
Proceedings of the Fourth Workshop on Data Science with Human-in-the-Loop (Language Advances), pages 28 - 36
December 8, 2022 ©2022 Association for Computational Linguistics

Execution-based Evaluation for Data Science Code Generation Models

Junjie Huang1∗, Chenglong Wang3, Jipeng Zhang5∗, Cong Yan3, Haotian Cui6∗,
Jeevana Priya Inala3, Colin Clement4, Nan Duan2, Jianfeng Gao3

1 Beihang University 2 Microsoft Research Asia 3Microsoft Research Redmond
4 Microsoft 5 Hong Kong University of Science and Technology 6 Toronto University

1huangjunjie@buaa.edu.cn,
2,3,4{chenwang,coyan,janala,coclemen,nanduan,jfgao}@microsoft.com

5jzhanggr@connect.ust.hk, 6ht.cui@mail.utoronto.ca

Abstract

Code generation models can benefit data scien-
tists’ productivity by automatically generating
code from context and text descriptions. An
important measure of the modeling progress
is whether a model can generate code that can
correctly execute to solve the task. However,
due to the lack of an evaluation dataset that
directly supports execution-based model evalu-
ation, existing work relies on code surface form
similarity metrics (e.g., BLEU, CodeBLEU) for
model selection, which can be inaccurate.

To remedy this, we introduce ExeDS, an evalu-
ation dataset for execution evaluation for data
science code generation tasks. ExeDS contains
a set of 534 problems from Jupyter Notebooks,
each consisting of code context, task descrip-
tion, reference program, and the desired exe-
cution output. With ExeDS, we evaluate the
execution performance of five state-of-the-art
code generation models that have achieved high
surface-form evaluation scores. Our experi-
ments show that models with high surface-form
scores do not necessarily perform well on ex-
ecution metrics, and execution-based metrics
can better capture model code generation errors.
1

1 Introduction

Code generation models (Chen et al., 2021a; Tun-
stall et al., 2022) have shown promising results
to improve developer productivity by generating
code from natural specifications (Le et al., 2020;
Al-Hossami and Shaikh, 2022). These promising
results also bring interest to code generation for
data scientists, who program data analysis scripts
in interactive notebook environments like Jupyter
Notebooks (Kluyver et al., 2016) where programs
are written interactively in loosely organized pro-
gram cells (Figure 1 (1)). This domain and style

∗Work done during internship at Microsoft Research Asia.
1Source code and data can be found at

https://github.com/Jun-jie-Huang/ExeDS.

Compute the accuracy of predictions compared with y

print("Accuracy: ",cross_val_score(est,X,y,cv=10).mean())In [ ]:

Out [ ]: Accuracy: 0.8410769068020736

d.columns = []
# split data: input column & column to be predicted
X = d.values[:,:-1]
y = d.values[:,-1]
# now create an estimator, train and predict
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
from sklearn.metrics import *
est = GaussianNB()
est.fit(X,y)
predictions = est.predict(X)

Target: 

Context: 

accuracy_score(predictions, y)

accuracy_score(predictions, y)In [ ]:

Out [ ]: 0.8410769068020736

(1)

(2)Ground truth code cell: 

Generated code cell: 

Intent: 

Figure 1: An example from ExeDS. The first block de-
scribes the task of data science code generation with
code context and NL intents. The second block com-
pares the code and output of reference and generation.

differences motivates new modeling resources, e.g.,
new datasets (e.g. JuiCe (Agashe et al., 2019) )
and models (e.g. JuPyT5 (Chandel et al., 2022))
specific to data science tasks.

However, we still lack a good methodology to
evaluate data science (DS) code generation models.
JuiCe dataset uses the BLEU (Papineni et al., 2002)
and Exact Match (EM), the prevailing metrics in
code generation, to measure semantic similarity be-
tween the generated and reference code. However,
these two surface-form metrics have limitations:
the former neglects code syntactic features and the
latter is too strict (Ren et al., 2020). Execution-
based metrics are another widely accepted line of
metrics in general software engineering (SE) do-
main, where the correctness of generated functions
is determined by whether the outputs are consis-
tent with oracle input-output data/unit tests. For
DS problems, however, collecting an executable
dataset and performing execution-based evaluation
are challenging. DS notebooks usually do not come
with their own set of unit tests and existing datasets
like JuiCe do not track the input data (such as ta-
bles) needed to run the notebooks. In addition, the
outputs from notebook cells are often not "pure"

28

https://github.com/Jun-jie-Huang/ExeDS


values (e.g., numbers, strings, or lists) like the out-
puts of the functions in SE problems. The DS note-
book cell outputs are meant for human understand-
ing and hence, may contain complex data structures
(e.g., data frames, plots) accompanied with texts;
thus simply checking whether outputs are the same
is too strict to capture cases when the generated
cell output is semantically correct but formatted
differently from the reference (Figure 1-(2)).

In this paper, we provide a dataset for evaluating
DS code generation models, dubbed ExeDS, which
contains 534 data science problems built on JuiCe
(Agashe et al., 2019). We collect ExeDS by first
crawling data dependencies from original GitHub
repositories for the notebooks and filtering out note-
books with runtime errors; then, we curated 534
high-quality problems with sufficient code context
and human-written natural language (NL) to de-
scribe tasks as the testset. With ExeDS, we can
evaluate execution correctness by comparing out-
puts from generated code with desirable outputs.

We experiment with 5 existing code generation
models on ExeDS to identify their execution per-
formance. Experiment results show that (1) models
with high/low surface-form scores do not necessar-
ily generate execution-correct code – for example,
while Codex (Chen et al., 2021a) is low in BLEU,
it achieves high execution scores. (2) Execution-
based metrics can better capture code errors which
might be helpful for model improvements.

2 Related Works

Data science (DS) refers to the practice of analyz-
ing data and acquiring insights with computational
methods (Donoho, 2017). With the goal to im-
prove productivity, there are increasing interests in
building systems to solve a variety of DS tasks, in-
cluding code synthesis (Agashe et al., 2019), code
synthesis for visualization (Chen et al., 2021b) and
data preparation (Yan and He, 2020), documenta-
tion (Liu et al., 2021; Wang et al., 2021), etc. In our
work, we focus on code generation in DS, which
generates code with code, NL and data context.

Code generation benchmarks are predominantly
evaluated by matching code surface forms(Papineni
et al., 2002; Lin, 2004; Ren et al., 2020). These
datasets evaluate explicit code generation with dif-
ferent input specifications, including natural lan-
guage (Wang et al., 2015; Oda et al., 2015; Zhong
et al., 2017; Yin et al., 2018; Yu et al., 2018; Lin
et al., 2018), unfinished code (Iyer et al., 2018;

Dataset # Domain Evaluation

APPS (Hendrycks et al., 2021) 10,000 SE Unit Test
MBPP (Austin et al., 2021) 974 SE Unit Test
HumanEval (Chen et al., 2021a) 164 SE Unit Test
DSP (Chandel et al., 2022) 1,139 DS Unit Test
JuiCe (Agashe et al., 2019) 1,981 DS Surface Form
PlotCoder (Chen et al., 2021b) 894 DS Surface Form

ExeDS (ours) 534 DS Output Match

Table 1: Comparisons of code generation testsets.

Lu et al., 2021), and input-output examples (Polo-
sukhin and Skidanov, 2018; Zavershynskyi et al.,
2018). However, surface form metrics are unable
to assess code as programmers, who focus on the
functionality and execution correctness in practice.

Consequently, recent works turn to execution-
based metrics instead, where the code would be
correct if it passes a set of unit tests defined by
humans (Roziere et al., 2020; Kulal et al., 2019;
Austin et al., 2021; Chen et al., 2021a; Hendrycks
et al., 2021). However, the complex output data and
scarcity of units tests in DS limit its application in
DS code generation. Chandel et al. (2022) explore
applying unit tests in DS, but they only focus on
educational problems. Table 1 compares ExeDS
with various related datasets.

3 ExeDS for Execution Evaluation

As mentioned in Section 1, the lack of executable
environments for notebooks is a key limiting factor
of execution-based model evaluation for data sci-
ence tasks. Thus we first construct an evaluation
dataset ExeDS and analyze its characteristics. Then
describe the methods for execution evaluation.

Dataset Collection ExeDS contains 534 prob-
lems with code context, NL task description, ref-
erence code and target execution output, which is
built upon JuiCe (Agashe et al., 2019) with 659K
publicly available Python Jupyter notebooks from
GitHub. We create ExeDS in the following steps.

Step1: Crawling Data Context and Execu-
tion. Programming problems in DS often deal with
data, which are often stored in files (e.g., .csv)
and loaded by code. Executing notebooks needs
such data dependencies, which are not provided
in JuiCe. Thus, we first crawl dependent data for
notebooks from their GitHub repositories. Note-
books with inaccessible data or using libraries not
present in Python standard library and default DS
environment are removed. With data dependency,
we execute notebooks with a time limit of 1000 sec-

29

http://github.com/


Function Type % Examples

Data statistic 40 Avg., var., p-value, ...
Explore data value 19 Min/max value, ...
Explore data property 10 Dtype, shape, ...
Machine learning 16 Loss, train, predict, ...
Simple math 6 Arithmetic, ...
Data changing 5 Sort, sample, ...
Data displaying 4 Head/tail columns, ...

Table 2: Function types of target code in ExeDS.

onds per cell. After execution, code cells have three
types of outputs: (1) displaying data with a figure;
(2) execute result with a textual execution output;
and (3) stream output with a printed textual output
through streams. Since it’s hard to compute figure
similarities, in this paper, we only evaluate execu-
tion correctness on textual outputs and construct
ExeDS with execute result and stream output.

Step 2: Dataset Filtering and Intent Curation.
As some cells are overly complex for code genera-
tion, for simplicity, we remove examples with more
than 5 lines or using customized methods in tar-
get code cells. To keep diversity, we downsample
cells with frequent outputs, e.g. df.summary(),
df.info(), df.shape, etc. To ensure sufficient
context is provided, we remove the target code
whose variables are absent in the previous 5 cells.

Since some cells lack sufficient descriptions for
the problems, for clarity, we recruit two university
students with Python and notebook experience to
manually write NL descriptions for each example.
After viewing the context, target code and output,
they are asked to write descriptions containing in-
formation in two aspects: (1) the functions of target
code; (2) the instructions to print outputs. We dis-
card examples that annotators feel hard to describe.

Finally, we obtain 534 problems from 278 note-
books for ExeDS, each with code context, NL de-
scription, target code, and desired execution output.

Dataset Statistics Table 2 shows the function
types in ExeDS. We found the majority of target
codes are computing statistics (40%), exploring
data value (19%) or property (10%), and for ma-
chine learning (16%), which are popular DS tasks.

Table 4 presents the types of execution output in
all 534 problems. We find the majority of execution
output are numbers, which is not surprising consid-
ering the fraction of data statistics and exploring
data value in code functions. Also comparing num-
bers is less complicated than comparing other types
of data like strings or data frames, which helps eas-

ier evaluation of execution outputs.

Library # problems

pandas 534
numpy 473
matplotlib 431
sklearn 287
seaborn 211
scipy 135
statsmodels 57
math 46
datetime 42
re 39

Table 3: Frequency of most common 10 libraries used
in 534 examples of ExeDS.

Table 3 displays the most common libraries used
in ExeDS. We find the majority of them use data
science libraries and all of them use pandas, which
indicates our focus on data science code generation.

Evaluation Metrics In ExeDS, we measure the
execution correctness by comparing the reference
outputs with outputs from generated code, which is
called output exact match (OutputEM). However,
as a variety of examples produce outputs in num-
bers, we convert all numbers in string type to the
float type with two decimal spaces to better match
numbers. Similarly, we remove the explanation
string when printing outputs for better comparison.

4 Evaluating Code Generation on ExeDS

Based on ExeDS, we evaluate the models’ perfor-
mance on data science code generation and com-
pare both surface-form code and execution output.

DS Code Generation We investigate the task of
target code cell generation in notebooks with con-
text. Figure 1 presents an example of the task. For
each target code cell, we prepare a source-target
example, conditioned on prior multimodal context
and natural language intent. The context includes:
(1) the closest three cells prior to the target cell,
regardless of code or markdown; (2) a code state-

Output Type % Examples

Single number 55 0.841076906802073; 68
List/tuple/array 34 (256, 10); [’UserID’, ’Gender’]

Dataframe 11
Weight 26.25
Speed 36.70 dtype: float64

Table 4: Types of ground truth outputs in ExeDS.

30



BLEU CodeBLEU EM OutputEM

GPT-style framework
GPT-neo-125M 3.4 17.2 0.0 1.5
GPT-neo-1.3B 9.2 26.2 0.0 10.7
GPT-neo-2.7B 9.1 28.8 0.4 13.3
CodeGPT 26.4 28.6 1.5 12.7
CodeGPT-adapted 25.1 26.8 3.3 13.1
Codex* 3.9 23.5 0.0 27.7

encoder-decoder framework
PyMT5 25.7 35.8 2.8 19.7
JuPyT5 35.3 41.1 6.2 31.6

Table 5: Evaluation results of surface form metrics and
execution metric. * denotes a zero-shot setting.

ment to define the columns names of data in the
format of df.columns=[’a’, ’b’].

Baseline Models We test five code generation
models: (1) PyMT5 (Clement et al., 2020) is an
encode-decoder transformer (Vaswani et al., 2017)
pretrained on Python corpus. (2) JuPyT5 (Chandel
et al., 2022) is an encoder-decoder transformer pre-
trained on Jupyter notebooks with the code-infilling
objective. (3) CodeGPT and CodeGPT-adapted (Lu
et al., 2021) are two GPT-style models (Solaiman
et al., 2019) pretrained on CodeSearchNet Python
functions (Husain et al., 2019), where the former
is trained from scratch and the latter is trained
from GPT-2 checkpoint. (4) GPT-neo (Black et al.,
2021) is a GPT-style model pretrained on The Pile
(Gao et al., 2021), a dataset with a variety of text
sources including 8% GitHub code. We evaluate
three GPT-neo models with different parameters,
including 125M, 1.3B, and 2.7B. (5) Codex (Chen
et al., 2021a) is the state-of-the-art model trained
on 159G GitHub Python files from GPT-3 (Brown
et al., 2020). We test its zero-shot performance due
to the inaccessibility of model weights.

Finetuning For training and validation, we filter
a set of 123K source-target examples from JuiCe
with data dependencies, where the target is any
code cell and the source is the prior multimodal
context as in ExeDS. We randomly select 4K exam-
ples for validation and leave the rest for finetuning.
More details can be found in Appendix A.

Metrics We report results with OutputEM, which
is the proportion of examples with correct output,
and surface-form metrics, i.e. BLEU, CodeBLEU
(Ren et al., 2020), and Exact Match (EM).

Error Category % Exception Examples

Use undefined variable 45 NameError. . .
Use undefined API 16 AttributeError. . .
Use wrong schema 22 KeyError, ValueError, IndexError. . .
Wrong Syntax 8 IndentationError, SyntaxError . . .
Other errors 9 No message, ImportError, . . .

Table 6: Qualitative error analysis on examples that
raise exceptions during execution. Some representative
exception types for each error category are listed.

5 Evaluation Results

In this section, we show and analyze evaluation re-
sults to show the advantages of our ExeDS dataset.

5.1 Main Results
Table 5 shows the results of different baseline mod-
els in surface form metrics and execution correct-
ness. We have the following main observations.

(1) For all models, the surface form EM is close
to zero while the OutputEM is in a normal range.
This suggests that surface form EM often fails to
evaluate code correctness, while the execution met-
ric is better which covers more correct cases and
shows correctness beyond matching code strings.

(2) Surprisingly, zero-shot Codex achieves com-
patible results with finetuned JuPyT5 in OutputEM,
but it performs badly with surface-form metrics.
This finding suggests the strength of Codex to
generate correct code and understand the multi-
modal context. In addition, the difference between
surface-form scores and OutputEM again shows
the superiority of measuring code with execution
correctness.

(3) Encoder-decoder models perform better than
GPT-style models with all metrics, which indicates
their strength in generating code. Also, JuPyT5
achieves the best performance with all metrics. One
possible reason is that JuPyT5 is pretrained on a
large corpus of notebooks, which learns the neces-
sary knowledge from the notebook context.

5.2 Error Analysis
We give two error analyses of execution results to
investigate examples with raised execution excep-
tions and erroneous outputs. The code examples
are produced by our top-performing model JuPyT5.
Detailed examples can be found in Appendix B.

Exception Types Table 6 shows five exception
types from 154 examples. We find for 45% cases,
the model fails to capture data-flow and uses un-
defined variables in context. For 16% cases, the

31



Error Category % Examples

Incorrect Code 56 Figure 3 & 4
No Output 8 Figure 5
Partially Correct 12 Figure 6
To Many Output 24 Figure 7 & 8

Table 7: Analysis of 50 examples with wrong outputs.

Print the Shape Of dataframe After removing the Ouliers.

print (dailyDataWithoutOutliers.shape)

dailyDataWithoutOutliers.info()

In [ ]:

Out [ ]:

In [ ]:

Out [ ]: <class 'pandas.core.frame.DataFrame'>

Int64Index: 17135 entries, 0 to 17378

Data columns (total 17 columns):

#   Column             Non-Null Count  Dtype

0   rec_id 17135 non-null  int64 

……

16  total_count 17135 non-null  int64 

(17135, 17)

In [ ]: stats.columns = ["rec_id", "datetime", "total_count", … ]
# Lets Remove Outliers In The Count Column
dailyDataWithoutOutliers =stats[np.abs(stats["total_count"]- \

stats["total_count"].mean()) <= \
(3*stats["total_count"].std())] 

Intent: 

Context: 

Ground truth code : 

Generated code: 

Figure 2: An incorrect example with high surface form
metrics scores but low execution metrics scores. Surface
form metrics are deficient to evaluate code correctness.

model misuses API methods and often leads to
AttributeError , possibly due to version differ-
ences and calling methods without import. 22%
cases misuse the data schema of dataframes, which
indicates the need to improve code generation mod-
els with such multimodal context, especially how
to incorporate the data schema context. Only 8%
cases have syntax problems, suggesting the model’s
strong ability to generate syntax-correct code.

Output Errors Table 7 shows four types of out-
put errors from 50 examples. We find 56% cases
have incorrect code. The challenging NL descrip-
tion and context might be hard for models to un-
derstand and generate correct code. 8% cases com-
plete the correct functions but do not call print()
to output. 12% of cases are partially correct, where
the output mismatch is caused due to some missing
details, for example, the absence of some parame-
ters. Finally, 24% cases produce too many outputs.

6 Case Study

We give an example predicted by JuPyT5 with a
high BLEU score but erroneous outputs in Figure
2, to show the advantages of execution evaluation
for DS code generation. The example is a typical
DS task which intends to explore the shape of a
dataframe. But the model misunderstands the in-
tents and generates code to display all dataframe
information. Although we can find the expected

shapes from the output, i.e., 17135 entries and 17
columns, the output is not exactly correct. How-
ever, as the code is short while the variable name is
long, which leads to a high overlap between predic-
tion and ground truth, the generated code obtains
above average BLEU and CodeBLEU scores. This
example reveals the deficiency of surface form met-
rics to evaluate code correctness.

7 Conclusion

In this paper, we propose an evaluation dataset to
support execution correctness evaluation for data
science code generation dubbed ExeDS, which con-
sists of 534 typical data science problems from
Jupyter Notebooks, each with code context, task
description, target code, and desired execution out-
put. By performing experiments with five strong
code generation models on ExeDS, we find mod-
els that achieve high surface-form scores do not
necessarily produce execution correct code, and
execution-based metrics could capture more de-
tailed code generation errors. We expect our efforts
to attract more attention to code execution correct-
ness and generating executable code.

Limitations

Firstly, only the test set examples have high quality
of human annotation and verification. Thus the
training set might be too noising to train a robust
code generation model. Secondly, the execution
metric is insufficient to show other information like
semantic relatedness, variable naming, and API
usages, which are also important in evaluating a
good code. Thirdly, our datasets and metrics fo-
cus on Python code in data science domain. It’s
unclear whether is applicable to general software
code. Fourth, our execution-based automatic eval-
uation is more time-consuming to compute and
evaluate than other surface-form metrics like EM,
BLEU. At last, evaluating generated code is far dif-
ferent from evaluating natural languages. The final
goal of code generation is to generate execution
and functional correct code. Though with many
limitation, our work could be a pilot study which
provides insights and possible solutions on how to
better evaluate code generation models.

References
Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer.

2019. JuICe: A large scale distantly supervised

32

https://doi.org/10.18653/v1/D19-1546


dataset for open domain context-based code gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5436–5446, Hong Kong, China. Association for Com-
putational Linguistics.

Erfan Al-Hossami and Samira Shaikh. 2022. A survey
on artificial intelligence for source code: A dialogue
systems perspective. ArXiv, abs/2202.04847.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program synthesis with large
language models. ArXiv, abs/2108.07732.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Shubham Chandel, Colin B. Clement, Guillermo Ser-
rato, and Neel Sundaresan. 2022. Training and evalu-
ating a jupyter notebook data science assistant. ArXiv,
abs/2201.12901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn
Song. 2021b. PlotCoder: Hierarchical decoding for

synthesizing visualization code in programmatic con-
text. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2169–2181, Online. Association for Computa-
tional Linguistics.

Colin Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
PyMT5: multi-mode translation of natural language
and python code with transformers. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 9052–
9065, Online. Association for Computational Lin-
guistics.

David L. Donoho. 2017. 50 years of data science.
Journal of Computational and Graphical Statistics,
26:745 – 766.

Leo Gao, Stella Rose Biderman, Sid Black, Laurence
Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
ArXiv, abs/2101.00027.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv, abs/1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian E. Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, Carol Willing, and Jupyter De-
velopment Team. 2016. Jupyter notebooks - a pub-
lishing format for reproducible computational work-
flows. In ELPUB.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alexander Aiken, and Percy Liang.
2019. Spoc: Search-based pseudocode to code. In
NeurIPS.

Triet Huynh Minh Le, Hao Chen, and Muhammad Ali
Babar. 2020. Deep learning for source code modeling
and generation. ACM Computing Surveys (CSUR),
53:1 – 38.

33

https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.169
https://doi.org/10.18653/v1/2021.acl-long.169
https://doi.org/10.18653/v1/2021.acl-long.169
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192


Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Xuye Liu, Dakuo Wang, April Wang, Yufang Hou, and
Lingfei Wu. 2021. HAConvGNN: Hierarchical at-
tention based convolutional graph neural network for
code documentation generation in Jupyter notebooks.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4473–4485, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation (t). 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574–584.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

Illia Polosukhin and Alexander Skidanov. 2018. Neural
program search: Solving data processing tasks from
description and examples. In ICLR 2018.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20601–20611. Curran Associates,
Inc.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,

and Jasmine Wang. 2019. Release strategies and
the social impacts of language models. ArXiv,
abs/1908.09203.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.
2022. Natural Language Processing with Transform-
ers: Building Language Applications with Hugging
Face. O’Reilly Media, Incorporated.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

April Yi Wang, Dakuo Wang, Xuye Liu, and Lingfei
Wu. 2021. Graph-augmented code summarization in
computational notebooks. In IJCAI.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In ACL.

Cong Yan and Yeye He. 2020. Auto-suggest: Learning-
to-recommend data preparation steps using data sci-
ence notebooks. Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of
Data.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pages 476–486.

Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Ya-
sunaga, Dongxu Wang, Zifan Li, James Ma, Irene Z
Li, Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In EMNLP.

Maksym Zavershynskyi, Alexander Skidanov, and Illia
Polosukhin. 2018. Naps: Natural program synthesis
dataset. ArXiv, abs/1807.03168.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

34

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/L18-1491
https://aclanthology.org/L18-1491
https://aclanthology.org/L18-1491
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://books.google.ch/books?id=7hhyzgEACAAJ
https://books.google.ch/books?id=7hhyzgEACAAJ
https://books.google.ch/books?id=7hhyzgEACAAJ
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


A Finetuning Details

We finetune all the baseline models, except Codex,
on our cleaned training set and select the best check-
point with the perplexity score on dev set for test-
ing. All models are trained on 16 Tesla V100 32GB
GPUs. The hyper parameter are presented in Table
8.

At inference time, we use beam search decoding
with a beam size of 5.

B More Examples

In this section, we present 6 examples to show the
typical types of errors with erroneous outputs in
Figure 3 - Figure 8. We also give an example with a
typical type of errors causing exceptions in Figure
9.

Compute and print the rooted mean squared error of test data

features_rmse = rmse(y_pred, y_test)
print(features_rmse)

mse=((y_test-y_pred)**2).mean()
print(mse)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

249311.90032627754

In [ ]: train_data.columns = ["price", "bedrooms", "bathrooms", …]
# 3 - Building a regression model with several more features
x_train = train_data[features].values.reshape(-1,len(features))
y_train = train_data['price'].values.reshape(-1, 1)
mult_model = linear_model.LinearRegression()
mult_model.fit(x_train, y_train)
x_test = test_data[features].values.reshape(-1, len(features))
y_test = test_data['price'].values.reshape(-1, 1)
y_pred = mult_model.predict(x_test)

Intent: 

Context: 

Ground truth code : 

Generated code: 

62156423644.29977

Figure 3: An example with incorrect code. The NL
intent is too challenging and the generated code misses
the key information to compute the (rooted) error. More
powerful models to understand NL intent are required.

Print a list of states whose Verbal scores above the 
mean Verbal score:

data_mask = data_pd.Verbal > data_pd.Verbal.mean()
list_states = data_pd[data_mask]['State']
print(list(list_states))

mean=plt.plot([data_pd.Verbal.mean(),data_pd.Verbal.mean()],
[0,5],linewidth=2)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

['CO', 'OH', 'MT', 'ID', 'TN', 'NM', 'IL', 'KY', 'LA']

In [ ]: data_pd.columns = ["Verbal", "State", "Rate", "age", … ]
# How many states are above the mean? What does this tell you about the 
distribution of Verbal scores? 
sns.set(rc={"figure.figsize": (8, 8)})
ax_v = sns.distplot(data_pd.Verbal,kde=False,bins=20,color='y')
ax_v.set(ylabel='Counts’, title='Distribution of Verbal')
mean = plt.plot([data_pd.Verbal.mean(), data_pd.Verbal.mean()], 

[0, 5], linewidth=2)

Intent: 

Context: 

Ground truth code : 

Generated code: 

Figure 4: An example with incorrect code. The model
fails to perform contextual reasoning over such multi-
modal context.

Create a list lcols of the columns in the dataframe dftouse. This 
list should not contain the response RESP so we should remove 

the RESP item. After that how many features do we have?

lcols = list(dftouse.columns)
lcols.remove(u'RESP')
print (len(lcols))

lcols=list(dftouse.columns)
lcols.remove('RESP')

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

68

In [ ]: dftouse.columns =  ["RESP", "AXSPEND", "MAILED", …]
# 1.2 Standardize the data
from sklearn import preprocessing
std = preprocessing.StandardScaler().fit(dftouse[mask==True])
df_std = std.transform(dftouse[mask==True])
dftouse.set_value(mask==True, 0, df_std)
std2 = preprocessing.StandardScaler().fit(dftouse[mask==False])
df_std2 = std2.transform(dftouse[mask==False][0])
dftouse.set_value(mask==False, 0, df_std2)

Intent: 

Context: 

Ground truth code : 

Generated code: 

Figure 5: An example with a no output error. the gener-
ated code satisfies the intent to create a list and remove
the item. But it fails to produce the output, i.e., the
length of the feature list.

Compute the Mean Cross Validation Score of Kernalized SVC 
Classifier using x_train and z_train

print(cross_val_score(SVC(kernel='poly',degree=3,C=0.5,
gamma=0.05), x_train, z_train, cv = 10).mean())

svcscores=cross_val_score(svc,x_train,z_train,cv=5)
svcscores.mean()

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

0.778698752228164

In [ ]: data.columns =  []
from sklearn import preprocessing
print("Mean Cross Validation Score of Kernalized SVC:", '%.4f’ 

%cross_val_score(SVC(kernel='poly',degree=2,C=1,gamma=0.05), 
x_train, y_train, cv = 10).mean())

svcpa = SVC(kernel='poly’, degree=3, C=0.5, gamma=0.05)
svc = svcpa.fit(x_trainscaled,z_train)
print("The best Train score is :", svc.score(x_trains,z_train))
print("The best Test Score is :", svc.score(x_test, z_test))
svcp = svc.predict(x_test)

Intent: 

Context: 

Ground truth code : 

Generated code: 

0.7729148375768217

Figure 6: An example with a partially correct error.
The code is actually correct but the parameter for cv is
different, resulting in the difference between the ground
truth and execution outputs.

Sorting the counts in decreasing order (Word with highest frequency 

appears first). Print the first 10 items in the sorted list.

vocab = sorted(counts, key=counts.get,reverse=True)
print(vocab[:10])

vocab=sorted(counts.items(), key=lambda x:x[1], reverse=True)
vocab[:10]

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

['to', 'you', 'I', 'a', 'the', 'and', 'in', 'is', 'i', 'u']

In [ ]: df.columns = ["label", "text", "v1", "v2", … ]
# Converting words to vectors
## Counting how many times a word appears in the dataset
from collections import Counter
counts = Counter()
for i in range(len(text)):

for word in text.values[i][0].split(" "):
counts[word] += 1

print("Total words in data set: ", len(counts))

Intent: 

Context: 

Ground truth code : 

Generated code: 

[('to', 2134), ('you', 1622), ('I', 1466), ('a', 1327), 

('the', 1197), ('and', 857), ('in', 798), ('is', 781), 

('i', 742), ('u', 692)]

Figure 7: An example with too many output. The correct
output actually exists in the execution output, but the
excessive output causes the inexact match and decline
in ExeF1.

35



Hyperparameter CodeGPT CodeGPT-adapted GPT-neo 125M GPT-neo 1.3B GPT-neo 2.7B PyMT5 JuPyT5
# vocab size 50001 50260 50257 50257 50257 50337 50340
# parameters 124M 124M 125M 1.3B 2.7B 374M 374M
# hidden size 768 768 768 2048 2560 1472 1472
# layers 12 12 12 16 20 12 12
# heads 12 12 12 24 32 12 12
dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
optimizer AdamW AdamW AdamW AdamW AdamW Adam Adam
learning rate 5e-05 5e-05 5e-05 5e-05 5e-05 1e-4 1e-4
batch size 16 16 3 1 1 1 1
epochs 30 30 10 10 10 10 10
max tokens 512 512 2048 2048 1536 3600 3600

Table 8: Details of the hyperparameters used during fine-tuning for the code generation task in this paper.

Removing horse attribute in the dataframe X. Split the dataset into 
training set and text set with a test_size of 0.2. Then print the 

shapes of X training data and test data. 

del X['horse']
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
print(X_train.shape, X_test.shape)

X=X.drop('horse’, axis=1)
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

(30598, 5) (7650, 5)

In [ ]: X.columns = ["Horse", "Tipster", "Date", "ID", …]
# Random Forest
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
classifier3 = rf.fit(X_train, y_train)
prediction3 = classifier3.predict(X_test)
print("Acc of Random Forest:", classifier3.score(X_test,y_test))
print("Kappa:", cohen_kappa_score(y_test, prediction3))

Intent: 

Context: 

Ground truth code : 

Generated code: 

(30598, 5) (7650, 5) (30598,) (7650,)

Figure 8: Another example with too many output.

Print the slope, intercept, R value, std error of the regression model

print(res.slope, res.intercept, res.rvalue, res.stderr)

print(res.slope)
print(res.intercept)
print(res.rvalue)
print(res.std_error)

In [ ]:

Out [ ]:

In [ ]:

Out [ ]:

0.927802179 -298.243887005 0.90607748814 0.065315887945

In [ ]: df.columns = ["CO2 ppm", "Global Temp", "Year" ]
# Performing the regression. We will use scipy's built in regression analysis 
here. There are quite a number of options out there, e.g., statsmodels, 
scikit-learn, etc., that you can explore.
res = stats.linregress(df["CO2 ppm"], df["Global Temp"])

Intent: 

Context: 

Ground truth code : 

Generated code: 

AttributeError:'LinregressResult’ has no attribute 'std_error'

Figure 9: An example running with exceptions. The
model misuses the attribute to call the standard errors.

36


