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Abstract

Named entity recognition (NER) is a popu-
lar language processing task with wide appli-
cations. Progress in NER has been notewor-
thy, as evidenced by the F1 scores obtained
on standard datasets. In practice, however, the
end-user uses an NER model on their dataset
out-of-the-box, on text that may not be pris-
tine. In this paper we present four model-
agnostic adversarial attacks to gauge the re-
silience of NER models in such scenarios.
Our experiments on four state-of-the-art NER
methods with five English datasets suggest that
the NER models are over-reliant on case infor-
mation and do not utilise contextual informa-
tion well. As such, they are highly susceptible
to adversarial attacks based on these features.

1 Introduction

Named entity recognition (NER) is a popular lan-
guage processing task that involves identifying
and classifying named entities in text (Mayhew
et al.,, 2020). Progress in NER has been rapid
and noteworthy, especially in the current age of
deep learning (Li et al., 2020). The general im-
petus in deep learning-based NER has been to de-
velop models that incorporate context better (Ak-
bik et al., 2018; Devlin et al., 2019; Manning et al.,
2014) and are resilient to noise such as inconsis-
tencies in case information (Mayhew et al., 2019;
Bodapati et al., 2019; Mayhew et al., 2020). There
has, however, been modest focus on determining
the extent to which state-of-the-art NER models
succeed in doing so. Identifying the weaknesses of
NER models can help drive focused work to ame-
liorate them and move NER beyond marginal im-
provements in F1 scores (Stanislawek et al., 2019).

Adversarial attacks designed for NLP mod-
els largely focus on classification tasks (Wal-
lace et al.,, 2019; Ren et al., 2019; Jia et al,,
2019; Wallace et al., 2019; Papernot et al., 2016).
Many existing studies work with vector represen-
tations (Ebrahimi et al., 2018; Zhao et al., 2018),
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which are not intuitively interpretable by humans.
Such methods require white-box access to the
models (Ren et al., 2019). The additional require-
ment of human intervention to adjudge the quality
of adversarial samples generated may also be in-
volved (Alzantot et al., 2018).

Adversarial NER has broadly seen two types of
approaches: (a) adversarial training, and (b) ad-
versarial evaluation. Adversarial training of NER
models involves introducing small perturbations in
the training data to make models robust (Bekoulis
et al., 2018). Such perturbations are introduced
in the text representation level (Wang et al., 2020;
Bai et al., 2020; Huang et al., 2022). The adversar-
ial evaluation of NER models, on the other hand,
involves benchmarking the models on syntheti-
cally generated data (Lin et al., 2021; Simoncini
and Spanakis, 2021). We follow the latter line of
investigation.

We present four model-agnostic adversarial at-
tacks targeted at NER models. Our task-specific
approach allows us to generate natural language
adversaries that work with pre-trained models and
are easily interpretable by humans. In principle,
our work is similar to the label-preserving substi-
tutions explored by Ren et al. (2019) and the word-
substitution methods explored by Alzantot et al.
(2018), although they do not evaluate their meth-
ods on NER. Generating adversarial data for eval-
uating NER models is explored by Simoncini and
Spanakis (2021) using BERT to replace and/or add
non-named entity tokens to text. Lin et al. (2021)
also use pre-trained BERT to generate context-
level adversarial attacks to evaluate NER mod-
els. In contrast to their work, we use simple rule-
based methods for generating adversarial data.
Our method has the advantage of not requiring re-
training or fine-tuning of pre-trained models.

The datasets and models we use are all openly
available, aiding reproducibility.! Further, our ex-
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CoNLL WIKI GMB FIRE IEER
# LocaTioN 1668 1014 59255 2626 878
# PERsON 1617 934 18970 2725 1504
# ORGANIZATION 1661 898 22662 893 939

Table 1: Data description: frequency of named entities.

periments do not require white-box access to the
models.

2 Data

We use five openly available general do-
main datasets that contain the enamex
classes (LOCATION, PERSON, & ORGANI-
ZATION) (Nadeau and Sekine, 2007), for this
study.

CoNLL-2003 The CoNLL-2003 (CoNLL)
dataset consists of news articles from the Reuters
Corpus (Tjong Kim Sang and De Meulder, 2003).
In keeping with the standard evaluation schemes,
we report results only on the test split of the
dataset.

WikiGold The WikiGold dataset (WIKI) com-
prises of manually annotated English Wikipedia
articles (Balasuriya et al., 2009).

FIRE NER 2013 The English dataset (FIRE)
from the NER for Indian Languages task at FIRE
2013 comprises of text crawled from Indian web-
sites as well as Wikipedia articles.

NIST IE-ER 1999 IEER refers to the gold
standard NEWSWIRE development test data for
the NIST 1999 IE-ER Evaluation available with
NLTK (Steven Bird and Klein, 2009).

GMB 2.2 The Groningen Meaning Bank 2.2
dataset comprises of public domain texts that in-
clude news articles, stories, jokes, and transcripts.
NLP tools are used to provide a preliminary anno-
tation which is then updated by a combination of
human experts, NLP tools, and crowd-sourcing to
yield a silver-standard corpus (Bos et al., 2017).

3 Methods

We use four named entity recognizers for our ex-
periments, all of which are open-source. Of these,
spaCy is the current state-of-the-art in terms of
document processing speed (Choi et al., 2015) and
Flair is near the current state-of-the-art.>

>The F1 score of the current state-of-the-art model is
0.935. (Flair’s F1 score is 0.931.) Since a pre-trained model

Flair NER The Flair named entity recognizer
is based on neural character embeddings. It uses
contextual neural string embeddings that are ob-
tained by pre-training on large, unlabelled cor-
pora. Every sentence is represented in the form
of string embeddings which are then stacked with
pre-computed uncased GloVe embeddings, before
being passed through a BILSTM-CREF architecture
that generates labels for each word (Akbik et al.,
2018).

spaCy NER spaCy’s named entity recognizer
employs a transition-based entity recognition
methodology where state changes are triggered
by actions. It uses trigram CNNs with residual
connections that transform context-independent
vectors into context-sensitive vectors (Honnibal,
2016).

CoreNLP NER CoreNLP NER (Manning et al.,
2014) is based on linear chain Conditional Ran-
dom Field (CRF) sequence models of arbitrary or-
der (Finkel et al., 2005). For our experiments, we
use the caseless model that ignores capitalization
as well as the Truecase annotator that attempts to
rectify incorrect casing, in addition to the default
model.

DeepPavlov NER DeepPavlov’s named entity
recognition model uses the English cased model
of BERT with 12 layers, 768 hidden nodes, 12 at-
tention heads, and 110M parameters (Devlin et al.,
2019). The first sub-word representation of each
word is passed through a dense layer to generate
labels (Burtsev et al., 2018).

Original: My sister Alice (PErsoN) lives in London (LOCATION).
Case

Ablation: my sister alice (PErRsoN) lives in london (LocaTIon).
Aberration: My sister alice (PERsON) Lives in London (LoCATION).
Context

Perturbation: My sister London (PErson) lives in Alice (LocATION).
Alteration: My sister lives Alice (PErson®) London (LocaTioN") in.

Figure 1: Dataset variants. Class* denotes named en-
tities that should desirably be misclassified from their
context.

4 Adversarial Attacks

In this section we describe the design of two broad
types of adversarial attacks on NER models.
is not publicly available, we choose not to include it in our

experiments. We strongly believe that this does not affect the
conclusions of our work.



4.1 Case-based Adversarial Attacks

Case is one of the strongest indicators of named
entities in English (Mayhew et al., 2020) and it is
well known that case affects the performance of
NER models (Mayhew et al., 2019; Bodapati et al.,
2019). We formulate two adversarial attacks that
emulate data where (i) case information may be
unavailable, such as informal texts, and (ii) case
information is unreliable, such as text extracted
from PDF or OCR-ed documents.

4.1.1 Case Ablation

In case ablation, we drop the case information
while keeping the rest of the text intact. The case-
ablated named entities attempt to fool the NER
models into misclassifying them as non-entities.
This allows us to quantify what percentage of the
correctly identified named entities rely completely
on case information.

4.1.2 Case Aberration

In this setup, we randomly capitalise N percent
of the tokens in each dataset, where N is the per-
centage of actual named entity tokens in the corre-
sponding original text. The randomly capitalised
tokens attempt to fool the model into marking
them as named entities. We choose IV rather than
an arbitrary value in order to maintain the distri-
bution of capitalised and lowercase tokens in the
datasets.

4.2 Context-based Adversarial Attacks

The surrounding text of a named entity is arguably
the most useful feature in identifying named enti-
ties. All the NER models we evaluate attempt to
capture context to leverage this information. We
formulate two adversarial attacks that attempt to
determine how well such information is captured
by these models.

4.2.1 Context Perturbation

We create local perturbations for named entities.
That is, we change the immediately surrounding
text of the named entities while retaining syntac-
tic structure and a semblance of semantics. To
achieve this, we replace named entities of each
class by named entities of the other two classes,
with an equal probability. The local context of
a named entity attempts to fool the NER model
into classifying it incorrectly. This attack is sim-
ilar in nature to the data augmentation procedure
used by Lin et al. (2021). However, they restrict

named entity substitutions within the same entity
class. Since we carry out inter-class entity sub-
stitutions, we posit that our method is better able
to detect when NER models rely on memorising
named entity tokens.

4.2.2 Context Alteration

We alter the context of named entities on a global
scale. To achieve this, we randomly select named
entities with equal probability and place them in
random locations in the text. In almost all cases,
the text becomes grammatically incorrect, as is il-
lustrated in Table 1. Thus, neither semantics nor
syntactic rules are maintained, effectively altering
the global contextual frame of named entities. In
this case, it is desirable for models to misclassify
named entities. That is, we consider a model to
be better if it is susceptible to this attack. This is
based on our hypothesis that a model that captures
context better should perform worse when the con-
text is meaningless.

5 Evaluation

We follow the CoNLL-2003 Shared Task guide-
lines to report the F1 scores (Tjong Kim Sang
and De Meulder, 2003). Compatible classes
are clubbed with the closest enamex class (such
as, GPE (Geo-political entity) is clubbed with
LocATION for spaCy, BERT, and the GMB
dataset). The class labels present in different
datasets/produced by different models do not al-
ways have a close one-to-one correspondence to
the class labels in other datasets/produced by other
models. Thus, non-enamex entities are consid-
ered to be non-entities to provide a fair compar-
ison across datasets and models. NER models and
datasets also differ in their tagging schemes. Since
it is not possible to map IO tags to IOB or IOBES,
and IOB tags to IOBES (Cho et al., 2013), we map
all tags into the IO scheme. The mapping of com-
patible entity classes and tagging schemes causes
our evaluation results to differ from the officially
reported scores of these NER models.

Model CoNLL WIKI GMB FIRE IEER
Flair 0.92 0.92 093 093 0.93
spaCy 0.85 0.89 0.91 0.90 0.90

CoreNLP-s 0.86 0.89 092 088  0.90
DeepPavlov 0.83 0.90 090 090 092

Table 2: F1 scores on original datasets.



6 Results and Analysis

Table 2 shows the F1 scores of the models on
the original dataset. This gives us the benchmark
against which we compare the performance for the
different data variants.

Model CoNLL  WIKI GMB FIRE IEER
Flair 0.37 0.16 0.35 0.18 0.14
(-52.03%)  (-74.24%)  (-54.48%)  (-73.66%)  (-77.97%)
spaCy 0.14 0.13 0.20 0.15 0.14
(-68.64%)  (-74.06%)  (-68.32%)  (-72.97%)  (-75.02%)
CoreNLP-s 0.19 0.11 0.28 0.16 0.12
(-62.81%)  (-75.73%)  (-61.76%)  (-69.57%)  (-77.11%)
CoreNLP-c 0.32 0.23 0.42 0.30 0.28
(-47.72%)  (-62.75%) (-46.74%) (-53.83%) (-59.58%)
CoreNLP-t 0.20 0.11 0.28 0.16 0.11
(-62.69%)  (-75.96%)  (-61.76%)  (-70.03%)  (-77.78%)
DeepPavlov 0.25 0.15 0.16 0.23 0.13
(-52.45%)  (-73.30%)  (-72.42%)  (-63.91%)  (-77.77%)

Table 3: F1 scores on case ablated datasets. High F1
score and low percentage drops are desirable.

finding as it suggests that cased BERT is more re-
silient to case-based adversarial attacks than Flair,
which uses uncased GloVe embeddings.

6.2 Case aberration

We observe large drops in performance for the
case aberration attack. The performance for
CoreNLP-t is worse than that of CoreNLP-c,
which suggests that truecasing is not as effective as
caseless training. Among the case-sensitive mod-
els, we find Flair outperforming other models. The
performance drop for case aberration is slightly
less than that for case ablation.

Model CoNLL  WIKI GMB FIRE IEER
Flair 0.22 0.27 0.23 0.19 0.18
(-68.53%)  (-62.05%) (-67.65%) (-73.05%) (-74.22%)
spaCy 0.15 0.20 0.19 0.13 0.12
(-67.49%)  (-66.96%)  (-69.74%)  (-74.71%)  (-77.03%)
CoreNLP-s 0.16 0.17 0.19 0.13 0.09
(-67.02%)  (-68.99%)  (-71.52%)  (-73.37%)  (-79.73%)
DeepPavlov 0.11 0.10 0.10 0.08 0.10
(-69.28%)  (-78.33%)  (-78.89%)  (-80.11%)  (-81.46%)

Model CoNLL WIKI GMB FIRE IEER
Flair 0.39 0.21 0.36 0.23 0.21
(-50.19%)  (-69.00%)  (-53.62%)  (-68.50%)  (-71.33%)
spaCy 0.20 0.19 0.26 0.20 0.19
(-61.21%)  (-67.43%)  (-61.70%)  (-67.61%)  (-69.82%)
CoreNLP-s 0.25 0.17 0.32 0.21 0.17
(-56.38%)  (-69.19%)  (-57.08%)  (-63.75%)  (-71.34%)
CoreNLP-c 0.32 0.23 0.42 0.30 0.28
(-47.72%)  (-62.75%) (-46.74%) (-53.83%) (-59.58%)
CoreNLP-t 0.25 0.17 0.32 0.20 0.16
(-56.38%)  (-69.19%)  (-57.08%)  (-64.55%)  (-72.12%)
DeepPavlov 0.32 0.15 0.22 0.26 0.19
(-44.46%)  (-72.29%)  (-65.51%)  (-60.23%)  (-71.59%)

Table 4: F1 scores on case aberrated datasets. High F1
score and low percentage drops are desirable.

6.1 Case ablation

We observe significantly large performance drops
for every model with respect to model perfor-
mance on the original datasets. This is unsurpris-
ing, as case information is an important indicator
of named entities.

If we consider the CoreNLP-c scores as the up-
per bound (since this model is trained on caseless
data and hence, reflects the ability of NER mod-
els to work on caseless data), we still notice large
drops in F1 scores for the other models. This re-
flects the tendency of NER models to over-rely on
case information. Among the cased models, we
find BERT to be the better performer with Flair
trailing as a close competitor. This is an interesting

Table 5: F1 scores on context perturbed datasets. High
F1 score and low percentage drops are desirable.

6.3 Context perturbation

Despite including mechanisms to incorporate con-
textual information, NER models show large per-
formance drops under context perturbation at-
tacks. Since an NER model is highly likely to have
come across “London” as a LOCATION and “Al-
ice" as a PERSON during training, it predicts them
as such, ignoring the local context in which they
appear. Despite large performance drops in gen-
eral, Flair outperforms other models for all five
datasets. This suggests that Flair captures local
context better, likely due to the use of character
embeddings.

Model CoNLL  WIKI GMB FIRE IEER
Flair 0.36 0.20 0.40 0.27 0.28
(-53.55%)  (-69.33%) (-48.97%) (-64.31%)  (-63.50%)
spaCy 0.27 0.19 0.38 0.26 0.27
(-52.94%)  (-67.20%)  (-49.02%)  (-61.03%)  (-61.09%)
CoreNLP-s 0.29 0.20 0.38 0.27 0.28
(-51.93%)  (-66.14%)  (-50.77%)  (-56.57%)  (-58.69%)
DeepPavlov 0.23 0.21 0.35 0.29 0.27
(-55.00%)  (-66.59%)  (-57.21%)  (-51.13%)  (-63.02%)

Table 6: F1 scores on context altered datasets. High
percentage drops are desirable.



6.4 Context alteration

We note here that unlike the previous experiments,
it is desirable to have higher percentage drops in
performance for the context alteration attacks.>
All the models show drops in performance. This
hints at NER models having a tendency to learn
the names themselves during training, rather than
relying on the context in which the names ap-
pear. The magnitude of drops in performance is
generally less than that observed for context per-
turbation, which suggests that NER models cap-
ture the local context of named entities better than
their global context. Flair shows the largest per-
formance drops, closely trailed by BERT.

7 Discussion

The adversarial evaluation of NLP models rely
either on human-generated adversaries (Kaushik
et al.,, 2019) or automated adversary generation
with human-in-the-loop (Alzantot et al., 2018).
However, it is possible to do away with human in-
tervention for generating adversarial samples for
the task of NER, as we demonstrate. Further, un-
like existing work, our approach for adversarial
evaluation does not require any re-training or fine-
tuning of models for adversarial data creation.

The generalizability of NER models can also be
evaluated with the proposed approaches. In par-
ticular, context perturbation can be used as an al-
ternative to studying the effect of named entities
that have not been seen during training (Augen-
stein et al., 2017) with the same label.

8 Conclusions

In this paper, we present an adversarial evaluation
of four popular named-entity recognizers on five
English datasets. The four model-agnostic adver-
sarial attacks we present do not require white-box
access to pre-trained NER models. Our experi-
ments show that the popular NER models are over-
reliant on the case information and under-utilise
the contextual information. Since NER is a pre-
requisite for a large number of NLP tasks, further
work for improvement in these directions is war-
ranted.

3Lower F1 scores are also desirable. However, low F1
scores can also be caused due to a model being poor gener-
ally and not specifically due to the inability to capture global
context. Thus, we cannot draw concrete conclusions from the
absolute F1 scores.
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