels on
the right side and span-level labels on the left side
by selecting/dragging target spans and choosing
the label from the options drop-down. Users can
loop through the subset using the prev/next button
based on the order specified in the table view. At
any time, users can switch between the two views
by clicking the top right buttons, and the widget
preserves all uncommitted annotations during view
changes.

Figure 4: The single view to annotate data one by one.
In this view, users can drag and label spans for extraction
tasks.

Working with multiple annotators Annotation
is rarely done by a single person. As an initial
step towards collaborative annotation, MEGAnno
provides virtually separated namespaces for each
annotator. Users identify themselves by a unique
authentication token while connecting to the ser-
vice and only update their own labels through the
widgets. MEGAnno provides a reconciliation view
(Fig. 5) to look at labels from different individuals
and resolve potential conflicts.

Figure 5: Reconcilation view showing the existing label
distribution for data points.

Dashboard MEGAnno also provides a built-
in visual monitoring dashboard (Fig. 6). As
projects evolve, users would need to understand

3



Figure 6: Dashboard widget to monitor the progress and
statistics of the project and aid decision-making.

the project’s status to make decisions about the
next steps, like collecting more data points with
certain characteristics or adding a new class to the
task definition. To aid such analysis, the dashboard
widget packs common statistics and analytical vi-
sualizations based on a survey of our pilot users.
The “overview” panel shows statistics about overall
progress and per-label class distribution. If multi-
ple annotators are involved, the distribution reflects
the majority vote over annotators 2. The remaining
“annotator” and “projection” panels are hidden due
to space limitations. To help identify problematic
annotators, the annotator pannel shows statistics
like overall individual contribution and disagree-
ment scores with others. The projection panel pro-
vides customizable visualization to project data
points to a two-dimensional visual space. By de-
fault, we show the t-SNE (Van der Maaten and
Hinton, 2008) projection of sentence bert (Reimers
and Gurevych, 2019) embeddings.

2.3 MEGAnno APIs

Project management The management module
provides various interfaces to configure and mon-
itor the annotation project through the Project
class. import_data loads the data records
from CSV or JSON files into the database.
set_config updates the project configuration as
it evolves. set_meta assigns metadata (e.g.,POS
tags, document embeddings) for each data record
through user-defined functions. get_status re-
turns the status of the project such as the number of
annotated data records and detailed statistic about
each label.

A critical feature of MEGAnno is to select in-
teresting subsets of data to show in the widget.

2Users can provide their aggregation function to resovle
conflicts between annotators

Subsets can be generated in a user-initiative way
via our search engine or a data-driven way via au-
tomated suggestions.

Search for subsets MEGAnno supports so-
phisticated searches over data records, anno-
tation, and user-defined metadata through the
Project.search API. Users can search data
records by keywords (e.g., documents men-
tioning “customer service”) or regular expres-
sions to express more complex patterns. The
users can also search the database based on al-
ready assigned labels (e.g., records with a pos-
itive sentiment label). As will be explained
later, MEGAnno acknowledges the value of
auxiliary information for ML projects and pro-
vides advanced search functionalities over meta-
data. For example, users can query with pat-
terns combining regex expressions and POS tags
like project.search("(best|amazing)
<ADJ> <NOUN>", by="POS").

Automated subset suggestion Searches initiated
by users can help users explore the dataset in a
controlled way, but the quality of searches is only
as good as users’ knowledge or heuristic about the
data and domain. MEGAnno provides an auto-
mated subset suggestion engine to assist the explo-
ration. Users can customize the engine by plugging
in external suggestion models as needed. Currently,
the engine provides two types of techniques:

• Embedding-based suggestions makes
suggestions based on data embed-
ding vectors provided by the user.
Subset.suggest_similar sug-
gests neighbors of data in the querying
subset. Project.suggest_coverage
examines all the data records within the
embedding space in an unsupervised way and
suggests data points from the less annotated
regions to improve annotation coverage of the
corpus.

• Active suggestions utilizes active learning
techniques to recommend the most informa-
tive data for the downstream model. With
libraries like ModAL (Danka and Horvath),
users can select from various selection strate-
gies based on model uncertainty and entropy,
etc. Since MEGAnno’s seamless notebook
experience covers the whole loop from anno-
tation to model training and debugging, users
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can actively select a subset, annotate the sub-
set, update the model, and test again in the
same notebook without switching environ-
ments.

The output of selection engines are instances
of the Subset class with the following methods:
show returns a notebook widget for interactive ex-
ploration and annotation. batch_annotation
sets the same record-level labels for all data records
in the subset. suggest_similar returns a new
subset of the database containing the most similar
data for each record in the querying subset accord-
ing to some metadata with valid distance functions.

3 Use Case: Sentiment Analysis

We present a use case to illustrate how MEGAnno
can support data annotation in NLP researchers and
practitioners’ workflow. Meggie is a data scientist
who wants to train a sentiment-related model for
her project. She obtains a Twitter dataset3about US
airlines and decides to label it using MEGAnno.

Import data In an empty notebook, Meggie
starts by initializing the project named “Tweet Sen-
timent” using a MEGAnno Python API. She gets
a copy of the data from the product manager who
often uses Google spreadsheet and imports the data
from its published link.

1 from meganno import Project
2 L = Project(<auth>, "Tweet Sentiment")
3 L.import_data(<doc_url>, format="csv")

Set up initial schema Without knowing much
about the data, Meggie decides to start the project
by collecting binary labels and setting up the
project’s schema. Knowing that MEGAnno sup-
ports flexible and editable schema, Meggie does
not worry about getting the perfect schema in the
first round and can start exploring and annotating.

1 label_schema = [{
2 "label_name": "sentiment_label",
3 "level": "record",
4 "options": ["Positive", "Negative"]
5 }]
6 L.set_config(config1)

Explore and annotate She starts by exploring
the first 300 data points in the widget’s table view.

3The Kaggle dataset (for Everyone library) has ground-
truth sentiment labels available. But for demonstration pur-
poses, we ignore them and assume Meggie only gets the raw
Tweets. The dataset contains 14K tweets about major US
airlines scraped in February 2015.

Figure 7: UI Search by regular expression. Matched
keywords are highlighted.

Using the search box, she filters the subset with the
keyword “amazing”. As expected, most of the data
records reflect a positive sentiment, so she assigns a
positive label to multiple data items using the “Bulk
label” button. Next, she wants to examine tweets
with hashtags related to failing, so she tries regu-
lar expression search using #fai[^ ]* (Fig. 7).
With better understanding of the dataset, Meggie
chooses to perform more advanced exploration us-
ing part-of-speech metadata. She imports a POS
tagger from spaCy (Honnibal and Montani, 2017)
and retrieves tweets that match interesting patterns
such as best <NOUN> of <NOUN>.

1 import spacy
2 tagger = spacy.load("en_core_web_sm")
3

4 pos1 = L.search("(best|amazing) <ADJ> <
NOUN>", by="POS", tagger=tagger)

5 pos2 = L.search("best <NOUN> of <NOUN>",
by="POS", tagger=tagger)

6 meganno.union(pos1, pos2).show()

With such an exploratory approach and the batch
labeling feature, she can annotate much faster and
in a more controlled way.

Candidate suggestion After a few more heuris-
tics, she runs out of ideas, so she takes advantage
of the suggestion feature. She selects the sentence
bert (Reimers and Gurevych, 2019) encoder as the
meta-data generation function. She first issues a
query with strategy similarity to collect data
points similar to the ones retrieved from the previ-
ous POS search. Finally, she wants to see samples
from less covered areas in the embedding space to
improve the diversity of the training data and issues
a coverage query.

1 m = SentenceTransformer("all-MiniLM-L6")
2 # set metadata generation function
3 L.set_meta("bert", lambda x: list(m.

encode(x)))
4 # get more data like the query result in

the previous query(subset_pos)
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5 subset_sim = pos2.suggest_similar(
meta_name="bert")

6 # get data from less covered areas in
the embedding space.

7 subset_cov = L.suggest_coverage(
meta_name="bert")

Update the schema Meggie is now happy with
the collected labels, but she aims to go one step
further to understand which words or phrases
lead to the sentiment judgment. So she updates
her schema by adding a new span-level label
called sentiment_span with label options be-
ing “happy” or “sad”. Each data record can have
arbitrary numbers of such span-level labels.

1 label_schema = [{
2 "label_name": "sentiment_span",
3 "level": "span",
4 "options": ["Happy", "Sad"]
5 }, ... {# previous label options
6 }]

After updating the schema, she fetches all records
with neutral labels in a widget. To highlight and
annotate spans, she goes into the single view (as
shown in Fig. 4). At any step of the iteration, she
could refer to the dashboard widget to monitor the
project progress. After several rounds of similar
iterations, she feels good and concludes her explo-
ration. Finally, Meggie can export the annotated
data in JSON or CSV formats for training or plug
in the model directly.

In conclusion, with MEGAnno, Meggie can ex-
plore her dataset using various heuristic-based or
automated search functions and better understand
the data corpus as she labels. She has the flexibil-
ity to iteratively update her schema as the project
evolves. Using the widget, Meggie can finish the
entire ML life cyle in the same Jupyter notebook.

4 Related Work

There exist numerous annotation tools that can sup-
port NLP tasks, which are extensively surveyed
by Neves and Seva (2019, 2020). In this section,
we focus on works that are closer to our flexible,
exploratory, efficient, and seamless framework.

Flexible schema Unfortunately, most of existing
tools are not designed for iterative schema devel-
opment, and thus they are not flexible enough for
evolving projects. Felix et al. (2018) and Kulesza
et al. (2014) allow users to progressively define
document classes by inspecting documents that
are assigned to each class. But these works are

more similar to interactive topic modeling or inter-
active classification, where users assign documents
to classes, than document labeling, where users
assign labels to documents. Our tool goes beyond
document label refinement and supports a broader
task of progressively defining annotation schema
(e.g., additionally collecting span-level labels).

Exploratory labeling The concept of ex-
ploratory labeling is introduced by Felix et al.
(2018) as using computational techniques to help
users group documents into evolving labels. In our
paper, we use the term “exploratory labeling” to
refer to where exploratory data analysis and data
annotation are iteratively conducted in the data un-
derstanding/exploration loop. Exploratory labeling
can be beneficial because while labeling data, users
gain insight into their dataset (Sun et al., 2017).

Efficient batch/bulk annotation A few tools
offer a functionality to simultaneously assign la-
bels to multiple spans within a record. For ex-
ample, YEDDA (Yang et al., 2018) can anno-
tate multiple span-level labels via command line.
TALEN (Stephen Mayhew, 2018), a named en-
tity tagging tool, has an entity propagation feature
which annotates all mentions of an entity in a doc-
ument at once. In contrast, users can annotate mul-
tiple records simultaneously using our Python API
and a GUI widget.

Notebook widget Computational notebooks are
frequently used by data analysts to iteratively write
and edit code to understand data, test hypotheses,
and build models (Head et al., 2019; Randles et al.,
2017). Following the practice of mage (Kery et al.,
2020) which extends Jupyter notebook with GUI
widgets for specific tasks, our widget is designed to
achieve flexible communication with the rest of ML
development codes. Annotation tools which are im-
plemented as Jupyter widgets include Pigeon (pig)
and ipyannotate (ipy), but they only offer a simple
label assignment feature.

5 Conclusion

In this paper, we present MEGAnno, an annota-
tion framework designed for NLP researchers and
practitioners. Through MEGAnno’s programmatic
interfaces and interactive widget, users can itera-
tively explore and search for interesting data sub-
sets, annotate data, train models, evaluate and de-
bug models within a Jupyter notebook without the
overhead of context switch or data migration.
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Abstract

Entity linking (EL) on short text is crucial for
a variety of industrial applications. Compared
with general long-text EL, short-text EL poses
particular challenges as the limited context re-
stricts the clues one can leverage to disam-
biguate textual mentions. On the other hand, ex-
isting studies mostly focus on black-box neural
methods and thus lack interpretability, which
is critical to industrial applications in certain
areas. In this study, we extend upon LNN-
EL, a monolingual short-text EL method based
on interpretable first-order logic (Jiang et al.,
2021), by incorporating three sets of multilin-
gual features to enable disambiguating men-
tions written in languages other than English.
More specifically, we use multilingual autoen-
coding language models (i.e., mBERT) to cap-
ture the similarities between the mention with
its context and the candidate entity; we use mul-
tilingual sequence-to-sequence language mod-
els (i.e., mBART and mT5) to represent the
likelihood of the text given the candidate en-
tity. We also propose a word-level context
feature to capture the semantic evidence of
the co-occurring mentions. We evaluate the
proposed xLNN-EL approach on the QALD-9-
multilingual dataset and demonstrate the cross-
linguality of the model and the effectiveness of
the features.

1 Introduction

Entity linking (EL), also known as entity disam-
biguation, is the task of linking textual mentions
appearing in a document to the corresponding en-
tities associated with a target knowledge base like
DBpedia (Auer et al., 2007). As a fundamental task
in natural language processing and information ex-
traction, entity linking is crucial for a variety of
applications such as semantic search, recommenda-
tion systems and chatbots (Tan et al., 2017).

Historically, relevant studies of entity linking
mostly focus on long text scenario (i.e., docu-
ments) (Han et al., 2011; Gupta et al., 2017; Lu

and Du, 2017; Cao et al., 2018; Kolitsas et al.,
2018). Typically, such approaches mainly de-
pend on specifically-designed features of candi-
dates (e.g., priors), local context compatibility, and
global coherence across the document (Shen et al.,
2021).

With the rapidly growing short text on the web,
e.g., search queries, social media posts, news head-
lines, etc., short-text entity linking has attracted
increasing attention from researchers due to its po-
tential for various industrial applications. How-
ever, long-text entity linking methods barely main-
tain the same level of performance on short text,
as they heavily rely on document-level global co-
herence, i.e., the idea of collective entity linking
(Cao et al., 2018), and short text (e.g., a single sen-
tence or search query) cannot provide rich context
and global signals for disambiguation (Chen et al.,
2018).

To tackle the task of short-text entity linking,
different methods are being proposed to exploit
the short and limited context (Chen et al., 2018;
Sakor et al., 2019; Gu et al., 2021). For exam-
ple, Chen et al. (Chen et al., 2018) try to map the
sparse short text to a topic space such that a topic
coherence can be achieved through a specifically
designed optimization objective, e.g., they aim to
infer the topic is literature against movie from the
word read in “read Harry Potter”. Gu et al. (Gu
et al., 2021) try to enhance the interactions between
the local context and the candidate entity in multi-
turn multiple-choice manner, so that global disam-
biguation can finally be achieved. More recently,
autoregressive entity linking models, e.g., GENRE
(De Cao et al., 2020) and mGENRE (De Cao et al.,
2021b) demonstrate superior performance and are
gaining a lot of attention. With the power of large
pre-trained sequence-to-sequence language models
(Lewis et al., 2020), GENRE and mGENRE are
able to directly generate unique entity names con-
ditioned on the context, yielding state-of-the-art
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results on multiple datasets.
Recently, Jiang et al. propose LNN-EL, the

first neuro-symbolic short-text entity linking
method that combines first-order logic (FOL)
rules with neural learning, and shows compet-
itive performance against deep-learning-based
black-box methods (Jiang et al., 2021). Essentially,
LNN-EL uses FOL rules as a glue to combine
different features into a final linking model, and
demonstrates interpretability due to the inter-
pretable nature of FOL. Nonetheless, LNN-EL is a
monolingual model that only supports English, and
does not meet the demands of modern industrial
applications where enterprises need to establish
effective cross-language interactions with users
from all over the world.

To enable this approach to facilitate rapidly
growing global business, in this study, we extend
upon LNN-EL by incorporating three sets multilin-
gual features to make it cross-lingual, i.e., xLNN-
EL. First, we propose a word-level cross-lingual
context feature that aims to capture the semantic
evidence of co-occurring mentions. Second, we
use multilingual autoencoding language models
(i.e., mBERT (Pires et al., 2019)) to capture the
similarities between the mention with its context
and the candidate entity with a four-way feature.
Third, we use multilingual sequence-to-sequence
language models (i.e., mBART (Liu et al., 2020)
and mT5 (Xue et al., 2021)) to represent the likeli-
hood of the text given the candidate entity. More
specifically, we try to reconstruct the text condi-
tioned on the candidate’s description, based on a
fine-tuned generative language model, and it re-
sults in another two-way feature indicating the like-
lihood of the text. We evaluate xLNN-EL on the
QALD-9-multilingual dataset with the state-of-the-
art black-box method mGENRE (De Cao et al.,
2021b), and the results demonstrate the effective-
ness of the proposed features. Our contribution can
thus be summarized as follows:

• We extend upon LNN-EL to facilitate disam-
biguating mentions appearing in non-English
languages. To the best of our knowledge,
xLNN-EL is the first neuro-symbolic method
for cross-language short-text entity linking
and performs competitively against state-of-
the-art black-box method.

• We propose three sets of multilingual features
that aim to capture the contextual semantic

evidence of co-occurring mentions, the simi-
larities between the mention with its context
and the candidate, and the likelihood score of
the context conditioned on the candidate. The
experimental results show the effectiveness of
the features.

2 xLNN-EL

We propose xLNN-EL, a cross-language extension
of LNN-EL, where we seek to facilitate the model
with better cross-linguality by incorporating a set
of new features allowing it to link non-English
mentions to the English knowledge base.

Following LNN-EL, we take the English DB-
pedia as the target knowledge base (Jiang et al.,
2021). As to candidate retrieval, we adopt a hy-
brid method of PivotsCR (Liu et al., 2021) and
mGENRE (De Cao et al., 2021b). Essentially, for
each mention mi, we take the union of their outputs
and generate a set of |Ci| = 250 candidate entities,
roughly reaching a 95% recall rate for each lan-
guage1.

Formally, given a single sentence or search
query T containing a set of mentions M =
{m1,m2, . . . ,mp}, a triple mi, Ci, Li is generated
for each mention mi. Li is a list of binary la-
bels for the mention-candidate pair (mi, eij) where
eij ∈ Ci. The entity name and textual descrip-
tion of eij is denoted by eij .name and eij .desc,
respectively. For each candidate eij , a set of pre-
defined features fw(mi, eij) is generated. In this
section, we introduce the three cross-language fea-
tures fw ∈ F that we incorporate into the model.

2.1 Word-level Context Score

Given a mention, we introduce a word-level context
score to capture the semantic evidence sustained
by the similarity between the co-occurring men-
tions and the descriptions of the candidate entities,
i.e., short abstracts2. The feature function fctx is
defined as follows:

fctx(mi, eij) =
∑

mk∈M\{mi}
prword(mk, eij)

prword(mk, eij) = max
sk∈eij .desc

cos(mk, sk)

(1)

1LNN-EL uses DBpedia lookup to retrieve top-100 candi-
dates.

2http://downloads.dbpedia.org/
wiki-archive/downloads-2016-10.html
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Method mono-lingual multi-lingual cross-lingual
F1-score(%) de fr en it de fr en it de fr en it

mGENRE 47.50 47.50 62.50 50.83 57.50 54.17 56.67 54.17 55.00 57.50 50.83 52.50

base 58.82 62.61 83.76 58.82 58.82 60.92 83.76 57.14 61.34 60.50 80.08 57.14
base + ctx 61.34 62.61 83.76 57.14 60.50 61.34 84.60 57.14 60.50 63.03 83.05 55.46
base + mbert 61.34 62.61 84.60 56.72 59.66 61.76 83.76 56.30 60.50 60.92 80.08 56.30
base + generative 60.50 63.45 84.60 62.04 61.34 61.76 83.76 58.40 60.50 61.76 82.20 58.40
base + ctx + mbert 63.03 60.92 83.76 57.14 59.66 62.61 84.60 57.14 59.66 61.34 80.08 56.30
base + ctx + generative 66.39 62.61 84.60 59.66 60.78 61.34 84.60 57.14 60.08 63.03 82.63 57.56
base + mbert + generative 63.45 69.75 84.60 63.03 62.18 63.87 83.76 57.98 64.99 63.87 83.47 57.98
base + ctx + mbert + generative 65.13 64.29 85.45 60.50 62.61 62.18 85.45 58.82 61.34 62.18 83.05 59.66

Table 1: Performance of xLNN-EL on QALD-9-multilingual.

where prword is a word-level Partial Ratio3 score.
The idea is to find the maximum similarity between
the mention mk and any group of words of the same
length sk, i.e., a sliding window, in the candidate’s
textual description. We use fastText’s pre-trained
aligned word vectors4 (Bojanowski et al., 2017;
Joulin et al., 2018) to encode the mention and the
entity description as they are in different languages
in the cross-language setting, i.e., the vector repre-
sentations mk, sk are in the same embedding space
though mk are non-English and sk are English. We
then take the aggregated similarities as the feature
indicating the semantic contextual relevance of the
candidate.

2.2 Autoencoding-LM-based Scores

We also introduce a set of autoencoding-language-
model-based features to encode the the overall sim-
ilarities between the mention with its context and
the candidate entity. In particular, autoencoding
language models (e.g., BERT (Devlin et al., 2019))
create a bidirectional representation of the whole
sentence which makes them a natural fit as text en-
coders, and the representations can be further facil-
itate discriminative downstream applications. Due
to the extensibility of the framework in LNN-EL
(Jiang et al., 2021), we are able to include various
features to describe the relationship between the
mention and the candidate from different levels and
aspects. For this feature, we use the multilingual
version of BERT, i.e., mBERT (Pires et al., 2019),
as the language model, and the feature function

3pypi.org/project/py-stringmatching
4https://fasttext.cc/docs/en/

aligned-vectors.html

fmbert is defined as follows:
fmbert =

[
fmbert1 , fmbert2 , fmbert3 , fmbert4

]

=
[
cos(mi, eij.name), cos(T, eij.name),

cos(mi, eij.desc), cos(T, eij.desc)
]

(2)
where the bold fonts indicate the vector representa-
tions for the mention (mi), the input short text (T),
the candidate’s name (eij.name), and the candi-
date’s description (eij.desc), respectively. Essen-
tially, the text is sent to mBERT and the vector
representation for the [CLS] token is used. This
four-way feature aims to explore the possibility of
capturing the similarities between the input text
and the candidate entity from different aspects, un-
der the xLNN-EL framework. The experimental
results in Section 3 show that they are useful and
complementary.

2.3 Seq2Seq-LM-based Scores
Sequence-to-sequence language models (e.g.,
BART (Lewis et al., 2020)) are mostly adopted
for tasks like translation, summarization and ques-
tion answering. For short-text cross-lingual entity
linking, however, this direction has been underex-
plored.

In this study, we propose to leverage seq2seq lan-
guage models to reveal another aspect of similarity
between the mention and the candidate entity, lever-
aging a set of features to reflect the likelihood of the
context, given the candidate entity for each mention.
Essentially, we first fine-tune multilingual genera-
tive models G (i.e., mBART (Liu et al., 2020) and
mT5 (Xue et al., 2021) in this paper) on the train-
ing set of <description, sentence> pairs,
where the description refers to the candidate
entity’s textual description and the sentence
refers to the input short text, i.e., < eij .desc, T >.
The idea is to enable the models to generate a short
sentence conditioned on a textual description of a
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candidate entity. With a fine-tuned model Gtuned,
we assign a likelihood score to each candidate. The
feature function fgenerative is defined as follows:

fgenerative =
[
fmbart, fmt5

]

=
[ |T |∑

k

log pθmbart
(xk|x<k, eij .desc),

|T |∑

k

log pθmt5(xk|x<k, eij .desc)
]

(3)
where T = (x0, x1, . . . , x|T |) is the short text
and log pθmbart

(xk|x<k), log pθmt5(xk|x<k) are
the log-likelihoods of the k-th token conditioned on
the preceding tokens based on the fine-tuned mod-
els Gmbart and Gmt5, respectively. This two-way
generative feature serves to reflect the feasibility
of the whole sentence given the candidate entity,
without a special focus on the mention.

3 Experiment

3.1 Setup

We evaluate xLNN-EL on the QALD-9-
multilingual dataset5. For a fair comparison,
we take the German (de), French (fr), English
(en), and Italian (it) versions of this dataset, as the
other languages are incomplete comparing to the
English version. The evaluation is conducted in
three settings: mono-lingual refers to in-language
training and testing; multi-lingual means training
on the union of all languages and testing on
individual languages; and cross-lingual means
testing on one language while training on the
other three. We compare the proposed model
xLNN-EL with the state-of-the-art black-box
method mGENRE (De Cao et al., 2021b) for entity
linking. In addition, we also evaluate the adapted
version of LNN-EL with basic features in the
cross-language scenario, denoted by base.

3.2 Results

The results are shown in Table 1. We present dif-
ferent combinations of the proposed features in
the table. xLNN-EL with the base feature set
shows better performance than mGENRE, most
likely due to the limitation that such methods
(GENRE/mGENRE) need large amounts of data
for adequate training (De Cao et al., 2021a). We

5https://github.com/ag-sc/QALD/tree/
master/9/data

Method mono-lingual
F1-score(%) de fr en it ∆

all 65.13 64.29 85.45 60.50 -
- mbert 1 65.55 62.61 84.60 57.56 -1.26
- mbert 2 63.03 62.61 82.91 58.82 -2.00
- mbert 3 60.50 61.34 84.60 57.98 -2.74
- mbert 4 60.50 60.92 84.60 57.98 -2.84
- mbart 64.29 61.76 86.30 58.82 -1.05
- mt5 63.87 62.18 84.60 57.14 -1.89

Table 2: Ablation study.

observe that with the three proposed sets of fea-
tures, the performance gets boosted across all set-
tings and languages and consistently outperforms
mGENRE and base, the state-of-the-art neuro-
symbolic short-text EL system, indicating the ef-
fectiveness of these features. We also notice that
different languages have their own feature patterns,
e.g., the context score seems more beneficial for
German than for French, according to their per-
formance in the mono-lingual and multi-lingual
settings, and the language-specific feature patterns
indicate a direction of future work. The impact
of the language-model-based features, i.e., mbert
and generative, is reflected in the last two rows
of the table, where the performance reaches its peak
when both features are included, thus demonstrat-
ing their importance as well as their complementary
nature. Furthermore, the cross-lingual performance
is on par with that in the multi-lingual setting, and
that shows the transferability of the proposed fea-
tures, reflecting a potential for real-world industrial
cross-language scenarios.

3.3 Ablation Study
To better understand the contribution of each com-
ponent in the mbert and generative feature,
we present in Table 2 the results of the ablation
results of the model base + ctx + mbert +
generative in the mono-lingual setting, with
their average performance change (∆). As shown
in the table, dropping each score of the LM-based
features will cause the performance to decrease
greatly, indicating the effectiveness and necessity
of them.

4 Conclusion

In this study, we extend upon LNN-EL by incor-
porating three sets of multilingual features to en-
able disambiguating mentions written in languages
other than English. This study also indicates di-
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rections of future work, as the results demon-
strate language-specific patterns for the features
and rules.
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(a) German (b) French

Figure 1: Feature weights for German and French.

A Preliminaries and Interpretabiltiy

A.1 LNN-EL

First-order logic (FOL) rules form a closed lan-
guage facilitating the expression of a variety of
human interpretable models. To learn these rules,
neuro-symbolic AI typically substitutes conjunc-
tions with t-norms (Esteva and Godo, 2001) which
actually limits their learning capacity as these
norms do not have learnable parameters.

Recently, Riegel et al. propose Logical Neural
Networks (LNN) (Riegel et al., 2020a), a modifica-
tion of neural networks that can precisely model op-
erations in real-valued logic, i.e., they construct log-
ical operators conjunction (∧) and disjunction (∨)
and facilitate neural network-style learning with
learnable parameters (Riegel et al., 2020b).

Subsequently, LNN-EL reformulates entity link-
ing by mapping the Boolean-valued logic rules into
the LNN formalism and the resulting model con-
sists of parameterized LNN operators, i.e., conjunc-
tion (∧) and disjunction (∨), along with learnable
rule weights and feature weights. LNN-EL takes
as input the pre-computed features of candidates
and the definition for the features is the main focus
of this study. We refer the readers to (Riegel et al.,
2020a; Jiang et al., 2021) for more detailed treat-
ment of the parameterized LNN opertors and the
reformulation.

A.2 Interpretability of xLNN-EL

A common theme among existing EL methods is
their lack of interpretability. Interpretability is
an important and desirable property not only for
machine learning research, but also for real-world
downstream applications, especially for sensitive
areas. In fact, there is a growing trend towards
developing interpretable machine learning models
(Danilevsky et al., 2020).

We show some learned feature weights of the
base + mbert + generative model for
German and French, in the mono-lingual setting, to

illustrate the interpretability of xLNN-EL. The tree
structure reflects the first-order logic (FOL) rule
combination of the model, e.g., the three features
base, mbert and generative are combined
with a disjunction at the topmost level, the mbert
feature is formed with a conjunction between a
set of disjunct similarities and the prominence
feature, the generative feature has the same
substructure with mbert (not shown), etc. The
rule combination part is beyond the scope of this
paper and the reader is referred to the literature for
further details (Jiang et al., 2021).

As shown in Figure 1, the feature mbert has a
much higher relative feature weight for French than
for German (1.5724 vs. 0.1921) in the disjunction,
which might indicate a relative preference as to
the mbert feature for French. This inspection
provides clues for human experts to understand
how these features impact performance, and further
adjust features and rule combinations accordingly.
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Abstract

The careful design of a crowdsourcing proto-
col is critical to eliciting highly accurate anno-
tations from untrained workers. In this work,
we explore the development of crowdsourcing
protocols for a challenging word sense disam-
biguation task. We find that (a) selecting a
similar example usage can serve as a proxy
for selecting an explicit definition of the sense,
and (b) priming workers with an additional,
related task within the HIT improves perfor-
mance on the main proxy task. Ultimately,
we demonstrate the usefulness of our crowd-
sourcing elicitation technique as an effective
alternative to previously investigated training
strategies, which can be used if agreement on
a challenging task is low.

1 Introduction

Crowdsourcing work relies on effective protocol
design in order to elicit meaningful and accu-
rate annotations from lay workers. Traditional
crowdsourcing protocols for challenging tasks train
crowd workers, incentivize high quality work with
bonuses, and filter out workers with pre-determined
gold annotations.

In this work, we demonstrate a novel crowd-
sourcing technique which frames the task such that
the worker is able to provide a high quality an-
notation for challenging tasks without extensive
prior training. We consider the challenging task of
English preposition supersense disambiguation.

Prepositions are difficult to disambiguate due to
their extreme polysemy and frequency (Litkowski
and Hargraves, 2007; Hovy et al., 2010; Gong et al.,
2018). While some distinctions—such as the loca-
tive vs. temporal ambiguity of in Seattle vs. in Oc-
tober—are quite intuitive, the semantic range of
English prepositions makes fully disambiguating
them a daunting task. Consider the sentence "Nice
and quiet place withPartPortion cosy living room just
outside the city." Though with here denotes a part of

a whole (a room in an abode), it is also describing a
characteristic of the place/living room, suggesting
that withCharacteristic would also be a reasonable an-
notation. With this being a difficult task because of
the inherently categorical nature of word sense dis-
ambiguation, we aim to develop simple linguistic
tasks which elicit annotations by proxy.

Prepositions are critical to language understand-
ing (Kim et al., 2019), which makes preposition
sense disambiguation an important task, impact-
ing a range of downstream applications, including:
relation extraction (Elazar et al., 2021), paraphras-
ing of phrasal verbs (Gong et al., 2018) and noun
compounds (Ponkiya et al., 2018; Hendrickx et al.,
2013), machine translation (Parameswarappa and
Narayana, 2012; Chiang et al., 2009; Chan et al.,
2007), semantic role labelling (Ye and Baldwin,
2006; Srikumar and Roth, 2011), and more. Au-
tomatic supersense classifiers exist for preposition
sense disambiguation (Liu et al., 2021), but are
unable to achieve the precision levels of trained
annotators.

In order to tackle the challenging aim of preposi-
tion sense annotation, we design linguistic tasks to
enable the elicitation of high-quality annotations.
We demonstrate that a weak form of guidance,
which we call a priming task, improves perfor-
mance on the main task.

In our case, the main task asks the worker to se-
lect the most similar usage to the prompt. However,
the notion of meaning similarity between preposi-
tion usages may not be apparent to crowd workers.
We find that first asking the worker to select an ap-
propriate definition is an effective priming task: its
mere presence enhances workers’ ability to choose
the correct exemplar in the second question. This
related (priming) task serves as a high-precision,
low-overhead alternative to training.

Finally, we compare the predictions of the
crowd with those of a classifier, and find that they
are largely complementary; for most prepositions
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tested, combining the two predictions gives perfect
or near-perfect precision.

Related work has proposed the ability to crowd-
source supersenses and tested a pilot on trained
in-house annotators (Gessler et al., 2020); in this
work, we develop new formulations and collect
actual crowdsourced annotations from Mechanical
Turk to ascertain the suitability of our formulations.

Our contributions include:
• a novel crowdsourcing elicitation tech-

nique which primes implicit questions about
lexical meaning with an explicit task

• a promising crowdsourcing approach to
preposition supersense annotation to elicit
high-precision labels for a subset of instances
without prior annotator training

• a demonstration that the crowd and a super-
sense classifier give complementary signals
conducive to ensembling.

2 Related Work on Crowdsourcing

The Amazon Mechanical Turk online crowdsourc-
ing platform enables crowd workers from around
the world to perform short tasks published by Re-
questers. Mechanical Turk has been used for a
range of annotation tasks.

Mechanical Turk is used in many cases where a
large amount of annotations are collected. If these
many annotations are of lesser quality, it is not
necessarily the case that having more data is better
than having a small amount of expert annotations
would have been (Bhardwaj et al., 2010).

Crowdsourcing Protocols. A variety of alterna-
tives or additions to worker training have been em-
ployed in previous work. Notably, qualifying work-
ers (filtering out who can and cannot complete the
task) is a method akin to training which seeks to
ensure higher quality annotations. Recent work
evaluating crowdsourcing protocols for the devel-
opment of natural language understanding datasets
ask crowd workers to write a multiple choice ques-
tion with one of four qualification follow ups; with
the goal of making more difficult NLU questions,
this work finds that training crowd workers, send-
ing feedback, and qualifying crowd workers is an
effective strategy (Nangia et al., 2021). Qualify-
ing workers beforehand based on self-assessment
is flawed due to bias in the self-assessment; lever-
aging a combination of self-assessment and perfor-
mance on the task is a more useful filtering process
(Gadiraju et al., 2017).

Lee et al. (2022) provides an ordering strategy
for sentence-level annotation tasks such that the
annotators learn and improve from task to task.
Mikulová et al. (2022) considers the effect of pre-
annotation and task design on dependency syntax
annotation, finding that automatic pre-annotation
is useful while other support tools are not as bene-
ficial.

The retainer method has been developed for real-
time crowdsourcing, using retainer pools (qualify-
ing workers into a group of candidates who can be
called upon quickly to complete the task), push
notifications, and recruiting workers before the
task is actually published (Bernstein et al., 2012).
Vaughan (2017) put forward a set of best practices
for Requesters, which includes providing clear in-
structions and iteratively piloting task designs.

The idea of “priming” a crowd worker to in-
fluence their performance (through the design of
instructions, the order of items, etc.) has been ex-
plored in previous work. Jiang et al. (2017) inves-
tigated how the choice of provided examples and
the phrasing of the prompt affect worker response.
Federmann et al. (2019) further investigated the
effect of prompt question on worker performance.
Additional work also explored how providing sur-
rounding text (Mitchell et al., 2014), drawings as
prompts (Kumaran et al., 2014), lists of options
(Wang et al., 2012), and diverse word suggestions
(Yaghoub-Zadeh-Fard et al., 2020) improve worker
performance. Jiang et al. (2018) suggests that work-
ers are cognitively “primed” to replicate their own
mistakes when completing numerous HITs in se-
quence. Colombini (2018) similarly investigates
“inter-task effect” (effect from one HIT to the next),
finding that consistency in task structure across
HITs improves worker performance.

We introduce the concept of a priming task, an
additional task designed to be completed first in
order to improve performance on a related main
task. The idea is that the priming task is a less
ambiguous task not intended to collect data, but
rather to frame the worker’s thinking so as to draw
attention to the relevant aspects of the main task.1

Word sense disambiguation is a difficult task
(Artstein and Poesio, 2008), which is particularly
true for prepositions, as they are widely polyse-
mous (Gong et al., 2018; Hovy et al., 2010). Prior
work has proposed, but not executed, the possibility

1The 2 tasks are questions that appear together on the same
screen (in the same HIT), and the main task is actually a proxy
task because it is an indirect form of labeling.
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of crowdsourcing preposition sense disambiguation
for the supersense schema—Gessler et al. (2020)
proposed that, instead of training annotators to ap-
ply abstract labels, like STARTTIME, GESTALT,
and AGENT, annotators could be asked to perform
simpler proxy tasks from which the supersense la-
bels could be inferred automatically. While Gessler
et al. conducted a pilot with trained in-house anno-
tators, we introduce a new definition-based formu-
lation, which we combine with an exemplar-based
approach, and collect annotations from Mechanical
Turk to establish whether sense disambiguation of
prepositions is able to be crowdsourced in practice.

3 Crowdsourcing Protocol

3.1 Task
Our crowdsourcing task is the challenging task of
preposition sense disambiguation (§1), via the (in-
direct) annotation of supersenses. 2 We want to de-
termine whether the most frequent senses of prepo-
sitions can be categorized by the crowd, such that
the majority of prepositions could be annotated at a
large scale, and any remaining long-tail cases could
then by annotated by experts.

In this work, we ask: can we elicit preposition
supersense data from crowd workers with high pre-
cision? Because the supersense training process
is extensive and specialized, we leverage a proxy
task, through which the crowd judgments can be
converted into actual supersense labels. As a result
of our study, we propose the technique of a priming
task, which is designed to improve performance on
the main task rather than to collect data.

The SNACS supersense annotation schema and
corpus extensively document the senses of En-
glish prepositions and possessives, with 50 super-
sense classes categorizing the use of an adposi-
tion in context (Schneider et al., 2018). While
some distinctions—such as the locative vs. tempo-
ral ambiguity of in Seattle (supersense label LO-
CUS) vs. in October (TIME)—are quite intuitive,
the semantic versatility of prepositions requires ex-
tensive annotator training. Preposition supersenses
form a subset of labels in the lexical semantic recog-
nition task Liu et al. (2021).

From the STREUSLE corpus (Schneider and
Smith, 2015), we use annotated tokens of 6 preposi-
tion types: from, in, on, with, for, and of, which we
choose due to their high polysemy and frequency,

2Technically two supersense fields are annotated per token;
they may be the same or different (Schneider et al., 2018).

collectively comprising more than 60% of all prepo-
sition tokens in the STREUSLE corpus. The gold
annotations are used to evaluate our approach.

3.2 Two Task Designs

We evaluate crowd predictions with the aim of pri-
oritizing precision over recall, because we want to
ensure that any sense that receives an annotation by
majority vote is very likely to be accurate. Our first
task design provides definitions and examples of
possible senses for the preposition, drawing from
the traditional notion of word sense disambiguation
being obtained by selecting a sense from a list of
definitions as the priming task (cf. Ahlswede and
Lorand, 1993; Jurgens, 2013; Tratz, 2011). The
second design uses BERT (Devlin et al., 2019) to
retrieve nearest neighbors from a gold-annotated
seed corpus as the proxy task.

Definition-Based The Definition-Based ap-
proach presents the target sentence (the sentence
to be annotated), and asks a question about the
relationship between the governor and object of
the preposition. The question presented to the
crowd worker is “The word [preposition] expresses
a relationship between two things. Which of the
following options, if any, describes the kind of
relationship?” The definitions include a simple,
short description of what the preposition may be
conveying in that sentence, as well as examples of
that usage. We wrote a small number of definitions
for each of the 6 prepositions, mindful to avoid
jargon and to avoid imposing a high cognitive
load with many options. These are presented as
options along with “None of the above” and “Not
sure/sentence is hard to understand”. Since only
a few of the possible senses receive definitions,
annotators are encouraged to select “None of the
above” if none is a good match. For example,
for the relationship options included in figure 1,
the four options provided cover 75% of the
STREUSLE instances of the preposition from,
corresponding respectively to the annotations:
ORIGINATOR↝SOURCE, SOURCE↝SOURCE, LO-
CUS↝SOURCE, and STARTTIME↝STARTTIME,
the last of which is the correct choice.

Exemplar Matching Our Exemplar Matching
task utilizes contextualized embeddings from
BERT (Devlin et al., 2019) to identify n nearest
neighbors of the use of a preposition in a sentence.
The intuition behind the exemplar-based approach
is that annotators would have an easier time identi-
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Figure 1: Definition-Based approach for a sentence from the test set in the STREUSLE dataset.

Figure 2: Exemplar Matching approach for the same
STREUSLE test set sentence as in figure 1, using the
nearest neighbors from the STREUSLE train set as
identified by BERT.

fying a similar use of a preposition in context than
explicitly describing the use of the preposition.

STREUSLE is split into train, test, and dev sets.
We use pre-trained (without any fine-tuning) BERT-
base-uncased to collect a given test or dev sen-
tence’s 5 nearest unique neighbors in the train set,
using cosine similarity. We concatenate the vectors
from the last four layers, and only use the indexed
embedding of the preposition in question to find
nearest neighbors. We retrieve the 5 nearest neigh-
bors with distinct supersenses, and present these 5
options plus a “None of the above” option.

Subject to the performance of the nearest neigh-
bor retrieval metric, oracle recall of the crowd
workers is therefore 87% overall, i.e. for our ex-
periments, 87% of the retrieved nearest neighbors
include a gold label in the 5 unique options. We
also found that ensuring that the 5 options provided
reflected unique supersenses did increase the likeli-
hood that the majority consensus would match that
of the gold label.

An example of this protocol can be seen in fig-

ure 2, which features the same sentence as figure 1.
Figure 2 demonstrates the Exemplar Matching
proxy task, with the 5 nearest neighbor preposition
usages as well as a “None of the above” option
being presented to the worker.

Combined In this design, we include in each
HIT the Definition-Based task followed by the
Exemplar Matching task, for the same sentence.
Within the same HIT, the Definition-Based task is
first presented and then below that (seen by the
crowd worker by scrolling down) the Exemplar
Matching task is shown.

3.3 Mechanical Turk Experimental Setup

Using the Mechanical Turk crowdsourcing plat-
form, we have 5 crowd workers annotate each sen-
tence. With there being 160 sentences (130 unique
sentences, as the for experiment was performed
twice with disjoint sets of annotators), we collect
1,650 judgments total. Consensus is established
when 3 of 5 crowd workers select the same option—
a simple majority balances precision and recall.

We filter the target and exemplar sentences to se-
lect instances of canonical phrase order between the
syntactic governor, the preposition, and the object,
such that the governor precedes (not necessarily
immediately) the preposition, which also precedes
the object (again, not necessarily immediately).3

Target sentences were sampled randomly from this
filtered set.

3This filtered set includes approximately 44% of the in-
stances of the selected preposition types. We filter the data
for simplicity of interpretation of results, and the filtered task
would not be a more or less difficult task for annotation.
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Exemplar Matching Combined: EM Combined: DB

Prep. n Classifier P P R O R P R O R P R O R Ensemble P

for 30 0.70 0.76 0.53 0.90 0.90 0.63 0.90 0.74 0.57 0.57 18/19=0.95
for (rpt.) 30 0.70 0.71 0.50 0.90 0.77 0.57 0.90 0.74 0.57 0.57 15/15=1.00

of 20 0.75 0.33 0.20 0.90 0.42 0.25 0.90 0.29 0.10 0.40 4/4=1.00
from 10 0.50 0.60 0.30 0.80 0.67 0.40 0.80 0.71 0.50 0.80 2/2=1.00

in 30 0.73 0.92 0.77 0.87 0.88 0.73 0.87 0.88 0.73 0.80 22/22=1.00
on 15 0.60 0.83 0.33 0.93 1.00 0.60 0.93 0.92 0.80 0.87 6/6=1.00

with 30 0.43 0.30 0.10 0.80 0.47 0.27 0.80 0.53 0.30 0.43 7/10=0.70

Table 1: The results of the Exemplar Matching (EM) task alone, the Definition-Based (DB) task within the Com-
bined approach, and the EM task within the Combined approach. For each preposition, the same n sentences are
used in the EM and the Combined HITs, where n indicates the number of sentences tested for that preposition.
Recall (R) is out of all n, not only the sentences which have gold options. This is also reflected in the Oracle Recall
(O R) which indicates the best possible crowd performance given that not all tasks present a gold option. Precision
is labeled as P. The rightmost column shows Ensemble results, discussed in §4.2.

4 Results & Analysis

Before coming to the task design presented in this
work, we iterated over many approaches and tech-
niques to crowdsourcing preposition sense disam-
biguation. In total, we elicited 4,080 annotations
and developed 17 slight variations of the approach
presented here, which primes the crowd workers
by combining the definition-based and exemplar-
based tasks. We saw consistent trends across these
pre-study variations, resulting in the current ap-
proaches (presented in this work), which prime the
crowd workers by combining the definition-based
and exemplar-based tasks. For these results, we
collect between 10 and 30 annotations for each of
the 6 prepositions, via two methods: the Exemplar
Matching design alone, and the Combined design.

4.1 Effect of Task Design
The precision and recall scores from the different
task designs appear in table 1, accompanied by
a classifier baseline. Precision is important for
this task, because we want to have confidence that
the annotations that are being produced are trust-
worthy. For 5 of the 6 prepositions tried, the best
crowd design outperforms the classifier; notably,
the precision for 3 prepositions—for, in, and on—
is consistently high. The biggest exception is of,
which is extremely polysemous, and the classifier
picks up on the plethora of options with higher pre-
cision than the crowd workers (at least in our small
sample). With achieves better precision from the
Combined judgments than the classifier, though it
barely scratches 50%.

We see that within the Combined design, the Ex-
emplar Matching judgments are equal or superior
to the Definition-Based judgments in all experi-
ments except for from. The two-step process takes

slightly longer for annotators and thus is slightly
more expensive, but achieves very high precision,
which is the aim here. Notably, the Exemplar
Matching judgments are usually enhanced by the
presence of the Definition-Based task in the HIT:
Combined EM precision surpasses plain Exemplar
Matching in all but the in experiment. This is sur-
prising because the combined approach is useful
even when the Definition-Based options do not in-
clude a correct definition, or when the annotator
doesn’t choose the correct definition—the presence
of the task alone results in a statistically significant
improvement in precision.The improved precision
for Combined EM vs. plain EM is statistically sig-
nificant per a t-test: Paired Two Sample for Means
on precision resulting in a one-tailed p-value of
0.0083.

This suggests that the definitions are biasing
crowd workers to attend to the preposition’s mean-
ing in context, even if they don’t actually choose the
correct definition. This insight may be useful for
other kinds of crowdsourcing tasks, such as other
word sense disambiguation tasks, which currently
rely on only one annotation elicitation method, but
could benefit from a combination of various meth-
ods. In particular, if inter-annotator agreement
is low on a more challenging task, a special-
ized protocol could be used to prime the crowd
workers’ thinking, without training. While it is
well-known that initial questions in a survey can
bias answers to subsequent questions (Schuman,
2008), we are not aware of other crowdsourcing
studies that have exploited this to improve workers’
performance on a task by including another task
first. We have demonstrated that this approach is
successful on the challenging task of preposition
sense disambiguation; future work should explore
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the utility of similar schemes for other tasks.
We ran the for experiment twice with the same

instances to see how much randomness in the an-
notator sample would affect results. The absolute
scores in some conditions were slightly affected,
but in both cases the Combined: EM design was
the best and all crowd designs outperformed the
classifier.

4.2 Ensemble Results
In comparison to the highest performing super-
sense tagger (Liu et al., 2021), our crowdsourc-
ing approach generally achieves higher precision.
However, we find that ensembling (predicting only
when the crowd workers via the Combined EM
approach agrees with the supersense classifier) can
give extremely high-precision predictions, showing
that the two signals are complementary.

Specifically, we consider an ensemble where
an annotation is produced only if the majority of
crowd workers in the best design (Combined Exem-
plar Matching) and the classifier are in agreement.
For the ensemble, the precision is perfect or near-
perfect for 5 of 6 prepositions, as seen in the right-
most column of table 1 (with the caveat that counts
for some prepositions are too low to draw firm con-
clusions). The senses annotated via crowdsourcing
alone are more varied than the senses annotated by
the ensemble approach, but the ensemble approach
is more reliable for more frequent senses. If we ex-
trapolate the highly effective ensemble technique to
the entirety of the relatively small STREUSLE cor-
pus, the Combined Exemplar Matching approach
would result in an estimated 808 annotations (ap-
prox. 606 of which would be correct), while the
ensemble would produce an estimated 563 annota-
tions (approx. 534 correct). This gives a sense of
the potential for efficiency gains when applied on a
larger scale.

Note that though the precision will be extremely
high, to ensemble the crowdsourcing approach and
classifier means that slightly fewer annotations will
be produced. Of the 2,692 STREUSLE instances
of the 6 prepositions used in this study, 1,191 of
them meet the same filtering requirement we used
(such that the governor precedes the preposition,
which precedes the object). Extrapolating to these
1,191 tokens, the Combined Exemplar Matching
approach would result in an estimated 808 annota-
tions (an estimated 606 of which would be correct),
while the ensemble would produce an estimated
563 annotations (an estimated 534 of which would

be correct).

5 Conclusion

This paper outlined a promising approach to crowd-
sourcing preposition supersense annotation (a par-
ticularly challenging form of word sense disam-
biguation). The crowd workers outperformed auto-
matic supersense tagging on 5 of the 6 prepositions
studied. We compared multiple designs, finding
that prompting annotators to reason both explic-
itly and implicitly about meaning is most effective,
even when the explicit question does not elicit a
correct annotation. The crowdsourcing approach
achieves very high precision and acceptable recall
for 3 prepositions.

6 Ethics

When using a crowdsourcing platform like Me-
chanical Turk, it is critical to ensure fair payment
and treatment of crowd workers. For the Exem-
plar Matching tasks alone, we paid $0.15 per HIT,
and for the combined Definition-Based and Exem-
plar Matching task, we paid $0.20 per HIT. Per
reviews on the TurkerView website, which Turk-
ers use to anonymously review Requesters, the re-
views are positive, indicating that the payment is ap-
proved quickly, with Turkers never being rejected
or blocked. The average hourly wage is reported
on the site based on the payment for completion
of the task and how long it takes to complete the
task (as reported by the worker, rather than the time
spent between accepting the task and submitting,
as reported by Mechanical Turk), and reflects an
average hourly wage of $20.66 based on 40 reports.
IRB exemption was granted for this study. Intend-
ing to have this task primarily completed by native
English speakers, we filtered crowd workers to re-
quire that the Location is United States and the
number of approved HITS is greater than 5000.
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Abstract
Business documents come in a variety of struc-
tures, formats and information needs which
makes information extraction a challenging
task. Due to these variations, having a doc-
ument generic model which can work well
across all types of documents and for all the
use cases seems far-fetched. For document-
specific models, we would need customized
document-specific labels. We introduce DoSA
(Document Specific Automated Annotations),
which helps annotators in generating initial an-
notations automatically using our novel boot-
strap approach by leveraging document generic
datasets and models. These initial annotations
can further be reviewed by a human for cor-
rectness. An initial document-specific model
can be trained and its inference can be used as
feedback for generating more automated anno-
tations. These automated annotations can be
reviewed by human-in-the-loop for the correct-
ness and a new improved model can be trained
using the current model as pre-trained model
before going for the next iteration. In this paper,
our scope is limited to Form like documents
due to limited availability of generic annotated
datasets, but this idea can be extended to a va-
riety of other documents as more datasets are
built. An open-source ready-to-use implemen-
tation is made available on GitHub. 1

1 Introduction

With the recent advancements in technology and in-
creased adoption of digitization, almost all organi-
zations maintain and exchange business documents
in digitized formats like PDFs, scans, faxes, images
etc. These documents come in all shape, sizes and
format like invoices, emails, medical reports, con-
tracts, scientific papers and many more. The major-
ity of the research has concentrated on documents
present on the web that do not adequately capture
the complexity of analysis or comprehension re-
quired for business documents. These documents

1https://github.com/neeleshkshukla/DoSA

Figure 1: Form Example from FUNSD: Keys are repre-
sented in blue, headers in orange, and Values in green.

require a multidisciplinary approach that includes
understanding of layout and structure, computer
vision, natural language processing. Usually, or-
ganizations rely on humans to manually process
these documents. The ability to read, understand
and interpret these documents is referred as Docu-
ment Intelligence (DI) or Document Understand-
ing. There have been recent advancements in this
area specifically with deep learning where many
architectures (Huang et al., 2022; Appalaraju et al.,
2021; Kim et al., 2021) and annotated datasets
(Mathew et al., 2020; Zhong et al., 2019; Huang
et al., 2019; Park et al., 2019) have been published
for various DI tasks like Document Classification,
Document Visual Q&A, Form Understanding etc.
These publicly annotated datasets mostly capture
only few document types like receipts, scientific
articles etc. It becomes challenging & tedious to
have annotated public datasets available for various
document types which therefore brings in the very
need of having customized annotated datasets for
specific use cases and document types.

To limit our scope, in this paper we are focus-
ing on information extraction from documents that
follow a form-like structure. Forms are documents
that have information usually present in Question-
Answer or Key-Value format as shown in Figure
1. Documents like invoices, driving licenses, pass-
ports, medical records, financial statements, tax
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forms, quotations, payment cards, etc. fall under
this category.

There has been an effort in building a generic
form dataset FUNSD2 (Jaume et al., 2019).
FUNSD is a dataset for form understanding in
noisy scanned documents that aim at extracting
and structuring the textual content of forms. It
proposes an idea where a generic document can
be represented via generic information and labels
like question (or key), answer (or value), header
and others. A model can consume this kind of
generic representation to extract generic informa-
tion. In most of the scenarios, users are interested
in document-specific meaningful labels like docu-
ment number, document date, etc and extracting a
subset of information. Having a document generic
labeling approach results in a noisy and verbose
extraction. Therefore a need for document-specific
annotations arises. Commercial solutions like Mi-
crosoft Form Recognizer3 and Google Document
AI 4 mostly support specific document type pre-
built models and provide a facility to custom train
a model for specific documents5 which require new
annotations. The SOTA models of document intel-
ligence use multimodality of the document: text,
position and image. Due to a change in the for-
mat or layout of the document, these modalities
might be affected and a new model needs to be
trained which will need a new set of annotations.
With these, manual annotation becomes repetitive,
laborious, expensive and time-consuming.

To reduce the time and human effort, we are
proposing an active learning based automated
annotation system DoSA (Document Specific
Automated Annotations), where the initial set of
document-specific annotations are generated by the
system which can be reviewed by human anno-
tators for correctness. An initial model can be
trained with these annotations and its inference can
be taken by the system as feedback to generate
annotations on new documents and improve the
model incrementally with the human in the loop.

The main contribution of this paper is a novel
bootstrapping approach to generate automated
document-specific labels. To the best of our knowl-
edge, this is the first attempt at generating auto-

2https://guillaumejaume.github.io/FUNSD/
3https://azure.microsoft.com/en-in/services/form-

recognizer/
4https://cloud.google.com/document-ai
5https://docs.microsoft.com/en-us/azure/applied-ai-

services/form-recognizer/concept-custom

mated annotations on business documents that con-
tains visual and layout structure information along
with the text. All other previous approaches have
mostly focused on web or text (Dill et al., 2003;
Wilson et al., 2018) or images (Yu et al., 2019). We
have seen an attempt on research documents but
the scope was limited to automatically annotating
documents with topic (Singhal et al., 2013).

2 DoSA System

A high-level flow of the DoSA system is shown
in Figure 2, where initial document-specific anno-
tations are generated by document-generic model
which is later reviewed by a human for correctness.
With these initial annotations, a document-specific
model is trained and its inference is taken as feed-
back to annotate further documents. A human will
again review and correct the annotations and the
reviewed documents can be added back to training
for further improving the model. As the model ma-
tures, eventually the user would end up correcting
a minimal number of annotated fields/documents.
The journey for the model to get more precise with
less human feedback is achieved by employing ac-
tive learning strategies like uncertainty-based sam-
pling which improve the document-specific model
performance in very few iterations.

2.1 Bootstrapping: Generating Initial
Document Specific Annotations with
Document Generic Model

Here are the steps that are followed in generating
annotations on the initial set of documents:

• A document is processed via an OCR engine
to get the words and their respective bounding
boxes. DoSA uses open source OCR engine
pytesseract6.

• As an intermediate step, the text areas are iden-
tified as ’Keys’ and ’Values’ in these docu-
ments (Section 2.1.1).

• Link respective Key and Values and form a
key-value pair <K, V> (Section 2.1.2).

• Document-specific annotations can be gener-
ated by labeling the area identified as value
V with the text of the area identified by the
respective key K (Section 2.1.3).

6https://pypi.org/project/pytesseract/
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Figure 2: DoSA System Overview: Generating Annotations with Human in the Loop

2.1.1 Locating Keys and Values

As an intermediate step, text areas in a doc-
ument are identified as ’Key’ and ’Value’.
DoSA uses LayoutLMv3(Huang et al., 2022)
model for entity/token classification fine-tuned on
generic FUNSD dataset7. This can classify the
word/token/entity in ’Key (Question)’, ’Value (An-
swer)’, ’Header’ and ’Others’ with F1 0.9078. The
areas are represented by bounding box coordinates
<x1,y1, x2, y2> which are used for comparing the
position and drawing rectangles in the next sections.
In the fax cover example shown in figure 3, ’To’,
’Fax Number’, ’Phone Number’, ’Date’ has been
identified as keys and ’George Baroody’, ’(336)
335-7392’, ’12/10/98’ as values.

2.1.2 Key and Value Pair Linking

After identifying keys and values, DoSA links re-
spective pairs <K, V>. There have been multiple
recent works addressing this Form Entity Linking
problem (Li et al., 2021; Zhang et al., 2021). These
works have F1 0.4 and 0.64 respectively. These
SOTA models are not good enough and were re-
sulting in a lot of noisy pairs. Based on manual
observations of a few documents, we designed the
following heuristics to identify key-value pairs.

Given a list of values V ordered by their position
in a document, Value Vj is linked to candidate key
Ki if it satisfies the following conditions:
H1: Position of Ki is less than the position of Vj.
H2: Ki is not linked to any other Value Vk
H3: Ki is the closest to Vj compared to other

7https://huggingface.co/nielsr/layoutlmv3-finetuned-
funsd

Figure 3: Areas marked with generic ’Key’ and ’Value’
labels as described in section 2.1.1

candidate keys Km which satisfy H1 and H2.

If No such key is found for a Value Vj. Vj will be
dropped else pair <Ki, Vj> is added to the output.
For the document shown in figure 3, some of the
examples are <Fax Number: (336) 335-7392> and
<Date: 12/10/98>.

2.1.3 Document Specific Annotations and
Review with Human-in-the-Loop

Once the <Key, value> pairs are identified, anno-
tations can be generated by drawing the bounding
boxes around ’value’ and annotating it with the text
of the respective ’key’. These automated annota-
tions can be submitted for review and modifications
with Human-in-the-loop.

An example is shown in Figure 4, once the key-
value pair <Fax Number: (336) 335-7392> identi-
fied, the value (336) 335-7392 has been annotated
with respective key ’Fax Number’.
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Figure 4: Document specific annotations by labeling
regions/texts identified as ’Value’ with respective ’Key’
in intermediate annotations as shown in figure 3.

2.2 Annotations with Document Specific
Model

A custom initial model can be built by fine-
tuning the generic model used in section 2.1.1 on
these reviewed initial annotations which now have
document-specific labels. This document-specific
model can be used to generate annotations via in-
ference feedback on new documents. As more doc-
uments and annotations are added and reviewed,
the model will eventually get mature.

3 Conclusion and Future Work

In this work, we presented DoSA, a system to gen-
erate document specific annotations from model
built on document generic datasets. Our scope was
limited to Form like document which can be fur-
ther enhanced with the availability of new type of
generic datasets. This system in current state can
only take one type of document to generate one
set of annotations. In case the users have multiple
type of documents, they have to group the docu-
ments by type beforehand and use this system for
individual groups. A layer can be added on top of
DoSA system to automatically classify the docu-
ments and use DoSA for individual groups. As this
work is still in progress, in this paper we focused
on proposing this idea. We are planning to discuss
the effectiveness of our proposed approaches and
overall system in the near future.
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Abstract

Code generation models can benefit data scien-
tists’ productivity by automatically generating
code from context and text descriptions. An
important measure of the modeling progress
is whether a model can generate code that can
correctly execute to solve the task. However,
due to the lack of an evaluation dataset that
directly supports execution-based model evalu-
ation, existing work relies on code surface form
similarity metrics (e.g., BLEU, CodeBLEU) for
model selection, which can be inaccurate.

To remedy this, we introduce ExeDS, an evalu-
ation dataset for execution evaluation for data
science code generation tasks. ExeDS contains
a set of 534 problems from Jupyter Notebooks,
each consisting of code context, task descrip-
tion, reference program, and the desired exe-
cution output. With ExeDS, we evaluate the
execution performance of five state-of-the-art
code generation models that have achieved high
surface-form evaluation scores. Our experi-
ments show that models with high surface-form
scores do not necessarily perform well on ex-
ecution metrics, and execution-based metrics
can better capture model code generation errors.
1

1 Introduction

Code generation models (Chen et al., 2021a; Tun-
stall et al., 2022) have shown promising results
to improve developer productivity by generating
code from natural specifications (Le et al., 2020;
Al-Hossami and Shaikh, 2022). These promising
results also bring interest to code generation for
data scientists, who program data analysis scripts
in interactive notebook environments like Jupyter
Notebooks (Kluyver et al., 2016) where programs
are written interactively in loosely organized pro-
gram cells (Figure 1 (1)). This domain and style

∗Work done during internship at Microsoft Research Asia.
1Source code and data can be found at

https://github.com/Jun-jie-Huang/ExeDS.

Compute the accuracy of predictions compared with y

print("Accuracy: ",cross_val_score(est,X,y,cv=10).mean())In [ ]:

Out [ ]: Accuracy: 0.8410769068020736

d.columns = []
# split data: input column & column to be predicted
X = d.values[:,:-1]
y = d.values[:,-1]
# now create an estimator, train and predict
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
from sklearn.metrics import *
est = GaussianNB()
est.fit(X,y)
predictions = est.predict(X)

Target: 

Context: 

accuracy_score(predictions, y)

accuracy_score(predictions, y)In [ ]:

Out [ ]: 0.8410769068020736

(1)

(2)Ground truth code cell: 

Generated code cell: 

Intent: 

Figure 1: An example from ExeDS. The first block de-
scribes the task of data science code generation with
code context and NL intents. The second block com-
pares the code and output of reference and generation.

differences motivates new modeling resources, e.g.,
new datasets (e.g. JuiCe (Agashe et al., 2019) )
and models (e.g. JuPyT5 (Chandel et al., 2022))
specific to data science tasks.

However, we still lack a good methodology to
evaluate data science (DS) code generation models.
JuiCe dataset uses the BLEU (Papineni et al., 2002)
and Exact Match (EM), the prevailing metrics in
code generation, to measure semantic similarity be-
tween the generated and reference code. However,
these two surface-form metrics have limitations:
the former neglects code syntactic features and the
latter is too strict (Ren et al., 2020). Execution-
based metrics are another widely accepted line of
metrics in general software engineering (SE) do-
main, where the correctness of generated functions
is determined by whether the outputs are consis-
tent with oracle input-output data/unit tests. For
DS problems, however, collecting an executable
dataset and performing execution-based evaluation
are challenging. DS notebooks usually do not come
with their own set of unit tests and existing datasets
like JuiCe do not track the input data (such as ta-
bles) needed to run the notebooks. In addition, the
outputs from notebook cells are often not "pure"
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values (e.g., numbers, strings, or lists) like the out-
puts of the functions in SE problems. The DS note-
book cell outputs are meant for human understand-
ing and hence, may contain complex data structures
(e.g., data frames, plots) accompanied with texts;
thus simply checking whether outputs are the same
is too strict to capture cases when the generated
cell output is semantically correct but formatted
differently from the reference (Figure 1-(2)).

In this paper, we provide a dataset for evaluating
DS code generation models, dubbed ExeDS, which
contains 534 data science problems built on JuiCe
(Agashe et al., 2019). We collect ExeDS by first
crawling data dependencies from original GitHub
repositories for the notebooks and filtering out note-
books with runtime errors; then, we curated 534
high-quality problems with sufficient code context
and human-written natural language (NL) to de-
scribe tasks as the testset. With ExeDS, we can
evaluate execution correctness by comparing out-
puts from generated code with desirable outputs.

We experiment with 5 existing code generation
models on ExeDS to identify their execution per-
formance. Experiment results show that (1) models
with high/low surface-form scores do not necessar-
ily generate execution-correct code – for example,
while Codex (Chen et al., 2021a) is low in BLEU,
it achieves high execution scores. (2) Execution-
based metrics can better capture code errors which
might be helpful for model improvements.

2 Related Works

Data science (DS) refers to the practice of analyz-
ing data and acquiring insights with computational
methods (Donoho, 2017). With the goal to im-
prove productivity, there are increasing interests in
building systems to solve a variety of DS tasks, in-
cluding code synthesis (Agashe et al., 2019), code
synthesis for visualization (Chen et al., 2021b) and
data preparation (Yan and He, 2020), documenta-
tion (Liu et al., 2021; Wang et al., 2021), etc. In our
work, we focus on code generation in DS, which
generates code with code, NL and data context.

Code generation benchmarks are predominantly
evaluated by matching code surface forms(Papineni
et al., 2002; Lin, 2004; Ren et al., 2020). These
datasets evaluate explicit code generation with dif-
ferent input specifications, including natural lan-
guage (Wang et al., 2015; Oda et al., 2015; Zhong
et al., 2017; Yin et al., 2018; Yu et al., 2018; Lin
et al., 2018), unfinished code (Iyer et al., 2018;

Dataset # Domain Evaluation

APPS (Hendrycks et al., 2021) 10,000 SE Unit Test
MBPP (Austin et al., 2021) 974 SE Unit Test
HumanEval (Chen et al., 2021a) 164 SE Unit Test
DSP (Chandel et al., 2022) 1,139 DS Unit Test
JuiCe (Agashe et al., 2019) 1,981 DS Surface Form
PlotCoder (Chen et al., 2021b) 894 DS Surface Form

ExeDS (ours) 534 DS Output Match

Table 1: Comparisons of code generation testsets.

Lu et al., 2021), and input-output examples (Polo-
sukhin and Skidanov, 2018; Zavershynskyi et al.,
2018). However, surface form metrics are unable
to assess code as programmers, who focus on the
functionality and execution correctness in practice.

Consequently, recent works turn to execution-
based metrics instead, where the code would be
correct if it passes a set of unit tests defined by
humans (Roziere et al., 2020; Kulal et al., 2019;
Austin et al., 2021; Chen et al., 2021a; Hendrycks
et al., 2021). However, the complex output data and
scarcity of units tests in DS limit its application in
DS code generation. Chandel et al. (2022) explore
applying unit tests in DS, but they only focus on
educational problems. Table 1 compares ExeDS
with various related datasets.

3 ExeDS for Execution Evaluation

As mentioned in Section 1, the lack of executable
environments for notebooks is a key limiting factor
of execution-based model evaluation for data sci-
ence tasks. Thus we first construct an evaluation
dataset ExeDS and analyze its characteristics. Then
describe the methods for execution evaluation.

Dataset Collection ExeDS contains 534 prob-
lems with code context, NL task description, ref-
erence code and target execution output, which is
built upon JuiCe (Agashe et al., 2019) with 659K
publicly available Python Jupyter notebooks from
GitHub. We create ExeDS in the following steps.

Step1: Crawling Data Context and Execu-
tion. Programming problems in DS often deal with
data, which are often stored in files (e.g., .csv)
and loaded by code. Executing notebooks needs
such data dependencies, which are not provided
in JuiCe. Thus, we first crawl dependent data for
notebooks from their GitHub repositories. Note-
books with inaccessible data or using libraries not
present in Python standard library and default DS
environment are removed. With data dependency,
we execute notebooks with a time limit of 1000 sec-

29

http://github.com/


Function Type % Examples

Data statistic 40 Avg., var., p-value, ...
Explore data value 19 Min/max value, ...
Explore data property 10 Dtype, shape, ...
Machine learning 16 Loss, train, predict, ...
Simple math 6 Arithmetic, ...
Data changing 5 Sort, sample, ...
Data displaying 4 Head/tail columns, ...

Table 2: Function types of target code in ExeDS.

onds per cell. After execution, code cells have three
types of outputs: (1) displaying data with a figure;
(2) execute result with a textual execution output;
and (3) stream output with a printed textual output
through streams. Since it’s hard to compute figure
similarities, in this paper, we only evaluate execu-
tion correctness on textual outputs and construct
ExeDS with execute result and stream output.

Step 2: Dataset Filtering and Intent Curation.
As some cells are overly complex for code genera-
tion, for simplicity, we remove examples with more
than 5 lines or using customized methods in tar-
get code cells. To keep diversity, we downsample
cells with frequent outputs, e.g. df.summary(),
df.info(), df.shape, etc. To ensure sufficient
context is provided, we remove the target code
whose variables are absent in the previous 5 cells.

Since some cells lack sufficient descriptions for
the problems, for clarity, we recruit two university
students with Python and notebook experience to
manually write NL descriptions for each example.
After viewing the context, target code and output,
they are asked to write descriptions containing in-
formation in two aspects: (1) the functions of target
code; (2) the instructions to print outputs. We dis-
card examples that annotators feel hard to describe.

Finally, we obtain 534 problems from 278 note-
books for ExeDS, each with code context, NL de-
scription, target code, and desired execution output.

Dataset Statistics Table 2 shows the function
types in ExeDS. We found the majority of target
codes are computing statistics (40%), exploring
data value (19%) or property (10%), and for ma-
chine learning (16%), which are popular DS tasks.

Table 4 presents the types of execution output in
all 534 problems. We find the majority of execution
output are numbers, which is not surprising consid-
ering the fraction of data statistics and exploring
data value in code functions. Also comparing num-
bers is less complicated than comparing other types
of data like strings or data frames, which helps eas-

ier evaluation of execution outputs.

Library # problems

pandas 534
numpy 473
matplotlib 431
sklearn 287
seaborn 211
scipy 135
statsmodels 57
math 46
datetime 42
re 39

Table 3: Frequency of most common 10 libraries used
in 534 examples of ExeDS.

Table 3 displays the most common libraries used
in ExeDS. We find the majority of them use data
science libraries and all of them use pandas, which
indicates our focus on data science code generation.

Evaluation Metrics In ExeDS, we measure the
execution correctness by comparing the reference
outputs with outputs from generated code, which is
called output exact match (OutputEM). However,
as a variety of examples produce outputs in num-
bers, we convert all numbers in string type to the
float type with two decimal spaces to better match
numbers. Similarly, we remove the explanation
string when printing outputs for better comparison.

4 Evaluating Code Generation on ExeDS

Based on ExeDS, we evaluate the models’ perfor-
mance on data science code generation and com-
pare both surface-form code and execution output.

DS Code Generation We investigate the task of
target code cell generation in notebooks with con-
text. Figure 1 presents an example of the task. For
each target code cell, we prepare a source-target
example, conditioned on prior multimodal context
and natural language intent. The context includes:
(1) the closest three cells prior to the target cell,
regardless of code or markdown; (2) a code state-

Output Type % Examples

Single number 55 0.841076906802073; 68
List/tuple/array 34 (256, 10); [’UserID’, ’Gender’]

Dataframe 11
Weight 26.25
Speed 36.70 dtype: float64

Table 4: Types of ground truth outputs in ExeDS.
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BLEU CodeBLEU EM OutputEM

GPT-style framework
GPT-neo-125M 3.4 17.2 0.0 1.5
GPT-neo-1.3B 9.2 26.2 0.0 10.7
GPT-neo-2.7B 9.1 28.8 0.4 13.3
CodeGPT 26.4 28.6 1.5 12.7
CodeGPT-adapted 25.1 26.8 3.3 13.1
Codex* 3.9 23.5 0.0 27.7

encoder-decoder framework
PyMT5 25.7 35.8 2.8 19.7
JuPyT5 35.3 41.1 6.2 31.6

Table 5: Evaluation results of surface form metrics and
execution metric. * denotes a zero-shot setting.

ment to define the columns names of data in the
format of df.columns=[’a’, ’b’].

Baseline Models We test five code generation
models: (1) PyMT5 (Clement et al., 2020) is an
encode-decoder transformer (Vaswani et al., 2017)
pretrained on Python corpus. (2) JuPyT5 (Chandel
et al., 2022) is an encoder-decoder transformer pre-
trained on Jupyter notebooks with the code-infilling
objective. (3) CodeGPT and CodeGPT-adapted (Lu
et al., 2021) are two GPT-style models (Solaiman
et al., 2019) pretrained on CodeSearchNet Python
functions (Husain et al., 2019), where the former
is trained from scratch and the latter is trained
from GPT-2 checkpoint. (4) GPT-neo (Black et al.,
2021) is a GPT-style model pretrained on The Pile
(Gao et al., 2021), a dataset with a variety of text
sources including 8% GitHub code. We evaluate
three GPT-neo models with different parameters,
including 125M, 1.3B, and 2.7B. (5) Codex (Chen
et al., 2021a) is the state-of-the-art model trained
on 159G GitHub Python files from GPT-3 (Brown
et al., 2020). We test its zero-shot performance due
to the inaccessibility of model weights.

Finetuning For training and validation, we filter
a set of 123K source-target examples from JuiCe
with data dependencies, where the target is any
code cell and the source is the prior multimodal
context as in ExeDS. We randomly select 4K exam-
ples for validation and leave the rest for finetuning.
More details can be found in Appendix A.

Metrics We report results with OutputEM, which
is the proportion of examples with correct output,
and surface-form metrics, i.e. BLEU, CodeBLEU
(Ren et al., 2020), and Exact Match (EM).

Error Category % Exception Examples

Use undefined variable 45 NameError. . .
Use undefined API 16 AttributeError. . .
Use wrong schema 22 KeyError, ValueError, IndexError. . .
Wrong Syntax 8 IndentationError, SyntaxError . . .
Other errors 9 No message, ImportError, . . .

Table 6: Qualitative error analysis on examples that
raise exceptions during execution. Some representative
exception types for each error category are listed.

5 Evaluation Results

In this section, we show and analyze evaluation re-
sults to show the advantages of our ExeDS dataset.

5.1 Main Results
Table 5 shows the results of different baseline mod-
els in surface form metrics and execution correct-
ness. We have the following main observations.

(1) For all models, the surface form EM is close
to zero while the OutputEM is in a normal range.
This suggests that surface form EM often fails to
evaluate code correctness, while the execution met-
ric is better which covers more correct cases and
shows correctness beyond matching code strings.

(2) Surprisingly, zero-shot Codex achieves com-
patible results with finetuned JuPyT5 in OutputEM,
but it performs badly with surface-form metrics.
This finding suggests the strength of Codex to
generate correct code and understand the multi-
modal context. In addition, the difference between
surface-form scores and OutputEM again shows
the superiority of measuring code with execution
correctness.

(3) Encoder-decoder models perform better than
GPT-style models with all metrics, which indicates
their strength in generating code. Also, JuPyT5
achieves the best performance with all metrics. One
possible reason is that JuPyT5 is pretrained on a
large corpus of notebooks, which learns the neces-
sary knowledge from the notebook context.

5.2 Error Analysis
We give two error analyses of execution results to
investigate examples with raised execution excep-
tions and erroneous outputs. The code examples
are produced by our top-performing model JuPyT5.
Detailed examples can be found in Appendix B.

Exception Types Table 6 shows five exception
types from 154 examples. We find for 45% cases,
the model fails to capture data-flow and uses un-
defined variables in context. For 16% cases, the
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Error Category % Examples

Incorrect Code 56 Figure 3 & 4
No Output 8 Figure 5
Partially Correct 12 Figure 6
To Many Output 24 Figure 7 & 8

Table 7: Analysis of 50 examples with wrong outputs.

Print the Shape Of dataframe After removing the Ouliers.

print (dailyDataWithoutOutliers.shape)

dailyDataWithoutOutliers.info()

In [ ]:

Out [ ]:

In [ ]:

Out [ ]: <class 'pandas.core.frame.DataFrame'>

Int64Index: 17135 entries, 0 to 17378

Data columns (total 17 columns):

#   Column             Non-Null Count  Dtype

0   rec_id 17135 non-null  int64 

……

16  total_count 17135 non-null  int64 

(17135, 17)

In [ ]: stats.columns = ["rec_id", "datetime", "total_count", … ]
# Lets Remove Outliers In The Count Column
dailyDataWithoutOutliers =stats[np.abs(stats["total_count"]- \

stats["total_count"].mean()) <= \
(3*stats["total_count"].std())] 

Intent: 

Context: 

Ground truth code : 

Generated code: 

Figure 2: An incorrect example with high surface form
metrics scores but low execution metrics scores. Surface
form metrics are deficient to evaluate code correctness.

model misuses API methods and often leads to
AttributeError , possibly due to version differ-
ences and calling methods without import. 22%
cases misuse the data schema of dataframes, which
indicates the need to improve code generation mod-
els with such multimodal context, especially how
to incorporate the data schema context. Only 8%
cases have syntax problems, suggesting the model’s
strong ability to generate syntax-correct code.

Output Errors Table 7 shows four types of out-
put errors from 50 examples. We find 56% cases
have incorrect code. The challenging NL descrip-
tion and context might be hard for models to un-
derstand and generate correct code. 8% cases com-
plete the correct functions but do not call print()
to output. 12% of cases are partially correct, where
the output mismatch is caused due to some missing
details, for example, the absence of some parame-
ters. Finally, 24% cases produce too many outputs.

6 Case Study

We give an example predicted by JuPyT5 with a
high BLEU score but erroneous outputs in Figure
2, to show the advantages of execution evaluation
for DS code generation. The example is a typical
DS task which intends to explore the shape of a
dataframe. But the model misunderstands the in-
tents and generates code to display all dataframe
information. Although we can find the expected

shapes from the output, i.e., 17135 entries and 17
columns, the output is not exactly correct. How-
ever, as the code is short while the variable name is
long, which leads to a high overlap between predic-
tion and ground truth, the generated code obtains
above average BLEU and CodeBLEU scores. This
example reveals the deficiency of surface form met-
rics to evaluate code correctness.

7 Conclusion

In this paper, we propose an evaluation dataset to
support execution correctness evaluation for data
science code generation dubbed ExeDS, which con-
sists of 534 typical data science problems from
Jupyter Notebooks, each with code context, task
description, target code, and desired execution out-
put. By performing experiments with five strong
code generation models on ExeDS, we find mod-
els that achieve high surface-form scores do not
necessarily produce execution correct code, and
execution-based metrics could capture more de-
tailed code generation errors. We expect our efforts
to attract more attention to code execution correct-
ness and generating executable code.

Limitations

Firstly, only the test set examples have high quality
of human annotation and verification. Thus the
training set might be too noising to train a robust
code generation model. Secondly, the execution
metric is insufficient to show other information like
semantic relatedness, variable naming, and API
usages, which are also important in evaluating a
good code. Thirdly, our datasets and metrics fo-
cus on Python code in data science domain. It’s
unclear whether is applicable to general software
code. Fourth, our execution-based automatic eval-
uation is more time-consuming to compute and
evaluate than other surface-form metrics like EM,
BLEU. At last, evaluating generated code is far dif-
ferent from evaluating natural languages. The final
goal of code generation is to generate execution
and functional correct code. Though with many
limitation, our work could be a pilot study which
provides insights and possible solutions on how to
better evaluate code generation models.
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A Finetuning Details

We finetune all the baseline models, except Codex,
on our cleaned training set and select the best check-
point with the perplexity score on dev set for test-
ing. All models are trained on 16 Tesla V100 32GB
GPUs. The hyper parameter are presented in Table
8.

At inference time, we use beam search decoding
with a beam size of 5.

B More Examples

In this section, we present 6 examples to show the
typical types of errors with erroneous outputs in
Figure 3 - Figure 8. We also give an example with a
typical type of errors causing exceptions in Figure
9.

Compute and print the rooted mean squared error of test data

features_rmse = rmse(y_pred, y_test)
print(features_rmse)

mse=((y_test-y_pred)**2).mean()
print(mse)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

249311.90032627754

In [ ]: train_data.columns = ["price", "bedrooms", "bathrooms", …]
# 3 - Building a regression model with several more features
x_train = train_data[features].values.reshape(-1,len(features))
y_train = train_data['price'].values.reshape(-1, 1)
mult_model = linear_model.LinearRegression()
mult_model.fit(x_train, y_train)
x_test = test_data[features].values.reshape(-1, len(features))
y_test = test_data['price'].values.reshape(-1, 1)
y_pred = mult_model.predict(x_test)

Intent: 

Context: 

Ground truth code : 

Generated code: 

62156423644.29977

Figure 3: An example with incorrect code. The NL
intent is too challenging and the generated code misses
the key information to compute the (rooted) error. More
powerful models to understand NL intent are required.

Print a list of states whose Verbal scores above the 
mean Verbal score:

data_mask = data_pd.Verbal > data_pd.Verbal.mean()
list_states = data_pd[data_mask]['State']
print(list(list_states))

mean=plt.plot([data_pd.Verbal.mean(),data_pd.Verbal.mean()],
[0,5],linewidth=2)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

['CO', 'OH', 'MT', 'ID', 'TN', 'NM', 'IL', 'KY', 'LA']

In [ ]: data_pd.columns = ["Verbal", "State", "Rate", "age", … ]
# How many states are above the mean? What does this tell you about the 
distribution of Verbal scores? 
sns.set(rc={"figure.figsize": (8, 8)})
ax_v = sns.distplot(data_pd.Verbal,kde=False,bins=20,color='y')
ax_v.set(ylabel='Counts’, title='Distribution of Verbal')
mean = plt.plot([data_pd.Verbal.mean(), data_pd.Verbal.mean()], 

[0, 5], linewidth=2)

Intent: 

Context: 

Ground truth code : 

Generated code: 

Figure 4: An example with incorrect code. The model
fails to perform contextual reasoning over such multi-
modal context.

Create a list lcols of the columns in the dataframe dftouse. This 
list should not contain the response RESP so we should remove 

the RESP item. After that how many features do we have?

lcols = list(dftouse.columns)
lcols.remove(u'RESP')
print (len(lcols))

lcols=list(dftouse.columns)
lcols.remove('RESP')

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

68

In [ ]: dftouse.columns =  ["RESP", "AXSPEND", "MAILED", …]
# 1.2 Standardize the data
from sklearn import preprocessing
std = preprocessing.StandardScaler().fit(dftouse[mask==True])
df_std = std.transform(dftouse[mask==True])
dftouse.set_value(mask==True, 0, df_std)
std2 = preprocessing.StandardScaler().fit(dftouse[mask==False])
df_std2 = std2.transform(dftouse[mask==False][0])
dftouse.set_value(mask==False, 0, df_std2)

Intent: 

Context: 

Ground truth code : 

Generated code: 

Figure 5: An example with a no output error. the gener-
ated code satisfies the intent to create a list and remove
the item. But it fails to produce the output, i.e., the
length of the feature list.

Compute the Mean Cross Validation Score of Kernalized SVC 
Classifier using x_train and z_train

print(cross_val_score(SVC(kernel='poly',degree=3,C=0.5,
gamma=0.05), x_train, z_train, cv = 10).mean())

svcscores=cross_val_score(svc,x_train,z_train,cv=5)
svcscores.mean()

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

0.778698752228164

In [ ]: data.columns =  []
from sklearn import preprocessing
print("Mean Cross Validation Score of Kernalized SVC:", '%.4f’ 

%cross_val_score(SVC(kernel='poly',degree=2,C=1,gamma=0.05), 
x_train, y_train, cv = 10).mean())

svcpa = SVC(kernel='poly’, degree=3, C=0.5, gamma=0.05)
svc = svcpa.fit(x_trainscaled,z_train)
print("The best Train score is :", svc.score(x_trains,z_train))
print("The best Test Score is :", svc.score(x_test, z_test))
svcp = svc.predict(x_test)

Intent: 

Context: 

Ground truth code : 

Generated code: 

0.7729148375768217

Figure 6: An example with a partially correct error.
The code is actually correct but the parameter for cv is
different, resulting in the difference between the ground
truth and execution outputs.

Sorting the counts in decreasing order (Word with highest frequency 

appears first). Print the first 10 items in the sorted list.

vocab = sorted(counts, key=counts.get,reverse=True)
print(vocab[:10])

vocab=sorted(counts.items(), key=lambda x:x[1], reverse=True)
vocab[:10]

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

['to', 'you', 'I', 'a', 'the', 'and', 'in', 'is', 'i', 'u']

In [ ]: df.columns = ["label", "text", "v1", "v2", … ]
# Converting words to vectors
## Counting how many times a word appears in the dataset
from collections import Counter
counts = Counter()
for i in range(len(text)):

for word in text.values[i][0].split(" "):
counts[word] += 1

print("Total words in data set: ", len(counts))

Intent: 

Context: 

Ground truth code : 

Generated code: 

[('to', 2134), ('you', 1622), ('I', 1466), ('a', 1327), 

('the', 1197), ('and', 857), ('in', 798), ('is', 781), 

('i', 742), ('u', 692)]

Figure 7: An example with too many output. The correct
output actually exists in the execution output, but the
excessive output causes the inexact match and decline
in ExeF1.
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Hyperparameter CodeGPT CodeGPT-adapted GPT-neo 125M GPT-neo 1.3B GPT-neo 2.7B PyMT5 JuPyT5
# vocab size 50001 50260 50257 50257 50257 50337 50340
# parameters 124M 124M 125M 1.3B 2.7B 374M 374M
# hidden size 768 768 768 2048 2560 1472 1472
# layers 12 12 12 16 20 12 12
# heads 12 12 12 24 32 12 12
dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
optimizer AdamW AdamW AdamW AdamW AdamW Adam Adam
learning rate 5e-05 5e-05 5e-05 5e-05 5e-05 1e-4 1e-4
batch size 16 16 3 1 1 1 1
epochs 30 30 10 10 10 10 10
max tokens 512 512 2048 2048 1536 3600 3600

Table 8: Details of the hyperparameters used during fine-tuning for the code generation task in this paper.

Removing horse attribute in the dataframe X. Split the dataset into 
training set and text set with a test_size of 0.2. Then print the 

shapes of X training data and test data. 

del X['horse']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
print(X_train.shape, X_test.shape)

X=X.drop('horse’, axis=1)
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

(30598, 5) (7650, 5)

In [ ]: X.columns = ["Horse", "Tipster", "Date", "ID", …]
# Random Forest
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
classifier3 = rf.fit(X_train, y_train)
prediction3 = classifier3.predict(X_test)
print("Acc of Random Forest:", classifier3.score(X_test,y_test))
print("Kappa:", cohen_kappa_score(y_test, prediction3))

Intent: 

Context: 

Ground truth code : 

Generated code: 

(30598, 5) (7650, 5) (30598,) (7650,)

Figure 8: Another example with too many output.

Print the slope, intercept, R value, std error of the regression model

print(res.slope, res.intercept, res.rvalue, res.stderr)

print(res.slope)
print(res.intercept)
print(res.rvalue)
print(res.std_error)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

0.927802179 -298.243887005 0.90607748814 0.065315887945

In [ ]: df.columns = ["CO2 ppm", "Global Temp", "Year" ]
# Performing the regression. We will use scipy's built in regression analysis 
here. There are quite a number of options out there, e.g., statsmodels, 
scikit-learn, etc., that you can explore.
res = stats.linregress(df["CO2 ppm"], df["Global Temp"])

Intent: 

Context: 

Ground truth code : 

Generated code: 

AttributeError:'LinregressResult’ has no attribute 'std_error'

Figure 9: An example running with exceptions. The
model misuses the attribute to call the standard errors.
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Abstract

Much research has investigated the possibility
of creating games with a purpose (GWAPs),
i.e., online games whose purpose is gathering
information to address the insufficient amount
of data for training and testing of large language
models (Von Ahn and Dabbish, 2008). Based
on such work, this paper reports on the devel-
opment of a game for frame semantic role
labeling, where players have fun while using
semantic frames as prompts for short story
writing. This game will generate additional
annotation for FrameNet and original content
for annotation, supporting FrameNet’s goal
of characterizing the English language in
terms of Frame Semantics.

1 Introduction

To create large-scale linguistic resources, linguis-
tic database development projects have turned to
crowd-sourcing. Games with a purpose (GWAPs),
games whose purpose is to gather information, are
a common approach to crowd-sourcing. GWAPs
have been used for various tasks in computational
linguistics, from anaphoric co-reference identifi-
cation (Poesio et al., 2013) to word sense disam-
biguation (Lafourcade and Brun, 2017) to ontology
population (Lafourcade et al., 2018). Informed by
both the successes and shortcomings of previous
games, this paper reports on the development of a
game for frame semantic role labeling, ultimately
for the FrameNet project, where players use seman-
tic frames as prompts for short story writing. Upon
completion of their stories, they also must provide
semantic role annotation of their stories.

2 Background

This project focuses on the crowd-sourcing of
frame semantic role labeling in FrameNet. This sec-
tion provides background information about Frame
Semantics (Fillmore, 1985) FrameNet, and crowd-
sourcing to understand designing the game.

2.1 Frame Semantics

Frame Semantics (Fillmore, 1985), holds that each
word or phrase in a text evokes a semantic frame,
or structured background knowledge, that helps
language users understand the text based on their
experience (as a human, of a nationality, culture,
etc). FrameNet calls a word or phrase that evokes
a frame a lexical unit (LU), a pairing of a lemma
and a frame. FrameNet treats each sense of a word
or phrase with multiple meanings as different LUs
based on their meaning in context.

For each LU, FrameNet records information
about its dependents, the words or phrases that sup-
ply additional information about the participants in
the frame, i.e., frame elements (FEs).

Figure 1: Semantic Role Annotation: Self_Motion

Consider the sentence She walked along the road
for a while. in Figure 1. The LU walk evokes
the Self_Motion frame, while the other parts of
the sentence fill roles that give details about self-
motion, including who is moving, how they are
moving, and for how long they are moving.1

2.2 FrameNet

FrameNet (Ruppenhofer et al., 2016) is a research
and resource development project based on the prin-
ciples of Frame Semantics that provides informa-
tion about the mapping between form and mean-
ing for English, and documents its findings with
corpus-based research. The FrameNet database
holds frames, their descriptions, FEs, LUs, lexical
entries with valence descriptions, and annotations
of sentences that illustrate the use of each LU.

1By convention, FrameNet frames appear in teletype
font, frame element names appear in SMALL CAPS; and in
the prose, italicized text are example sentences.
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FrameNet analysts create annotations in a two-
step process. The first step is frame disambigua-
tion. Polysemous words can exist in multiple
frames; determining which frame a word evokes is
critical. For example, the word about exists in the
Topic frame, as in This book is mostly about par-
ticle physics, and the Proportional_quantity
frame, as in It took about three hours.

FrameNet analysts determine which frame a
word evokes, then label the FEs of that frame on the
parts of the sentence (i.e., syntactic constituents)
to which they correspond. Labeling is annotating;
doing so automatically is semantic role labeling
(SRL). The example in Figure 1 requires labeling
she as the SELF_MOVER FE, along the road as the
PATH FE, and for a while as the DURATION FE.

To date, FrameNet lexicographers have anno-
tated example sentences manually, a resource-
intensive activity that necessarily limits the amount
of training data that the project has produced. Gam-
ifying frame semantic SRL is but one effort to in-
corporate automatically produced annotation for
the project. See (Pancholy et al., 2021) for an-
other potential approach to automate annotation in
FrameNet.

2.3 Crowdsourcing

Since large language models require massive
amounts of data, which do not exist for FrameNet,
the project has sought a variety of different ways
to bolster the number of gold-standard annotated
example sentences.

For example, Hong and Baker (2011) used
crowdsourcing for frame disambiguation. On Ama-
zon Mechanical Turk, a platform where Turkers,
crowd-workers, perform small tasks (Human Intel-
ligence Tasks) for a small amount of money. Work-
ers had to choose the frame for a given target word
based on its use in context. After filtering based on
agreement, this method of collecting data yielded
results that were approximately 86%-96% accurate.

While the crowd work approach works well for a
multiple-choice task like frame disambiguation, se-
mantic role labeling is more complex and requires
a different approach, for example, that of GWAPs.
Crowdsourcing efforts using GWAPs began in the
early 2000s and mostly included simple labeling
and image recognition tasks. For example, the
ESP Game attracted over 200K players and created
over 50 million labels four years after its release
(Von Ahn and Dabbish, 2008).

Other GWAPs have completed linguistic anno-
tation tasks: PackPlay, developed for semantic an-
notation, focused on Named Entity Recognition
(Green et al., 2010). Similarly, Phrase Detectives,
another successful GWAP used a reading compre-
hension game to identify anaphoric co-reference
(Poesio et al., 2013). These games were successful
in creating resources of a similar quality to tradi-
tionally generated data. However, many of these
examples and others such as JeuxDesMots (Lafour-
cade et al., 2018), OntoGalaxy (Krause et al., 2010),
and Zombilingo (Fort et al., 2014), focused on tasks
less challenging than frame-semantic role labeling.

QANom (Klein et al., 2020) illustrates crowd-
sourcing for SRL, which gathered data for Nom-
Bank (Meyers et al., 2004) as microworkers an-
swered questions about filling semantic roles via
a question-and-answer format. Similarly, Verb-
Corner (Hartshorne et al., 2013), a game to crowd-
source SRL for VerbNet (Kipper et al., 2000) had
users read sentences with a sci-fi backstory and an-
swer multiple-choice questions about the sentence.
This approach required choosing specific verbs and
crafting stories around them. If applied to SRL for
FrameNet, the question-and-answer format would
limit the ability to crowdsource data for numer-
ous frames because rephrasing FrameNet data into
comprehensible questions for the average player is
terribly time-consuming.

Other fields boast examples of more complex
tasks through gamification, such as Foldit, where
players fold three-dimensional protein chains. This
game generated enough high-quality data that play-
ers received credit as authors on several papers
about the structure of various proteins (Khatib et al.,
2011). Since online micro-working services can
perform mechanical tasks, researchers have called
for the creation of a new generation of GWAPs,
where players complete complex tasks for a mean-
ingful cause (Tuite, 2014).

3 The FrameGame

3.1 Principles
A literature review on designing GWAPs helped to
establish four principles to guide our design.

1. The game’s purpose must be transparent so
players connect to its cause (Krause, 2013).

2. The game must have skilled tasks that high-
light player creativity (Tuite, 2014).

3. The game must be social with an active com-
munity of members (Lafourcade et al., 2018).
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4. If the game has orthogonal game elements,
they must be specifically aligned with a stated
goal (Bonetti and Tonelli, 2021).

3.2 Game Format
Given these core ideas, we created the FrameGame,
where players use semantic frames as writing
prompts. Along with creating annotated data for
FrameNet, the game makes players brainstorm,
think critically, and receive feedback on stories
inspired by the frames that serve as prompts.

The game begins with a start screen. Play-
ers log in using the Facebook Gaming API, as
FrameNet collects annotations through Facebook’s
unique player identifier. Once logged in, players
can choose to read information about the game
and FrameNet. Upon agreeing, players must agree
to the terms and conditions, which state that they
retain the rights to their creative work and allow
FrameNet to use their text and annotation.

Next, players can navigate away from this page
or read more about the FrameNet project. Also,
the description of the project includes links to
FrameNet’s website,2 as shown in Figure 2. The
start screen is key for transparency about the pur-
pose of the game and gives players the opportunity
to engage with FrameNet further.

Figure 2: FrameNet Information Screen

If players choose to click on the coffee cup icon
in the cafe in the left corner, they see the story cre-
ation screen, which makes up most of the game-
play. Likely players are already familiar with the
concept of practicing their writing via social plat-
forms that provided prompts for writing, e.g. Red-
dit’s Writing Prompts. The FrameGame uses a
single textbox where users enter one or more sen-
tences to create a story, based on the LUs of the
frame under consideration.

While writing, players view a list of frames using
LUs from those frames (Figure 3). Also, they read

2https://framenet.icsi.berkeley.edu/fndrupal/

further information about each frame by clicking on
the Info tab; doing so displays annotated example
sentences, lists of LUs that evoke the frame, and
definitions of both the frame itself and FEs.

Figure 3: Writing Screen

These annotated example sentences, LUs. etc.,
exemplify how annotation for a given frame actu-
ally works. Similarly, players can take advantage of
the opportunity to study and internalize the frame
definition, including its FEs and their definitions.

After successfully completing their stories, play-
ers press a button to lock the text and begin the
annotation part of the gameplay (Figure 4). Players
must highlight the frame-evoking LU and the FEs
of the given frame.

Figure 4: Annotation Screen

To ensure consistent annotation, the game places
some restrictions on players during the annotation
process: players must select a lexical unit from the
list via the Info tab (available for reference during
annotation), and they must label the FEs in the
phrase or sentence under consideration.

Players can also access a screen for viewing
other players’ work (Figure 5) by clicking on the
computer icon in the café. At present, this screen
shows individual annotated sentences, their author,
the frame, and its FEs.

3.3 Unexpected Findings

The FrameGame has not yet been deployed; the
collection of player stories and sentence annota-
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Figure 5: Viewing Others’ Work Screen

Issue Frame(s)
Incorrect Exemplars Transition_to_a_state
Incorrect FE Labels Arraignment

Expensiveness
Missing all LUs Influencing_potential

Table 1: Problematic Issues and Frames

tion can only begin after the release of the game.
However, even in the development phase, the game
contributed to improving the FrameNet database.
During the testing of gameplay (in the development
phase), the game parsed the XML for a given frame
to JSON format for display. Whenever the code
threw an error, it provided a link to FrameNet’s
frame index, and sent FrameNet an error report.

Parse errors originating from the game become
an issue in the game’s open access Github reposi-
tory3 and later corrected. Such parsing also detects
and facilitates the correction of errors in FrameNet
data. Importantly, the game will parse FrameNet’s
XML when anyone plays the game, i.e., not only
during the development of the game.

The restrictions on gameplay (Section 3.2) also
highlight issues with missing targets or confusing
examples. Table 1 displays these issues and their
respective frames. The subsections that follow here
discuss the errors.

3.3.1 Incorrect Exemplars
FrameNet includes exemplar sentences in the
definitions of FEs in a frame.4 Although the
exemplar sentences in the FE definitions for
Transition_to_a_state included become.v, that
lemma is not listed as such in the frame it-
self. Actually, FrameNet characterizes become.v
in the Becoming frame, which inherits from
Transition_to_a_state. The investigation of
the frame determined the exemplar sentence error,
which the FrameNet team has since corrected.

3https://github.com/eamspoker/FrameGameAssets
4See, for example, the FE definitions for Becoming.

3.3.2 Incorrect FE Labels
In both the Arraignment and Expensiveness
frames, annotations for the example sentences in-
cluded incorrectly placed tags or missing Frame
Element names. As a result, the game could not cor-
rectly parse the examples to display to the player.
FrameNet corrected these FE tags.

3.3.3 Missing all LUs
The Influencing_potential frame had no LUs
listed, leaving no possibility for players to cre-
ate annotated sentences based on the frame.
While FrameNet holds valid non-lexical frames
to maintain the integrity of the frame hierarchy,
Influencing_potential is not one of them; the
frame must have LUs in its XML file.

The unexpected exposure of errors and the need
for corrections to the FrameNet database during the
testing of the game showcase the potential of the
game both to identify and facilitate the correction
of pre-existing errors in the FrameNet database.

4 Conclusion and Future Work

4.1 Game Improvements

We must implement several features before deploy-
ing the game, including the following: (1) adding
an interactive tutorial to ensure that players fully
understand how to write stories and annotate sen-
tences before beginning to play the game, (2) build-
ing a separate database to store player data and
these crowd-sourced annotations, (3) implement-
ing a points system, and (4) creating a system for
verification and correction of annotations. We will
detail these steps in the following paragraphs.

In its current unfinished state, the game only
includes written instructions. We plan to add an in-
teractive tutorial where users annotate an example
sentence and receive feedback on the accuracy of
their annotations.

Before declaring the game available to the gen-
eral public, we also must ensure that the player-
produced data remains separate from FrameNet’s
existing data. Game players do not possess the
same expertise as highly-trained FrameNet annota-
tors; mixing the two types of data before checking
the quality of player-produced annotations is not de-
sirable. We must store player-annotated sentences
and player points to provide an accurate record of
players’ achievements, as well as other data too,
such as average annotation time and quality, de-
scriptions of which appear below.
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We will implement a points system based on
the number of frames for which players provide
annotation. The goal of this points system is to
motivate players to produce more annotations. As
a result, players will receive a small number of
points each time they annotate a sentence. Based
on previous game theoretic approaches to GWAP
design (Ghosh, 2013), this choice might cause play-
ers to create rushed or incorrect annotations simply
to earn points. To prevent this scenario from oc-
curring, players will receive a greater point reward
than their initial reward once their annotation is
deemed correct.5

Finally, numerous GWAPs, such as PackPlay
(Green et al., 2010), Phrase Detectives (Poesio
et al., 2013), and Jeux Des Mots (Lafourcade et al.,
2018), include verification and correction measures
in the game itself, or in the form of another game.
We would filter out user annotations by drawing
from the user data collected in the FrameGame
database. Additionally, we want players to read
each others’ stories and to suggest revisions or cor-
rections for others’ annotations. Combining these
recommendations and the original annotation may
result in a more accurate final annotation.

4.2 User Study

After deploying the game, we will advertise its
availability to several different groups, including
the FrameNet mailing list, and online writing com-
munities, like Reddit’s r/WritingPrompts, and indie
game enthusiasts on websites, such as Itch.io. After
collecting these data, we will use a combination of
agreement based on both the in-game verification
methods (section 4.1) and formal analyses of the
player-generated sentences for FrameNet analysts
to determine the quality of the annotations.

Since the envisioned user study will only occur
after the game has been deployed, we will deter-
mine the methods for filtering annotations and the
strategy for evaluating the quality of annotations as
the start of the study draws near.

We believe that this game has much potential to
contribute to FrameNet. By crowd-sourcing both
the creation of new example sentences and their
annotation, the game will help FrameNet to capture
language as it exists "in the wild" through the lens
of frame semantics.

5We envision involving a highly trained member of the
FrameNet team to make such decisions.
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Abstract

Building a natural language processing (NLP)
model can be challenging for end-users such
as analysts, journalists, investigators, etc., espe-
cially given that they will likely apply existing
tools out of the box. In this article, we take
a closer look at how two complementary ap-
proaches, a state-of-the-art human-in-the-loop
(HITL) tool and a generative language model
(GPT-3) perform out of the box, that is, with-
out fine-tuning. Concretely, we compare these
approaches when end-users with little technical
background are given pattern extraction tasks
from text. We discover that the HITL tool per-
forms with higher precision, while GPT-3 re-
quires some level of engineering in its input
prompts as well as post-processing on its out-
put before it can achieve comparable results.
Future work in this space should look further
into the advantages and disadvantages of the
two approaches, HITL and generative language
model, as well as into ways to optimally com-
bine them.

1 Introduction

Creating custom AI models for natural language
processing (NLP) tasks is not an easy feat: it typ-
ically involves labeling large datasets, selecting
appropriate ML architectures/models, and train-
ing them. To lower the barrier of entry in NLP
model creation, the scientific and industrial commu-
nity has proposed human-in-the-loop (HITL) sys-
tems (Wu et al., 2022; Hanafi et al., 2017; Monarch,
2021). While they differ in the NLP tasks they tar-
get (e.g., classification, extraction, question answer-
ing) and the techniques they employ (e.g., active
learning, custom algorithms), their operation from
the perspective of the end user is similar: The user
labels a few examples, which are then used by the
system to build a first version of the model and
then to ask back the user for additional targeted
feedback. This feedback is in turn used to itera-
tively refine the model and continue the loop by

asking for further feedback. By asking for targeted
feedback at each iteration, the goal is to lower the
effort required to build a model, enabling fast con-
vergence to a performant model while using a small
number of labeled examples.

While such tools are gaining popularity, the NLP
community has also recently proposed several pre-
trained generative language models, such as GPT-3.
The largest versions of such models have shown
incredible few-shot performance on several tasks
(Brown et al., 2020). Thus the question arises:
Given the out-of-the-box performance of such mod-
els, is it possible to feed them with a few examples
and get similar performance to that of more com-
plex HITL systems?

In this paper, we answer this question for the
task of text pattern extraction. In this task, the goal
is to extract text instances that follow a similar pat-
tern. Examples include extracting crime incidents
from crime reports, e.g. 4,556,123 incidents or
5,193,927 incidents , or revenue from financial

press releases, e.g. revenue was $5.5 billion or
revenue of $1.3 million .

To answer the question, we compare Pattern In-
duction (Hanafi et al., 2022), an HITL tool tailored
to pattern extraction tasks, against GPT-3 (Brown
et al., 2020). We evaluate the two approaches based
on how an end-user, who does not necessarily have
a technical background, would use these tools to
accomplish an NLP task, in this case pattern ex-
traction. Unlike NLP experts, end-users typically
use tools out-of-the-box, that is, without writing
code and without fine-tuning parameters or mod-
ifying and re-training the layers of the AI model.
Our preliminary results show that the use of simple
techniques to prompt GPT-3 does not yet lead to the
same performance as that of the tailored HITL tool.
In this work, we describe these results and present
further research directions on the relationship of
models such as GPT-3 to HITL tools.
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The following summarizes the contributions of
this paper:

• A preliminary comparative analysis between
an HITL system and large language model
(GPT-3) in an information extraction (IE) con-
text and a discussion of the pros and cons of
the two approaches.

• A description of different techniques to lever-
age GPT-3 in this setting and evaluation of
their impact on model performance.

• A discussion of interesting future directions
that emanate from this preliminary study.

We start with literature review in Section 2, pro-
vide empirical study in Section 3, discuss each
approach pros and cons in Section 4, and conclude
in Section 5.

2 Related Works

In this work, we focus on few-shot learning sys-
tems (FSL) (Lake et al., 2016; Wang et al., 2020),
which can learn from a handful of examples. This
paradigm appeals to non-technical users given the
small number of required examples to fine-tune a
system, thus removing the need to label and main-
tain large labeled training datasets.

2.1 Human-In-The-Loop (HITL) Systems
HITL systems utilize human-interaction as opposed
to systems that are fully automated, e.g. distant su-
pervision, unsupervised, or semi-supervised meth-
ods (Ratner et al., 2017; Rühling Cachay et al.,
2021). Automated methods leverage external data
sources or seed inputs or rely on patterns or struc-
tures present in the dataset. They prove to be quite
popular due to their ability to cover cases that a
human would otherwise overlook. On the other
hand, HITL systems integrate a human component
in the relevant target task, and in this case an HITL
information extraction would extract relevant texts
with a human more involved in the process com-
pared to a fully automated method (Monarch, 2021;
Wu et al., 2022).

One such HITL tool for IE is Pattern Induc-
tion (Hanafi et al., 2017), and given an IE task, a
user would do the following: (1) Highlights a min-
imum of two examples of text to extract, (2) The
system learns a rule-based model, where each rule
captures all of the examples, (3) The user provides
“Yes” and “No” feedbacks to candidate extractions,

GPT-3’s Completion:

Prompt:
[ISO 9001 is probably the most well 
recognized ISO number in the world.]

ISO numbers:
|ISO 18788|
|ISO 223000|

|ISO 9001|

Figure 1: A naive way of prompting GPT-3 to complete
the text pattern extraction task.

which in turn refines the rules, i.e. saying “No” to
revenue of 2013 would inform Pattern Induction

to filter out rules capturing such extractions, (4)
The user is either satisfied with the set of extrac-
tions or further refines the rule-based model with
additional highlights of positive examples on the
document. Additional examples and feedbacks fur-
ther refines the learned rule-based model. Pattern
Induction showcases an HITL system that provides
the human interactions the IE tasks needs to ensure
accuracy in the underlying learned model.

2.2 Generative Language Models
Unlike HITL models, large language models
(LLMs), e.g. BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020), are pre-trained with
large unlabeled datasets, which enables the LLMs
to understand contextual information in the input
text. While both BERT and GPT are transformer-
based models, enabling their few-shot abilities is
done in different ways; templates with masking are
built to take advantage of BERT while one has to
prompt GPT with text, such that it generates rele-
vant text (Wang et al., 2021). GPT falls under the
category of generative language models, and GPT-
3 has a larger number of parameters (175 billion
parameters in its largest davinci version), making it
one of the most powerful generative language mod-
els compared to its predecessors. Performing IE
with GPT often entails constructing and engineer-
ing well-structured prompts (Schick and Schütze,
2021a). Prompts contain examples of extractions
where a desired extracted text is paired with the
sentence where it occurs.

3 Experiments

Since HITL models help end-users with little to no
technical background perform IE tasks, we want
to understand how they compare against popular
generative language models out of the box.

Since Pattern Induction is an HITL system, its
output depends on the sequence of user actions. To
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GPT-3’s Completion:

Pr
om

pt
Extract ISO numbers

###

[It is for example responsible for three 
certifiable MSS with the numbers: ISO 22301, 
ISO 28000 and ISO 18788.]

ISO numbers: 
|ISO 18788|

###

[We will continue with the three number series 
ISO 22300, ISO 28000 and ISO 34000 and over 
time the user of random numbers will be gone.]

ISO numbers:
|ISO 223000|

###

[ISO 9001 is probably the most well recognized 
ISO number in the world.]

ISO numbers:

|ISO 9001|

Sentence
example pair

Sentence
example pair

Partial

Instruction

Figure 2: Structured Prompts containing an instruction,
sentence example pairs, and a partial of the document to
extract texts from. For some sentence example pairs, not
all of the desired extractions will appear in the example
extractions, e.g. ISO 22301 , ISO 28000 (to mimic
how an end-user might prompt GPT-3).

evaluate the system at scale, we perform user sim-
ulation in lieu of a real user that interacts directly
with the system. As an added benefit, the user
simulation also automates the manual aspects of
evaluating the underlying model, namely recording
the performance of the underlying models.

We recreate the use cases and user simulation
framework described in (Hanafi et al., 2022). The
use cases are shown in Table 1. The 7 pattern ex-
traction use cases are based on 5 collections of
unstructured texts documents covering a variety
of topics, such as food recipes (Recipes), reports
on the financial performance of a particular com-
pany (Financial Press Releases), and crime statis-
tics (FBI Press Releases). Each dataset contains
no more than 10 documents, where each document
varies in length. Each use case has no more than
100 extractions in the groundtruth. We then com-
pare how a generative language model, specifically
GPT-3, performs on the same set of use cases.

The use cases supported in Pattern Induction
can be described as syntactic text patterns. How
well does a generative language model extract text
patterns such as the ones in Pattern Induction?

3.1 User Simulation of an HITL System
Evaluating Pattern Induction for the IE use cases
involves running a user simulation, constructed by
the core user actions it supports: (a) highlighting

examples and (b) providing “Yes” or “No” feed-
backs to candidate extractions generated by Pattern
Induction. Specifically, a user simulation, ri, pro-
vides 2 seed examples, E = {e1, e2}, and provides
answers to all of Pattern Induction’s candidate ex-
tractions, F = {f1, ..., fn}. The user simulation’s
answers to the candidate extractions are determined
by the groundtruth, which is provided as input to
the user simulation framework. We ran the user
simulation 100 times, R = {r1, ..., r100}. In each
run ri, e ∈ E was randomly selected from the
ground truth. At the end of each run, the preci-
sion (P), recall (R), and F1 (F1) score of the model
learned by Pattern Induction was evaluated on the
same set of ground truth. The final P/R/F1 of Pat-
tern Induction for each use case was computed as
the average value of the respective metric over all
100 runs. The resulting performance of Pattern In-
duction for each of the seven use cases in Table 1,
is shown in Figure 3 (see HITL line).

3.2 Prompting GPT-3 for IE with Example
Extractions

We performed a similar set of experiments using
GPT-3, where we prompted GPT-3 using OpenAI’s
completion API, which is recommended for entity
extraction 1.

The prompts were constructed with the same
2 seed examples, E, from the user simulation in
Pattern Induction. While Pattern Induction does
not require any sort of prompting, constructing a
prompt requires some level of engineering in order
for GPT-3 to understand the intent of our extraction
task. GPT-3 is sensitive to the context and the
structure of the prompt’s text (Shin et al., 2020;
Gao et al., 2021; Jiang et al., 2020; Schick and
Schütze, 2021b). Moreover, GPT-3 has a limit of
about 4,000 tokens for its most powerful model,
the davinci. We thus split the documents d in the
dataset D into partials, p ⊂ d, d ∈ D.

We experimented with the following prompt
structures:

• Baseline, Naive Prompts, GPT3E : We ex-
perimented with a rather naive approach to
the prompt’s structure, where the example ex-
tractions E are appended to the document’s
partial p (see Figure 1). This prompt structure
aims to mimic an end-user’s intuition when
using Pattern Induction: directly highlighting

1https://beta.openai.com/docs/api-reference/
completions
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ID Use Cases Dataset Representative Examples

U1 Covid Cases by Country Disease Fatality Reports Spain (239 932) , Malta (620)

U2 Crime Incident Count FBI Press Releases 4,927,535 incidents , 6,572,870 incidents

U3 Crime Percentages by
Type FBI Press Releases

62.9 percent involved crimes against property ,

24.6% were crimes against persons

U4 Cups Multiple Forms Recipes 2 cup , 1/4 cup , 1 1/2 cup

U5 Earnings Time Period
Multiple Forms Financial Press Releases 2014 First-Quarter , fourth-quarter of 2013

U6 ISO Numbers ISO Number Articles ISO 639 , ISO 22300

U7 ISO Numbers Multiple
Forms ISO Number Articles ISO 639 , TC 292 , ISO/IEC 40180 , ISO/TC 28

Table 1: Summary of Text Pattern Extraction Tasks in the Experiments.

or specifying example extractions in the docu-
ment itself.

• Structured Prompts, GPT3C(E): We exper-
imented with a more structured format of
prompting. For each example e, we paired it
with a sentence s ∈ D that e appears in. When
multiple examples, e.g. ei and ej , appear in
the same sentence s, we combined the multi-
ple examples with the same s in the prompt.
Any additional desired extractions in s that are
not in the example set E were not indicated in
the prompt (to mimic how an end-user might
prompt GPT-3). Moreover, to provide GPT-
3 with a better contextual understanding of
the pattern extraction task, we prepended each
prompt with an instruction describing the task,
such as “Extract crime percentages by type”.
We then added the sentence example pairs and
appended the partial p that GPT-3 must ex-
tract text patterns from (see Figure 2). Note
that in baseline prompting, an example e may
not appear in the partial p, but in structured
prompting, each e will appear in its paired
sentence s.

The above methods of prompting GPT-3 may
not be enough to take advantage of the contextual
understanding capabilities of GPT-3. But the focus
of our study is to use methods similar to how an
end-user might prompt GPT-3, assuming the end-
user does not have much technical background.

Given a prompt, GPT-3 returns a string contain-
ing a completion. The completion is usually delim-
ited by the characters it learns from the prompt, e.g.
“|”. To calculate the precision and recall scores of

what GPT-3 extracts, we split the completion text
according to the delimiters.

Given the 100 runs along with each run’s asso-
ciated seed examples E from the user simulation
on Pattern Induction, we constructed a prompt with
each E as described above and fed the prompts
into GPT-3. The results of prompting GPT-3 for
text pattern extraction are shown in Figure 3, along
with the results for HITL. Our preliminary investi-
gation seems to suggest that GPT-3 is not a right
choice. However, we believe that extensive exper-
iments to find more suitable prompts will need to
be conducted.

The results for GPT3E and GPT3C(E) have
lower precision scores compared to Pattern Induc-
tion’s precision scores. We observed that low-
precision runs are due to the fact that GPT-3’s ex-
tracted text is not always a part of the document
dataset. We thus added a post-processing step over
a set of runs, R:

• Post(R): removes outputs that are not part of
the document. So Post(GPT3E) indicates
that the post-processing step is applied to the
set of runs in GPT3E .

3.2.1 Insights: Better-Structured Prompts
Improve Recall

As we move from naive prompting, GPT3E , to
structured prompting, GPT3C(E), the recall scores
improve. Constructing well-structured prompts
poses a limitation when using GPT, whereas Pattern
Induction has no such requirement for an end-user.

The post-processing step improved the precision
scores, but not the recall scores, as the lines in the
chart (see Figure 3b) of the post-processing step’s
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GPT3 𝐸

Post(GPT3 𝐸 )

GPT3C(𝐸 ∪ 𝐹 )

Post(GPT3C(𝐸 ∪ 𝐹))

GPT3C(E)

Post(GPT3C(E))

HITL

(a) Precision

GPT3 𝐸

Post(GPT3 𝐸 )

GPT3C(𝐸 ∪ 𝐹 )

Post(GPT3C(𝐸 ∪ 𝐹))

GPT3C(E)

Post(GPT3C(E))

HITL

(b) Recall

GPT3 𝐸

Post(GPT3 𝐸 )

GPT3C(𝐸 ∪ 𝐹 )

Post(GPT3C(𝐸 ∪ 𝐹))

GPT3C(E)

Post(GPT3C(E))

HITL

(c) F1

Figure 3: Experimental Results: HITL refers to Pattern
Induction’s user simulation results.

recall scores do not deviate much from the lines
of the corresponding recall scores of raw output
extractions.

The recall scores for U1, U3, and U4 (see task de-
scriptions in Table 1) were higher with GPT3C(E)

than in Pattern Induction (HITL). These tasks also
happen to have variations in their extractions. For
instance U1 requires the extraction of a country, U3
requires extraction regarding different crime types,
e.g. “crimes against property”, “crimes against per-
sons”, and U4 requires extractions of measuring
cups of both integer and fractional types. GPT-3
seems to be able to understand that some of the
words refers to countries, crime types, or integer
and fractional quantities, where all the expected
extractions may not necessarily abide to some syn-
tactic pattern. In contrast, for the other tasks U2,
U5, U6, U7 (see Table 1), the extractions follow

Substring of the prompt with FN
###

[Part 1]

ISO numbers:
|###|

###

Figure 4: Substring of a prompt that demonstrates
Part 1 should not be extracted, since Part 1 was re-

jected by the user simulation in Pattern Induction..

strict pattern extractions, e.g. in U2, the literal “in-
cidents” constantly appears at the end of a 6 digit
integer for all expected extractions, and in U5, the
literal “quarter” and a 4 digit year appears in all
extractions.

3.3 Prompting GPT-3 for IE with Additional
Example Extractions

One may argue that the above method for prompt-
ing GPT-3 did not include the same set of inputs we
provided to Pattern Induction. Namely, in Pattern
Induction, the evaluation method also allows the
user to provide feedback to candidate extractions,
F , to further refine Pattern Induction’s model, but
no such additional inputs were added to the prompt
for GPT-3. In this round, we reran the experiments
with additional extraction examples:

• Prompts with Additional Extraction Exam-
ples, GPT3C(E∪F ): The structured prompts
include the same set of candidate extractions
F in addition to the set of highlighted seed
examples E from the Pattern Induction user
simulation.

We denote the set of extractions the user
simulation accepted, i.e. answered “Yes” to
fourth-quarter of 2012 , as FY ⊆ F , and the set

of extractions the user simulation rejected, i.e. an-
swered “No” to revenue of 2013 , as FN ⊆ F . We
integrated accepted extractions to the prompt in the
same structured format as the seed examples (see
Figure 2). Integrating rejected extractions to the
prompt was done in a slightly different manner: for
each n ∈ FN , we append an end of sequence token
in between the extraction delimiters (see Figure 4).
While we have explored different ways of adding
rejected extractions to the prompt such as using
empty strings in between extraction delimiters, we
found better performance with the end of sequence
token.
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3.3.1 Insights: Additional Examples in GPT-3
Improve Recall

The results of prompting GPT-3 with additional
extraction examples are shown in Figure 3.

The precision scores are lower for
Post(GPT3C(E∪F )) in comparison to HITL, with
the exception of U6 and U7. The recall scores
for both raw GPT3C(E∪F ) and post-processed
Post(GPT3C(E∪F )) results are on par with HITL
(U1, U2, U3), and they both even beat HITL in U4.
Oddly enough GPT3C(E)’s recall scores are very
similar to GPT3C(E∪F ), except in U3 where the
additional examples counter-intuitively dropped
the recall scores by more than 10 points.

We observed that GPT-3 outputs creative texts
regardless of whether there are additional examples
or not ( GPT3C(E) and GPT3C(E∪F )). Creative
text outputs include “The race was unknown for
15.3 percent of reported known offenders.” when
given the U3 task. In addition to creative out-
puts, GPT-3, prompted with and without additional
examples, also generates texts that are somewhat
similar to the context in the examples but not ex-
actly found in the text. In the U3 task, incorrect
generated outputs would often contain percentage
phrases that refer to statistics of other topics aside
from crimes such as gender or race, e.g. “0.6 per-
cent were American Indian or Alaska Native”.

While the current set of experiments are only
seeded with 2 examples, future experiments should
look into the impact of increasing seed examples.

4 Discussion

Our experiments show that the HITL method for
IE results in higher precision while in the large
generative model, given a structured prompting and
post-processing step, GPT-3 gives higher recall.
GPT-3 is able to contextualize the prompts and
learns a more general model.

Yet, the downside of GPT-3 for IE is that in
of itself does not perform the IE tasks. To get
comparable results to the HITL model, we had to
(1) engineer and design the structure of the prompts
to leverage GPT-3’s powerful language abilities and
(2) post-process the string output from GPT-3.

Additionally, the HITL model (1) elicits targeted
user feedback and (2) allows for an iterative ap-
proach to building the underlying rule-based model.
These two aspects are not found in GPT-3.

In light of these results, how do we then com-
bine the advantages of each approach, human-in-

the-loop and traditional AI models? How do we
leverage the human-machine interactions to help
increase both metrics? We leave these questions
for future work.

5 Conclusions & Future Work

In this short work, we evaluate information ex-
traction tasks on a human-in-the-loop, rule-based
approach against a state-of-the-art generative lan-
guage model, GPT-3. Our results show that the
rule-based model outperforms GPT-3, when used
out-of-the-box similar to how an end-user might
use it to perform an NLP task. There are potentially
better ways of constructing the prompts for GPT-3,
but we wanted to better understand the performance
of both the rule-based models and generative lan-
guage model out-of-the-box.

Future work in this area should look into en-
abling end-users with little to no technical exper-
tise to accurately and quickly build NLP models.
For instance, one possibility is to go beyond user
simulations and study how actual end-users create
prompts. Another possibility is to leverage previ-
ous works in automatically generating prompts and
then designing ways to elicit user input to craft bet-
ter prompts (Shin et al., 2020; Jiang et al., 2020).
An important future direction is to identify disad-
vantages and advantages of each approach, tradi-
tional large language models and rule-based mod-
els, and look into how combining such approaches
would better enable end-users in NLP.
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ID Tool Avg
Precision

Avg
Recall

Avg
F1

U1

GPT3E 15.3 61.1 23.5
Post(GPT3E) 95.4 61.3 70.7

GPT3C(E) 6.7 99.2 12.5
Post(GPT3C(E)) 69.1 99.2 81.2

GPT3C(E∪F ) 6.3 93.8 11.9
Post(GPT3C(E∪F )) 51.4 93.8 64.8

HITL 100.0 93.4 96.5

U2

GPT3E 7.6 28.6 11.7
Post(GPT3E) 10.7 28.6 15.3

GPT3C(E) 32.6 91.7 47.9
Post(GPT3C(E)) 39.8 91.7 55.2

GPT3C(E∪F ) 51.2 95.1 66.4
Post(GPT3C(E∪F )) 52.0 95.1 67.1

HITL 100.0 100.0 100.0

U3

GPT3E 6.7 6.1 5.2
Post(GPT3E) 28.0 6.1 8.1

GPT3C(E) 41.5 90.7 55.9
Post(GPT3C(E)) 53.5 90.7 66.1

GPT3C(E∪F ) 57.4 75.9 59.8
Post(GPT3C(E∪F )) 66.1 75.9 66.2

HITL 100.0 77.3 83.0

U4

GPT3E 8.6 63.0 14.9
Post(GPT3E) 33.7 62.9 42.7

GPT3C(E) 38.8 93.5 54.5
Post(GPT3C(E)) 40.1 93.5 55.7

GPT3C(E∪F ) 39.8 90.4 54.6
Post(GPT3C(E∪F )) 40.1 90.4 54.9

HITL 73.4 64.2 63.4

U5

GPT3E 2.4 10.8 3.9
Post(GPT3E) 23.5 10.9 12.4

GPT3C(E) 15.0 48.4 22.6
Post(GPT3C(E)) 21.2 49.6 29.4

GPT3C(E∪F ) 20.9 57.6 28.2
Post(GPT3C(E∪F )) 30.6 58.9 38.8

HITL 99.2 69.1 79.7

U6

GPT3E 4.2 29.8 7.1
Post(GPT3E) 79.1 29.8 41.6

GPT3C(E) 78.5 75.1 75.2
Post(GPT3C(E)) 82.9 75.1 77.6

GPT3C(E∪F ) 88.7 71.1 77.9
Post(GPT3C(E∪F )) 89.6 71.1 78.3

HITL 100.0 99.5 99.7

U7

GPT3E 4.6 20.4 7.2
Post(GPT3E) 89.1 20.4 31.9

GPT3C(E) 66.6 48.0 54.5
Post(GPT3C(E)) 70.0 48.0 55.7

GPT3C(E∪F ) 77.8 42.5 53.5
Post(GPT3C(E∪F )) 81.2 42.5 54.5

HITL 99.1 67.0 76.9

Table 2: Experimental Results: ID refers to the use case
ID. HITL refers to Pattern Induction’s user simulation
results.
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Abstract

Data augmentation techniques are widely used
for enhancing the performance of machine
learning models by tackling class imbalance
issues and data sparsity. State-of-the-art gen-
erative language models have been shown to
provide significant gains across different NLP
tasks. However, their applicability to data aug-
mentation for text classification tasks in few-
shot settings have not been fully explored, es-
pecially for specialised domains. In this pa-
per, we leverage GPT-2 (Radford et al., 2019)
for generating artificial training instances in or-
der to improve classification performance. Our
aim is to analyse the impact the selection pro-
cess of seed training examples has over the
quality of GPT-generated samples and conse-
quently the classifier performance. We pro-
pose a human-in-the-loop approach for select-
ing seed samples. Further, we compare the ap-
proach to other seed selection strategies that
exploit the characteristics of specialised do-
mains such as human-created class hierarchi-
cal structure and the presence of noun phrases.
Our results show that fine-tuning GPT-2 in
a handful of label instances leads to consis-
tent classification improvements and outper-
form competitive baselines. The seed selec-
tion strategies developed in this work lead to
significant improvements over random seed
selection for specialised domains. We show
that guiding text generation through domain
expert selection can lead to further improve-
ments, which opens up interesting research av-
enues for combining generative models and ac-
tive learning.

1 Introduction

Data sparsity and class imbalance are common
problems in text classification tasks (Türker et al.,
2019; Zhang and Wu, 2015; Shams, 2014; Kumar
et al., 2020), especially when the text to be labelled
is from a highly-specialised domain where only
scarce domain experts can perform the labelling

task (Türker et al., 2019; Ali, 2019; Lu et al., 2021).
Data Augmentation (DA) is a widely used method
for tackling such issues (Anaby-Tavor et al., 2020;
Kumar et al., 2020; Papanikolaou and Pierleoni,
2019). However, the well-established DA methods
in domains such as computer vision and speech
recognition (Anaby-Tavor et al., 2020; Giridhara
et al., 2019; Krizhevsky et al., 2017; Cui et al.,
2015; Ko et al., 2015; Szegedy et al., 2015), rely-
ing on simple transformations of existing samples,
cannot be easily transferred to textual data as they
can lead to syntactic and semantic distortions to
text (Giridhara et al., 2019; Anaby-Tavor et al.,
2020).

Recent advances in text generation models, such
as GPT and subsequent releases (Radford et al.,
2018), have led to the development of new DA ap-
proaches which generate additional training data
from original samples, rather than perform only
local changes to the text. Related studies use
text generation models for improving relation ex-
traction (Papanikolaou and Pierleoni, 2019; Ku-
mar et al., 2020), tackle class imbalance prob-
lems for extreme multi-label classification tasks
(Zhang et al., 2020), and augment domain-specific
datasets in order to improve performance in various
domain-specific classification tasks (Amin-Nejad
et al., 2020). Specifically, Kumar et al. (2020) and
Anaby-Tavor et al. (2020) explore different fine-
tuning approaches for pre-trained models for data
augmentation in order to preserve class-label infor-
mation. Results showed the potential of generative
models such as GPT-2 (Radford et al., 2019) and
BART (Lewis et al., 2019) to augment small col-
lections of labelled data. Further, an important
problem with text generation techniques is the pos-
sibility of generating noise which decreases the
performance of classification models rather than
improving it (Yang et al., 2020). However, this
problem is ignored in the aforementioned studies.

The most similar study to ours is that of Yang
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et al. (2020) in the context of commonsense reason-
ing. They proposed an approach based on the use
of influence functions and heuristics for selecting
the most diverse and informative artificial samples
from an already-generated artificial dataset. In-
stead, we focus on the previous step of selecting
the most informative samples (or seeds) from the
original data. We show that a careful selection of
class representative samples from the original data
in the first place can already lead to improvements
and has an important efficiency advantage, as it
prevents an unnecessary waste of resources and
time of generating unused generated documents,
especially considering how resource expensive gen-
erative language models are (Strubell et al., 2019;
Schwartz et al., 2019). Finally, there is no research
on exploiting the use of experts knowledge for im-
proving the performance of generative language
models for specialised domains.

Therefore, our aim is to improve the quality of
generated artificial instances used for text classifica-
tion training by developing seed selection strategies
to guide the generation process. Specifically, we
propose three DA methods in order to improve few-
shot text classification performance using GPT-2 —
1) a human-in-the-loop method that involves a do-
main expert choosing class representative samples;
2) a method that leverages the expert-generated
classification hierarchy of a dataset in order to im-
prove the classification of the top hierarchy classes;
3) a method that selects the seeds with the maxi-
mum occurrence of nouns. We chose these seed
selection strategies because they exploit character-
istics associated with specialised domains such as
high number of terms, annotation performed by ex-
perts, and hierarchical class structure (common for
social science and medical domains which require
thematic analysis).

Our contributions are summarised as follows.

• We advocate an important but not-well-
studied problem of exploring how the qual-
ity of generated data and consequently few-
shot classification can be improved using text
generation-based DA strategies. We perform
analysis for more specialised domain requir-
ing domain experts for annotation.

• We propose novel seed selection strategies
and analyse their impact on the performance
of text generation-based data augmentation
methods for few-shot text classification —

We show that classification performance can
be improved significantly for specialised do-
mains with limited labelled data using seed se-
lection strategies and label preservation tech-
niques. The human-in-the-loop seed selection
proved to be the most suitable method for im-
proving the quality of the generated data for
specialised domains.

• We analyse how different approaches of fine-
tuning GPT-2 model affect the quality of gen-
erated data and consequently the classification
performance.

2 Methodology

We experiment with two fine-tuning techniques for
GPT in order to identify optimal ways for adapting
GPT-2 model for DA for classification. Further, our
analysis focus on few-shot classification because of
the demand for approaches which can perform well
for only a handful of training instances especially in
specialised domains where experts are sparse and
data access is limited. However, our methodology
can be easily extended for classification problems
with more labelled data and it can also be used to
generate more artificial training data.

2.1 Seed Selection Strategies

We implement four seed selection strategies, which
we describe below.

Human-in-the-loop Seed Selection. The highly
specialised nature of some domains where the man-
ual annotation of documents is performed by ex-
perts show that identifying class representative sam-
ples might require more implicit knowledge that
is hard to be captured by statistical approaches.
Therefore, we conducted a study asking experts
to select the class representative samples from the
original training data. The chosen seeds are then
used to generate additional training data. We ex-
plain the approach in Section 3.5.

Maximum Nouns-guided Seed Selection.
Many specialised domains are rich of domain-
specific terminology and thus we believe that
noun-rich instances might be more indicative for
the classes compared to the other training samples.
Therefore, we use this strategy to select the seeds
with the maximum occurrence of nouns. We
identify single word nouns and compound nouns
within data using NLTK (Bird and Loper, 2004).
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Subclass-guided Seed Selection. In this strat-
egy, we leverage the human-generated classifica-
tion hierarchy of a dataset in order to improve the
classification of the top classes. Specifically, we se-
lect a roughly balanced number of seeds from each
subclass belonging to a given label. In this way,
we diversify the vocabulary for each overall class
by ensuring the equal participation of representa-
tive samples from even the most underrepresented
subclasses.

Random Seed Selection. For this strategy we
simply select a fixed number of instances in a ran-
dom manner. We use random selection to evaluate
whether the rest of the seed selection strategies lead
to improvements in classification.

2.2 Text Generation

We generate artificial data using the generative pre-
trained model, GPT-2 (Radford et al., 2019). We
use GPT-2 model as it gives a state-of-the-art per-
formance for many text generation tasks and also
have been designed with the objective to fit scenar-
ios with few-shot and even zero-shot settings. We
use two methods for fine-tuning the GPT-2 model
— we fine-tune the model on the entire dataset and
we also fine-tune a specific GPT-2 model for each
given class to ensure label-preservation for the gen-
erated sequences. Fine-tuning a separate GPT-2
model per label ensures that each model has been
exposed to text associated with a single class. We
also perform experiments using a pre-trained GPT-
2 model. We compare three models in order to
assess the need of fine-tuning and the use of addi-
tional methods for label-preservation when using
TG-based DA for classification tasks. These mod-
els are then leveraged to generate new documents
given a labeled instance. These analyses help iden-
tify whether fine-tuning a separate model per label
is a suitable method for ensuring label-preservation
of the generated data.

Ensuring Robustness To ensure robustness, the
text generation step is performed for three iterations
and the results are averaged. Additionally, we per-
form statistical analysis to check overall whether
text generation-based methods are suitable for im-
proving the performance of classifiers or they tend
to add more noise versus using no augmentation
approaches.

Figure 1: Overview of the methodology

2.3 Text Classification

In this final step, we use the augmented training
data to train a fastText classifier (Joulin et al., 2017)
coupled with domain-trained fastText word embed-
dings. The reason to use a simple model such as
fastText is its efficiency and that transformer-based
models tend to not perform well with limited data
in document classification and in general tasks that
do not require a fine granularity (Joshi et al., 2020).
Indeed, fastText has been shown to perform equally
or better with limited labeled data in document clas-
sification, compared to more sophisticated models
such as BERT (Edwards et al., 2020).

3 Experimental Setting

In the following we describe our few-shot text clas-
sification experimental setting.1

3.1 Safeguarding Domain

For our experiments, we selected the Safeguarding
reports dataset (Edwards et al., 2021). The pur-
pose of the safeguarding reports is to identify and
describe related events that precede a serious safe-
guarding incident and to reflect on agencies’ roles.
As a special trait of this dataset, the reports contain
domain-specific terminology which makes them
hard to analyse with existing text analysis tools
(Edwards et al., 2019). Further, safeguarding is a
multi-disciplinary domain involving terminology
and issues from various other disciplines such as
criminology, healthcare, and law. Thus, approaches
conducted for the safeguarding documents should
be applicable for wider range of domains. Addi-
tionally, we perform comparison for two additional
datasets which do not require domain expert for an-
notation. These are: 20 Newsgroups (Lang, 1995)
and Toxic comments (Hosseini et al., 2017) (more
information is given in the Appendix). However,
we conducted the human-in-the-loop, i.e., expert-
guided seed selection strategy only for the safe-
guarding domain where the class framework is cre-
ated by subject-matter experts. While the man-
ual annotation of the documents is performed on

1Code and data are available.

53



passage level 2, we include experiments on sen-
tence level in order to evaluate performance of text
generation methods for generating both short and
long sequences. We perform prediction for the top
classes of the dataset. However, as mentioned in
Section 2, we use the sub-classes to select seed
instances. For providing clarity and transparency
into the sample generation process, we convert the
multi-label classification task of the Safeguarding
and Toxic comments dataset to multi-class problem,
removing the few instances that were labeled with
more than one class in the original dataset. Focus-
ing on samples with a single label can further help
generate stronger class representatives and thus can
help both multi-class and multi-label classification.
The main features and statistics for the datasets are
summarized in Table 1.

Dataset Domain Task Class Subclass Avg len # Test
Safeguarding (passages) Social reports Theme detection 5 34 45 284
Safeguarding (sentences) Social reports Theme detection 5 34 18 284
20 Newsgroups Newsgroups 285 6 20 285 6,728
Toxic comments Wikipedia 46 2 5 46 63,978

Table 1: Overview of the datasets used for text classifi-
cation: Average number of tokens per instance (Av len),
number of classes (Class), number of subclasses (Subc)
and number of test instances (Test)

Filtering training data. We focus on few-shot
scenarios where the dataset is balanced. We start
experiments with 5 and 10 instances per label, ex-
tracted randomly from the original data (‘base’ in-
stances), with at least one instance per subclass.
Then, we add 5, 10, and 20 artificially generated in-
stances to the ‘base’ instances (‘add’ instances) in
order to evaluate the effect of methods over differ-
ent sized training data (consisting of both original
and artificially generated samples).

Domain data. In addition to the datasets with a
limited amount of labels, we also leverage domain-
specific corpora (in the form of the original train-
ing sets for each dataset, without making use of
the labels) with two purposes: (1) analyzing the
effect on GPT-2 fine-tuned on more data for gen-
erating new instances, and (2) recreating a usual
scenario in practice, which is having a relatively
large unlabeled corpus but a small number of an-
notations. The corresponding domain corpus were
also used by fastText (Bojanowski et al., 2017) to
learn domain-specific embeddings.

2Passages in the safeguarding reports are a list of a few
sentences which could be viewed as short paragraphs. The
labels for the classification remain unchanged.

3.2 Text Generation

As mentioned in Section 2, we use the GPT-2
language model (Radford et al., 2019) for gen-
erating additional training instances. We fine-
tuned the GPT-2 model using the GPT-2 Hugging
Face default transformers implementation (Wolf
et al., 2019). In addition to the pre-trained general-
domain model, we fine-tune GPT-2 in each training
set as well as per label using causal language model
technique where the model predicts the next token
in a sequence. We fine-tune the model for 4 epochs
and learning rate 5e-5. For generating additional
training sequences we use the sampling method of
Holtzman et al. (2019).

3.3 Classification

As mentioned in Section 2.3, we use fastText3 as
our text classifier (Joulin et al., 2017, FT) where we
use ’softmax’, 2 grams, and domain-trained word
embeddings. In order to learn domain-specific
word embedding models we used the correspond-
ing training sets for each dataset by using fastText’s
skipgram model (Bojanowski et al., 2017). We use
fastText word embeddings rather than other word
embedding models as they tend to deal with OOV
words better than Glove and word2vec approaches.
Also, fastText embeddings are the default using
the fastText classifier. We report results based on
the standard micro- and macro- averaged F1 (Yang,
1999).

3.4 Data Augmentation Baselines

For our baselines, we employ synonym, word em-
bedding and language model based strategies for
word replacement, and back-translation for sen-
tence replacement (see Section A in the Appendix
for more details on DA techniques). As imple-
mentations, we rely on TextAttack (Morris et al.,
2020) for the synonym and word embedding ap-
proaches, and nlpaug (Ma, 2019) for the language
model and back-translation. We follow the default
configurations for both libraries, where WordNet
(Miller, 1998) is used as a thesaurus for synonym
replacement, BERT (Devlin et al., 2019) (bert-
uncased-large) as the language model, and Trans-
former NMT models (Vaswani et al., 2017) trained
over WMT19 English/Germany corpus for back-
translation.

3We provide classification results based on fastText trained
on the entire non-augmented training sets in the appendix.
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3.5 Human-in-the-loop Approach
For the purpose of the experiments, we randomly
selected two samples from the original data, one
consisting of sentences (‘sentence sample’) and
another one consisting of passages (‘passages sam-
ple’). Each sample contained 20 instances per label
or 100 instances in total. The ‘sentence sample’
and the ‘passage sample’ were distributed among
two experts. Participants were asked for each sen-
tence/passage to choose whether it is a good or bad
representative of the class, or to indicate whether
they are unsure. We use only a sample of the origi-
nal data and involve two experts in order to evalu-
ate whether expert-guided seed selection strategy
work in a real case scenario in which the selection
process is time- and cost- consuming for larger
datasets. The experts followed standard procedures
in thematic analysis for completing the task, sim-
ilar to those used for annotating the safeguarding
reports (Robinson et al., 2019). Specifically, par-
ticipants arrived to the final selection of the good
theme representative samples through discussion.
The participants are practitioners in the safeguard-
ing domain working for Welsh Government, per-
forming qualitative analysis for safeguarding doc-
uments. The results from the experiments (see
Table 2) show that experts selected more than 10
instances per theme for both samples as ‘good rep-
resentatives’. To select 10 and 5 seeds from the
‘good representatives’ we use random selection and
max-noun selection strategies. An example of the
process is given in Figure 2.

Theme passages sentences
#good rep #bad rep #good rep #bad rep

Contact with Agencies 12 8 13 7
Indicative Behaviour 12 8 15 5
Indicative Circumstances 11 9 13 7
Mental Health Issues 11 9 14 6
Reflections 11 9 11 9
Total 57 43 66 34

Table 2: Results from expert study where ‘#good rep’
refer to the number of good representative seeds that
the expert selected while ‘#bad rep’ refer to the number
of samples that the expert deemed not good representa-
tives of the themes

4 Results and Analysis

The aims of our analysis is (1) to identify the most
suitable method for fine-tuning GPT-2 model to
ensure generating higher quality training data (see
Section 4.1), and (2) to understand whether and
which seed selection strategies are beneficial for

Figure 2: Example of expert-guided seed selection

improving DA methods, especially for specialised
domains which require domain experts to perform
manual annotation (see Section 4.2). The results
for the three datasets are displayed in Table 3.

Figure 3: Micro-F1 results with 5 and 10 ‘base’ in-
stances per label for the Safeguarding reports dataset.

Figure 4: Macro-F1 results with 5 and 10 ‘base’ in-
stances per label for the Safeguarding reports dataset.

4.1 Can GPT-based Data Augmentation Help
Few-Shot Text Classification?

The results in Table 3 indeed confirm the bene-
fits of GPT-based data augmentation. Comparing
different methods for fine-tuning GPT-2 models
for DA, the classification results show that GPT-2
fine-tuned per label lead to better results, compared
to the pre-trained model or GPT-2 fine-tuned on
the entire dataset. These results also show that us-
ing a fine-tuned GPT-2 model per label does help
label-preservation for the generated instances. Sur-
prisingly, the results for the safeguarding reports at
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DA type Tuning type DA method
Micro-F1 Macro-F1

5base 10base 5base 10base
+5add +10add +10add +20add +5add +10add +10add +20add

blue

20 Newsgroups None - - .509 .578 .481 .567

TG (GPT2)

gen random .539 .536 .572 .555 .519 .519 .564 .548
dom random .526 .502 .548 .539 .511 .485 .534 .526

label
random .609* .602* .627* .637* .591* .587* .615 .627
nouns .569 .549 .599 .576 .552 .533 .583 .562

subclass .563 .585 .624 .632 .549 .571 .620* .628*

WR
- BERT .519 .516 .567 .571 .511 .505 .554 .556
- embeddings .556 .540 .556 .552 .534 .516 .544 .539
- synonyms .517 .508 .554 .549 .502 .493 .542 .537

SR - translation .529 .525 .559 .563 .515 .509 .549 .552
Original data (upperbound) .601 .641 .648 .654 .589 .624 .633 .639

Toxic comments

None - - .423 .442 .423 .442

TG (GPT2)

gen random .447 .424 .405 .423 .447 .424 .405 .423
dom random .401 .417 .369 .343 .401 .417 .369 .343

label
random .453* .452* .453 .442 .453* .452* .453 .442
nouns .417 .399 .502* .461* .417 .399 .502* .461*

subclass .427 .440 .419 .421 .427 .440 .419 .421

WR
- BERT .447 .443 .426 .422 .447 .443 .426 .422
- embeddings .441 .441 .432 .432 .441 .441 .432 .432
- synonyms .423 .411 .433 .429 .423 .411 .433 .429

SR - translation .446 - .436 - .446 - .436 -
Original data (upperbound) .442 .435 .448 .463 .442 .435 .448 .463

Safeguard (pass)

None - - .326 .326 .299 .300

TG (GPT2)

gen random .298 .305 .382 .358 .254 .264 .335 .330
dom random .333 .288 .323 .309 .276 .246 .287 .267

label*

random .316 .302 .347 .326 .278 .266 .309 .287
nouns .375 .337 .375 .379 .329 .281 .338 .351

subclass .379 .330 .368 .368 .321 .286 .335 .345
expert-random .404* .386 .393 .407* .358* .349 .342 .352
expert-nouns .389 .435* .410* .407* .335 .382* .351* .366*

WR
- BERT .287 .294 .326 .336 .282 .278 .294 .297
- embeddings .389 .382 .305 .319 .343 .341 .283 .287
- synonyms .277 .267 .312 .315 .256 .245 .285 .292

SR - translation .333 .336 .298 .312 .294 .301 .273 .286
Original data (upperbound) .336 .337 .358 .368 .301 .304 .307 .320

Safeguard (sent)

None - - .242 .316 .193 .282

TG (GPT2)

gen random .294 .326 .291 .298 .212 .235 .252 .251
dom random .298 .326 .291 .302 .214 .236 .252 .250

label

random .295 .326 .291 .302 .213 .235 .251 .252
nouns .358 .368 .361 .389* .285 .302 .327 .358

subclass .330 .351 .372 .329 .281 .301 .338 .290
expert-random .337* .375* .361* .414* .298* .336* .340* .379*
expert-nouns .291 .298 .354 .375 .274 .276 .332 .351

WR
- BERT .249 .284 .319 .315 .245 .274 .278 .274
- embeddings .242 .280 .316 .319 .226 .259 .276 .283
- synonyms .256 .266 .319 .326 .241 .256 .281 .288

SR - translation .287 .294 .336 .329 .257 .263 .296 .291
Original data (upperbound) .368 .452 .432 .453 .332 .386 .386 .389

Table 3: FasText classification results based on Micro-F1 and Macro-F1. Text generation is based on GPT-2,
where ‘gen’ refers to the pre-trained general-domain model, ‘dom’ refers to the same model fine-tuned on domain
data, and ‘label’, fine-tuned per label. Data is split using 5 or 10 ‘base’ instances per label plus additional 5,
10, or 20 ‘add’ instances, ‘sent’ refers to sentences. The baselines we compare our approaches to are: the word-
based replacement (WR) and sentence-based replacement (SR) strategies, ‘Original data (upperbound)’ refers the
training data extracted from the original dataset using the same amount of ‘base’ and ‘additional’ instances as for
the generative models

.* – Best performing DA methods based on GPT-2 fine-tuned per label lead to statistically significant
differences over non-augmented classification (‘None’) based on t-test results where pvalue < 0.05.

the passage level (see Table 3) show that the pre-
trained model outperforms the model fine-tuned on
the entire dataset for all settings except for ‘5+5’.
This is not the case, however, at the sentence-level
where the model fine-tuned on the entire dataset

performs very similarly to the model fine-tuned
per label. In general, the results clearly suggest
that fine-tuning the GPT-2 model on smaller but la-
belled data works better for classification than fine-
tuning it on a larger unlabelled corpus, especially
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in settings with longer input sequences. These find-
ings are also supported by the results for the other
two datasets,20 Newsgroups and Toxic comments.
The main reason for this behaviour can be found
in that the fine-tuned model without using label-
preservation techniques leads to label-distortions
which add noise in the generated dataset. We have
given examples of generated instances in the Ap-
pendix.

Statistical significance tests. We used t-
test (Student, 1908) to measure whether TG-based
DA give a significant improvement over the
non-augmented classifiers. In particular, we
compared the best performing techniques, which
are all based on GPT-2 models fine-tuned per label,
and the base classifier (‘None’ in Table 3). We
use as a threshold α = 0.05. Results showed that
pvalue < α for every setting. This confirms that
fine-tuning GPT-2 model with a small number
of labelled instances leads to consistent (and
statistically significant) improvements for the
safeguarding reports 45

4.2 Seed Selection Strategies Comparison

Results on comparing seed selection strategies for
the specialised domain (i.e., safeguarding reports)
(see Figures 3 and 4) showed that both seed selec-
tion strategies (noun-guided and subclass-guided
selection) lead to larger improvements over ran-
dom selection even for a small number of seed
samples. In contrast, experiments on the toxic com-
ments dataset and the 20 newsgroups (see Table 3)
showed that random selection is sufficient for im-
proving classification performance over baselines,
especially for smaller amount of seeds. This shows
that for domains that are similar to the datasets
used to train GPT-2 (Newsgroups and Wikipedia)
random selection especially for a smaller amount
of seeds is sufficient for improving classification
performance over baselines. In contrast, apply-
ing seed selection techniques to a more specialised
domain, such as the safeguarding reports, can be
highly beneficial for improving classification.

Finally, the human-in-the-loop approach (see
Section 3.5) revealed that seed selection strategy
guided by experts outperform all other seed strate-
gies and baselines for both sentences and passages
(see Table 3, Figures 3 and 4). This highlights the

4These results are also supported by the results for the
other two datasets presented in the Appendix

5We include full results and t-test details in the Appendix.

potential benefits for incorporating expert knowl-
edge into guiding large pre-trained language mod-
els in highly specialised domains. This study shows
that using active learning techniques in combina-
tion with generative models can help increase the
efficiency of data augmentation methods and thus
be beneficial for few-shot learning.

5 Conclusion

In this paper, we presented and evaluated data
augmentation methods using text generation tech-
niques and seed selection strategies for improving
the quality of generated artificial sequences and
subsequently classifier’s performance in few-shot
settings. Our results showed that GPT-2 fine-tuned
per label, even using only handful of instances,
leads to consistent classification improvements,
and is shown to outperform competitive baselines
and the same GPT-2 model fine-tuned on the en-
tire dataset. This highlights the importance of la-
bel preservation techniques in the performance of
TG-based DA methods, especially for generating
longer sequences (such as passages or full doc-
uments). Seed selection strategies proved to be
highly beneficial for the specialised domain anal-
ysed in this paper, especially when experts are in-
volved in the selection of class-indicative instances.
This shows that combining generative models and
active learning techniques, i.e., injecting experts
knowledge, can lead to significant improvements
in data augmentation methods especially for more
specialised domains which require domain experts
for the annotation of documents. In future, we plan
on expanding the experiments for wider range of
specialised domains and compare the performance
of bigger generative models such as GPT-3 (Brown
et al., 2020), Transformer-XL (Dai et al., 2019)
and CTRL (Clive et al., 2021). Further, we want to
investigate what is the optimum amount of artificial
training data which can be generated with the de-
scribed techniques before effecting the classifier’s
performance negatively.
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Limitations

The main limitation of this research is the lack of
further analysis into the performance of text gen-
eration models and seed selection strategies when
generating higher number of additional training
samples. As future work, we plan to investigate the
optimal number of generated instances using GPT-
based generation as well as experiment with other
generative models. Another limitation of the work
is that generating artificial training data using GPT-
2 requires access to large GPU resources which
limits the usability of the approach in real-world
scenarios where such resources are unavailable or
responses have to be generated in real-time manner.
Moreover, the paper presents human-in-the-loop
analysis for a single specialised domain (i.e., safe-
guarding). Safeguarding is a multi-disciplinary
domain involving terminology and issues from var-
ious other domains such as criminology, medical
domain, and legal domain. While the results pre-
sented in the paper show clear advantage of leverag-
ing expert knowledge into guiding text generation
models, we believe that extending the analysis for
a wider range of datasets (such as those datasets
where we present extended results in the Appendix)
can be beneficial. Additionally, the human-in-the-
loop seed selection has been carried by two experts
which may cause biases in the process of select-
ing seeds. However, the participants are practi-
tioners from the safeguarding domain who used
standard methodology in thematic analysis for se-
lecting the seeds. These methods do not require
inter-annotators agreement, instead experts achieve
agreement through discussion. Further, analysis
have been performed on sentence- and passage-
level where both experiments showed clear advan-
tage of the human-in-the-loop approach. Finally,
the paper presents results for a single high-resource
language (English). Experiments for other lan-
guages (especially low-resource) could show a dif-
ferent tendency in which the expert involved may
be even more necessary.
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toroź, Slovenia. Springer.

Aleksandra Edwards, David Rogers, Jose Camacho-
Collados, Hélène de Ribaupierre, and Alun Preece.
2021. Predicting themes within complex unstruc-
tured texts: A case study on safeguarding reports.
In Proceedings of the ESWC Workshop Deep Learn-
ing meets Ontologies and Natural Language Pro-
cessing.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2017. Data augmentation for low-resource neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 567–
573, Vancouver, Canada. Association for Computa-
tional Linguistics.

Praveen Kumar Badimala Giridhara, Chinmaya Mishra,
Reddy Kumar Modam Venkataramana, Syed Saqib
Bukhari, and Andreas Dengel. 2019. A study of var-
ious text augmentation techniques for relation classi-
fication in free text. ICPRAM, 3:5.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. In Proceedings of the International
Conference on Learning Representations (ICLR).

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective api built for detecting toxic comments.
arXiv preprint arXiv:1702.08138.

Brihi Joshi, Neil Shah, Francesco Barbieri, and
Leonardo Neves. 2020. The devil is in the details:
Evaluating limitations of transformer-based meth-
ods for granular tasks. In Proceedings of COLING.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Virapat Kieuvongngam, Bowen Tan, and Yiming Niu.
2020. Automatic text summarization of covid-19
medical research articles using bert and gpt-2. arXiv
preprint arXiv:2006.01997.

Tassilo Klein and Moin Nabi. 2019. Learning to an-
swer by learning to ask: Getting the best of gpt-2
and bert worlds. arXiv preprint arXiv:1911.02365.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur. 2015. Audio augmentation for
speech recognition. In Sixteenth Annual Conference

of the International Speech Communication Associ-
ation.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. 2017. Imagenet classification with deep
convolutional neural networks. Commun. ACM,
60(6):84–90.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the 12th International
Conference on Machine Learning, pages 331–339,
Tahoe City, California.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Shuai Liu and Xiaojun Huang. 2019. A chinese ques-
tion answering system based on gpt. In 2019 IEEE
10th International Conference on Software Engi-
neering and Service Science (ICSESS), pages 533–
537. IEEE.

Jinghui Lu, Maeve Henchion, Ivan Bacher, and
Brian Mac Namee. 2021. A sentence-level hierar-
chical bert model for document classification with
limited labelled data. In International Conference
on Discovery Science, pages 231–241. Springer.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake
Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack:
A framework for adversarial attacks, data augmenta-
tion, and adversarial training in nlp.

Yannis Papanikolaou and Andrea Pierleoni. 2019. Data
augmented relation extraction (dare) with gpt-2.
Neuropharmacology.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Amanda Lea Robinson, Alyson Rees, and Roxanna
Dehaghani. 2019. Making connections: A multi-
disciplinary analysis of domestic homicide, mental
health homicide and adult practice reviews. The
Journal of Adult Protection, 21(1):16–26.

59

https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909


Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green ai. arXiv preprint
arXiv:1907.10597.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rushdi Shams. 2014. Semi-supervised classification
for natural language processing. arXiv preprint
arXiv:1409.7612.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Student. 1908. The probable error of a mean.
Biometrika, pages 1–25.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich.
2015. Going deeper with convolutions. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 1–9.

Rima Türker, Lei Zhang, Maria Koutraki, and Harald
Sack. 2019. Knowledge-based short text categoriza-
tion using entity and category embedding. In Eu-
ropean Semantic Web Conference, pages 346–362.
Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Congcong Wang and David Lillis. 2019. Classifica-
tion for crisis-related tweets leveraging word embed-
dings and data augmentation. In TREC.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6383–6389.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019. Conditional bert contextual
augmentation. In International Conference on Com-
putational Science, pages 84–95. Springer.

Liqiang Xiao, Lu Wang, Hao He, and Yaohui Jin.
2020. Modeling content importance for summariza-
tion with pre-trained language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3606–3611.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping
Wang, Chandra Bhagavatula, Yejin Choi, and Doug
Downey. 2020. G-daug: Generative data augmenta-
tion for commonsense reasoning. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: Findings, pages 1008–
1025.

Yiming Yang. 1999. An evaluation of statistical ap-
proaches to text categorization. Information re-
trieval, 1(1-2):69–90.

Danqing Zhang, Tao Li, Haiyang Zhang, and Bing Yin.
2020. On data augmentation for extreme multi-label
classification. arXiv preprint arXiv:2009.10778.

Xinwei Zhang and Bin Wu. 2015. Short text classifi-
cation based on feature extension using the n-gram
model. In 2015 12th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD),
pages 710–716. IEEE.

Appendix

In Section A we present related research on data
augmentation strategies. In Section B we describe
the classification framework for all three datasets.
We also present the statistics for the entire datasets
and the classification results using the entire train-
ing data per dataset, with no augmentation. In Sec-
tion C, we present examples of generated samples
between the GPT models we used in our analysis.

A Data Augmentation: Related Work

The task of data augmentation consists of gener-
ating synthetic additional training samples from
existing labelled data (Anaby-Tavor et al., 2020).
In the following, we describe standard text augmen-
tation methods which we use as baselines. We also
explain recent DA methods based on text genera-
tion models.

Word replacement-based (WR). Simple but
commonly used DA techniques are based on word-
replacement strategies using knowledge bases (Wei
and Zou, 2019) such as WordNet (Miller, 1998).
Such methods often struggle to preserve the class
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label and lead to grammatical distortions of the
data (Kumar et al., 2020; Giridhara et al., 2019;
Anaby-Tavor et al., 2020). Recent DA approaches
address the above issues by using language mod-
els to provide more contextual knowledge such as
CBERT (Wu et al., 2019) in the word replacement
process. However, methods that make only local
changes to given instances produce sentences with
a structure similar to the original ones and thus lead
to low variability of training instances in the corpus
(Anaby-Tavor et al., 2020).

Sentence replacement-based (SR). Common
sentence replacement-based methods are based on
back-translation strategies where a given sentence
is translated to a language and then back to the
original language in order to change the syntax but
not the meaning of the sentence (Sennrich et al.,
2016; Fadaee et al., 2017).

Text Generation (TG). Recent language mod-
els such as GPT-2 (Radford et al., 2019) can ad-
dress the issues associated with the previous strate-
gies by generating completely new instances from
given seed samples. GPT-2 was trained with a
causal language modeling (CLM) objective which
makes it suitable for predicting the next token in
a sequence. This model has been used success-
fully in text generation tasks such as summaris-
ing (Xiao et al., 2020; Kieuvongngam et al., 2020;
Alambo et al., 2020) and question answering (Liu
and Huang, 2019; Baheti et al., 2020; Klein and
Nabi, 2019). Previous research on using text gen-
eration techniques for DA for text classification
focused on the creation of label-preservation tech-
niques for the generated synthetic data samples and
comparing different TG techniques (Anaby-Tavor
et al., 2020; Wang and Lillis, 2019; Zhang et al.,
2020; Kumar et al., 2020). However, these works
are limited in scale and solutions for improving
quality of generated data.Further, There are two
main methods used for label preservation of gener-
ated samples. The first approach, using a classifier
to re-label artificial sequences, requires either a
large training corpus to ensure high performance of
the classifier in first place or the generation of large
volume of artificial data to ensure that a substantial
amount of these will not be filtered because of a low
threshold (Anaby-Tavor et al., 2020). The other,
more widely accepted approach, is prepending the
class labels to text sequences during fine-tuning
of the Transformer-based model (Wang and Lil-

lis, 2019; Zhang et al., 2020; Kumar et al., 2020).
Such an approach cannot ensure label-preservation
for all generated sequences. However, our prior-
ity is to allow a fair comparison for seed selection
approaches without introducing additional noise.
Therefore, we consider a simple technique based
on fine-tuning a model per label more suitable for
performing our analysis.

B Datasets description

The 20 Newsgroups collection is a popular data set
for experiments in machine learning. The data is
organized into 20 different newsgroups, each corre-
sponding to a different news topic such as computer
systems, religion, politics (Lang, 1995). The col-
lection of the Toxic comments dataset is obtained
from Wikipedia and it is the result from the collab-
oration between Google and Jigsaw for creating a
machine learning-based system for automatically
detecting online insults, harassment, and abusive
speech (Hosseini et al., 2017). Table 4 shows that
for the 20 Newsgroups dataset there are 20 sub-
classes split between 6 overall classes. The Toxic
comments consists of two overall classes - ‘toxic’
and ‘non-toxic’ where the ‘toxic’ class is overarch-
ing 6 subclasses. The Safeguarding reports consists
of 5 overall classes and 34 subclasses.

The full description of the original datasets is
given in Table 6. Results from performing classi-
fication using unmodified datasets (using the full
training data) are given in Table 5.

B.1 Statistical significance test

To further evaluate the effect the additional data
generated with GPT-2 have over the classifier’s
performance, we performed a statistical test, t-
test (Student, 1908), used to compare the means
of two groups. It is used to determine if there is
a significant difference between the means of two
groups, which may be related in certain features.
It is often used to determine whether a process or
treatment actually has an effect on the population of
interest, or whether two groups are different from
one another.

We use t-test to measure whether the addition of
GPT-2 generated training data does actually lead
to improvements compared to non-augmented clas-
sifier. We specifically perform t-test between best
performing seed selection strategy, highlighted in
bold and ‘None’ row in Tables 3 and 4). Our H0

is: Generated data does not lead to overall im-
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Dataset Label Sub-labels

Toxic comments
non-toxic non-toxic
toxic mild toxic, severe toxic, ob-

scene,threat, insult,identity
hate

Newsgroups

computers comp.graphics,
comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware,
comp.windows.x

recreational
activities

rec.autos, rec.motorcycles,
rec.sport.baseball,
rec.sport.hockey

science sci.crypt, sci.electronics,
sci.med, sci.space

forsale misc.forsale
politics talk.politics.misc,

talk.politics.guns,
talk.politics.mideast

religion talk.religion.misc,
alt.atheism,
soc.religion.christian

Safeguarding Reports

Contact with
Agencies

Health Practitioners, Contact
with Third sector orgs, Edu-
cational Institutions, Contact
with Social Care, Police Con-
tact, Contact with councils or
LAs

Indicative
Behaviour

Lying, Offending, Serious
Threats to Life, Weapons,
Emotional Abuse, Domestic
Violence, Substance Misuse,
Alcohol Misuse, Harassment,
Self Inflicted Harm, Stalking,
Controlling Behaviour, Ag-
gression

Indicative
Circum-
stances

Bereavement,NFA, Home-
lessness or Constantly
changing Address, Family
Structure, Child Safe-
guarding, Relationship
Breakdown, Debt or Finan-
cial Exploitation, Sex Work,
Relationship with Children,
Quality of Relationship

Mental
Health
Issues

Children, Victim, Perpetrator,
Suicidal Ideation

Reflections Reports Assessments and
Conferences, Failures or
Missed Opportunities

Table 4: Subclasses for the three datasets

Dataset Micro-F1 Macro-F1
20 Newsgroups 0.768 0.759
Toxic comments 0.908 0.908
Safeguarding Reports (passages) 0.463 0.404
Safeguarding Reports (sentences) 0.505 0.477

Table 5: FastText classification results for the entire
datasets with no augmentation.

provements in classifier performance and Ha: Gen-
erated data does lead to overall improvements in
classifier performance. We use as a threshold α =
0.05. Results in Table 7 showed that pvalue < α

Dataset Avg tokens # Train # Test
Safeguarding Reports (passages) 45 1,261 284
Safeguarding Reports (sentences) 18 3,591 284
20 Newsgroups 285 11,231 6,728
Toxic comments 46 159,571 63,978

Table 6: Description of unmodified datasets

for every dataset. This confirms that augmenting
approaches using seed selection strategies do lead
to improvements in classifier’s performance versus
non-augmented classifiers.

Dataset pmicro pmacro α

20 Newsgroups 0.01 0.02 0.05
Toxic comments 0.03 0.03 0.05
Safeguarding Reports (passages) 0.0001 0.0001 0.05
Safeguarding Reports (sentences) 0.006 0.016 0.05

Table 7: T-test results - compare classification perfor-
mance with no additional data and results with addi-
tional data where performance is the highest

C Analysis GPT-2 models: Comparison
between generated samples

In Table 8 we provide examples of generated in-
stances per GPT model. Results showed that the
fine-tuned model leads to miss-classifications for
the 20 Newsgroup dataset and the Toxic comments
dataset.
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Dataset Label Original Text GPT(gen) generation GPT(dom) genera-
tion

GPT(label) genera-
tion

20 Newsgroups Computers There are 3 al-
ternatives: You
can try to write a
small C program
something like: int
my_int_var;my_int_var
= system(command);

4. It’s a bit confusing
and requires very little
programming knowl-
edge.5. It uses only
your current CPU and
some extra memory.

I am now posting the
following FAQs to a
group of individuals
whose answers are
from people who are
now either atheists,
agnostics, etc.

It appears that I am hav-
ing a problem in trying
to use XRemoteAddIn-
put(xmodmap) in win-
dows.

Toxic Com-
ments

non-toxic I think the recent edit-
ing by all has been bril-
liant. If I see any-
thing that could be im-
proved I’ll speak up
here. I would like to
see a Christian Theoso-
phy section also.

Thank you for your
help, H, for your work
on my blog.You are
welcome to submit
comments in this
section, but please
note I am not allowed
to comment on other
forums because they
may interfere with my
work.

No need to be an ency-
clopedic asshole. You
don’t see me delet-
ing things because of
something that was on
my watchlist. I just
wanted you to know
that my name is now on
my watchlist, and I will
try to improve it.

I hope to see the article
finished as soon as pos-
sible. But I would like
to thank you for your
contributions.

Safeguarding re-
ports

Indicative
Circumstances

Medical records show
that she struggled for
many years with de-
pression, for which she
was treated with anti-
depressants, also re-
ceiving referrals for
counselling. She also
had issues with her
physical health.

Her lawyer, Richard
Gage, has asked the
court to intervene if Mr.
McDevitt was not crim-
inally liable in his deci-
sion.

She attended at her GP
with a range of de-
pressive symptoms and
her medication was im-
proved. It is not known
how she gained her
weight but it is said that
her mental health de-
clined and she started
following a diet with
vitamin C, which was
associated with being
better at controlling her
mood.

In the early 1970s she
moved from Los An-
geles to New York.
During this time she
suffered from depres-
sion and other prob-
lems, but there was
little support in New
York.She moved into
a small apartment and
was living with friends,
but had to move into a
house next to her apart-
ment to support her
mental health.

Table 8: Examples of generated samples using GPT-2 models, where Safeguarding Reports examples are non-
verbatim due to data sensitivity.
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Abstract

Weak Supervised Learning (WSL) is a popular
paradigm to develop machine learning mod-
els in absence of labeled training data. WSL
involves training over noisy labels which are
traditionally obtained from hand-engineered se-
mantic rules and task-specific pre-trained mod-
els. Such rules offer limited coverage and gen-
eralization over tasks. On the other hand, pre-
trained models are available only for limited
tasks. Thus, obtaining weak labels is a bottle-
neck in weak supervised learning. In this work,
we propose to utilize the prompting paradigm
to generate weak labels for the underlying tasks.
We show that task-agnostic prompts are gener-
alizable and can be used to obtain noisy labels
for different Spoken Language Understanding
(SLU) tasks such as sentiment classification,
disfluency detection and emotion classification.
These prompts can additionally be updated with
‘human-in-the-loop’ to add task-specific con-
texts. Our proposed WSL pipeline outperforms
other competitive low-resource benchmarks on
zero and few-shot learning by more than 4% on
Macro-F1 and a conventional rule-based WSL
baseline by more than 5% across all the bench-
mark datasets. We demonstrate that prompt-
based method helps to generate more reliable
labels for the above SLU tasks in less than 72%
of time compared to a traditional rule-based
method to obtain noisy labels and thus can be
used as a universal strategy to obtain weak la-
bels in a weak-supervised framework.

1 Introduction

Weak supervised learning (WSL) (Yu et al., 2021;
Ren et al., 2020) has gained interest in the research
community because of the success shown by lever-
aging the high availability of large volumes of unla-
beled data (Zhou, 2018). In these weak supervision
setups, the unlabeled samples are pseudo-annotated
by noisy labels and a noise correction strategy is

∗Work done during internship at Observe.AI, †Equal con-
tribution

applied to train the model over such labels. These
noisy labels are derived using source(s), commonly
known as weak source(s). Most common forms
of weak sources observed in the area of weak su-
pervision are: rule-based weak sources (Hutto and
Gilbert, 2014; Nielsen, 2011) and task-specific fine-
tuned models (Schweter and Akbik, 2020).

Rule-based weak sources require designing the
labeling functions using the heuristics, lexicons
and external knowledge bases (like SentiWordNet
(Esuli and Sebastiani, 2006)) to map an input to the
class labels expected in the task. It is a challenge
to extend such rules to dataset from different do-
mains or to perform a different task. Additionally,
designing rules for an individual dataset is a man-
ually time intensive task. While, there are a few
rule-based sources available for common tasks like
sentiment, it is hard to find such readily available
weak sources for tasks like disfluency detection
(Godfrey et al., 1992).

The other type of weak-sources utilize a task
specific fine-tuned language model. For example,
BERT-NER, which is BERT (Devlin et al., 2019)
fine-tuned for NER task, can be utilized as a weak
source to identify named entities from the data.
Such task-specific models cannot be used to predict
class labels for a task different than what the model
is trained on.

The common challenge imposed by both of these
weak sources is the lack of generalizability across
a wide variety of tasks. In this paper, we propose a
universal weak source which not only generates bet-
ter quality noisy class labels for wide range of tasks,
but can also be tweaked to write ‘human-in-the-
loop’ task-specific details with minimal efforts. We
present prompt-based weak source, a hybrid source
which utilizes a pre-trained language model (PLM)
as a knowledge base and limited human interven-
tion as a prompter to address the labeling problems
observed in traditionally used weak sources. A
prompt-based weak source requires prompting a
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PLM (Gao et al., 2021; Schick and Schütze, 2021;
Logan IV et al., 2021) to derive weak class labels.
A prompt refers to a pattern string that is designed
to coax the model into producing an output corre-
sponding to a given class (Scao and Rush, 2021).
We study different ways to prompt PLMs in 3.1.1
and 3.1.2. We study 3 key features of prompt-based
sources as: Generalizability (utilize task-agnostic
prompts to cater to various tasks and effectively cre-
ate prompts for multiple tasks within same generic
framework.), Flexibility (to modify the prompts to
add task and class-label specific contexts in an easy
manner to improve over task-agnostic prompts),
Potency (to derive weak labels with reliable source
performance).

Our major contributions in this work are:

• Instead of the classical application of prompt-
ing in a few-shot and zero-shot settings, we
propose utilization of prompting paradigm to
generate noisy labels needed in WSL.

• We demonstrate a generalizable, flexible
and time-efficient low-resource ‘human-in-
the-loop’ setup to train a weak supervised
model using task-agnostic and task-specific
prompt-based weak sources.

• We perform extensive experiments on three
benchmark SLU datasets and demonstrate the
effectiveness of the proposed ‘human-in-the-
loop’ in reducing manual overhead along with
improving the performance over the tradi-
tional rule-intensive weak sources and other
competitive low resource setups.

2 Related Work

Existing works (Wang et al., 2019; Hedderich and
Klakow, 2018) in WSL learns on a few gold data,
while another group of work (Yu et al., 2021; Ren
et al., 2020; Ratner et al., 2020) assumes that no
labeled data is available. In the scope of our work,
we explore approaches that do not rely on labeled
data to train a weak supervised model (WSM). Ren
et al. (2020) utilized BERT to learn conditional reli-
ability scores between multiple weak sources using
an attention mechanism, while Ratner et al. (2020)
proposed a generative model to combine outputs
from various weak sources. Yu et al. (2021) pro-
posed a contrastive self-training strategy to learn
over weak labels and outperformed prior works
(Ren et al., 2020; Ratner et al., 2020). Hence, our

work borrows ideas from Yu et al. (2021) to train
a weak supervised model (WSM) considering its
robustness towards high intensities of label noise.

Prompt-based methods utilize templates struc-
tured as natural language inference (NLI)-style
prompts (section 3.1.1) or cloze-style prompts (sec-
tion 3.1.2) in a zero-shot and/or few-shot setup to
predict the labels for the downstream task. Works
such as Logan IV et al. (2021) demonstrated few-
shot training using cloze-style task-agnostic null-
prompt, while FLAN (Wei et al., 2021) utilized
NLI-style instruction templates and performed in-
struction tuning to improve the zeroshot perfor-
mance. However, due to the large size of the model
(137B parameters), we find the work unsuitable to
be used in creating a low resource pipeline. On the
other hand, LMBFF (Gao et al., 2021) and Pattern
Exploiting Training (PET) (Schick and Schütze,
2021) utilized a relatively smaller PLM (340M pa-
rameters) on cloze-style prompts. LMBFF showed
that a few demonstrative examples during task fine-
tuning provide additional context to better learn
the prompts and report improvements over PET
(Schick and Schütze, 2021). Considering the bene-
fits of LMBFF (Gao et al., 2021) over other meth-
ods in creating a low resource pipeline, we utilize
this approach to perform prompt-based fine-tuning.

3 Methodology

The proposed methodology is a two-step process
(Figure 1). First, we prompt the PLMs with ‘human-
in-the-loop’ as a strategy to produce weak labels for
the unlabeled training data. Next, we train a WSM
on these weak labels. In the subsequent sections,
we describe the two steps in detail.

3.1 Prompting PLMs to obtain weak labels

3.1.1 Prompting: NLI-style
In NLI-style prompts, the input utterance is trans-
formed to a premise-hypothesis pair of an utter-
ance and a prompt respectively. This transformed
input is fed to an entailment model. For exam-
ple, for input utterance ‘I am happy.’ and prompt

‘The sentiment of the speaker is positive’, an entail-
ment in this case denotes that class-label is positive.
Prompt is designed to reflect the class label of ut-
terance if prompt (hypothesis) entails the utterance
(premise). For each premise, the class label asso-
ciated with the prompt having highest entailment
score is treated as the weak label. For prompt-
ing, we compare a couple of pre-trained models
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Figure 1: Proposed weak supervised framework.

namely bart-large-mnli-yahoo-answers and
roberta-large-mnli available at Hugging Face
library1 (Wolf et al., 2019). Based on the results
over the same set of prompts, we find that bart-
based model predicts more accurate class labels,
which we select for conducting all the NLI experi-
ments.

3.1.2 Prompting: Cloze-style
In cloze prompts, a piece of text is inserted in the
input examples, so that the original task can be for-
mulated as a masked language modeling (MLM)
problem. For example, considering input utterance

‘I am happy.’, the prompt based system is fed a
transformed utterance containing a [mask] token
to form utterance-instruction pair, where instruc-
tion is ‘The sentiment of the speaker is [mask]’.
For the masked token, PLM generates a proba-
bility distribution over a set of verbalizers repre-
senting individual classes (Table 5 in A.1). The
class corresponding to the verbalizer with highest
probability is taken as the weak label. Inspired
by LMBFF (Gao et al., 2021), we leverage pre-
trained roberta-large (Liu et al., 2019) with an
objective to fill the [mask] token in the prompt.
The resulting sentence is concatenated with one
demonstration per class, in the similar fashion as
Gao et al. (2021). This scheme leverages addi-
tional context around the input sentence to predict
appropriate class labels. However, we note cloze
prompts to be more sensitive than NLI prompts to

1https://huggingface.co/models

the changes in the demonstrations chosen. Hence,
we take into account an extended version of cloze
prompts which also requires demonstrations and
performs a task fine-tuning using a few-shot setup
to solve a specific task. The need of task fine-tuning
with cloze-style prompts is studied in detail in A.3.

3.2 Weak Supervised Learning

The noisy labels obtained in the previous step are
utilized to train a WSM following a certain noise-
correction mechanism (Ren et al., 2020; Yu et al.,
2021). We observe that Yu et al. (2021) with its
contrastive self-training label correction strategy
outperforms various recent WSL baselines (Ren
et al., 2020; Wang et al., 2019). Directly inspired by
the technique utilized in Yu et al. (2021), we adopt a
noise-handling strategy which uses contrastive loss
for self-training to improve over the performance
of weak source(s) iteratively. This strategy is robust
to the label noise. Further, we assume that there
is no gold annotations available for training. The
model undergoes two steps:

Initial fine-tuning: Firstly, it trains a
roberta-base (Liu et al., 2019) encoder over
noisy labels with cross-entropy objective only for
fewer steps (early epochs). This prevents the model
from over-fitting the label noise and simultaneously
helps to generalize the learning. During training,
the model encourages to utilize soft labels to reduce
the aggressive gradient updates. This prevents over-
fitting the label noise.

Self-training: Further, the fine-tuned encoder
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continues to learn over its own highly confident
predictions (identified by keeping a threshold on
confidence scores of model predictions obtained
from the first step) via optimising a contrastive loss
(Huang et al., 2022; Yu et al., 2021). In partic-
ular, contrastive loss is applied to regularize the
feature space by bringing samples with the same
weak labels closer together while separating apart
the samples with different weak labels. This makes
it easier to discern between the representations for
data belonging to various classes and aids the clas-
sifier in producing more accurate predictions. As
noise can aggressively back-propagate through the
model during training on noisy labels, we prevent
such events by employing confidence-based sam-
ple re-weighting and regularisation schemes. In
order to lessen the impact of incorrect predictions,
the re-weighting technique promotes the inclusion
of samples with high prediction confidence scores
solely, anticipating that these samples are likely to
be correctly classified. Additionally, we explore a
couple of prior works (Yu et al., 2021; Pereyra et al.,
2017) on entropy-based confidence penalty (us-
ing KL-divergence) for label smoothing and model
regularization. As a result, the model smoothens
the confident predictions to avoid sampling over-
confident samples, hence reducing the impact of
inaccurate noisy class labels. This process is con-
tinued for several iterations to help the model pro-
gressively learn over its own confident predictions
and is called self-training (Yu et al., 2021; Wang
et al., 2019; Ren et al., 2020). The one which we
utilize in our work is a result of the combination
of ideas strategized from a few strong prior works
(Yu et al., 2021; Pereyra et al., 2017; Huang et al.,
2022). The model utilized in our work is applica-
ble to learn effectively and efficiently over weak
annotations derived from various noisier sources
and is robust to high intensity of label noise.

4 Experiments

4.1 Dataset

We consider three SLU datasets from various do-
mains for conducting our experiments. CMU-
MOSI is a sentiment dataset consisting of multiple
modalities (Zadeh et al., 2016). In this work, we
only consider text modality to perform sentiment
classification. Similar to previous works (Kumar
and Vepa, 2020; Tsai et al., 2019), we use train-
test-valid split of 1284, 654 and 229 samples re-
spectively. We use the Switchboard Disfluency

(Godfrey et al., 1992) (SWBD-D) to classify the ut-
terances into fluent and disfluent categories. We use
the provided splits of train, test and validation set.
For emotion task, we utilize IEMOCAP (Busso
et al., 2008). Since distinguishing between happy
and excited or angry and sad is a challenging task
without audio modality, in the scope of this work,
we binarize the emotion in IEMOCAP dataset to
positive and negative emotion. Positive emotions
comprise of happy and excited while negative emo-
tions comprise of sad, angry and frustrated. We use
the provided split of train, test and validation hav-
ing 3270, 1207, 867 samples respectively. It is to
be noted that we use training set as unlabeled data
and hence do not use ground-truth of the training
splits to train the WSM.

4.2 Weak Sources

Rule-based weak source: For sentiment and emo-
tion classification, we use SentiWordNet (Esuli and
Sebastiani, 2006) and AFINN (Nielsen, 2011) lexi-
cons along with a rule based system called VADER
(Hutto and Gilbert, 2014). We map the positive
scores to positive sentiment/emotion and similarly,
for negative sentiment/emotion. Empirically, we
find VADER and AFINN to perform better for
sentiment, while SentiWordNet and VADER per-
form best for emotion. For disfluency classification
on SWBD-D, the labeling functions are created
based on the occurrence of filler words, repetitions
and soundex (Odell and Russell, 1918) codes. We
create an additional rule by aggregating the weak
sources via majority voting. We report the mean
performance of rule-based weak sources on Macro-
F1 and Coverage metrics in Table 1.

Dataset Coverage Macro-F1
MOSI 74.3±4.2 71.0±3.7
SWBD-D 84.4±10.5 73.6±7.4
IEMOCAP 63.9±17.2 46.6±0.3

Table 1: Rule-based weak source performance; Cover-
age represents %samples labeled by the rules; Macro-F1
is reported only over the samples covered by the rules

Prompt-based weak source: Since rule-based
weak sources have varying coverage and require
significant manual efforts and time, there is a need
of a low-effort method that can generate weak la-
bels over a given dataset with reliable performance.
We propose prompting PLMs to obtain the weak
labels. Specifically, we compare task-agnostic and
task-specific prompts. Task-agnostic prompt rep-

67



resents a general instruction that can be shared
across tasks while a task-specific prompt incorpo-
rates the task information in its verbiage which
helps model with an additional context. To bet-
ter understand what generalizability in prompts
means and how are the generalized (task-agnostic)
prompts different from the task-specific ones, we
provide representative examples of task-specific
and task-agnostic prompts in A.1 in a cloze-style
template. Such prompts contain a [mask] which
is expected to be replaced by an appropriate token
called verbalizer. The verbalizer determines the
task under the consideration. By choosing different
verbalizers, we can utilize same prompt for mul-
tiple tasks in a task-agnostic setting. While, in a
task-specific setting, contextual prompts (Table 5)
are utilized to help predict the verbalizers more
accurately. We can translate cloze-style prompts
used in our experiments to NLI-style (i.e. hypothe-
ses) by replacing the [mask] tokens with appropri-
ate verbalizers. The hypotheses are entailed with
the premises and yields entailment scores for each
premise-hypothesis pair. The class which is a map-
ping to the verbalizer with highest entailment score
is selected as the weak label for the premise.

Dataset TSP TAP
MOSI 83.5±3.3 82.8±1.3
SWBD-D 74.6±5.1 68.9±6.5
IEMOCAP 68.7±3.3 68.0±1.8

Table 2: Mean performance (Macro-F1) of task-specific
(TSP) and task-agnostic (TAP) prompts on test set.
Mean is computed across both NLI and cloze prompts.

Dataset NLI Cloze
MOSI 83.2±1.6 82.7±1.0
SWBD-D 42.0±15.6 75.2±3.9
IEMOCAP 70.3±0.4 71.4±0.6

Table 3: Mean performance (Macro-F1) of NLI and
Cloze prompts on test set. We utilize both TAP and TSP
for the average calculation.

With differences in prompts and verbalizers, the
performance of the weak source may vary. Thus,
experiments are performed on multiple prompts
and/or verbalizers involving ‘human-in-the-loop’.
We ask the annotators to sample 16 data points per
class and annotate them with ground truth labels
which we use as a validation set to evaluate the
performance and fairly compare the varieties of
prompts. The performance of each prompt acts as
a feedback to direct the prompt curators whether

or not to continue designing more variations of
prompts. The process of designing more prompts
terminates when no improvement in performance
of prompts is observed for 5 consecutive attempts.
Among the wide range of prompts designed as a
consequence of the to-and-fro process between
PLM and humans, we choose to report average
across the top-3 performing prompts in Table 2. In
the process, by leveraging flexibility as a feature
of prompt-based source, we modify the prompt
structure to create various task-specific prompts.
On the other hand, the task-agnostic prompts can
be utilized across various tasks performed in our
experiments demonstrating generalizability of the
proposed approach. Additionally, the performance
scores of prompt-based weak source reported in Ta-
ble 2 shows that PLMs when prompted, have poten-
tial to generate accurate weak labels (potency). We
note that for every dataset, task-specific prompts
work better than the task-agnostic prompts. This
gain is significant for SWBD-D dataset denoting
the need for language models to rely on task spe-
cific context unlike other tasks. Additionally, we
note that NLI-style prompt produces better results
for MOSI, while cloze-style prompt produces more
reliable labels for SWBD-D and IEMOCAP dataset
(Table 3). This could mean that complex tasks like
disfluency and emotion classification require the
model to learn on task-specific contexts which we
perform with cloze-style prompts.

4.3 Baseline

We compare the performance of the proposed se-
tups with a fully-supervised and other low-resource
setups like few-shot learning (FSL) and zero-shot
learning (ZSL): Oracle represents the performance
score on test set obtained when a pre-trained
RoBERTa (Liu et al., 2019) is trained on gold la-
bels in a fully-supervised fashion. Meta-tuning is
a state-of-the-art work (Zhong et al., 2021) in ZSL
where authors propose utilizing question prompts
for classification tasks, where zero-shot objective is
directly optimized by fine-tuning on a meta-dataset.
k-Classifier is a few-shot setup, a RoBERTa learns
on a train-set consisting of only 16 examples per
class. DNNC (Zhang et al., 2020) utilizes discrimi-
native nearest neighbor classifier, is a state-of-the-
art model for few-shot and out-of-scope intent pre-
diction task. We use a 16-shot setup.

Further, we compare the performance of various
weak sources on the test set: Rule represents the

68



MOSI SWBD-D IEMOCAP
Oracle 86.1±0.4 94.5±2.0 80.5±0.4
Meta-tuning 80.3±2.0 49.1±2.7 61.6±1.8
k-Classifier 73.1±7.0 74.3±7.3 61.4±5.9
DNNC 79.9±0.8 63.9±1.7 62.3±7.4
Rule 63.0±3.2 70.9±7.1 33.8±3.1
TAP 81.5±1.6 71.1±7.5 69.0±2.8
TSP 83.5±1.2 73.2±5.2 69.8±1.7
WSL-Rule 74.6±5.4 76.4±1.5 41.0±1.8
WSL-TAP 82.8±1.8 77.5±3.9 71.5±0.3
WSL-TSP 84.5±0.9 81.9±3.7 71.9±0.9
Best WSL 85.26 83.86 72.47

Table 4: Comparative results of the baselines and pro-
posed weak supervised pipeline on Macro-F1 scores.

performance of rule-based weak sources. For the
calculation of recall, the samples not covered by
the rules are considered to represent false negatives.
This represents a heuristic-based classifier. Task-
Agnostic-Prompt (TAP) and Task-Specific-Prompt
(TSP) represent the performance scores obtained
by prompting the PLM with a task-agnostic and
task-specific prompt directly over the samples in
test set, without training a WSM.

Once the weak labels are obtained on the unla-
beled training data, a WSM is trained to design:
WSL-rule where a WSM is trained over the weak
labels derived from rule-based weak source dis-
cussed in Section 4.2. WSL-TAP and WSL-TSP
are the proposed low-resource pipelines which train
a WSM on weak labels obtained from task-agnostic
and task-specific prompts respectively.

5 Results and Analysis

We compare our proposed framework (WSL-TAP,
WSL-TSP) with other baselines in Table 4. We re-
port the experimental results as mean performance
scores with standard deviations. Rule, TSP and
TAP represent the mean performance score across
various rule-based weak sources (refer section 4.2),
task-specific and task-agnostic prompts (consider-
ing various styles - NLI and cloze both) respec-
tively. WSL-Rule, WSL-TSP, WSL-TAP represent
the average scores obtained on training the WSM
over various rule-based heuristics, task-specific
prompts and task-agnostic prompts.

Proposed WSL vs Low-Resource Baselines:
The results show that a WSM trained on prompt
based weak labels (WSL-TAP, WSL-TSP) outper-
forms other baselines including state-of-the-art
zero-shot (meta-tuning) and few-shot (DNNC) ap-
proaches. WSL-TSP outperforms the few-shot

method by more than 4% on MOSI, 7% on SWBD-
D and 9% on IEMOCAP dataset. Further results
show that training a weak supervision model (WSL-
TAP, WSL-TSP) over prompt-based weak labels
bridges the gap with the Oracle model. Specifi-
cally, training a WSM improves the F1 scores by
1% for MOSI, 8.2% for SWBD-D and 2.1% for
IEMOCAP. This shows the effectiveness of pro-
posed pipelines for training a low-resource model
against few-shot and zero-shot methods.

Proposed WSL vs Rule-based WSL: The pro-
posed weak supervision pipeline on prompt-based
weak source also outperforms a traditional rule
based weak supervision pipeline (WSL-Rule). The
distinction between the performance of rule and
prompt-based WSL pipeline is more evident for
MOSI and IEMOCAP datasets. The proposed
method outperforms rule based pipeline by 10%
in MOSI, 5% in SWBD-D and 31% in IEMOCAP
dataset (WSL-TSP vs WSL-Rule in Table 4). The
higher gap in performances on MOSI and IEMO-
CAP could be related to the worse performance of
rules, where weak labels generated from semantic
rules are less accurate and have lower coverage
than SWBD-D dataset (Table 1). We see that Rule
has particularly lower performance on IEMOCAP
owing to limited coverage of such rules, while both
TAP and TSP consistently outperform the weak
labels obtained from rules. Thus, in addition to
reducing the manual effort in writing rules for la-
beling the data, the prompt-based method generates
more accurate labels to annotate the unlabeled data.

Task-agnostic vs Task-specific Prompts: We
observe that weak labels obtained from task-
specific prompts (TSP) are consistently better than
task-agnostic prompts (TAP). Likewise, WSL-TSP
outperforms WSL-TAP on all tasks. While the best
results are obtained from task-specific prompts,
even task-agnostic prompts outperform a rule-
based pipeline. Hence, the proposed pipeline
(WSL-TAP, WSL-TSP) could solve the bottleneck
of labeling the data while training a WSM.

Best WSL Scores: Finally, we report the best
scores obtained with proposed pipeline: MOSI =
85.26%; SWBD = 83.86%; IEMOCAP = 72.47%.
We note that the best score obtained on MOSI
dataset is competitive with the Oracle results,
which could be explained by a highly reliable
weak labels obtained from prompt-based method
on MOSI. However, the performance on SWBD-
D and IEMOCAP are lower than Oracle (refer to
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section A.4 for explanation) but are strongly bet-
ter than state-of-the-art low resource methods on
zero-shot and few-shot methods. Thus, we show
that low resource pipeline for SLU tasks could be
effectively trained via proposed pipeline.

Quantifying the importance of human efforts:
We outsource the task of curating prompts to 5 pro-
ficient English speakers. We observe that it takes
around 17.0±6.0 minutes on an average across the
speakers to come-up with the first good prompt for
the benchmark SLU tasks. While creating rules for
the same under the restriction of given guidelines
(section A.5), it takes roughly around an hour to
come up with pattern-based heuristics for a certain
dataset. This observation shows that we can save
around 72% of annotation time by avoiding rule-
based heuristics and relying only on prompt-based
weak source. The reason why designing prompts
takes relatively lesser time compared to designing
rules is due to the fact that rule-based baselines
have to be balanced between coverage and preci-
sion, along with the higher complexity of coding
the rules against the designing the prompts. We
consider rules (or a set of rules unioned together)
to be good if it performs better than a baseline of
majority class in terms of precision and cover at
least 25% of the unlabeled samples. Additionally,
these rules have to written in a framework which
is a time-consuming step as well against simply
writing a prompt which is nothing but a textual
sentence. So, iterating with prompts is much faster
as compared to iterating on rules. Furthermore, in
many cases, a bunch of rules have to be unioned to
achieve this criteria on coverage and precision and
hence, it takes a longer cycle to identify the set of
rules required to generate weakly labeled training
data. As it is evident in Table 4 that prompt-based
baselines (TAP, TSP) outperform heuristics (Rule),
thus, instead of creating rules, we rather encour-
age human effort in curating more variations of
prompts by utilizing a fraction of the expensive
time we saved using the proposed weak sources.

6 Conclusion

In this work, we show effectiveness of utilizing
prompt-based methods as universal weak sources
to develop low-resource models for wide range of
benchmark SLU tasks. We show that the proposed
method outperforms traditional methods of rule
based WSL as well as state-of-the-art methods on
other low resource settings like ZSL and FSL. In

future, we would like to study the application of
automatic and soft prompts to generate the weak
labels and the extension of work to multilingual
tasks where limited training data is available. We
would also like to explore areas around incorpo-
rating the human-in-the-loop feedback during the
training process instead of only restricting it to im-
prove on the quality of weak labels.

Limitations

The proposed work has dependency on manual
prompts. Curating prompts can be subjective
across different individual. This can cause vari-
ations in the results. Moreover, we also notice that
the score on test set for the predictions generated by
PLMs is sensitive to the change in prompt tokens.
However, our work offers a future opportunity for
researchers to use the proposed setup with continu-
ous prompts to address the problem of sensitivity
caused by such manually curated prompts. More-
over, the technique of prompt-based fine-tuning
(Gao et al., 2021) of PLM which we utilize to infer
weak label for a cloze-style prompt is constrained
to predict class label consisting of a single token
only.
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A Appendix

A.1 Representatives: TAP and TSP prompts
We present some of the representative examples
of task-agnostic (TAP) and task-specific (TSP)
prompts we used in our work. Table 5 demon-
strates examples of TSP. Here, we observe that the
prompts design vary according to the task and as-
sociated class labels. However, design for TAP is
independent of any task and its underlying class
labels. Here, we demonstrate some examples of
TAP:

• The class best describing the text is [mask].

• The text can be classified as [mask].

A.2 Hyper-parameters
We discuss the hyper-parameters used to run our
experiments. We perform a grid search to optimize
the performance of the proposed weak source with
cloze-style prompts (as they require fine-tuning)
on development set. Batch size is searched over
{2, 4, 8} set. The best learning rate is searched
in {1e-5, 2e-5, 3e-5}. We fix the number of
demonstrations to 1 for faster training. As we use
NLI-style prompts to directly infer the weak la-
bels without performing any task fine-tuning, we
do not need any hyper-parameter specifications
for prompt-based weak source with this style of
prompts. For training the weak supervised model
on noisy labels obtained via prompt-based weak
source, our experimental setup utilizes the AdamW
optimizer (Loshchilov and Hutter, 2019) and the
optimal learning rate is searched over {1e-5 , 2e-5,
3e-5}. The weak-supervised learning is carried out
for a maximum of 5 epochs. A scheduler (with lin-
ear learning rate decay strategy) is utilized with
0.1 warm-up. However, there are some hyper-
parameters which are specific to the model and
the involved training strategy. Hence, we recom-
mend to look into the works of Yu et al. (2021)
and Gao et al. (2021) as our work is inspired by

them. Their research work demonstrates the behav-
ioral change in model performance due to change
in such hyper-parameters, which we directly use in
our work.

A.3 Cloze-style prompts with demonstrations
In the scope of our work, we utilize only the ex-
tended version of cloze-style prompt which require
task fine-tuning as discussed in section 3.1.2 but
we do not change the nomenclature and refer to
it as cloze-style prompts everywhere. However,
we would now like to differentiate the cloze-style
prompt-based weak source WITH (w/) task fine-
tuning and cloze-style prompt-based weak source
WITHOUT (w/o) task fine-tuning. We conduct an
experiment on the benchmark SLU datasets to in-
vestigate if cloze-style prompts w/o task fine-tuning
can be used to infer class labels and we observe that
there is a mandatory need for fine-tuning the PLM
with this category of prompts on downstream tasks.
We compare the columns in Table 6 to demonstrate
the incapability of cloze-style prompt-based weak
source w/o task fine-tuning in deriving good qual-
ity weak labels for training a WSM. We also ob-
serve the higher gains in performance post task
fine-tuning. These observations encourage us to
rely only on the extended version of cloze-style
prompts to derive weak labels for training a WSM.

A.4 Does a PLM naturally understand some
tasks better than the others?

From Table 4, we surprisingly observe that the per-
formance gap between Oracle result and the pro-
posed frameworks (WSL-TSP and WSL-TAP) is
low for MOSI but significantly higher for IEMO-
CAP and SWBD-D. This could be related to the
nature and complexity of the tasks performed with
each of these datasets. We define the complexity of
a task by a measure of how well a PLM performs on
that task without any downstream task fine-tuning.
As we use NLI-style prompts to directly infer the
class labels for unlabeled samples, these prompts
can be useful in quantifying the difficulty faced by
PLM in solving a certain task. Hence, we compare
our results on NLI prompts across the tasks from
Table 3.

Apparently, the order of complexity is MOSI
(sentiment) < IEMOCAP (emotion) < SWBD-D
(disfluency). This shows that a PLM already com-
prehends the sentiment task to some degree. Hence,
without requiring any task fine-tuning, PLM pre-
dicts class labels quite accurately. However, dis-
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Dataset Task-specific prompt verbalizer : class label
MOSI The sentiment of the speaker is [mask]. positive : positive, negative : negative
SWBD-D The speaker [mask] takes a pause while speaking! never : fluent, often : disfluent
IEMOCAP I have [mask] emotions. happy : positive, sad : negative

Table 5: Representative examples of TAP

Dataset w/o fine-tuning w/ fine-tuning
MOSI 67.5±2.7 83.3±1.2
SWBD-D 49.3±5.6 73.2±1.6
IEMOCAP 51.6±8.4 69.1±2.7

Table 6: Performance (Macro-F1) of cloze-style
prompts on the train-set of WSM w/ and w/o task fine-
tuning

fluency classification appears to be a task that a
PLM is not particularly adept at. The fact that
we do not deduce the class labels for the disflu-
ency classification using NLI-style prompts is an
evidence for this. We come to a conclusion that
PLMs straightaway do not comprehend the pauses
in conversation. Hence, we fine-tune the PLM with
few-shots to help it understand the conversational
pauses (refer to Cloze column in Table 3). How-
ever, the performance gap between the Oracle and
proposed approaches still remains high which ex-
plains that disfluency classification is not a natural
property of PLM. For emotion classification, the
training is challenging as it is performed at utter-
ance level excluding the surrounding informative
context in the dialogue. The struggle in learning
intensifies when the PLM is trained on few shots
only. This could be a logical justification for the
large disparity between Oracle and the suggested
technique on IEMOCAP.

However, we encourage further investigations
on ways to figure out the reasons for the uneven
variations in gaps between Oracle and proposed
pipelines.

A.5 Guidelines for Designing Rules

While creating rules for a dataset, it requires ef-
forts to keenly observe the data to identify patterns
and map them to the class labels. We ask the ex-
perts to manually create the rules for the benchmark
datasets, under the assumption that rule-based tools
pre-exist only for limited tasks. A rule is consid-
ered acceptable if it performs better than a majority
baseline in accuracy and can cover at least 25%
of the unlabeled samples. As observing the pat-
terns across the complete dataset is tedious, we ask

them to consider only 16 annotated samples per
class to observe the patterns and use them to evalu-
ate the accuracy of the rules. To design heuristics,
we ask annotators to observe the common patterns
(lexicons, phrases) to design a strategy that can be
utilized to annotate the unseen samples. We also
provide liberty to annotators to combine a bunch
of rules for a certain dataset or task as necessary.
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Abstract
Identifying and integrating missing facts is a
crucial task for knowledge graph completion to
ensure robustness towards downstream applica-
tions such as question answering. Adding new
facts to a knowledge graph in real world system
often involves human verification effort, where
candidate facts are verified for accuracy by hu-
man annotators. This process is labor-intensive,
time-consuming, and inefficient since only a
small number of missing facts can be identi-
fied. This paper proposes a simple but effective
human-in-the-loop framework for fact collec-
tion that searches for a diverse set of highly
relevant candidate facts for human annotation.
Empirical results presented in this work demon-
strate that the proposed solution leads to both
improvements in i) the quality of the candidate
facts as well as ii) the ability of discovering
more facts to grow the knowledge graph with-
out requiring additional human effort.

1 Introduction

A knowledge graph (KG) is an efficient way of
storing information and relations between different
types of entities, and is an integral part of many
real-world applications such as question answer-
ing (Chen et al., 2020). However, incompleteness
is a well-known issue that inherently exists in a
KG caused by missing facts and entities, and it sig-
nificantly limits the capability of the downstream
applications (Socher et al., 2013). Since richness
of the facts in a KG can directly impact its quality,
identifying and collecting missing facts is a crucial
task. Additionally, it is essential to ensure that the
facts being added to KG are verified to be highly
accurate.

There is research work published on how to au-
tomatically identify missing facts using machine
learning models (Ji et al., 2021). Many of them
use embedding models over the entities and rela-
tions in a KG to train link prediction models to

∗Work done during an internship at Apple.

predict missing facts within the KG (Nguyen et al.,
2017; Wang et al., 2015), while some use a search-
based question-answering approach to get candi-
date answers from the web and then identify the
correct missing fact by aggregating the found an-
swers (West et al., 2014). These approaches can
automatically identify a large number of missing
facts, but there was usually no human verification
(which is also infeasible given the volume of the
identified facts) to make sure that the newly discov-
ered facts meet real-world-system-level accuracy.

Collecting high-quality new facts for a live KG
is a very complicated process that often requires hu-
man effort. For example, the success of finding the
birth date of a person from the web heavily depends
on the popularity of the person and the uniqueness
of their name. On the other hand, open access to the
web makes it hard to protect the accuracy of its in-
formation; even Wikipedia suffers from vandalism
(Šarūnė Bar). This influenced our initial design
of a fact collection framework with a human-in-
the-loop component. The system starts with an
unanswerable query, leverages state-of-the-art tech-
nologies to identify the intent and entity of the input
query, retrieves a few candidate answers via web
search using a natural language based question-
answering (QA) system, then instead of using a
machine learning model to aggregate the results,
e.g., (West et al., 2014), we direct the candidate
facts to human annotators for review.

While this pipeline is successfully deployed in
a real world system, there is an opportunity for
improvements to be made. We observed that the
natural language-based QA system sometimes re-
turns no candidate answer for a query, leading to a
low coverage problem. On the other hand, even if
the QA system returns some candidate answers for
certain queries, many of them do not contain the
correct answers. In such cases, the human annota-
tions ended up with negative responses, indicating
a waste of human labor. To address this problem,
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one option is to train a better QA system either
by using more data or adopting more complicated
models, which needs expensive engineering efforts.
Another option is to increase the number of candi-
dates returned by the QA system and involve more
human annotators for fact verification, but because
of the low-correct-ratio nature of the candidate an-
swers, this approach would mean an even more
severe waste of human effort.

In this paper a new human-in-the-loop fact col-
lection framework is proposed that addresses the
aforementioned problems without training new QA
systems nor adding additional human annotators.
To solve the low coverage problem of the QA sys-
tem, the input query is perturbed by generating
semantically equivalent variations of it. These vari-
ations are then input to the QA system to get di-
verse answer sets (similar to what has been done
in (West et al., 2014)). Then, to address the low-
correct-answer-ratio problem, a candidate answer
selector is introduced, inspired by the well-known
uncertainty-based active sampling strategy Query-
by-Committee (QbC) (Seung et al., 1992; Freund
et al., 1997; Gurajada et al., 2019), to choose the
most relevant answers for human annotation. To
summarize, the main contributions of this work are:

• A simple but effective human-in-the-loop fact col-
lection framework that uses a natural language-
based QA system as a black-box model to collect
diverse candidate answers from the open web.

• By employing a QbC-based selector, the pro-
posed framework can identify more relevant can-
didate answers and filter out less relevant ones
to effectively identify more missing facts with
limited human annotation budget.

• Empirically it is observed that this approach can
significantly improve both recall and relevancy of
the fact collection process in real world settings.
Moreover, although only two intent use cases
were reported in the experiments, the framework
is generic enough to be immediately extended to
many more scenarios.

The rest of this paper is organized as follows: Sec-
tions 2 describes our human-in-the-loop fact col-
lection framework. Section 3 demonstrates exper-
imental results. Section 4 reviews related work.
Finally, concluding remarks and future works are
included in Section 5.

2 Methodology

Architecture of the proposed system is illustrated
in Figure 1. User query answering is generally car-
ried out by a two-stage model that first extracts the
relevant information relating to the intent of the
query from a web page, then ranks and selects the
most relevant articles that match the entity and the
intent of the query. This process can be improved
by fine tuning the model used, though it requires
quality data and is time-consuming. The proposed
framework does not rely on fine tuning but makes
changes to the input of the model. The system lever-
ages the sensitivity of language based models to
the input and combines it with a selector that works
on the principle of Query-by-Committee. The rest
of the section shall illustrate each component of the
proposed pipeline via a concrete example.

2.1 Query Annotator

The input to Query Annotator is a user query that is
unanswerable by the current KG. Assuming the KG
does not currently contain the height of Michael
Jordan, the following query is an example of an
unanswerable query

q1: how tall is Michael Jordan?

Given such a query, the main task for Query An-
notator is to identify the intent of the query (e.g.,
‘height’) as well as the key named entities (e.g.,
‘Michael Jordan’) in the query. All these rich
annotations will be added to the original query and
sent to the next component Query Synthesizer to
generate query variations. As a concrete example,
for the unanswerable query mentioned earlier, the
output of Query Annotator would be:

q′1: how tall is Michael Jordan?

- entity: ⟨ ‘Michael Jordan’, kgid ⟩
- intent: ‘height’,

where kgid is an identifier of the entity in the KG.

2.2 Query Synthesizer

Given a query q′ enriched with key named entities
and intent, the Query Synthesizer tries to gener-
ate semantically equivalent variations and perturba-
tions of q′. A template-based approach is used to
create new synthetic queries by replacing the enti-
ties in the sentence (e.g., ‘how tall is [PERSON
ENTITY]’). Additional information about the de-
tected entities from the KG, such as occupation
or aliases are also used to generate new variations
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Figure 1: Proposed System Architecture using query by committee. Note that the QA System is kept fixed.

(e.g., ‘Michael Jordan’ can be replaced with one
of the aliases ‘Michael Jeffrey Jordan’).

There are two main requirements for the Query
Synthesizer: (1) only semantically equivalent
queries should be created; (2) the generated queries
should be natural and realistic. It is evident that
semantically nonequivalent queries lead to unde-
sirable results, which would hurt precision. More-
over, it is also crucial that the newly generated
queries remain natural to humans, so the QA sys-
tem which was trained to understand natural lan-
guage questions can return meaningful answers.
To meet these requirements, a randomly sampled
anonymous query log is analyzed in order to under-
stand user behaviour and how users interact with
web search. Based on that, multiple templates to
ask single question are determined. The question
templates depend heavily on the intent of the query,
and therefore different templates for each intent
and entity pair were generated. For example, the
query ‘how tall is Michael Jordan?’ might
be translated to

q11: what’s the height of Michael Jordan?
q21: tell me Michael Jordan’s height.
q31: how tall is Michael Jeffrey Jordan?
...

The main benefit of creating such variations of
the input query is to provide the QA system with
more diverse signals, leading to more potential an-
swers that might not be found by asking the original
query alone.

2.3 QA System
The QA system is responsible for searching and
retrieving answers from the internet that are
relevant to the input question. In the proposed
system, a state-of-the-art QA system is used as
a black-box to get candidate answers for a given
query. The input to the QA system is a natural

question, and the output is a ranked list of answer
tuples, where each tuple is of the format (passage,
fact, score). Passage is the passage from
a web page that may contain the fact that can
answer the question, fact is an extracted and
normalized answer to the question, and score is
a confidence score that the QA system calculated
that indicates the quality of the answer found. As a
running example, one answer tuple could be (...a
height he himself claimed in 1994 “I’m
6-foot-6"... , ‘6-foot-6’, 0.49). Although
the QA system may return a lot of answers for
a given query, only the top-k tuples by score are
kept, where k is a hyperparameter of the system
usually set to a small number such as 3 or 5.

One thing to emphasize is that the QA system
is very sensitive to the input. Changing the lan-
guage or ordering of the input query may lead to
obtaining different types of answers as the output.
This also motivated us to use semantically equiva-
lent variations of the original query to get diverse
answer sets to improve the recall. While, one po-
tential pitfall is that the answer sets returned from
the QA system can be noisy. For example, for the
query How tall is Michael Jordan?, some of
the passages the QA system returns are extracted
from the following webpages:

• anonymous-url-1 - a webpage that contains
multiple different answers

• anonymous-url-2 - a webpage that contains
the word height and Michael Jordan, but not
the answer

These issues can come up with any entity and in-
tent. It is very difficult to identify. This is a major
motivation for us to adopt multiple variations of
the query. Additionally, the noisy results indicate
that blindly trusting the results returned by the QA
system may hurt precision of the system, therefore,
the next component Query-by-Committee selector
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is adopted to prune the answer sets.

2.4 Query-by-Committee Selector

While the previous Query Synthesizer and QA sys-
tem components focus on improving the recall
by creating semantically equivalent variations, the
Query-by-Committee Selector aims to improve pre-
cision by selecting the most relevant candidate an-
swers. After receiving the likely noisy answer sets
from the QA system in previous step, an imme-
diate question is how to distinguish relevant and
irrelevant answer sets. Towards this, a selection
approach motivated by the well-known sampling
strategy Query-by-Committee is introduced.

QbC is an uncertainty-based modal agnostic ac-
tive learning algorithm. The core idea of QbC is
to form a voting committee consisting of multi-
ple classifiers that were trained in slightly different
ways. The degree of agreement among the com-
mittee is used as a proxy for uncertainty. If the
committee highly disagrees on the label of a data
point, then it is an uncertain example, which should
have higher priority to be manually verified than
those examples where the committee highly agree.
Active learning uses this approach to choose the
most uncertain and informative examples for hu-
man annotation.

Motivated by the idea of using degree of agree-
ment to measure uncertainty, the proposed solu-
tion uses QbC in an opposite way, that is, instead
of identifying uncertain examples, the goal is to
identify highly certain examples. To simulate the
QbC-based sampling, a voting committee has to be
formed. One option is to perturb the models, i.e.,
train multiple variations of the QA systems, and
another option is to perturb the input query. The
proposed solution chooses the second one because
it requires much less computational resources, and
it is easier to maintain. Therefore, semantically
equivalent variations of the input query are gener-
ated, which will be sent to the same QA system to
get multiple, but likely different answer sets. Next,
to identify the most relevant answer among these
answer sets, all the answer tuples are ordered based
on the number of occurrences in the returned an-
swer sets, finally the top-p answer tuples are chosen
as candidates for human annotation.

Note that, the voting mechanism provides a good
way to overrule the confidence score returned by
the QA system, because an answer tuple with lower
confidence score might rank higher than a higher-

scoring answer tuple if it gets more votes, which is
a way to mitigate the potential bias existed in the
QA system. The confidence scores calculated by
the QA system is only used as a secondary metric
to rank answer tuples.

In this example illustrated here, assuming that
it is required of the Selector to select only the top
2 candidate answers that are relevant to {height,
Michael Jordan}. The first answer set contains
anonymous-url-1 and anonymous-url-2. The
second answer set contains anonymous-url-1,
Wikipedia, and anonymous-url-3. Assum-
ing that the order of score for these answer
sets is: Wikipedia > anonymous-url-1 >
anonymous-url-3 > anonymous-url-2. Since
anonymous-url-1 appeared in both runs of the
model, it is ranked the highest. The other three can-
didates all appear only once. Then, based on the
tie-breaker condition, i.e., ordered by confidence
scores returned by the QA system, Wikipedia,
which has the highest score, is selected as the
second candidate answer. These selected answers
move on to the next step human annotation.

2.5 Human Annotation

The candidate answers received from the QbC Se-
lector will be verified by human annotators before
integrated with the KG. Considering the given ex-
ample, the human annotator would open the url
of the website (e.g., anonymous-url-1) in a can-
didate answer tuple, check if the passage indeed
comes from the webpage, then make a judgment
call on whether or not the extracted fact (e.g.,
6-foot-6) is the correct answer.

3 Experiments

Implementation and Dataset. We implemented
the system in python and used PySpark1 for dis-
tributed computation tasks. A randomly sampled
anonymous set from query logs is used to evalu-
ate the proposed framework. It contains queries
(entity-intent pairs) that did not have answers avail-
able in the knowledge graph. The dataset consists
of 3648 unique entities for 2 intents.
Experiment setting. The proposed solution is com-
pared against a baseline system, i.e., the system
without the Query Synthesizer and QbC Selector.
Concretely, the baseline model simply takes an
unanswerable query, sends it to the QA system to

1https://spark.apache.org/docs/latest/api/python/
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Baseline Proposed framework (ours)
Failed Answer Ratio 6.69% 0.10%

Recall 1102/1441 = 76.5% 1418/1441 = 98%
Avg. Answer Confidence Score 0.5734 0.5944

Table 1: Results for intent 1.

Baseline Proposed framework(ours)
Failed Answer Ratio 5.69% 0.07%

Recall 1719/2207 = 77.9% 2183/2207 = 98.9%
Avg. Answer Confidence Score 0.4297 0.4492

Table 2: Results for intent 2.

get the top-p answer candidates, then request hu-
man annotation. For both the baseline system and
the proposed solution, the top-5 (i.e., p = 5) an-
swers from the QA system are requested. In this
comparison study, the following evaluation metrics
are considered:
• Recall - fraction of input queries that can be an-

swered.
• Failed Answer Ratio - fraction of input queries

that result in an empty candidate answer set from
the QA system.

• Answer Confidence - the average confidence
scores of candidate answers provided by the QA
system.

• Inter-annotator agreement (IAA) - given a query
q and a candidate answer set A, the IAA of q and
A is, the fraction of annotators found the correct
answer to the query q from the answer set A, i.e.,

IAAq
A =

# annotators found the answer for q inA
# of annotators reviewed q

,

These metrics evaluate the system in different as-
pects. Recall evaluates that the proposed method
can indeed find more missing facts and increase the
number of answerable queries. The failed answer
ratio is different from recall in the sense that the
former acts as a coverage metric to measure how
well the system can find potential answers (not nec-
essarily correct answers) for an input query. An-
swer confidence serves as a guardrail metric for the
QbC Selector. Candidate answers with more votes
should have higher confidence scores calculated by
the QA system. Finally, IAA is a proxy for evalu-
ating the relevancy of the answer set. Higher IAA
values indicate that the candidate answers have
higher relevancy and quality, hence easier to reach
a consensus among annotators, though not directly
related to recall.

Results. Tables 1 and 2 show that our proposed
framework performs better across all measure-
ments when compared to the baseline.

For both intents, we observed significant recall
boosts indicating that our method is much more
effective than the baseline model at finding the cor-
rect answers for broader input queries. To make
the baseline system reach the parity, an intuitive
approach would be to retrieve more candidate an-
swers, so instead of the top-5, top-10 answers from
the QA systems could be sent to annotators for re-
view. This would substantially increase the amount
of human annotation effort, though a good portion
of it will be used to verify incorrect answers, which
is actually saved by our system. Another observa-
tion is that our approach significantly decreased
the Failed Answer Ratio, which can be explained
by the fact that introducing Query Synthesizer to
generate variations of the input query triggered the
QA system to retrieve candidate answers that might
have been overlooked by the baseline which runs
the QA system only once per query. The average
Answer Confidence score returned by the QA sys-
tem is higher for our framework, which indicates
that when using QbC method more relevant can-
didate answers can be identified. Meanwhile, less
relevant answers with lower confidence scores are
filtered out by the committee vote. Hence, higher
scores indicate higher precision in finding quality
answers to questions.

Table 3 shows the IAA comparison between both
frameworks for the two intents respectively. As
seen in the table, the IAA for our framework is
higher than the baseline, which suggests that the
candidate answers from our framework are more
relevant to the queries, so different annotators come
to an agreement more often. Although the IAA
number increased only by a small margin, keep
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Baseline Ours
IAA(intent 1) 64.81% 65%
IAA(intent 2) 68.89% 70.83%

Table 3: Inter-annotator agreement on an average for
two intents between baseline and our framework.

in mind that our framework has significantly in-
creased the recall than the baseline. This indicates
that our method can find many more answers than
the baseline without degrading the quality of the
answers.

4 Related Work

In (West et al., 2014), the authors adopted a very
similar idea of perturbing the input query, then
they used a search-engine with open web access to
identify diverse answers, and finally aggregated the
answers using scoring model to identify the most
likely answers. Although this work is in same spirit,
the proposed approach is different from theirs in
two ways: first, a much simpler aggregation mech-
anism without the need to train a scoring model
is used, thus the proposed approach is easier to
implement and can work with any QA system; sec-
ond, human-in-the-loop verification is included to
ensure the high quality of identified facts.

In addition to improving the human annotation
effectiveness, reducing human annotation efforts is
another related research topic. A lot of the work try
to solve this problem by introducing a deep learn-
ing or machine learning model(Varga and Lőrincz,
2020). Certain papers also aim to reduce the an-
notation work by selecting only samples that are
optimal to training the model(Zesch et al., 2015).
The proposed solution is different from these works
as this solution does not train new machine learn-
ing models to reduce annotation efforts rather uses
selective sampling.

The use of QbC to identify relevant answers is
also related to the ensemble learning paradigm,
where the goal is to improve the predictive per-
formance of a single model by training multiple
variations and combining their predictions (Sagi
and Rokach, 2018; Dietterich et al., 2002). In fact,
QbC can be viewed as a way to create the ensem-
ble with the specific purpose of using it to identify
uncertain examples for active learning (Melville
and Mooney, 2004; Krogh and Vedelsby, 1994).
Both QbC and ensemble learning require creating a
group of slightly different models so that a diverse

predictions or decisions can be later combined or in-
tegrated to produce more accurate prediction. The
proposed approach was inspired by this idea, and
unlike QbC whose primary focus is to identify un-
certain examples for human annotation to decrease
the uncertainty of the model (Gilad-bachrach et al.,
2005), the goal here is to identify certain examples.

Ranking web search results is an important topic
in elevating user experience. There are various ap-
proaches that try to solve this problem. Aggregated
search results and re-ranking based on similarity
is one of the solutions(Kumar and Nath, 2013).
While this work takes inspiration from the aggre-
gated search results, the proposed solution differs
in the re-ranking aspect. Similarity of web pages is
not checked for, instead the voting mechanism in
the QbC selector to find the best potential answers.

5 Conclusion & Future Work

This paper proposes a new framework that aims
to reduce the efforts of human annotators in the
fact collection process for enriching a knowledge
graph. Empirical observations of the proposed solu-
tion when compared against a baseline framework
demonstrate that the proposed framework has bet-
ter recall, and can identify much more relevant
facts. This framework is easy to implement, pro-
vides an additional automated and scalable layer
of enrichment to web answer retrieval, and gives
a significant boost to the fact collection process in
terms of quality and coverage. Future work shall in-
clude testing the proposed framework within other
domains such as open domain question answering.
Moreover, this framework can significantly boost
the recall, which can help in collecting more la-
beled data to train a model to predict the reliability
of a website given a query’s intent. In this way,
the QA system can be enhanced to provide more
relevant candidate answers.
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Abstract
A phone call is still one of the primary preferred
channels for seniors to express their needs, ask
questions, and inform potential problems to
their health insurance plans. Alignment Health
is a next-generation, consumer-centric organi-
zation that is providing a variety of Medicare
Advantage Products for seniors. We combine
our proprietary technology platform, AVA, and
our high-touch clinical model to provide se-
niors with care as it should be: high quality, low
cost, and accompanied by a vastly improved
consumer experience. Our members have the
ability to connect with our member services
and concierge teams 24/7 for a wide variety of
ever-changing reasons through different chan-
nels, such as phone, email, and messages. We
strive to provide an excellent member experi-
ence and ensure our members are getting the
help and information they need at every touch —
ideally, even before they reach us. This requires
ongoing monitoring of reasons for contacting
us, ensuring agents are equipped with the right
tools and information to serve members, and
coming up with proactive strategies to elimi-
nate the need for the call when possible.

We developed an NLP-based dynamic call rea-
son tagging and reporting pipeline with an op-
timized human-in-the-loop approach to enable
accurate call reason reporting and monitoring
with the ability to see high-level trends as well
as drill down into more granular sub-reasons.
Our system produces 96.4% precision and 30%-
50% better recall in tagging calls with proper
reasons. We have also consistently achieved a
60+ Net Promoter Score (NPS) score, which
illustrates high consumer satisfaction.

1 Introduction

As a consumer-centered healthcare company, we
provide our members with experienced member
services and concierge teams through our contact
center that are available around the clock for a wide
variety of inquiries or potential problems. It is cru-
cial for us to monitor the typical causes of why

members contact us so that we proactively address
the problems or help our members need through
their preferred channel even before they reach out
to us. To this end, during each call, member service
agents take detailed notes on what is discussed dur-
ing the call, the reason for the call, and any actions
taken. They also tag each call with one or more call
reason categories from a pre-defined list that was
initially built by member experience supervisors to
capture call reasons in a more structured manner.
There are several drawbacks and limitations to this
approach:

• High number of calls that are documented as
“General FAQ” or “Other” call reason cate-
gory due to lack of precise reason category
representing the call

• Labor-intensive and not scalable processes to
keep pre-defined call reason categories with
corresponding subcategories manually up-to-
date with high quality while member needs
and potential call reasons are continuously
changing

• Incomplete and inaccurate call reason report-
ing

In this paper, we present a novel NLP-based
multi-layer dynamic topic modeling pipeline, AVA-
TMP, with an effective human-in-the-loop ap-
proach that leverages subject matter experts. It
enables highly accurate and timely call reason log-
ging, monitoring, and reporting, as well as in-
creased first-time resolution rates. Our pipeline
produces a high-quality call reasons list with sub-
reason drill-downs and automatically identifies
newly emerging high-quality topics eliminating
the need for labor-intensive evaluation of high-
volume call notes by the customer service super-
visors. Our pipeline also increases the efficiency
of customer service agents by automatically sug-
gesting a ranked list of relevant topics to tag as
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agents take call notes. The presented pipeline is
not limited to inbound calls, and it is applicable
to omnichannel communications such as emails,
messages, and chats. In the remainder of the pa-
per, we first present the related work in section 2.
Next, we describe our approach and evaluate its
performance using several real-world datasets in
section 3. Then, we evaluate the performance of
our algorithm. Finally, we conclude in section 4.

2 Related Work

It has been a great stride in Natural Language Pro-
cessing (NLP) advancement in recent years for
learning, understanding, and producing human lan-
guage content in more efficient and scalable ways
(Hirschberg and Manning, 2015), such as text sum-
marization (Widyassari et al., 2022), name entity
recognition (Jiang et al., 2016), sentimental analy-
sis (Bhavitha et al., 2017), text classification (Bha-
vani and Kumar, 2021), and topic modeling (Sand-
hiya et al., 2022).

Topic modeling is used to automatically identify
the themes, i.e., topics, in unstructured text datasets
(Blei et al., 2003b; Boyd-Graber et al., 2017), es-
pecially when there is a large volume of document
collections and not enough time. These machine-
generated topics are then used for reporting and
tracking purposes. The traditional topic modeling
pipelines (Chaney and Blei, 2012; Gardner et al.,
2010; Eisenstein et al., 2012) do not allow the users
to refine, clean, or personalize the model-generated
topics hence lack an understanding of the end-user
needs (Smith et al., 2018). The absence of an in-
teractive and human-centered approach to refine
topics and adjust data processing results in bias,
noise, and unexpectedly poor real-world model per-
formance. It is crucial to have an efficient and
effective level of human contribution with AI to
ensure satisfactory model performance.

Previous works have utilized topic modeling
techniques with some level of human intervention
to address customer needs. For example, a study
by Agudelo and Manuel used Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003b) based topic mod-
eling approach to identify topics of inbound call
transcripts for creating a better Interactive Voice
Response (IVR) routing option so that customers
are routed to the right agents (Agudelo and Manuel,
2019). However, they only provide the most im-
portant words to the end users and not the topic.
The users then need to manually identify the topic

associated with the words presented by the model
which can be inconsistent among different users
and adds an additional burden to their workflow.
This process also results in assigning only one topic
to a call which might not be a true representation
of customer needs as one call might have multiple
reasons and resolutions.

Another study by Chen and Wang utilized the
LDA topic modeling technique to extract topics
from chat transcripts between librarians and stu-
dents in order to identify needs, provide help and
allocate resources accordingly (Chen and Wang,
2019). However, this work lacks defining a qualita-
tive performance measurement. Also, they assessed
the quality of the topics intuitively with visualiza-
tions.

Besides topic modeling methods from machine
learning, there are also qualitative analytic meth-
ods, such as grounded theory methodologies (Char-
maz, 2006; Corbin and Strauss, 2008), for iden-
tifying topics in text datasets. Previous work by
Baumer et al. focused on the comparison between
grounded theory and topic modeling (Baumer et al.,
2017). The authors found that the results of the two
methods exhibited a degree of alignment in which
many of the patterns found in the grounded theory
were also represented in the topic modeling results.
However, grounded theory is time-consuming and
resource-intensive. Therefore, it doesn’t scale well
with large datasets.

Different from these previous works, we imple-
mented a novel NLP-based system with human-
in-the-loop stages to accurately tag high-level call
reasons (one or multiple) along with sub-category
drill-downs in a scalable and timely manner for
each call. We also measured the real-world perfor-
mance of our approach and compared it with the
baseline (manual labeling).

3 Methodology

Our comprehensive end-to-end topic modeling
pipeline, AVA-TMP, is illustrated in Figure 1. With
AVA-TMP, we enhance the traditional NLP topic
modeling pipeline with human-in-the-loop stages
to significantly improve reporting accuracy, cre-
ate operational efficiencies and increase member
satisfaction.

Standard high-level topic modeling steps include
Problem definition, Data collection, Data prepara-
tion (tokenization, lemmatization, and stop-word
removal), Modeling, Post-processing & model eval-
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Figure 1: Overview of AVA-TMP human-in-the-loop pipeline: 1) Member experience supervisors create an initial
list of call reasons for member experience agents to choose from. 2) Member experience agents take notes during
calls and also select a reason why member calls from the initial list of reasons in 1). 3) We perform topic modeling
on call notes to identify the reason(s) why members call us. 4) The NLP-based reasons are transferred to member
experience supervisors for evaluation. 5) Member experience supervisors refine and adjust the newly generated list
of reasons by NLP and send it back to step 3) if necessary. 6) Member experience supervisors finalize the new list
of call reasons based on the NLP model. 7) We create a call reason trend reporting dashboard based on the new call
reason list. 8) We refresh the call reason categories in the CRM system so member experience agents can properly
assign reason tags to upcoming calls.

uation, and Model deployment. We altered and
improved the standard topic modeling pipeline in
three ways:

• First, instead of using call transcripts, which
has its own drawbacks and limitations, we use
call notes that are already curated by member
service agents for documentation purposes.
These call notes provide a more contextual
and cleaner description of each call (Figure 1
- step 2).

• Second, our pipeline involves subject matter
experts (SMEs) to refine call reason categories
and sub-reasons to further validate and adjust
topics identified by the model (Figure 1 - steps
5 and 6).

• Third, we introduce a multi-layer dynamic hi-
erarchical topic modeling framework to iden-
tify hierarchical call reasons and sub-reasons
in a flexible manner (Figure 2).

In the following subsections, we describe the
major end-to-end steps from initial data collection
to the final model deployment, and how they are
being used.

3.1 Data Collection

For every member interaction, our member experi-
ence agents take notes summarizing what help or
information the member needs and what action(s)
they take to assist the member. These unstructured
call notes provide more contextual information
about the call and more standardized and cleaner in-
put to our model compared to using call transcripts.
For example, even though actual call conversations
might happen in different languages, all call notes
are captured in English. Furthermore, there might
be incomplete sentences, inaccuracies due to the
performance of voice-to-text translation, and other
complexities to deal with in call transcripts.

Besides capturing call notes, agents also need
to tag each call based on the pre-defined call rea-
son categories. The call reason tagging in this step
can help us with immediate reporting within the
CRM system so that member experience supervi-
sors can view real-time reports on the pre-defined
call reasons as a stopgap measure and respond to
the severity of each issue accordingly. However,
keeping this list up-to-date is labor-intensive and re-
quires member experience supervisors to manually
go through large volume comments, investigate call
reasons, and identify frequent emerging patterns.
As we describe in section 3.4, our model elimi-
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nates the labor-intensive call note reviewing step
and helps to keep the call reasons list continuously
refreshed. These call reason tagging also help us to
measure the real-world performance of our model
on an ongoing basis as described in detail in section
3.5.

3.2 Data Preparation
We clean the unstructured text from agents’ notes
using various standard text pre-processing tech-
niques before feeding it into our model. First, we
remove special characters, punctuation, and stop-
words from the text, and then convert them to low-
ercase. Next, the text is lemmatized to return in-
flected words to their root word. We do not use
stemming as it does not provide any performance
improvement, which is in line with what other re-
searchers found previously (Schofield and Mimno,
2016). Beyond these common text pre-processing
techniques, we clean certain unnecessary and repet-
itive patterns that do not add value to the call tag-
ging process such as confirmed demographics, or
courtesy of callers. The processed dataset is then
fed into the model.

3.3 Topic Modeling
After preparing the data, we utilize commonly used
topic modeling techniques, LDA (Blei et al., 2003b)
and a BERT-based method, BERTopic (Grooten-
dorst, 2022) to achieve the best performance.

To accurately identify the call reason categories
and sub-reason drill-downs, we construct a multi-
layer topic modeling framework (as illustrated in
Figure 2). First, we run the topic modeling with
all the call notes to identify the high-level call rea-
sons. Next, we run separate models to extract sub-
reasons for each high-level call reason using the
subset of call notes associated with the correspond-
ing high-level topic. We repeat this step for another
layer to get a further drill-down of each sub-reason.
This approach gives us the flexibility to set the dif-
ferent number of topics at each stage and fine-tune
the quality of topics. For example, we can start with
50 topics to identify high-level reasons, then in the
next layer we can use 10 topics for sub-reasons,
and finally 5 topics in the third layer to identify
sub-sub-reasons. Each topic generated by the topic
model is accompanied by their corresponding top n
keywords that explain what the topic is about. We
are also able to set different thresholds at each layer
to optimize the quality of keyword groups for each
topic/sub-topic/sub-sub-topic.

Another benefit of this multi-layer approach is
the ability to pick different “n” for “n-gram” con-
struction for the keywords representing each topic.
For example, high-level topics have up to tri-grams
since they are representing high-level reasons while
sub-reasons and sub-sub-reasons are configured to
have longer n-grams. We spent significant effort
tuning parameters for both LDA and BERTopic
within this framework in order to obtain the best
possible results.

We choose BERTopic as our final topic modeling
technique and 50/10/5 topics for different layers
of our multi-layer topic modeling framework as
it produced better performance and significantly
reduced the review time by SMEs in our use case.
Please also note that our multi-layer hierarchical
topic modeling framework allows us to have more
flexibility and control to adjust various parame-
ters and fine-tune the quality compared to built-in
hierarchical topic models like hLDA (Blei et al.,
2003a).

3.4 Subject Matter Expert Evaluation
The NLP-based call reason categories from the
topic modeling step are then passed to the mem-
ber experience team for review (Figure 1 - step 4).
They start evaluating the list of topics, pinpointing
potential issues, identifying bias in the data, and
requesting certain refinements such as grouping
certain topics into one category, eliminating poor
quality and biased topics, and choosing a more
user-friendly topic name. These steps help fine-
tune the NLP model performance and improve the
processes to better understand call trends. This
feedback loop might be repeated a few times till
desired performance is achieved (Figure 1 - steps 3
to 5).

3.5 Performance Evaluation
In this section, we present the experimental results
for our human-in-the-loop topic modeling pipeline,
AVA-TMP. There are different ways to measure
the performance of the topic models (Hoyle et al.,
2021; Chang et al., 2009). We use two different
real-world datasets for our experiments to measure
both precision and recall of our system. We also
compare the performance of the system with the
baseline, which is the previous agent tagging using
the pre-defined call reasons list during the call prior
to developing AVA-TMP.

The first dataset includes randomly selected 500
actual call notes. We run AVA-TMP and generated
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Figure 2: Multi-layer Dynamic Hierarchical Topic Modeling

all the call reasons for each call. As mentioned
earlier, we already have baseline call reasons for
these notes. Three independent SMEs evaluated
both AVA-TMP output and baseline tags. SMEs
reviewed and labeled each call note and correspond-
ing reasons including all the drill-downs as True
Positive (TP) or False Positive (FP). When there
are conflicts among SMEs, we use the majority
vote. We then computed the precision. AVA-TMP
achieved a precision of 96.4% while the baseline
precision was 23.4%.

Secondly, we use a much larger dataset to mea-
sure the recall improvement with the AVA-TMP
system where high-level call reasons overlap with
the baseline. We used 3 years of call notes his-
tory (1M+ calls) and compared the high-level call
reason categories identified by AVA-TMP with the
baseline. AVA-TMP achieves 30% to 50% higher
recall than baseline depending on the high-level
call reason categories. Please note that AVA-TMP
identifies new call reason categories that don’t exist
in the baseline but we didn’t include them in the
recall analysis since the volume was negligible on
a large scale.

3.6 Model Deployment

After generating refined call reason categories and
sub-reason drill-downs (Figure 1 - step 6), we de-
ploy our model to production to tag the upcoming
calls on an ongoing basis for reporting and track-
ing purposes (Figure 1 - step 7). The pre-defined
call reason categories are also updated in the CRM
system accordingly for member experience agents
to utilize (Figure 1 - steps 8).

The AVA-TMP is deployed as a real-time ser-
vice. We run the model on the backend and provide
suggested call reasons for tagging in a ranked order.
Agents can then select one or multiple labels from
the ranked topic list. This process aids the agents
to minimize the time going through the entire list
and decreases human error in the process.

3.7 Reporting & Tracking Call Trends

It is essential to continuously monitor the call
trends to understand members’ needs, proactively
resolve emerging issues, and measure the mem-
ber experience improvements. AVA-TMP provides
timely and accurate call reasons after every call
note is completed. We then feed all these into our
reporting and tracking dashboard to monitor newly
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emerging issues and trends over time (Figure 1 -
step 7).

4 Conclusion

In this paper, we demonstrate a novel topic mod-
eling pipeline, AVA-TMP, that consists of multi-
layer dynamic hierarchical topic modeling with
the human-in-the-loop approach for call analyt-
ics. Our results illustrate having human-in-the-loop
in an advanced NLP pipeline can optimize model
performance, reduce manual tasks in the current
workflows, and improve overall business outcomes
while helping achieve high member satisfaction.

With this framework, we achieved significantly
better performance using real-world datasets for
evaluation. Alignment Health has also consistently
achieved an overall NPS, which is a widely used
metric to measure customer experience, of 60+ as a
Medicare Advantage plan, compared to the industry
average of 30 for healthcare insurance (Ian Luck,
2022; Alignment Healthcare, 2022).

AVA-TMP enables us to have an improved call
reporting and tracking system. We can identify sea-
sonal trends for demands, inquiries, or emerging
issues and develop proactive and systemic plans
for improvement. It also creates operational effi-
ciencies by eliminating the need for various labor-
intensive tasks such as i) having an up-to-date call
reason list, ii) manual call reason tagging, and iii)
manual ad-hoc reports.

Even though we illustrated the AVA-TMP
pipeline on call notes, it is applicable to omnichan-
nel communications such as calls, emails, mes-
sages, and chats. It can be also used on call tran-
scripts in addition to the call notes for improved
outcomes.
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Abstract

Telephone transcription data can be very noisy
due to speech recognition errors, disfluencies,
etc. Not only that annotating such data is very
challenging for the annotators, but also such
data may have lots of annotation errors even af-
ter the annotation job is completed, resulting in
a very poor model performance. In this paper,
we present an active learning framework that
leverages human in the loop learning to iden-
tify data samples from the annotated dataset for
re-annotation that are more likely to contain an-
notation errors. In this way, we largely reduce
the need for data re-annotation for the whole
dataset. We conduct extensive experiments
with our proposed approach for Named Entity
Recognition and observe that by re-annotating
only about 6% training instances out of the
whole dataset, the F1 score for a certain entity
type can be significantly improved by about
25%.

1 Introduction

We describe a Named Entity Recognition (NER)
system that needs to provide realtime functional-
ity in a commercial communication-as-a-service
(CaaS) platform such as displaying information re-
lated to the named entities to a customer support
agent during a call with a customer. The primary
focus for this NER system is to identify product
and organization type entities that appear in En-
glish business telephone conversation transcripts.
Since these transcripts are produced by an auto-
matic speech recognition (ASR) system, they are
inherently noisy due to the nature of spoken com-
munication as well as limitations of the ASR sys-
tem, resulting in dysfluencies, filled pauses, and
lack of information related to punctuation and case
(Fu et al., 2021). These issues make the annotation
of such noisy datasets very challenging for the an-
notators, making the annotation job for such data
more difficult than datasets that contain typed text
(Meng et al., 2021; Malmasi et al., 2022).

To our best knowledge, the publicly available
NER datasets mostly contain typed text. More-
over, there are no existing NER datasets that match
the characteristics of the ASR transcripts in the
domain of business telephone conversations (Li
et al., 2020). Thus, training an NER model in the
context of business telephone transcripts requires
a large annotated version of such data (Fu et al.,
2022b) consisting of product or organization type
entites that usually appear in business conversa-
tions (Meng et al., 2021). However, the difficulties
to understand noisy data may lead to annotation
errors even in the human annotated version of such
data.

To address the above issues, in this paper, we
present an active learning (Ren et al., 2021) frame-
work for NER that effectively sample instances
from the annotated training data that are more likely
to contain annotation errors. Moreover, we also ad-
dress a very challenging task that is not widely
studied in most of the existing NER datasets, dis-
tinguishing between organization and product type
entities. In addition, since the NER model needs
to provide realtime functionality in a commercial
CaaS product, we show how data re-annotation
through our active learning framework can even
help smaller models to obtain impressive perfor-
mance.

2 Related Work

In recent years, transformer-based pre-trained lan-
guage models have significantly improved the per-
formance of NER across publicly available aca-
demic datasets leading to a new state-of-the-art per-
formance (Devlin et al., 2019; Yamada et al., 2020;
Meng et al., 2021). However, there remain several
issues in these existing benchmark datasets. For in-
stance, most of these datasets are constructed from
articles or the news domain, making these datasets
quite well-formed with punctuation and casing in-
formation, along with having rich context around
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Sample Utterance
Exactly, yes, absolutely. Health Insurance USA will pay for your physiotherapy and the prescription that you were taking

previously um-hum only thing you need to do is to go to our branchand fill out the form
required by the insurance company and let me know if you have any questions about the claim process.

You gotta send email to the Netflix team and ask for refund.
The contending discussion of the this guy would setting the TP and other services into the university of Toronto.

The one where we just got to the we’re just about to serve the meeting vegetables and last week’s conference
and then, zoom crash.

Table 1: Example Utterances in Noisy Business Conversations.

the entities. Meanwhile, it has been observed re-
cently that the NER models tend to memorize the
entities in the training data, resulting in improved
entity recognition when those entities also appear
in the test data (Lin et al., 2021). Furthermore, it
has been found that models trained on such aca-
demic datasets tend to perform significantly worse
on unseen entities as well as on noisy text (Boda-
pati et al., 2019; Bernier-Colborne and Langlais,
2020; Malmasi et al., 2022).

To investigate the above issues, Lin et al. (2021)
created adversarial examples via replacing target
entities with other entities of the same semantic
class in Wikidata and observed that existing state-
of-the-art models mostly memorized in-domain en-
tity patterns instead of reasoning from the context.
Since the dataset that we study in this paper is con-
structed from real-world business phone conversa-
tions, there are many entities that may appear only
in our test set as well as in real-world production
settings that do not appear in the training set.

Note that due to the presence of speech recogni-
tion errors as well as annotation errors, training a
model to be more generalized to detect the unseen
entities in noisy conversations is fundamentally
more challenging than above body of work. In
addition, annotating such noisy datasets are also
more difficult and expensive (Fu et al., 2021). In
such scenarios, techniques such as Active Learning
(Ren et al., 2021), that samples only a few instances
from the given dataset for annotation could be very
effective to train deep learning models. In this pa-
per, we also investigate how active learning can
be leveraged to fix the data annotation errors via
utilizing an effective human in the loop learning.

3 Dataset Construction

The dataset used in this paper is constructed from
transcripts produced by an ASR system (see Table 1
for some sample utterances). Thus, our dataset may
miss many punctuation marks while only consist-
ing of partial casing information. This makes the

# Examples Train Dev Test
Utterances 55,522 7,947 15,814
Person tags 34,859 4,825 10,270
Product tags 36,553 5,292 10,851

Organization tags 23,942 3,720 6,785
GPE Location tags 22,697 3,309 6,533

Table 2: Labeled in-domain dataset class distribution.

entity recognition on this dataset very challenging
since casing information gives a very strong hint
of a token being a named entity (Bodapati et al.,
2019; Mayhew et al., 2019).

For data annotation, at first, we sampled 78,983
utterances containing human to human business
telephone conversation transcripts and sent to Ap-
pen1 for annotation. We asked the annotators in
Appen to label four types of entities: person name,
product, organization, and geopolitical location.
The detailed statistic of the dataset labeled by Ap-
pen is shown in Table 2.

The initial selection criteria for the annotators
is that they were required to be fluent in English.
Moreover, the annotators had to pass a screening
test where they were given some sample utterances
to annotate the named entities. Based on their per-
formance in the screening test, they were selected
for the annotation job to ensure better quality for
data annotation.

4 Proposed Active Learning Framework

Suppose, there is a sequence S = s1, s2, ..., sn
containing n words. For each token si, the se-
quence tagging model will assign the most rele-
vant tag tj (based on the highest probability score
predicted by the model) from a list of m tags
T = t1, t2, t3, ..., tm. While constructing a se-
quence tagging dataset (i.e., NER dataset) from
our business conversation data, we ask the annota-
tors to annotate each token with the most relevant
tag. Due to the nature of our dataset, there is a
high risk of annotation errors. Thus, in this paper,

1https://appen.com/
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Algorithm 1 The Active Learning Framework
Folds: {1, 2, 3, 4, 5}
ReAnnotationSet:{}
T : Threshold_V alue

1: for Fold in Folds do
2: PredictionSet ← samplePredictionData()
3: TrainingSet ← sampleTrainingData()
4: Model← trainModel(TrainingSet)
5: for utterance in PredictionSet do
6: results←Model.Predict(utterance)
7: for entity, p_tag in results do
8: g_tag ← getGoldTag(entity, utterance)
9: p_prob_score← getProbScore(p_tag)

10: g_prob_score← getProbScore(g_tag)
11: if p_prob_score− g_prob_score > T then
11: ReAnnotationSet.add(utterance)
12: end if
13: end for
14: end for
15: end for

our objective is to reduce the annotation errors that
may occur in noisy datasets via utilizing active la-
beling. Below, we demonstrate our proposed active
learning framework.

N-fold Experiments: Given a dataset containing
N examples, M fold experiments can be run in
the following way to select some samples from the
training set that are more likely to contain anno-
tation errors. In each fold, use X% data from the
training set as the prediction data (without replace-
ment). Also, the prediction set in each fold should
only contain distinct examples (i.e., the examples
that do not appear in any other fold’s prediction set)
such that combining all the prediction sets together
covers all the training instances.

In Algorithm 1, we present our framework via
demonstrating a 5 fold experiments. The sampled
data in each fold will be as follows: 80% data in
each fold will contain the training set while 20%
data in each fold will contain the prediction set.
Moreover, the prediction data in each fold should
contain those examples only that do not appear in
any other prediction set.

For model training, we fine-tune a BERT-based-
cased model on each fold of the training data. In
this way, we fine-tune 5 BERT-based-cased models
on the training data of 5 different folds. Then each
trained model is utilized to predict the NER tags
(p_tag refers the predicted tag in Algorithm 1) on
the prediction data in their respective folds. Finally,
we select some instances from the prediction set
for re-annotation based on the following method.

Probability Thresholding: We utilize predicted
probabilities to select instances from the pre-
diction set for re-annotation. For an entity
in an example utterance in the predicted set of
the training data, if the predicted tag is p_tag,
with the probability score predicted by the NER
model for that tag is p_prob_score and the pre-
dicted probability score for the gold entity is
g_prob_score, then if the probability score differ-
ence between p_prob_score and g_prob_score is
more than a threshold T (where p_prob_score >
g_prob_score), then we add that utterance in our
data re-annotation set.

Human in the Loop: Once the data re-
annotation set is constructed, it can be sent to the
annotators for re-labeling. At first, the annotators
can decide whether the given tags for an utterance
are correct or not. If they think it is incorrect, then
they are asked to re-annotate the utterance. In this
way, we speed up the annotation process. Note that
for data re-annotation, Labelbox2 was used.

5 Model Architecture

We use two models in two stages to run our experi-
ments. In stage 1, we fine-tune a BERT-base-cased
model (Devlin et al., 2019; Laskar et al., 2019) on
each fold of the dataset to identify the instances
that are more likely to contain annotation errors.
After re-annotating those instances, we run another
experiment (i.e., stage 2) in the updated version of
the training set containing the instances that are se-
lected for re-annotation along with other instances
(i.e., the instances that were not selected for re-
annotation). Note that the model trained on stage 2
is the one that is used for production deployment.
For this reason, we choose the DistilBERT-base-
cased (Sanh et al., 2019) model for stage 2 since
it is more efficient than BERT while also being
significantly smaller, making it more applicable for
industrial scenarios. A general overview of our
proposed approach is shown on Figure 1.

5.1 Stage 1: N-fold BERT Fine-Tuning for
Re-Annotation

In this section, we describe our N-fold experiments
with the BERT-base-cased model to sample the
instances for data re-annotation. Though our pro-
posed Active Learning Framework is applicable for
all type of entities: Product, Organization, GPE Lo-
cation, and Person; in practice, we observe during

2https://labelbox.com/
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Figure 1: Our proposed approach: (a) at first, we do fine-tuning using the BERT on the originally annotated dataset
to identify utterances where the difference between the predicted probability score for the Organization tag and the
gold tag is above a certain threshold T, (b) Next, we fine-tune the DistilBERT model on the updated version of the
dataset that is re-annotated in Stage 1. For the given utterance “He worked at Google and Microsoft”, suppose the
original tag for the token “Google” was B-PROD but during N-fold experiments we get the predicted tag as B-ORG,
if the predicted probability score difference between the predicted tag and gold tag is above threshold T, then we
select that utterance for re-annotation.

Type Original Dataset Re-Annotated Dataset
Precision Recall F1 Precision Recall F1

Person 79.30 79.68 79.73 80.82 78.20 79.49
GPE Location 79.78 79.86 79.82 82.72 79.89 81.28

Product 75.94 74.08 75.01 77.26 74.82 76.02
Organization 48.27 42.45 45.18 60.47 52.50 56.21

Overall (all 4 types) 83.49 81.47 82.41 85.10 82.26 83.66

Table 3: Performance of DistilBERT in the original version and the re-annotated version of the dataset.

our N-fold experiments that most of the times when
there is a huge difference between the probability
score of the predicted tag and the gold tag is when
the predicted tag is organization type tag. Thus,
when sampling the data for re-annotation, we focus
on those utterances that are more likely to contain
annotation errors for organization type entities and
ask the annotators to re-annotate them. Moreover,
focusing on annotation errors in organization type
entities also helps our model to better distinguish
between product and organization type entities.

In this way, we sample 3166 utterances for re-
annotation out of 55,222 training samples that are
more likely to contain annotation errors for orga-
nization type entities. To sample these utterances,
we define a threshold and measure the difference
in probability score between the predicted ‘orga-
nization’ tag and the gold tag. If the probability
score difference is above that threshold, we con-
sider this utterance as more likely to contain anno-
tation errors and select it for re-annotation. For this
experiment, we set the threshold3 value T = 2.0.

3We also tried other values but T = 2 performed the best.

5.2 Stage 2: DistilBERT Fine-Tuning for
Production Deployment

Since our goal is to deploy an NER model in pro-
duction for real-time inference while utilizing lim-
ited computational resources, we need to choose a
model that is fast enough and also requires mini-
mum computational memory. For this reason, we
choose DistilBERT (Sanh et al., 2019) as it is much
faster and smaller than the original BERT (Devlin
et al., 2019) model (though a bit less accurate).

After re-annotation is done for the sampled ut-
terances in Stage 1, we update the labels of those
utterances. Then, we fine-tune the DistilBERT-
base-cased model in the re-annotated training data.

6 Results and Analyses

We conduct experiments in the original version of
the dataset as well as the re-annotated version of
the dataset using DistilBERT. During experiments,
we run 5 epochs with the training_batch_size
set to 64. The learning_rate was set to 1e − 4
with the max_sequence_length being set to 200.

We show our experimental results in Table 3 to
find that for all entity types, the Precision score
is increased when the model is trained on the re-
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Type DistilBERT DistilBERTdtft
Precision Recall F1 Precision Recall F1

Person 80.82 78.20 79.49 82.06 82.46 82.26
GPE Location 82.72 79.89 81.28 82.90 83.29 83.09

Product 77.26 74.82 76.02 77.23 75.44 76.33
Organization 60.47 52.50 56.21 61.97 55.55 58.59

Overall (all 4 types) 85.10 82.26 83.66 85.41 84.04 84.73

Table 4: Performance of DistilBERT and DistilBERTdtft in the re-annotated version of the dataset.

annotated version of the dataset. Moreover, except
the Person type entity, Recall and F1 scores are
also improved. Out of all 4 types of entities, we
observe the highest performance improvement in
terms of the organization type entity. This is ex-
pected since we sample data for re-annotation tar-
geting the annotation errors in organization type
entities. Meanwhile, we observe improvement in
most other entities in addition to organization since
the annotators were also asked to re-annotate the
utterance even if there are annotation errors on any
other entity types. By only re-annotating about
6% of the training data using our proposed active
learning framework, we observe improvement: i)
for Organization: 25.27%, 23.67, 24.41%, and (ii)
Overall (for all 4 types): 0.73%, 0.97%, and 1.52%,
in terms of Precision, Recall, and F1 respectively.

The performance gain using our proposed ac-
tive learning framework also makes this technique
applicable for production deployment. To further
improve the performance, we utilize the distill-then-
fine-tune (dtft) architecture from Fu et al. (2022b)
that achieves impressive performance on noisy
data. Similar to their knowledge distillation (Hin-
ton et al., 2015; Fu et al., 2022b) technique, we
first fine-tune the teacher LUKE (Yamada et al.,
2020) model on our re-annotated training set and
generate pseudo labels for 483,766 unlabeled utter-
ances collected from telephone conversation tran-
scripts. Then, we fine-tune the student DistilBERT
model in this large dataset of pseudo labels as well
as the re-annotated training set via leveraging the
two-stage fine-tuning mechanism (Fu et al., 2022b;
Laskar et al., 2022c). We show the result in Ta-
ble 4 to find that the DistilBERTdtft model further
improves the performance and so we deploy this
model in production.

7 Conclusion

In this paper, we propose an active learning frame-
work that is very effective to fix the annotation
errors in a noisy business conversation data. By
sampling only about 6% of the training data for

re-annotation, we observe a huge performance gain
in terms of Precision, Recall, and F1. Moreover,
re-annoating the data using the proposed technique
also helps the NER model to better distinguish be-
tween product and organization type entities in
noisy business conversational data. These findings
further validate that our proposed approach is very
effective in limited budget scenarios to alleviate
the need of human re-labeling of a large amount of
noisy data. We also show that a smaller-sized Dis-
tilBERT model can be effectively trained on such
data and deployed in a minimum computational
resource environment. In the future, we will inves-
tigate the performance of our proposed technique
on other entity types, as well as on other tasks (Fu
et al., 2022a; Laskar et al., 2022a,b) similar to NER
(Fu et al., 2022b) containing noisy data.

Ethics Statement

The data used in this research is comprised of ma-
chine generated utterances. To protect user pri-
vacy, sensitive data such as personally identifiable
information (e.g., credit card number, phone num-
ber) were removed while collecting the data. We
also ensure that all the annotators are paid with
adequate compensation. There is a data retention
policy available for all users so that data will not
be collected if the user is not consent to data col-
lection. Since our model is doing classification to
predict the named entities in telephone transcripts,
incorrect predictions will not cause any harm to the
user besides an unsatisfactory experience. While
annotator demographics are unknown and therefore
may introduce potential bias in the labelled dataset,
the annotators are required to pass a screening test
before completing any labels used for experiments,
thereby mitigating this unknown to some extent.
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Abstract

Automated methods for analyzing public opin-
ion have grown in popularity with the prolifer-
ation of social media. While supervised meth-
ods can be very good at classifying text, the
dynamic nature of social media discourse re-
sults in a moving target for supervised learn-
ing. Meanwhile, traditional unsupervised tech-
niques for extracting themes from textual repos-
itories, such as topic models, can result in incor-
rect outputs that are unusable to domain experts.
For this reason, a non-trivial amount of research
on social media discourse still relies on manual
coding techniques. In this paper, we present an
interactive, humans-in-the-loop framework that
strikes a balance between unsupervised tech-
niques and manual coding for extracting latent
arguments from social media discussions. We
use the COVID-19 vaccination debate as a case
study, and show that our methodology can be
used to obtain a more accurate, interpretable
set of arguments when compared to traditional
topic models. We do this at a relatively low
manual cost, as 3 experts take approximately 2
hours to code close to 100k tweets.

1 Introduction

Public opinion plays an important role in the mak-
ing of policy in pluralistic and democratic societies,
as it allows the will of citizens to be heard and ac-
counted for (Smith, 1942; Verba, 1995). As social
media has become one of the main outlets for po-
litical and civic engagement (Rainie et al., 2012),
there is a growing body of work focused on auto-
matically analyzing public opinion on social media.
The applications studied include identifying the
sentiment towards specific governmental measures
(Cortis and Davis, 2019; Wang et al., 2020), de-
tecting and analyzing morally charged statements
about current events (Hoover et al., 2020; Pacheco
et al., 2022), exploring how ordinary citizens frame
political issues (Mendelsohn et al., 2021), and con-
trasting the stances expressed in social media with

(a) Identifying and Naming Arguments

(b) Refining Arguments

Figure 1: Interactive Framework

public opinion surveys (Joseph et al., 2021). In
all of these cases, the variables of interest are well
defined, and substantial efforts are dedicated to cre-
ating manually annotated resources. In other words,
we know which issues, governmental measures, or
frames are of interest, and the problems can be
framed as supervised learning tasks.

In this paper, we take a step back and tackle
the problem of defining the space of relevant vari-
ables to analyze public opinion online. Given a
widely debated topic, we put the focus on uncover-
ing repeating arguments surrounding discussions
on Twitter. Uncovering general themes from col-
lections of unstructured textual resources is a com-
mon goal for researchers and practitioners across
various disciplines. Unsupervised techniques, like
topic models and clustering methods, have been the
de-facto NLP solution to this problem (Blei et al.,
2003; Boyd-Graber et al., 2017; Sia et al., 2020).
While widely used, these methods often produce
topics that are clearly incorrect to domain experts
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(Mimno et al., 2011). For this reason, and despite
the popularity of contemporary NLP techniques, a
non-trivial number of recent studies on social me-
dia discourse rely on manual, qualitative coding
methods instead (Valle et al., 2020; Nguyen et al.,
2021; Hagen et al., 2022).

In this work, we strike a balance between unsu-
pervised NLP techniques and manual coding by
adopting a humans-in-the-loop approach. We use
the Twitter debate surrounding the COVID-19 vac-
cine as a case study, and present an interactive
framework to discover and define the space of ar-
guments frequently cited as reasons to refuse or
accept the vaccine. Our framework is designed
to address two main challenges: 1) Given a large
collection of tweets, how can experts effectively
explore the data and identify a set of repeating ar-
guments, and 2) Given a known space of high-level
arguments, how can experts create and refine a rep-
resentation that improves the mapping from tweets
to arguments. For example, in Fig. 1a we can ob-
serve an initial clustering of arguments provided
by the system. Our initial goal is to obtain a re-
sulting set of named arguments with high-quality
examples as identified by the experts. Similarly, In
Fig. 1b we can observe two overlapping arguments.
Our next goal is to source explanations from the
experts that result in a better mapping from tweets
to arguments. This can be achieved by expanding
and refining the theme representation according to
the explanations provided. The expected result is a
comprehensive set of high-level arguments that ex-
plain the discussion about the COVID-19 vaccine,
and a partial mapping from tweets to their most
likely argument.

To tackle our goals, we design and implement
a simple protocol that allows groups of experts
to work together towards this goal, and introduce
an interactive tool equipped with operations to
facilitate the discovery and refinement of argu-
ments in large language resources. Our work is
related to interactive systems that leverage clus-
tering techniques to help users discover relevant
topics (Bernstein et al., 2010), systems that exploit
visualization techniques to label data interactively
(Bernard et al., 2017, 2018; Vajiac et al., 2022), and
human-in-the-loop topic modeling approaches that
let users refine discovered topics (Hu et al., 2011;
Lund et al., 2017; Smith et al., 2018). The main dif-
ferences between these systems and our work are
that: 1) we do not assume a known space of rele-

vant labels, 2) we let experts drive and influence the
topic discovery procedure in addition to support-
ing the exploration, and 3) we support open-ended
feedback from experts in natural language.

Our experiments show that our framework can
be used to uncover a set of arguments that cover a
large portion of the discussion about the COVID-19
vaccine on Twitter, and that the resulting mapping
from tweets to argument is fairly accurate with re-
spect to human judgements. Additionally, we use
the dataset of tweets about the COVID-19 vaccine
released by Pacheco et al. (2022), which is anno-
tated for vaccination stance and morality frames,
and show that the high-level arguments obtained
using our methodology have higher correlations
with vaccination stance and moral sentiments than
topics obtained using traditional topic models.

2 Interactive Framework

We propose a simple protocol that combines NLP
techniques, interactive interfaces and qualitative
methods to assist experts in characterizing large
tweet repositories about the COVID-19 vaccine.
Our protocol takes a large repository of tweets and
automatically proposes an initial partition of the
data, such that tweets that are thematically similar
are clustered together. We provide experts with
an interactive interface equipped with a set of ex-
ploratory operations that allows them to evaluate
the quality of the discovered clusters, as well as to
further explore and partition the space by inspect-
ing individual examples, finding similar tweets, and
using open text queries. As they interact with the
data through interface, a group of experts work
together following an inductive thematic analysis
approach to identify and code the patterns that
emerge within the partitions (Braun and Clarke,
2012). Next, they group the identified patterns into
general arguments, and instantiate them using the
interface. Although intuitively we could expect a
single cluster to result in a single argument, note
that this is not enforced. Experts maintain full free-
dom as to how many arguments they instantiate,
if any. Once an argument is created, experts are
provided with a set of operations to explain the
argument using natural language, select good ex-
ample tweets, or write down additional examples.
At any point during the process, experts can toggle
a procedure that assigns tweets to arguments.
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Operations Description

Finding
Clusters

Experts can find clusters in the space of unassigned tweets.
To do this, we run a clustering algorithm using the tweet
representations described in Sec. ??. We support the K-
means (Jin and Han, 2010) and Hierarchical Density-Based
Clustering (McInnes et al., 2017) algorithms. For all results
presented in this paper, we use the K-means algorithm.

Text-based
Queries

Experts can type any query in natural language and find
tweets that are close to the query in the embedding space.

Finding Sim-
ilar Tweets

Experts have the ability to select each tweet and find other
examples that are close in the embedding space.

Table 1: Discovery Operations

2.1 Interactive Tool
To support our interactive framework, we devel-
oped a tool for experts to interact with a large num-
ber of tweets. The tool is a simple GUI equipped
with a finite set of exploratory and intervention
operations. Exploratory operations allow experts
to discover clusters of tweets and further explore
and partition the space, and to evaluate the quality
of the discovered clusters and the grounded state-
ments. Intervention operations allow experts to
name the discovered patterns, as well as to provide
examples and judgements to improve the quality of
the initial partitions.

Representing Tweets and Arguments: We rep-
resent tweets using their Sentence BERT embed-
ding (Reimers and Gurevych, 2019). We represent
arguments using a handful of explanatory phrases
and a small set of examples, and calculate their
SBERT embeddings. Note that our tool is agnos-
tic of the representation used, as the underlying
embedding objective can be easily replaced.

Exploratory Operations: These operations al-
low experts to inspect the current state of the sys-
tem, both to evaluate the quality of the tweet-
argument mappings, as well as to explore the data
and discover new emerging arguments. We divide
exploratory operations in two types: discovery op-
erations and quality assurance operations. Discov-
ery operations allow users to explore the space of
tweets and get a sense of what arguments emerge
in the data. We enumerate them in Tab. 1. Quality
assurance operations allow users to evaluate the
quality of the discovered clusters and the grounded
tweets. We enumerate them in Tab. 2.

Intervention Operations: These operations al-
low experts to introduce knowledge into the system
to improve the discovery and grounding of emerg-
ing arguments. We enumerate them in Tab. 3.

Cropped screenshots demonstrating all of these

Operations Description

Listing Ar-
guments and
Examples

Experts can browse the current list of arguments and their
grounded examples. Examples are ranked in order of “good-
ness”, corresponding to the similarity in the embedding
space to the argument representation. Examples are listed
from closest to most distant, or from most distant to closest.

Visualizing
Local Expla-
nations

Experts can visualize aggregated statistics and explanations
for each of the grounded arguments. To obtain these ex-
planations, we aggregate all instances that have been iden-
tified as being associated with a theme. Explanations in-
clude wordclouds, frequent entities and their sentiments,
and graphs of feature distributions.

Visualizing
Global Ex-
planations

Experts can visualize aggregated statistics and explanations
for the global state of the system. To do this, we aggregate
all instances in the database. Explanations include argument
distribution, coverage statistics, and 2-Dimensional t-sne
plots (van der Maaten and Hinton, 2008).

Table 2: Quality Assurance Operations

operations can be observed in Appendices, A.1,
A.2 and A.3. Additionally, we include screenshots
of the full view of all pages in our GUI in Ap-
pendix A.4.

Operations Description

Adding and
Removing
Arguments

Experts can create and remove arguments. The only re-
quirement for creating a new argument is to give it a unique
name. Similarly, arguments can be removed at any point. If
any instances are assigned to an argument being removed,
they will be assigned to the “Unknown” argument.

Adding and
Removing
Examples

Experts can assign “good” and “bad” examples to existing
arguments. Good examples are instances that characterize
the named argument. Bad examples are instances that could
have similar wording to a good example, but that have
different meaning. Experts can add examples in two ways:
they can mark grounded tweets as “good” or “bad”, or they
can directly contribute example phrases.

Table 3: Intervention Operations

Argument Grounding: At any point during in-
teraction, experts can toggle a procedure that as-
signs tweets to arguments. We use a simple
distance-based approach for this purpose. To mea-
sure the closeness between a tweet and an argu-
ment, we compute the cosine distance between the
tweet and all of the explanatory phrases and ex-
amples for the argument, and take the minimum
distance score among them. Before this operation
is called for the first time, all tweets belong to un-
named clusters. In other words, they remain unas-
signed. Once this operation is called, we assign
tweets to their closest argument if and only if the
newly computed distance is less than or equal to
the distance to its previous assignment. Previous
assignments can correspond either to different ar-
guments, or to the unnamed space. Note that this
way, some tweets can remain unassigned.
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3 Case Study

As a case study, we look at tweets written about
the COVID-19 vaccine on Twitter. We collected
a corpus of 85,000 tweets that mentioned the vac-
cine. To avoid repetitions, we filter out all retweets
ahead of time. The collected tweets are uniformly
distributed between January and October, 2021.
All tweets in our corpus are written in English, and
were posted by users located in the United States.
Our main goal is to use the framework introduced
in Sec. 2 to identify repeating themes in this corpus,
and construct a set of high-level arguments that are
frequently used to justify stances on the vaccine.

For our study, we recruited six experts in Nat-
ural Language Processing and Computational So-
cial Science, four male and two female, within the
ages of 25 and 45. The experts included gradu-
ate students, postdoctoral researchers and faculty.
To evaluate the different components of our frame-
work, we performed a two-stage analysis. In the
first stage, we simplify the problem and assume
that we have an initial, known set of high-level ar-
guments, and let three of the experts focus on the
challenge of interactively refining the arguments
and grounding them in the large Twitter corpus.
In the second stage, we remove this assumption
and have the remaining three experts discover the
space of relevant arguments from scratch. Below,
we present each of these scenarios in detail and per-
form both qualitative and quantitative evaluations
to assess the outcome of the interaction.

3.1 Stage 1: Mapping Tweets to Arguments
In this stage, we assume that we know what is
the set of relevant arguments, and our main goal
is to improve the mapping between tweets and ar-
guments. We build on previous work on health
informatics studying the arguments made by Twit-
ter users in Poland when discussing the COVID-19
vaccine (Wawrzuta et al., 2021). This work intro-
duces a code-book of 13 main arguments defined
using short phrases in natural language (Tab. 4).

We start by mapping the collection of 85k tweets
to the Wawrzuta et al. (2021) arguments using the
distance between their SBERT embeddings. Then,
we let the experts interact with the system follow-
ing the protocol outlined in Sec. 2. Below, we
outline the interactive sessions performed by the
three experts in detail.

Interactive Sessions: The three experts started
by looking at the global visualizations. Then, they

1 Lack of trust in the government
2 The vaccine will be dangerous to health
3 The COVID-19 vaccine disease does not exist
4 I do not want to be vaccinated because I have freedom of choice
5 The vaccine was created for the profit of pharmaceutical companies
6 Natural methods of protection are better than the vaccine
7 The vaccine does not work
8 The vaccine is not properly tested, it was developed too quickly
9 No one is responsible for the potential side effects of the vaccine
10 Mentioning past development of the swine-flu vaccine
11 The vaccine existed before the epidemic, there is too much resistance
12 Conspiracy theories, hidden vaccine effects (e.g. chips)
13 Positive attitude towards the vaccine

Table 4: 13 Arguments Proposed by Wawrzuta et al.
(2021)

PRO
VAX

government distrust, vaccine dangerous, covid fake, vaccine
oppression, pharma bad, natural immunity effective, vaccine
against religion, vaccine does not work, vaccine not tested,
bill gates’ micro chip, vaccine tested on dogs, vaccine has
fetal tissue, vaccine makes you sterile

ANTI
VAX

government trust, vaccine safe, covid real, vaccine not op-
pression, pharma good, natural immunity ineffective, vac-
cine not against religion, vaccine works, vaccine tested

Table 5: Resulting Arguments

inspected the arguments one by one, looking at the
local explanations and the 10 closest and 10 fur-
thest tweets from each argument. Next, they were
involved in a discussion phase to identify argu-
ments that were present in the data, but not covered
by the Wawrzuta et al. (2021) set, as well as the
argumentation patterns that the system failed to
identify for each of the arguments. This process
was done in two one-hour sessions.

Initially, the experts focused on adding miss-
ing arguments and removing arguments that were
not frequently referenced in the data. For exam-
ple, they noticed that the Wawrzuta et al. (2021)
set contained mostly anti-vaccine arguments, and
added the positive counterpart for each argument
(e.g. “The vaccine is dangerous” ⇒ “The vac-
cine is safe”). In addition to this, they observed
and added new arguments such as “The vaccine is
against my religion”, and separated “Conspiracy
theories and hidden effects” into sub-arguments re-
lated to particular conspiracy theories, such as “The
vaccine contains fetal tissue”, and “The vaccine
makes you sterile”. They also removed infrequent
arguments, such as The swine-flu vaccine, and came
up with shorter names/identifiers for each one of
the arguments. The resulting set of arguments can
be observed in Tab. 5.

Next, the experts turned their attention to iden-
tifying the argumentative patterns that were not
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being captured by the given argument descriptions.
They did this by looking at assignments to other
arguments that appeared to be a mismatch, as well
as inspecting low confidence assignments. Here,
the coders followed a qualitative thematic analysis
approach to code relevant patterns. For example,
in the case of “vaccine oppression”, the experts
noted that tweets that included legal terms were
not being captured, as well as sarcastic expressions,
and tweets that had explicit mentions to discrimina-
tion and oppression. They followed this process for
every argument, and coded the missing argumen-
tative patterns. Then, each expert contributed a set
of 2-5 examples for each argument. In Appendix
A.5 we include tables enumerating the full list of
coded patterns and contributed phrases.

Evaluation: To evaluate the performance of our
tweet to argument mapping in the dataset of 85k
unlabeled tweets, we sorted the tweets according
to their semantic distance to their assigned argu-
ments, computed the three quartiles, and sampled
a set of 12 tweets per argument such that 3 tweets
are randomly sampled from each interval. Then,
we manually annotated whether the mapping was
correct or not. We did this both for the initial map-
ping, before any interaction, and for the resulting
mapping, after interaction. This resulted in 156
tweets and 264 tweets, respectively.

To evaluate the performance at different degrees
of semantic distance to the argument embedding,
we perform the evaluation at each quartile. Re-
sults for the first quartile (Q1) correspond to the
25% closest examples. For the second quartile
(Q2), they correspond to the 50% closest examples,
and for the third quartile (Q3), to the 75% clos-
est examples. Intuitively, we expect better average
performance the lower the distance is between the
tweets and the argument. Results are outlined in
Tab. 6. While both before and after interaction
we have comparable performance for the semanti-
cally closest tweets, performance degrades faster
using the initial set of arguments. This result makes
sense, given that for the Wawrzuta et al. (2021) set
we are only relying on one short phrase to repre-
sent arguments. The positive impact of refining
arguments interactively by enriching the argument
representation is clear.

Given that we can characterize arguments as the
reasons cited by people to accept or refuse the
COVID-19 vaccine, we consider assignments to
be better if they are more cohesive (e.g. if they are

Iter. # Args Q1 Q2 Q3 All

Before Interaction 13 89.36 73.81 60.87 52.05
After Interaction 22 88.52 84.87 81.98 80.27

Table 6: Argument F1 w.r.t Human Judgements

more strongly correlated with vaccination stance).
To evaluate this, we perform a correlation test be-
tween the identified arguments and the stance ex-
pressed in the tweet (i.e. pro or anti-vaccine). To
do this, we use the set of 750 tweets annotated for
stance and moral foundations released by Pacheco
et al. (2022). We calculate the Pearson correla-
tion matrices and present them in Fig. 2. We com-
pare the arguments obtained interactively with the
seed set of manual arguments (Wawrzuta et al.,
2021), and with a set of topics extracted using La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
a generative, unsupervised topic modeling tech-
nique that allows a set of textual instances to be ex-
plained by unobserved groups of words that explain
their similarity. We can observe that our refined
arguments (Fig. 2d) have higher, more accurate cor-
relations with vaccination stances and than both the
original set of arguments (Fig. 2b) and the derived
LDA topics (Fig. 2a, 2c). For example, we find
that in the initial arguments baseline, both “Vac-
cine Doesn’t Work” and “Covid Fake” have a high
correlation with the “pro-vax” stance, which is op-
posite from what would be expected. This behavior
is corrected after interaction.

3.2 Stage 2: Uncovering Latent Arguments

In this stage, we address the challenge of discover-
ing the space of arguments that emerge from our
corpus of 85k tweets about the COVID-19 vaccine.
Unlike the scenario presented before, we do not
assume any prior knowledge, and we make no as-
sumptions about the number of relevant arguments
or what they ought to be. Our main goal is to let the
three experts leverage our interactive framework to
find a set of relevant arguments, as well as a final
mapping from tweets to arguments.

The main challenge in this stage is to obtain a set
of arguments that accounts for as many tweets as
possible, while maintaining the cohesiveness of the
partitions and the accuracy of tweet to argument
assignments. Below, we explain the interactive
process in detail and present an evaluation of the
results obtained.
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(a) Baseline: 10 LDA Topics (b) Baseline: Manual (Wawrzuta et al., 2021)

(c) Baseline: 20 LDA Topics (d) Ours: After Interaction

Figure 2: Correlations between arguments and stance

Interactive Sessions: To initialize the system,
the experts started by using the clustering operation
to find 10 initial clusters of roughly the same size.
First, they examined the clusters one by one, look-
ing at the examples closest to the centroid. This
was followed by a discussion phase, in which the
experts coded the argumentative patterns observed.
If one or more cohesive patterns were identified,
the experts created a new argument, named it, and
marked a set of good example tweets that helped
to characterize the named argument. In Appendix
A.6 we include a table showing each initial clus-
ter, the argumentative patterns identified, and the
named arguments chosen by the experts during the
discussion phase. When a pattern was not obvious,
the experts explored similar instances to the differ-
ent tweets found. Whenever the similarity search
resulted in a new pattern, the experts coded it and
created a new argument.

Next, the experts looked at the local argument
explanations and repeated a process similar to the
first stage, by enhancing each argument with addi-
tional example phrases. Note that each argument al-
ready contained a small set of representative tweets,
which were marked as “good” in the previous step.
Finally, the experts toggled the nearest neighbors

operation to map tweets to arguments.
We performed two iterations of this process. In

the second iteration, the experts used the clustering
operation again over the set of tweets that remained
unassigned to existing arguments. Then, they re-
peated the full process a second time to uncover
new arguments. The full table outlining the clus-
ters, coded patterns and resulting arguments for the
second iteration are also provided in Appendix A.6.

Evaluation: As in the previous stage, we evalu-
ate the performance of our tweet to argument map-
ping by sampling a random set of 12 tweets per
argument after each iteration of interaction, 3 from
each interval. This resulted in a set of 108 tweets
for iteration 1 and 192 tweets for iteration 2. Then,
we manually annotated whether the mapping was
correct or not. To evaluate the performance at dif-
ferent degrees of semantic distance to the argument
embedding, we perform the evaluation at each quar-
tile. Results are outlined in Tab. 7.

As expected, we obtained higher F1 scores for
tweets that are the closest to the arguments in the
embedding space. In addition to the F1 scores,
we also look at the percentage of tweets that are
covered by the set of arguments uncovered by the
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Iter. # Args Coverage Q1 Q2 Q3 All

1 9 9.3% 89.80 87.50 87.50 85.71
2 16 22.9% 90.91 87.06 84.34 77.32

Table 7: Argument F1 w.r.t Human Judgements

experts after each iteration. We remind the reader
that we do not enforce that all tweets need to be
mapped to arguments, and therefore some tweets re-
main unassigned. There is a degradation in perfor-
mance after subsequent iterations, as we increase
both the number of arguments and the amount of
tweets mapped. However, we find that the gain in
coverage is proportionally greater than the drop in
performance (x2.5 vs. x1.1). The intuition behind
performing subsequent iterations is that we force
the system to look at new, previously ignored parti-
tions of the data to find new arguments. In future
work, we would like to study how to estimate the
optimal number of iterations, as well as when to
decide to stop exploring the unassigned space.

4 Conclusions

We presented an initial step towards an interactive,
humans-in-the-loop framework for uncovering la-
tent arguments in social media discourse. We im-
plemented a simple protocol that allows groups
of experts to work together efficiently to create a
comprehensive code-book of high-level arguments,
and developed a GUI with a set of computational
operations to streamline their coding process. We
used the COVID-19 vaccine debate as a case study,
and showed that by applying subsequent runs of
our methodology, experts can obtain a comprehen-
sive set of arguments that account for a reasonable
slice of the data without sacrificing performance.
Additionally, we showed that our resulting set of
arguments is cleaner and more explainable than
themes obtained with topic modeling approaches.
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A Appendix

In this section, we include cropped screenshots of
the different operations outlined in Section 2.1, as
well as full screenshots of all the views of the GUI.
Additionally, we include tables with the full results
of the qualitative thematic analysis procedures.

A.1 Discovery Operations

Figure 3: Text-based Queries
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Figure 4: Finding Similar Tweets

A.2 Quality Assurance Operations

Figure 5: Listing Arguments and Examples

Figure 6: Visualizing Local Explanations: Word Cloud
Example for The Vaccine Doesn’t Work

(a) Top Positive Entities

(b) Top Negative Entities

Figure 7: Visualizing Local Explanations: Most Fre-
quent Positive and Negative Entities for Bad Govern-
mental Policies

(a) Stance

Figure 8: Visualizing Local Explanations: Attribute
Distribution for The Vaccine Doesn’t Work. Note that
attributes can be predicted using external resources. In
this case, we predicted stance using a classifier trained
on hashtags, as described in (Pacheco et al., 2022).
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Figure 9: Visualizing Global Explanations: Argument
Distribution

Figure 10: Visualizing Global Explanations: Coverage

Figure 11: Visualizing Global Explanations: 2D t-SNE

A.3 Intervention Operations

Figure 12: Adding New Themes

Figure 13: Marking Instances as Good

Figure 14: Adding Good Examples

A.4 Full Screenshots
Full screenshots of the page views of our GUI can
be seen in Figures 15, 16, 17, 18, 19, 20, 21
and 22

A.5 Stage 1: Coded Patterns and Contributed
Phrases

Coded patterns for each argument can be observed
in Tab. 8. The resulting list of added and removed
arguments, as well as their contributed phrases can
be observed in Tabs. 9 and 10.

A.6 Stage 2: Argumentative Codes and
Resulting Arguments

The clusters for the first iteration of interaction,
the coded argumentative patterns and the resulting
arguments can be observed in Tab. 11. The same
content for the second iteration of interaction can
be observed in Tab. 12.
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Argument Argumentative Patterns

GovDistrust Add phrases with strong word for distrust
“Good at being bad”
Explicit negations

GovTrust Hedging phrases (sort-of trust)
VaxDanger Closer connection between vaccine words and danger words (related to sickness, bad effects)

Explit negations
Rhetorical questions
Refusing the vaccine for medical reasons

VaxSafe Explicit mentions of safety
Explicit negations

CovidFake Stronger relevant negative words (fake, scam, hoax)
Explicit negations

CovidReal Trust the science
References to Covid hospitalization on the rise, explicit mentions of hospitals
Explicit negations

VaxOppression Legal language
Explicit mentions of discrimination and oppression
Sarcasm

VaxNotOppression Justifying mandates
Freedom to be protected
Criticizing others using “you/people” language, focus freedom on me/my/I

BigPharmaAnti Stronger words against pharmaceutical companies (corrupt, evil)
Not accountable / irresponsible past behavior
Mentions of negative side-effect of other products (cancer)

BigPharmaPro Trust science/research and vaccine development process
Language about intent, the vaccine was created to do something good, explicit names of companies

NaturalImmunityPro The vaccine is not enough
Explicit mentions to population immunity, herd immunity and antibodies

NaturalImmunityAnti Emphasis on global look, collective entities, society
Natural immunity characterized as dangerous or not effective
Mentions of experts and trusting science

VaxAgainstReligion I put it in god hands (god is deciding)
Treating pro-vax as another religion

VaxNotAgainstReligion “Religious” in quotes
Bugus exemptions
“Where is your faith”
Call to action: get tested/get vaccinated/put a mask on (mentions of compassion)
No religion ask members to refuse vaccine

VaxDoesntWork Reference to “magic vaccine”
“Never developed”, “doesn’t work”
Questions: why are deaths high? Why is corona not going away? Why are vaccinated people dying?

VaxWorks “ask a doctor”, consult with an expert
Research on the vaccine is good/has been going on for a long time
Capture differences, e.g. “good trials” vs. rushed ones.

VaxNotTested Language suggesting “rushed through trials” and “experimental vaccine”
VaxTested trust the research and development process

Testing can be confused with covid-test, use other language.

Table 8: Coded Argumentative Patterns for Stage 1
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Arguments Contributed Phrases

GovDistrust

"lack of trust in the government", "Fuck the government", "The government is a total failure",
"Never trust the government", "Biden is a failure", "Biden lied people die",
"The government and Fauci have been dishonest", "The government always lies",
"The government has a strong record of screwing things up", "The government is good at screwing things up",
"The government is screwing things up", "The government is lying", "The government only cares about money",
"The government doesn’t work logically", "Do not trust the government",
"The government doesn’t care about people’s health", "The government won’t tell you the truth about the vaccine"

VaxDanger

"the vaccine will be dangerous to health", "Covid vaccines can cause blood clots",
"The vaccine is a greater danger to our children’s health than COVID itself",
"The vaccine will kill you", "The experimental covid vaccine is a death jab",
"The covid vaccine causes cancer", "The covid vaccine is harmful for pregnant women and kids",
"The vaccine increases health risk", "The vaccine isn’t safe",
"What are vaccines good for? Nothing, rather it increases risk",
"I and many others have medical exemptions", "The vaccine is dangerous for people with medical conditions",
"I won’t take the vaccine due to medical reasons", "The vaccine has dangerous side effects"

CovidFake

"Covid-19 disease does not exist", "Covid is fake", "covid is a hoax", "covid is a scam",
"covid is propaganda", "the pandemic is a lie", "covid isn’t real", "I don’t think that covid is real",
"I don’t buy that covid is real", "I don’t think there is a pandemic",
"I don’t think the pandemic is real", "I don’t buy that there is a pandemic"

VaxOppression

"I do not want to be vaccinated because I have freedom of choice"
"Forcing people to take experimental vaccines is oppression",
"The vaccine has nothing to do with Covid-19, it’s about the vaccine passport and tyranny",
"The vaccine mandate is unconstitutional", "I choose not to take the vaccine",
"My body my choice", "I’m not against the vaccine but I am against the mandate",
"I have freedom to choose not to take the vaccine", "I am free to refuse the vaccine",
"It is not about covid, it is about control", "Medical segregation based on vaccine mandates is discrimination",
"The vaccine mandate violates my rights", "Falsely labeling the injection as a vaccine is illegal",
"Firing over vaccine mandates is oppression", "Vaccine passports are medical tyranny",
"I won’t let the government tell me what I should do with my body", "I won’t have the government tell me what to do"

BigPharmaAnti

"the vaccine was created only for the profit of pharmaceutical companies",
"We are the subjects of massive experiments for the Moderna and Pfizer vaccines",
"Pharmaceutical companies are corrupt", "The pharmaceutical industry is rotten", "Big Pharma is evil",
"How would you trust big pharma with the COVID vaccine? They haven’t been liable for vaccine harm in the past",
"Covid vaccines are not doing what the pharmaceutical companies promised",
"Pharmaceutical companies have a history of irresponsible behavior",
"I don’t trust Johnson & Johnson after knowing their baby powder caused cancer for decades"

NatImmunityPro

"natural methods of protection against the disease are better than vaccines",
"Herd immunity is broad, protective, and durable",
"Natural immunity has higher level of protection than the vaccine", "Embrace population immunity",
"I trust my immune system", "I have antibodies I do not need the vaccine", "Natural immunity is effective"

VaxAgainstReligion

"The vaccine is against my religion", "The vaccines are the mark of the beast", "The vaccine is a tool of Satan",
"The vaccine is haram", "The vaccine is not halal",
"I will protect my body from a man made vaccine", "I put it all in God’s hands", "God will decide our fate",
"The vaccine contains bovine, which conflicts with my religion",
"The vaccine contains aborted fetal tissue which is against my religion",
"The vaccine contains pork, muslims can’t take the vaccine", "Jesus will protect me",
"The vaccine doesn’t protect you from getting or spreading Covid, God does", "The covid vaccine is another religion"

VaxDoesntWork
"the vaccine does not work", "covid vaccines do not stop the spread",
"If the vaccine works, why are deaths so high?", "Why are vaccinated people dying?",
"If the vaccine works, why is covid not going away?"

VaxNotTested

"the vaccine is not properly tested, it has been developed too quickly",
"Covid-19 vaccines have not been through the same rigorous testing as other vaccines",
"The Covid vaccine is experimental", "The covid vaccine was rushed through trials",
"The approval of the experimental vaccine was rushed", "How was the vaccine developed so quickly?"

VaxExperimentDogs
"Animal shelters are empty because Dr Fauci allowed
experimenting of various Covid vaccines/drugs on dogs and other domestic pets",
"Fauci tortures dogs and puppies"

BillGatesMicroChip
"The covid vaccine is a ploy to microchip people",
"Bill Gates wants to use vaccines to implant microchips in people",
"Globalists support a covert mass chip implantation through the covid vaccine"

VaxFetalTissue "There is aborted fetal tissue in the Covid Vaccines", "the Covid vaccines contain aborted fetal cells"
VaxMakeYouSterile "The covid vaccine will make you sterile", "Covid vaccine will affect your fertility"
NoResponsibility no one is responsible for the potential side effects of the vaccine
SwineFluVax mentioning the past development of the swine flu vaccine
VaxResistance the vaccine has existed before the Covid-19 epidemic, now there is too much resistance
ConspiracyTheories conspiracy theories, hidden vaccine effects (e.g., chips)

Table 9: AntiVax arguments and contributed phrases. Arguments that were added during interaction are shown in
blue. Arguments that were removed are shown in red. The original definitions/examples are presented in bold.
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Arguments Contributed Phrases

GovTrust

"We trust the government", "The government cares for people",
"We are thankful to the government for the vaccine availability",
"Hats off to the government for tackling the pandemic",
"It is a good thing to be skeptical of the government, but they are right about the covid vaccine",
"It is a good thing to be skeptical of the government, but they haven’t lied about the covid vaccine",
"The government can be corrupt, but they are telling the truth about the covid vaccine",
"The government can be corrupt, but they are not lying about the covid vaccine"

VaxSafe

"The vaccine is safe", "Millions have been vaccinated with only mild side effects",
"Millions have been safely vaccinated against covid", "The benefits of the vaccine outweigh its risks",
"The vaccine has benefits", "The vaccine is safe for women and kids", "The vaccine won’t make you sick",
"The vaccine isn’t dangerous", "The vaccine won’t kill you",
"The covid vaccine isn’t a death jab", "The covid vaccine doesn’t harm women and kids"

CovidReal

"Covid is real", "I trust science", "Covid death is real",
"The science doesn’t lie about covid", "Scientist know what they are doing",
"Scientist know what they are saying", "Covid hospitalizations are on the rise",
"Covid hospitalizations are climbing as fourth stage surge continues",
"Covid’s death toll has grown faster", "Covid is not a hoax", "The pandemic is not a lie",
"The pandemic is not a lie, hospitalizations are on the rise"

VaxNotOppression

"The vaccine mandate is not oppression because vaccines lower hospitalizations and death rates",
"The vaccine mandate is not oppression because it will help to end this pandemic",
"The vaccine mandate will help us end the pandemic",
"We need a vaccine mandate to end this pandemic", "I support vaccine mandates",
"If you don’t get the vaccine based on your freedom of choice,
don’t come crawling to the emergency room when you get COVID",
"If you refuse a free FDA-approved vaccine for non-medical reasons,
then the government shouldn’t continue to give you free COVID tests",
"You are free not to take the vaccine, businesses are also free to deny you entry",
"You are free not to take the vaccine, businesses are free to protect their customers and employees",
"If you choose not to take the vaccine, you have to deal with the consequences",
"If it is your body your choice, then insurance companies should stop paying for your hospitalization costs for COVID"

BigPharmaPro

"I trust the science and pharmaceutical research", "Pharmaceutical companies are not hiding anything",
"The research behind covid vaccines is public", "The Pfizer vaccine is saving lives",
"The Moderna vaccines are helping stop the spread of covid",
"The Johnson and Johnson vaccine was created to stop covid",
"Pharmaceutical companies are seeking FDA approval", "Pharmaceutical companies are following standard protocols"

NatImmunityAnti

"Only the vaccine will end the pandemic",
"Vaccines will allow us to defeat covid without death and sickness",
"The vaccine has better long term protection than to natural immunity", "Natural immunity is not effective",
"Natural immunity would require a lot of people getting sick",
"Experts recommend the vaccine over natural immunity"

VaxReligionOk

"The vaccine is not against religion, get the vaccine", "No religion ask members to refuse the vaccine",
"Religious exemptions are bogus",
"When turning in your religious exemption forms for the vaccine, remember ignorance is not a religion",
"Disregard for others’ lives isn’t part of your religion",
"Jesus is trying to protect us from covid by divinely inspiring scientists to create vaccines"

VaxWorks

"The vaccine works", "Vaccines do work, ask a doctor or consult with an expert",
"The covid vaccine helps to stop the spread", "Unvaccinated people are dying at a rapid rate from Covid-19",
"There is a lot of research supporting that vaccines work",
"The research on the covid vaccine has been going on for a long time"

VaxTested

"Covid vaccine research has been going on for a while", "Plenty of research has been done on the covid vaccine",
"The technologies used to develop the Covid-19 vaccines
have been in development for years to prepare for outbreaks of infectious viruses",
"The testing processes for the vaccines were thorough didn’t skip any steps", "The vaccine received FDA approval"

ProVax positive attitude

Table 10: ProVax arguments and contributed phrases. Arguments that were added during interaction are shown in
blue. Arguments that were removed are shown in red. The original definition/examples are presented in bold.
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Cluster Experts Rationale New Named Arguments

K-Means 0 Discusses what the vaccine can and cannot do. VaxLessensSymptoms
Emphasis in reducing COVID-19 symptoms in case of infection
(“like a bad cold”). Contains tweets with both stances.

K-Means 1 A lot of mentions to political entities. GovBadPolicies
Politicians get in the way of public safety

K-Means 2 A lot of tweets with mentions and links. GovGoodPolicies
Not a lot of textual context.
Some examples thanking and praising governmental policies.
Theme added upon inspecting similar tweets

K-Means 3 Overarching theme related to vaccine rollout.
Mentions to pharmacies that can distribute, -
distribution in certain states,
places with unfulfilled vax appointments.
Too broad to create a theme

K-Means 4 Broadcast of vaccine appointments. VaxAppointments
Which places you can get vaccine appointments at.

K-Means 5 “I got my vaccine” type tweets GotTheVax
K-Means 6 Mixed cluster, not a clear theme in centroid. VaxDoesntWork

Two prominent flavors: the vaccine not working and UnjustifiedFearOfVax
people complaining about those who are scared of vaccine.

K-Means 7 Tweets look the same as K-Means 5 -
K-Means 8 Tweets about development and approval of vaccines VaxApproval
K-Means 9 Tweets related to common vaccine side-effects VaxSideEffects

Table 11: First Iteration: Patterns Identified in Initial Clusters and Resulting Arguments

Cluster Experts Rationale New Named Arguments

K-Means 0 Tweets weighting health benefits/risks, but different arguments.
(e.g. it works, doesn’t work, makes things worse...) -
Too broad to create a theme.

K-Means 1 Messy cluster, relies on link for information. -
K-Means 2 Relies on link for information. -
K-Means 3 A lot of mentions to government lying and misinformation. AntiVaxSpreadMisinfo

“misinformation” is used when blaming antivax people. ProVaxLie
“experts and government are lying” is used on the other side. AltTreatmentsGood
References to alt-treatments on both sides. AltTreatmentsBad
Text lookup “give us the real meds”, “covid meds”

K-Means 4 Some examples are a good fit for old theme, VaxDoesntWork. -
Other than that no coherent theme.

K-Means 5 Tweets about free will and choice. FreeChoiceVax
Text lookup “big gov”, “free choice”, “my body my choice” FreeChoiceOther
Case “my body my choice” - a lot of mentions to abortion
People using covid as a metaphor for other issues.

K-Means 6 Almost exclusively mentions to stories and news. -
K-Means 7 Availability of the vaccine, policy. VaxEffortsProgression

Not judgement of good or bad, but of how well it progresses.
K-Means 8 Assign to previous theme GotTheVax -
K-Means 9 Vaccine side effects. -

Assign to previous theme, VaxSymptoms

Table 12: Second Iteration: Patterns Identified in Subsequent Clusters and Resulting Arguments
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Figure 15: Cluster/Recluster Page

Figure 16: Listing Arguments Page: Named Argument View

Figure 17: Listing Arguments Page: Unnamed Cluster View
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Figure 18: Visualizing Arguments Page

Figure 19: Visualizing Arguments Page: Scroll Down for Local Explanations
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Figure 20: Visualizing Arguments Page: Scroll Down for Local Explanations 2

Figure 21: Visualizing Global Explanations Page
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Figure 22: Visualizing Global Explanations Page: Scroll Down for Distributions

111



Proceedings of the Fourth Workshop on Data Science with Human-in-the-Loop (Language Advances), pages 112 - 121
December 8, 2022 ©2022 Association for Computational Linguistics

User or Labor: An Interaction Framework for Human-Machine
Relationships in NLP

Ruyuan Wan
University of Notre Dame

rwan@nd.edu

Naome Etori
University of Minnesota
etori001@umn.edu

Karla Badillo-Urquiola
University of Notre Dame

kbadill3@nd.edu

Dongyeop Kang
University of Minnesota
dongyeop@umn.edu

Abstract

The bridging research between Human-
Computer Interaction and Natural Language
Processing is developing quickly these years.
However, there is still a lack of formative guide-
lines to understand the human-machine inter-
action in the NLP loop. When researchers
crossing the two fields talk about humans, they
may imply a user or labor. Regarding a hu-
man as a user, the human is in control, and
the machine is used as a tool to achieve the
human’s goals. Considering a human as a la-
borer, the machine is in control, and the hu-
man is used as a resource to achieve the ma-
chine’s goals. Through a systematic literature
review and thematic analysis, we present an in-
teraction framework for understanding human-
machine relationships in NLP. In the frame-
work, we propose four types of human-machine
interactions: Human-Teacher and Machine-
Learner, Machine-Leading, Human-Leading,
and Human-Machine Collaborators. Our analy-
sis shows that the type of interaction is not fixed
but can change across tasks as the relationship
between the human and the machine develops.
We also discuss the implications of this frame-
work for the future of NLP and human-machine
relationships.

1 Introduction

Research at the intersection of Natural Language
Processing (NLP) and Human-Computer Interac-
tion (HCI) is developing rapidly. Humans and ma-
chines are now both engaged in each step of the
end-to-end NLP pipeline (Wang et al., 2021; Wu
et al., 2022). NLP systems are trained on data
created and annotated by humans, such as news
articles (Da San Martino et al., 2019), Wikipedia
pages (Faruqui et al., 2018), product reviews (Bad-
lani et al., 2019), and social media posts (Joseph
et al., 2021). Yet, humans are also empowered

by NLP systems, such as writing assistants (Chen
et al., 2012), collaborative text revision (Du et al.,
2022), and translators (Gu et al., 2016). Nonethe-
less, humans and machines play distinct roles in
these scenarios. From the HCI perspective, re-
searchers usually consider humans as the users of
certain technology within the interaction, while
many NLP researchers emphasize the labor respon-
sibility of humans to improve the performance of
NLP models in tasks.

Humans and machines naturally have differ-
ent strengths, such as trustworthiness, automation,
and assessment ability (Shneiderman, 2020; Maes,
1995). Humans stand out for trustworthiness, while
machines are known for automation. Both humans
and machines have the competence to evaluate each
other, given their own specialties.

While more and more interdisciplinary research
and systems are being built to bridge the HCI and
NLP fields, we still lack a normative understand-
ing of how human and machine interaction works
within the NLP context. More importantly, does the
interaction work well? To fill this gap, we address
two main research questions:

RQ1: How does human-machine interaction
happen in NLP?

RQ2: How do humans and machines interact
with each other in NLP?

We address our research questions by conduct-
ing a systematic literature review on the interac-
tive NLP research from leading HCI and NLP
venues. Our goal was to define a generalizable
human-machine interaction framework in NLP to
explain current implementation, guide the design
of human-machine interaction, and inspire future
research in interactive NLP systems. Based on our
synthesis, we defined three properties of interac-
tion: continuity, variety of interaction options, and
medium (RQ1). We also conceptualized four re-
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lationships summarizing the roles of human and
machine interaction patterns in different scenarios:
Human-Teacher and Machine-Learner, Machine-
Leading, Human-Leading, and Human-Machine
Collaborators (RQ2). We used these properties and
conceptualizations to contribute a theoretical inter-
action framework for human-machine relationships
in NLP. Future research from HCI and NLP can
use this framework to design and evaluate human-
machine interaction for human and machine needs
within their role and responsibility.

2 Related Work

Traditionally, NLP models are trained, fine-tuned,
and tested on existing datasets before being de-
ployed to solve real-world problems. While HCI
research usually involves users designing, devel-
oping, implementing, and evaluating systems. To
encourage collaboration between HCI and NLP,
combining both approaches is required for success-
ful ’HCI+NLP’ applications (Heuer and Buschek,
2021). Further, Heuer and Buschek (2021) pro-
posed five methods for designing and evaluat-
ing HCI+NLP Systems: user-centered NLP, co-
creating NLP, crowdsourcing, and user models.

The human-machine interaction in NLP focuses
on how people interact with machines and how
NLP systems can be designed to support humans.
In recent years, many researchers and practitioners
have made significant advances in interactive NLP
systems, such as text classification (Godbole et al.,
2004), text summarization (Passali et al., 2021),
semantic parsing and entity linking (Liang et al.,
2020; He et al., 2016; Klie et al., 2020; Zhong and
Chen, 2020), dialogue systems (Sanguinetti et al.,
2020; Liu et al., 2018), topic modeling (Smith et al.,
2018).

Wang et al. (2021) summarized recent human-
in-the-loop NLP work based on their tasks, goals,
human interactions, and feedback learning methods.
According to Wang et al. (2021), a good human-
in-the-loop NLP system must clearly communicate
to humans what the model requires, provide user-
friendly interfaces for collecting feedback, and ef-
fectively learn from it. For example, humans can
provide various types of feedback, such as train-
ing data providers, annotations, and evaluators of
the system’s output to improve the model’s perfor-
mance, interpretability, or usability.

Also, it is vital to understand the constraints
of collecting and interpreting human inputs cor-

rectly. Many design considerations influence the
efficiency and effectiveness of interactive learning
from human feedback (Cui et al., 2021). For ex-
ample, noise caused by human error (such as when
a human teacher fails to provide the conventional
ground truth) could be challenging in designing
human-machine interaction systems. In addition,
data collected from humans may be poor quality
Hsueh et al. (2009). Social bias Fiske (2019) can
also be introduced automatically during data col-
lection Garrido-Muñoz et al. (2021) and language
model training, which emerging the need of de-
veloping fair and responsible models Hutchinson
et al. (2020); Mehrabi et al. (2021). Therefore, it is
critical to appropriately interpret collected human
data and analyze the effects of various interaction
types on learning outcomes (Cui et al., 2021).

3 Survey and Analysis Methods

We conducted a systematic literature review to un-
derstand the types of interactions humans and ma-
chines have within the NLP and HCI context. To se-
lect the targeted papers, we searched from ACL an-
thology (NLP database) and ACM Digital Library
(HCI database) for articles that have been pub-
lished over the last two years and included papers
with keywords such as ’human-in-the-loop,’ ’in-
teractive,’ ’collaborative,’ ’active learning,’ ’HCI +
NLP,’ ’human-machine,’ and ’human-AI.’ We also
searched for workshops held in ACL or ACM con-
ferences, such as HCI+NLP in EACL 2021(Blod-
gett et al., 2021). Further, we conducted a back-
ward reference search on the articles we found to
identify any additional missing articles. This re-
sulted in a total of 73 papers at the intersection of
NLP and HCI. We narrowed down our search to
only include articles that made algorithmic contri-
butions, system contributions, or empirical contri-
butions. We excluded papers that only contributed
opinions, theories, surveys, or datasets. This re-
sulted in a total of 54 papers.

Next, we included only papers that had simulta-
neous interactions between humans and machines.
We discarded 21 articles that had no interaction,
or the interaction between the human and machine
was asynchronous. This resulted in a final set of 33
articles included in our analysis.

Further, We conducted a thematic analysis
(Braun and Clarke, 2012) of our dataset. We began
by reading through each article and taking notes
on observations and insights regarding the inter-
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Relationships Papers

Human-Teacher,
Machine-Learner

OUG Wiechmann et al. (2021), IUG Stiennon et al. (2020),
IVN Jandot et al. (2016), IVM Wallace et al. (2019),

IVM Liu et al. (2018), IVM Settles (2011), IVM Godbole et al. (2004)

Machine-Leading

OUG Khashabi et al. (2020), OUG Lawrence and Riezler (2018),
IUG Lertvittayakumjorn et al. (2020), IUG He et al. (2016),

IUN Liang et al. (2020), IVG Simard et al. (2014),
IVM Lo and Lim (2020), IVM Smith et al. (2018), IVM Ross et al. (2021)

Human-Leading
SUN Bhat et al. (2021), SUN Rao and Daumé III (2018),

SVG Kim et al. (2021), SVM Coenen et al. (2021),
IVM Chung et al. (2022), IVM Passali et al. (2021)

Human-Machine
Collaborators

OUG Kreutzer et al. (2018), OUN Khashabi et al. (2021), OVG Head et al. (2021),
SUN Ashktorab et al. (2021), IVG Karmakharm et al. (2019),

IVN Hancock et al. (2019), IVN Van Heerden and Bas (2021), IVN Klie et al. (2020),
IVM Clark and Smith (2021), IVM Trivedi et al. (2019), IVM Kim et al. (2019),

Table 1: Human-Machine Relationships Mapping Interaction Properties: The properties of the interaction in each
paper are coded by the first letter of their three interaction properties: O/S/I represents

One-time/Sequential/Iterative. U/V represents Unitary/Various. G/N/M represents GUI/NUI/MUI.

actions between humans and machines. We used
these notes to develop a set of guiding questions
that helped us generate our initial codes:

• What is the frequency of the interaction?
• What are the different ways humans can inter-

act with machines?
• In what form does the interaction take place?
• Who starts the interaction?
• Who ends the interaction?
• Who benefits from the interaction?

4 Findings

After iterating on our codes informed by the guid-
ing questions, we conceptualized the codes into
two major dimensions: 1) the properties of human-
machine interaction based on the first three ques-
tions, and 2) the types of human-machine relation-
ships based on the last three questions. Table 1
summarizes the mapping between our dimensions,
codes, and dataset.

4.1 Properties of Interaction
Within our first dimension, we identified three ma-
jor properties of how interactions happen, which ad-
dress the first three guiding questions respectively:
1) continuity, 2) variety of interaction options, and
3) medium of interactions.

4.1.1 Continuity
Continuity measures the frequency of interaction
which can be one-time, sequential, or iterative, to
perform a single task.

One-time interaction is when the human-
machine interaction is designed to happen just
once, usually in active learning. For example, Ac-
tiveAnno (Wiechmann et al., 2021) offers annota-
tion generator functionality: human annotators will
manually label documents at the beginning; if it
reaches a threshold of the annotation generator, it
will trigger the machine annotation generator to
label the remaining documents in the project.

Sequential interaction means that one agent acts
first, and the other responds. Furthermore, the latter
interactions are based on the previous exchanges.
Over multiple rounds to complete the project, the
interaction and the model will not update. For
example, in the word guessing game to study the
effects of communication directionality (Ashktorab
et al., 2021), the machine and human play as giver
and guesser by giving word hints and word guess-
ing together to let the guess win the game in 10
rounds. The human player is playing with the same
machine player in each game, but previous rounds
influence the words given in later rounds.

Iterative interaction: the model performance im-
proves through iterating over several interactions.
For example, the Interactive Classification and Ex-
traction (ICE) system enables humans to define
the appropriate features through interactive fea-
tures while humans can monitor their classifier’s
progress(Simard et al., 2014). Researchers usually
set up a limitation of the rounds of the interaction
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for experiments, but they show that theoretically,
the continuous interaction (either sequential or iter-
ative interactions) can continue with no end.

4.1.2 Variety of Interaction Actions
Variety represents the number of ways humans can
interact with machines. Some interactions are lim-
ited to a specific task (unitary), while some are
flexible to multiple options (various).

Unitary interaction is a single option of the inter-
action action, like labeling data (Wiechmann et al.,
2021), having humans perform one action to eval-
uate submissions (Khashabi et al., 2021), ranking
candidate questions (Rao and Daumé III, 2018),
giving natural language responses to query (Liang
et al., 2020), or selecting an answer from the multi-
choice questions (Lertvittayakumjorn et al., 2020;
He et al., 2016).

Various interaction is that there are multiple op-
tions for an interaction action. Humans can select
what to do from multiple options, such as choosing
continuation writing, rewriting, or filling in an inter-
active editor (Coenen et al., 2021). In CYOA (Clark
and Smith, 2021), human has many options, such as
deleting suggestions, submitting suggestions as-is,
or writing a new suggestion.

4.1.3 Medium of Interactions
Medium in interactive NLP systems can be Graphi-
cal User Interfaces (GUI), Natural Language User
Interfaces (NUI), or Mixed User Interfaces (MUI):

Graphical User Interfaces (GUI) allow humans
to select given options or highlight text. Such as,
in FIND (Lertvittayakumjorn et al., 2020), humans
answer multiple-choice questions about whether
a given word cloud is relevant to a class to dis-
able irrelevant hidden features. Journalist-in-the-
loop (Karmakharm et al., 2019) uses a web-based
interface rumour analysis that takes user feedback.
(Kreutzer et al., 2018) collects reinforcement sig-
nals from humans using a 5-star rating interface.

Natural Language User Interfaces (NUI) let the
agent respond with natural language. For instance,
GENIE (Khashabi et al., 2021) uses text generation
tasks. Liang et al. (2020) ’s ALICE utilizes con-
trastive natural language explanations to improve
data efficiency in learning.

Mixed User Interfaces (MUI) contain both
graphical and natural language interfaces. For ex-
ample, in the Interactive NLP in Clinical Care

(Trivedi et al., 2019), physicians can add or re-
move highlighted predicted sentences in a report
and write natural language feedback in a separate
box. Also, Wordcraft allows humans to start writ-
ing with a prompt and change text and selection
options for machine editing in the side GUI (Co-
enen et al., 2021). In CYOA (Clark and Smith,
2021), a human can write a storyline alone and
delete suggestions, while models provide sugges-
tions of the story, and then the human can submit
the suggestion. Participants are asked to score on
a Likert-scale and open-ended questions about the
systems and suggestions they received after sub-
mitting their stories. In DUALIST (Settles, 2011)
humans can label documents by clicking the appro-
priate class from the drop-down menus below each
text, In addition, each column has a text box where
users can "inject" domain knowledge by typing in
random words. Users must click a large submit but-
ton at the top of the screen to retrain the classifier
and get a new set of queries. Smoothed dictionary
features (Jandot et al., 2016) use a methodology to
solicit features from humans or teachers. In Passali
et al. (2021) human has the option to view visual-
ization and choose different decoding strategies.

4.2 Relationships of Human and Machine

For our second dimension, we conceptualized four
relationships (each based on the last three guid-
ing questions): 1) Human-Teacher and Machine-
Learner, 2) Machine-Leading, 3) Human-Leading,
and 4) Human-Machine Collaborators.

Human-Teacher and Machine-Learner When
humans initiate the interaction, then machines learn
from humans to mimic the task, after that, humans
evaluate and give feedback on the machines’ learn-
ing results in the end. Through this interaction,
humans benefit from machines’ automation in fin-
ishing tasks, and machines also benefit from learn-
ing to improve their performance.

For instance, humans annotate and label data
at the beginning in ActiveAnno (Wiechmann
et al. (2021)), ICE (Simard et al. (2014)), DUAL-
IST (Settles, 2011) and HIClass (Godbole et al.,
2004). Once the machine has learned enough from
the human annotation, it can predict labels for
the remaining documents. In Trick-Me-If-You-
Can (Wallace et al., 2019), human authors are
guided to break the model by writing adversar-
ial questions, and the machine exposes the pre-
dictions and interpretations of the answers to hu-
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Figure 1: Interaction Framework for Human-Machine relationships in NLP

mans. In smoothed dictionary features (Jandot
et al., 2016), the machine elicits dictionary features
from a teacher or human.

Machine-Leading Machines initiate interactions
with their optimal competence, then humans re-
spond with suggestions, and later, machines iterate
on the task based on the intermediate suggestions.
From the interaction, machines benefit from hu-
mans’ knowledge in improving their own capacity,
while humans don’t earn anything from the process.

For instance, ALICE (Coenen et al., 2021),
FIND (Lertvittayakumjorn et al., 2020), Interac-
tive NLP in clinical care (Trivedi et al., 2019),
and Human-in-The-Loop Parsing (He et al., 2016),
have a baseline model to perform the correspond-
ing NLP tasks. Then human steps into interactively
selecting useful features, promoting machine learn-
ing efficiency. In Interactive Entity Linking (Lo and
Lim, 2020), an instance chooses mentions for hu-
man annotation using an active learning approach.
The goal is to improve entity linking accuracy while
updating the embedding model. The machine trig-
gers the interaction, the human assists the machine
in the annotation process, and human annotation
feedback is used to update the model. Finally, high
machine accuracy determines the end of the inter-
action process.

Human-Leading Humans initiate the task, then
machines give suggestions based on their pre-
trained expertise, later, humans select the way they
want to interact with machines. Via the interaction,
humans gain help from machines, but machines
don’t take any benefit from these interactions.

Like Wordcraft (Coenen et al. (2021)), human
plays the lead role because human triggers the in-
teraction by writing a prompt, selecting collabora-
tive writing options, and eventually deciding what
to write and when to end. In Towards Human-
Centered Summarization (Passali et al., 2021), hu-
man actively participates and takes a leading role
in the summarization process, such as deciding on
the decoding strategies during the inference stage,
choosing visualization color and viewing visualiza-
tion of the attention weights, combining sentences
from the various summaries to create a new one
that can be used in fine-tuning the model.

Human-Machine Collaborators Either a human
or machine initiates the task, then the other one
gives the response. There is no explicit benefit for
humans or machines during the interaction.

For example, in Ashktorab et al. (2021), humans
and machines can play as giver and guesser and co-
operate for a common goal: to help the guesser
answer the right word. In GENIE (Khashabi
et al., 2021), human annotators work with a ma-
chine to assess leaderboard submissions on var-
ious axes such as correctness, conciseness, and
fluency and compare their responses to a variety
of automated metrics. Journalist-in-the-loop (Kar-
makharm et al., 2019) is a rumor annotation ser-
vice that continuously allows journalists to pro-
vide feedback on social media posts. The feed-
back is then used to improve the neural network-
based rumor classification mode. Also, human-
machine collaboration improves the journals’ pro-
ductivity. In AfriKI (Van Heerden and Bas, 2021),
human authors collaborate with machines to gener-
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ate Afrikaans poetry through phrase selection and
vertically arranging poetry lines. The collaboration
promotes human creativity and also improves the
robustness of the model. From Zero to Hero (Klie
et al., 2020), an interactive machine learning an-
notation supports that guides the user in locating
text entities and deciding on the correct knowledge
base entries. As a result, the annotation speed and
quality improve tremendously and reduce human
cognitive load. In CYOA (Clark and Smith, 2021),
humans and machines take turns writing a story,
and two models generate suggestions for the fol-
lowing line after the human writes the story’s first
line. The human suggestions provide interpretabil-
ity of the model performance and improve human
creativity.

5 Discussion

Based on our findings, we developed an interaction
framework for the four types of human-machine
relationships in one interaction cycle (see Figure
1). The "human-in-the-loop" concept has become
popular in NLP. But it is too broad to describe
the nuance in similar but different human-machine
interactions. Our interaction framework depicts
human and machine actions under different roles.

It is important for NLP and HCI practitioners to
define human-machine interactions when design-
ing interactive NLP systems because it builds up a
clearer understanding of the human and machine’s
strengths and weaknesses. We can use the identi-

fied strengths to complement the weaknesses. For
example, in Human-Teacher and Machine-Learner
interactions, the strengths of automation in annota-
tion tasks can be leveraged to complete a task more
quickly, while the human’s strength in assessment
can validate the machine’s output. For Human-
Leading or Machine-Leading, the leader may have
limited knowledge and capacity that could be com-
plemented with external expertise.

Next, we share how NLP and HCI practition-
ers can use our conceptual framework in prac-
tice. While Human-Leading is similar to Human-
Teacher, Machine Learner (since both are driven
by humans who take initial and final action with
machines’ intermediate response), the framework
captures the different statuses of machines and the
corresponding actions of humans and machines. As
a learner, the machine is a novice at the beginning
and is launched by mimicking humans finishing
their remaining tasks. However, the machines in
the Human-Leading relationship have their own ex-
pertise to offer suggestions. Accordingly, this also
leads to different humans’ final actions, i.e., hu-
mans as teachers will validate machines’ learning
results, while humans would choose machines’ sug-
gestions based on personal interests during human-
leading interaction.

Additionally, the framework can be used as a
guideline to check whether the interaction design
is appropriate. For instance, the machine directly
overwrites a human’s control will be problematic
when Human-Leading is required. For instance,
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someone is writing in colloquial English, using
’ain’t’ as a general preverbal negator (Rickford,
1999). A machine trained in standard English will
detect this as an error and would like to correct it,
but it violates the writer’s intention.

Figure 2 shows some trends of interactions:
Human-Leading relationship usually happens with
sequential interactions; Machine-Leading relation-
ship uses more GUI and has iterative interac-
tion; Human-Machine Collaborators mainly use
NUI; Human-Teacher, Machine-Learner relation-
ship usually happens iteratively as well.

6 Limitations

From the papers we reviewed, we didn’t find any
interaction that machines validate humans’ actions.
This might be because humans overall are more
trustworthy than machines and may be influenced
by the range of literature we reviewed. Addition-
ally, ’collaboration’ can sometimes be interchange-
able with ’interaction’ based on their semantic
meanings. But we strive to name our precise defi-
nitions of each relationship with clear and straight-
forward enough abstract names.

In addition, we initially coded ’what are the out-
comes of the research paper’ to understand how in-
teraction can influence the research outcome, such
as efficiency, creativity, etc. But it didn’t synthesize
sufficiently with other codes. More importantly,
the research outcome is usually the goal of those
research papers so we couldn’t derive the causal
relationship from interaction design to the research
outcome. However, this guides us in the future
to study how we can manipulate desired research
improvement by designing human-machine inter-
action.

7 Conclusion

Humans and machines interact with each other in
a variety of ways. For example, humans may be
involved in providing input to a machine learning
algorithm, labeling data for training purposes, or
evaluating the output of a machine learning system.
Additionally, humans may interact with machine
learning systems through natural language inter-
faces, such as chatbots or virtual assistants. We
contribute an interaction framework for human-
machine interactions through a systematic litera-
ture review and thematic analysis, which concep-
tualizes four human-machine relationships based
on three different interaction properties, to help re-

searchers and practitioners better understand and
manage human-machine interactions in NLP.
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