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Abstract

Predicting the effects of unexpected situations
is an important reasoning task, e.g., would
cloudy skies help or hinder plant growth?
Given a context, the goal of such situational
reasoning is to elicit the consequences of a
new situation (st) that arises in that context.
We propose CURIE, a method to iteratively
build a graph of relevant consequences explic-
itly in a structured situational graph (st graph)
using natural language queries over a fine-
tuned language model. Across multiple do-
mains, CURIE generates st graphs that humans
find relevant and meaningful in eliciting the
consequences of a new situation (75% of the
graphs were judged correct by humans). We
present a case study of a situation reasoning
end task (WIQA-QA), where simply augment-
ing their input with st graphs improves accu-
racy by 3 points. We show that these improve-
ments mainly come from a hard subset of the
data, that requires background knowledge and
multi-hop reasoning.

1 Introduction

A long-standing challenge in reasoning is to model
the consequences of an unseen situation in a con-
text. In the real world unexpected situations are
common. Machines capable of situational reason-
ing are crucial because they are expected to grace-
fully handle such unexpected situations. For exam-
ple, when eating leftover food, would it be more
safer from virus if we microwave the food? - an-
swering this requires understanding the complex
events virus contamination and effect of heat on
virus. Much of this information remains implicit
(by Grice’s maxim of quantity (Grice, 1975)), thus
requiring inference.

Recently, NLP literature has shown renewed in-
terest in situational reasoning with applications
in qualitative reasoning (Tandon et al., 2019;

∗ authors contributed equally to this work. Ordering
determined by dice rolling.

QA pairs: 
Q1: What helps st imminently?  
A1 : bright skies 
Q2: What hurts st imminently?  
A2: cloudy skies 
Q3: What’s helped eventually ? 
A3: taller plants

bright 
skies

more 
sunlight

cloudy 
skies

taller 
plants

Context : 
Sunlight strikes 
chlorophyll.  
Sunlight trapped  … 

Situation (st) : 
more sunlight

RQ1. St-Graph Generation :

RQ2. Example QA End-Task :

Context Situation [c] = storm End [e]= smaller rocks
c’s influence 

on e?  
accelerates 

(helps)

Figure 1: RQ1: CURIE generates situational graphs
by iteratively querying a model, making explicit the
model’s knowledge of effects of influences (+ve / -ve).
RQ2: Situational graphs improve situational reasoning
QA when appended to the question context.

Tafjord et al., 2019), physical commonsense reason-
ing (Sap et al., 2019; Bisk et al., 2020), and defea-
sible inference (Rudinger et al., 2020). These tasks
take as input a context providing background infor-
mation, a situation (st), and an ending, and predict
the reachability from st to that ending. However,
these systems have three limitations: (i) systems
trained on these tasks are often domain specific, (ii)
these tasks do not require a supporting structure
that elicits the dynamics of the reasoning process,
and (iii) these tasks are addressed as a classification
problem restricting to a closed vocabulary setting.

To address these limitations, we propose CURIE-
a system to iteratively query pretrained language
models to generate an explicit structured graph of
consequences, that we call a situational reasoning
graph (st-graph). The task is illustrated in Figure 1:
given some context and situation st (short phrase),
our system generates a st-graph based on the con-
textual knowledge. CURIE supports the following
kinds of reasoning:

• If a situation st occurs, which event is
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more/less likely to happen imminently/ even-
tually?

• Which event will support/ prevent situation st
from happening imminently/ eventually?

As shown in Figure 1, our approach to this task
is to iteratively compile the answers to questions
1 and 2 to construct the st-graph where immi-
nent/eventual capture multihop reasoning questions.
Compared to a free-form text output obtained from
an out-of-the-box sequence-to-sequence model, our
approach gives more control and flexibility over the
graph generation process, including arbitrarily rea-
soning for any particular node in the graph. The
generated st-graphs are of high quality as judged by
humans for correctness. In addition to human eval-
uation, we also show that a downstream task that
requires reasoning about situations can compose
natural language queries to construct a st-reasoning
graph via CURIE. The resulting st-graph can be
simply augmented to their input to achieve per-
formance gains, specifically on the subset of hard
questions that require background knowledge and
multihop reasoning. In summary, this paper ad-
dresses the following research questions:

RQ1: Given a context and a situation, how can we
generate a situational reasoning (st) graph?
To answer RQ1, we present CURIE, the first
domain-agnostic situational reasoning system
that takes as input a context and a situation
st and iteratively generates a situational rea-
soning graph (§2). Our system is effective at
situational reasoning across three datasets as
validated by human evaluation and automated
metrics.

RQ2: Can the st-graphs generated by CURIE im-
prove performance of a downstream task? To
answer RQ2, we show that st graphs gener-
ated by CURIE improve a st-reasoning task
(WIQA-QA) by 3 points on accuracy by sim-
ply augmenting their input with our generated
situational graphs, especially for a hard sub-
set that requires background knowledge and
multi-hop reasoning (§4).

2 CURIE for Situational Reasoning

CURIE provides both a general framework for situ-
ational reasoning and a method for constructing st-
reasoning graphs from pretrained language models.

M

st tasks model st-graph

Figure 2: CURIE framework consists of two compo-
nents: (i) a formulation that adapts datasets that al-
low st-reasoning for pretraining (ii) a method to itera-
tively build structured st-graphs using natural language
queries over a fine-tuned language model (M).

Figure 2 shows the overall architecture of CURIE.
CURIE framework consists of two components: (i)
st-reasoning task formulation : a formulation that
adapts datasets that allow situational reasoning (ii)
st-graph construction : a method to fine-tune lan-
guage modelM to generate the consequences of
a situation and iteratively construct structured sit-
uational graphs (shown in Figure 1). In this sec-
tion, we present (i) our task formulation (§2.1), (ii)
adapting existing datasets for CURIE task formula-
tion (§2.2), (iii) the learning procedure (§2.3), and
(iv) the st-graph generation process (§2.4).

2.1 Task Formulation

We describe the general task formulation for adapt-
ing pretraining language models to the st-reasoning
task. Given a context T = {s1, s2, . . . , sN} com-
prising of N sentences, and a situation st, our goal
is to generate an st-graphG that captures the effects
of situation st.

An st-graph G(V,E) is an unweighted directed
acyclic graph. A vertex v ∈ V is an event or a
state that describes a change to the original condi-
tions in T . Each edge eij ∈ E is labeled with a
relationship rij , that indicates whether vi positively
or negatively influences vj . Positive influences are
represented via green edges comprising one of {en-
tails, strengthens, helps} and negative influences
represented via red edges that depict one of {contra-
dicts, weakens, hurts}. Our relation set is general
and can accommodate various st-reasoning tasks.
Given two nodes vi, vk ∈ V , if a path from vi to
vk has more than one edge, we describe the effect
c as eventual and a direct effect as imminent.

We derive the training data by transforming a
repository of (context T , st-graph G) tuples into a
set of question-answer pairs. Each pair of vertices
vs, vt ∈ G that are connected by a path contribute
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Dataset Original formulation Original st graph Iterative formulation (st)

WIQA

context: Wind creates waves..
Waves wash on beaches...
ques: If there is storm, how
will it affect bigger waves?
explanation: storm→ stronger
wind→ bigger waves
answer: helps bigger waves

storm

stronger 
wind

big 
waves

Given context and
st: there is a storm
Q1: What does st help imminently ?
A1: stronger wind
Q2: What does st help eventually ?
A2: bigger waves

QUAREL

context: Car rolls further on
wood than on thick carpet
ques: what has more resistance?
(a) wood (b) the carpet
simplified logical form of
context, ques:
distance is higher on wood→
(a) friction is higher in carpet (or)
(b) friction is higher in wood
answer: (b) the carpet

high dist 
on wood

low 
friction on 

wood

friction 
low on 
carpet

wood 
resistance 

is more

Given context and
st: distance is higher on wood
Q1: What does st entail imminently ?
A1: friction is lower in wood
Q2: What does st contradict imminently ?
A2: friction is lower in carpet
Q3: What does st entail eventually ?
A3: wood has more resistance

DEFEAS

context: Two men and a dog are
standing among the green hills.
hypothesis: The men are farmers.
update1: The dog is a sheep dog
strengthens hypothesis
update2: Men with tour map
weakens hypothesis

sheep 
dog

men're 
farmer

men 
w/ tour 

map

Given context and
st: dog is a sheep dog
Q1: What does st strengthen imminently ?
A1: The men are farmers
st: men are studying tour maps
Q2: What does st weaken imminently?
A2: The men are farmers

Table 1: The datasets used by CURIE and how we re-purpose them for st reasoning graph generation task. As
explained in §2.1, the green edges set depicts relation (r) (entail, strengthen, helps) and red edges depict one of
(contradict, weaken, hurts). The { imminent, eventual } effects (c) are used to support multihop reasoning. DEFEAS
= DEFEASIBLE, chain refers to reasoning chain. Some examples are cut to fit. The key insight is that an st-graph
can be decomposed into a series of QA pairs, enabling us to leverage seq-to-seq approaches for st-reasoning.

one question-answer pair to the training data for
CURIE, such that every question comprises of: i)
context T , ii) a st-vertex vs, iii) a relation r, and
iv) the nature of the effect c and the answer is the
target node vt. An example is shown in Figure
1. Compared to an end-to-end approach to graph
generation, our approach gives more flexibility over
the generation process, enabling reasoning for any
chosen node in the graph. Thus the training data
consists of tuples (xi,yi), with xi = (T, vs, r, c)i
and yi is the target situation vt.

2.2 Generalizing Existing Datasets

Despite theoretical advances, lack of a large-scale
general situational reasoning dataset presents a
challenge to train seq-to-seq language models.
We describe how we generalize existing diverse
datasets towards st-reasoning towards finetuning a
language modelM. If a reasoning dataset contains

a context, a st-situation and can describe the influ-
ence of st in terms of green and/or red edges, it can
be seamlessly adapted to CURIE framework. Due
to the lack of existing datasets that directly support
our task formulation, we adapt the following three
diverse datasets - WIQA, QUAREL and DEFEASIBLE

for CURIE (dataset statistics in Table 3).

WIQA: WIQA task studies the effect of a perturba-
tion in a procedural text (Tandon et al., 2019). The
context T is a procedural text describing a physical
process, and st is a perturbation i.e., an external
situation deviating from T , and the effect of st is
either helps or hurts. See Table 1 for examples.

QUAREL: QUAREL dataset (Tafjord et al., 2019)
contains qualitative story questions where T is a
narrative, and st is a qualitative statement. T and st
are also expressed in a simpler, logical form, which
we use as it highlights the reasoning challenge. The
effect of st is entails or contradicts (see Table 1).
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Research question Training dataset Test dataset Task Metrics
Can we generate WIQA-st WIQA-st generation ROUGE, BLEU
good st graphs? (§3) QUAREL-st QUAREL-st generation ROUGE, BLEU

DEFEASIBLE-st DEFEASIBLE-st generation ROUGE, BLEU

Can we improve WIQA-st, WIQA-QA WIQA-QA finetuned QA accuracy
downstream tasks? (§4.1)

Table 2: Overview of experiments

Dataset train dev test

WIQA 119.2k 34.8k 34.8k
QUAREL 4.6k 1.3k 652
DEFEASIBLE 200k 14.9k 15.4k

Table 3: Dataset wise statistics, we maintain the splits

DEFEASIBLE: The DEFEASIBLE reasoning task
(Rudinger et al., 2020) studies inference in the pres-
ence of a counterfactual. The context T is a premise
describing an everyday context, and the situation st
is an observed evidence which either strengthens
or weakens the hypothesis. We adapt the original
abductive setup as shown in Table 1. In addition
to commonsense situations, DEFEASIBLE-st also
comprises of social situations, thereby contributing
to the diversity of our datasets.

2.3 Learning to Generate st-graphs

To reiterate our task formulation (§2.1), for a given
context and st, we first specify a set of questions
and the resulting outputs for the questions is then
compiled to form a st-graph.

The training data consists of tuples (xi,yi), with
xi = (T, st , r, c)i where T denotes the context, st
the situation, r is the edge (green or red), c indicates
the nature of the effect (imminent or eventual), and
yi is the output (a short sentence or a phrase depict-
ing the effect). The output of NQ such questions is
compiled into a graph G = {yi}1:NQ

(Fig. 1).
We use a pretrained language modelM to es-

timate the probability of generating an answer yi
for an input xi. We first transform the tuple xi =
〈x1i , x2i , . . . , xNi 〉 into a single query sequence of
tokens by concatenating its components i.e. xi =
concat(T, st , r, c), where concat is string con-
catenation. Let the sequence of tokens representing
the target event be yi = 〈y1i , y2i , . . . , yMi 〉, where
N and M are the lengths of the query and the tar-
get event sequences. We model the conditional

Algorithm 1: ITERATIVEGRAPHGEN

(IGEN): generating st graphs with CURIE

Given: CURIE language modelM.
Given: Context T , situation st, a set R =

{(ri, ci)}NQ

i=1 of NQ (r, c) tuples.
Result: st graph G: ith node is generated

with relation ri, effect type ci.
Init: G← ∅
for i← 1, 2, . . . , NQ do

/* Create a query */

xi = concat(T, st, ri, ci);
/* Sample a node from M */

yi ∼M(xi);
/* Add sampled node, edge */

G = G ∪ (ri, ci,yi);
end
return G

probability pθ(yi | xi) as a series of conditional
next token distributions parameterized by θ: as
pθ(yi | xi) =

∏M
k=1 pθ(y

k
i | xi, y1i , .., yk−1i ).

2.4 Inference to Decode st-graphs

The auto-regressive factorization of the language
model pθ allows us to efficiently generate target
event influences for a given test input xj . The
process of decoding begins by sampling the first
token y1j ∼ pθ(y | xj). The next token is then
drawn by sampling y2j ∼ pθ(y | xj , y1j ). The pro-
cess is repeated until a specified end-symbol token
is drawn at the Kth step. We use nucleus sam-
pling (Holtzman et al., 2019) in practice. The
tokens 〈y1j , y2j , . . . , yK−1j 〉 are then returned as
the generated answer. To generate the final st-
reasoning graph G, we combine all the generated
answers {yi}1:NQ

that had the same context and st
pair (T, st ) over all (r, c) combinations. We can
then use generated answer st ′ ∈ {yi}1:NQ

, as a
new input toM as (T, st ′) to recursively expand
the st-graph to arbitrary depth and structures (Al-
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gorithm 1). One such instance of using CURIE st
graphs for a downstream QA task is shown in §4.

3 RQ1: Establishing Baselines for
st-graph Generation

This section reports on the quality of the generated
st reasoning graphs and establishes strong baseline
scores for st-graph generation. We use the datasets
described in section §2.2 for our experiments.

Model (M) BLEU ROUGE
WIQA-st

LSTM Seq-to-Seq 7.51 18.71
GPT ∼(w/o T ) 7.82 19.30
GPT-2 ∼(w/o T ) 10.01 20.93
GPT 9.95 19.64
GPT-2 16.23 29.65

QUAREL-st
LSTM Seq-to-Seq 13.05 24.76
GPT ∼(w/o T ) 20.20 36.64
GPT-2 ∼(w/o T ) 26.98 41.14
GPT 25.48 42.87
GPT-2 35.20 50.57

DEFEASIBLE-st
LSTM Seq-to-Seq 7.84 17.50
GPT ∼(w/o T ) 9.91 20.63
GPT-2 ∼(w/o T ) 9.17 9.43
GPT 10.49 21.79
GPT-2 10.52 21.19

Table 4: Generation results for CURIE with baselines
for language modelM. We find that context is essen-
tial for performance (w/o T ). We provide these base-
line scores as a reference for future research.

3.1 Baseline Language Models
To reiterate, CURIE is composed of (i) task formu-
lation component and (ii) graph construction com-
ponent, that uses a language modelM to construct
the st-graph. We want to emphasize that any lan-
guage model architecture can be a candidate forM.
Since our st-task formulation is novel, we establish
strong baselines over the three datasets. Our experi-
ments include large-scale language models (LSTM
and pretrained transformer) with varying parame-
ter sizes and pre-training, and the corresponding
ablation studies. Our choices forM are:

LSTM Seq-to-Seq: We train an LSTM (Hochre-
iter and Schmidhuber, 1997) based sequence to se-
quence model (Bahdanau et al., 2015) which uses
global attention described in (Luong et al., 2015).

We initialize the embedding layer with pre-trained
300 dimensional Glove (Pennington et al., 2014)1.
We use 2 layers of LSTM encoder and decoder with
a hidden size of 500. The encoder is bidirectional.

GPT: We use the original design of GPT (Radford
et al., 2018) with 12 layers, 768-dimensional hid-
den states, and 12 attention heads.

GPT-2: We use the medium (355M) variant of GPT-
2 (Radford et al., 2019) with 24 layers, 1024 hidden
size, 16 attention heads. For both GPT and GPT-2,
we initialize the model with the pre-trained weights
and use the implementation provided by Wolf et al.
(2019).

We use Adam (Kingma and Ba, 2014) for op-
timization with a learning rate of 5e − 05. All
the dropouts (Srivastava et al., 2014) were set to
0.1. We found the best hyperparameter settings by
searching the space using the following hyperpa-
rameters.

1. embedding dropout = {0.1, 0.2, 0.3}

2. learning rate = {1e-05, 2e-05, 5e-05, 1e-06}

We compare the st-graphs generated by various
language models with the gold-standard reference
graphs. To compare the two graphs, we first flat-
ten both the reference graph and the st-graph as
text sequences and then compute the overlap be-
tween them. Due to a lack of strong automated met-
rics, we use the commonly used evaluation metrics
for generation BLEU (Papineni et al., 2002), and
ROUGE (Lin, 2004) 2. Our results shown in Table 4
indicate that the task of st generation is challeng-
ing, and suggests that incorporating st-reasoning
specific inductive biases might be beneficial. At the
same time, Table 4 shows that even strong models
like GPT-2 achieve low BLEU and ROUGE scores
(specifically on WIQA and DEFEASIBLE), leaving a
lot of room for model improvements in the future.

We also show ablation results for the model with
respect to the context T (§2.1), by fine-tuning with-
out the context. We find that context is essential
for performance for both GPT and GPT-2 (indi-
cated with w/o T in Table 4). Further, we note that
the gains achieved by adding context are higher
for GPT-2, hinting that larger models can more
effectively utilize the context3.

1https://github.com/OpenNMT/OpenNMT-py
2https://github.com/Maluuba/nlg-eval
3More qualitative examples shown in appendix B
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Error category % Example question Reference Predicted

Polarity 7% What does ‘oil fields over-used’ there is not more oil
help eventually ? oil refined is refined

Linguistic 27% What does ‘rabbits will not more more
Variability become pregnant’ hurt imminently ? rabbits babies

Related 23% What does ‘inhaling more air there will be you develop
Event from the outside’ hurt imminently ? less oxygen more blood clo-

in your blood -ts in your veins

Wrong 40% What does ‘nutrients are unavailable for more more wine
plants’ hurt eventually ? plants being produced

Erroneous 3% What does ‘rabbit are not less more
Reference mating’ hurt imminently? rabbits babies

Table 5: Canonical examples per error category. Error analysis is only shown for the incorrect outputs. For polarity
errors, we use guidelines shown in appendix A.1

3.2 Human Evaluation
N-gram metrics such as BLEU and ROUGE are
known to be limited, specifically for reasoning
tasks. Further, we observe from Table 4 that con-
text is crucial for generation quality. To better un-
derstand this effect, we perform human evaluation
on a random sample from the dev set to compare
GPT-2- w/o T and GPT-2 models. Our goal is to
assess quality of generations, and the importance
of grounding generations in context. Four human
judges annotated 100 unique samples for correct-
ness, relevance and reference, described next.

Correctness: We conducted a human evaluation
to evaluate the correctness of the generated graphs
where we aggregated nodes for a given st. The user
interface for the annotation (shown in Figure 3) dis-
played the context T and the corresponding graph
G generated by GPT-2 using Algorithm 1. The
human judges were asked to annotate the nodes,
edges, and the overall graph for correctness. A
graph was labeled as correct if either a) all the
nodes and edges were correct, or b) the graph had a
minor issue that the judges deem not detrimental to
the overall correctness. The inter-annotator agree-
ment on graph correctness was substantial with a
Fleiss’ Kappa score (Fleiss and Cohen, 1973) of
0.69. Table 6 shows that human judges rated>75%
of the graphs to be correct given the context, show-
ing that CURIE generates high-quality graphs for a
diverse set of contexts.

Relevance: The annotators are provided with the
context T , the situation st, and the relational ques-

Attribute Node Edge Graph

% Correct 79.71 77.78 75.36

Table 6: Human Analysis of Graph Correctness. About
75% of the graphs were deemed as correct.

tions. The annotators were asked, “Which system
(A or B) is more accurate relative to the background
information given in the context?” They could
also pick option C (no preference). The order of
the references was randomized. Table 7 (row 1)
shows that GPT-2 outperforms GPT-2 (w/o T ),
confirming our hypothesis that context is important
as GPT-2 generates target events that are grounded
in the passage and source events.

Task GPT-2 (w/o T ) GPT-2 No Preference

Relevance 23.05 46.11 30.83
Reference 11.67 31.94 56.39

Table 7: Results of human evaluation. The numbers
show the percentage(%) of times a particular option
was selected for each metric.

Reference: We measure how accurately each
system-generated event reflects the reference (true)
event. Here, the annotators saw only the reference
sentence and the outputs of two systems (A and B)
in a randomized order. We asked the annotators,
“Which system’s output is closest in meaning to the
reference?” The annotators could pick the options
A, B, or C (no preference). Table 7 (row 2) illus-
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Figure 3: User interface for graph correctness evaluation. The human judges were asked to rate the if the the
generated nodes, edges, and the overall graph are correct for the given context. The paragraph for this example
was: Grass and small plants grow in an area. These plants die. The soil gains organic material. The soil becomes
more fertile. Larger plants are able to be supported. Trees eventually grow.

trates that the output generated by GPT-2 is closer
in meaning to the reference compared to GPT-2
(w/o T ) reinforcing the importance of context.

Both the models (with and without context) pro-
duced similarly grammatically fluent outputs.

3.3 Error Analysis

The reference and relevance task scores together
show that GPT-2 does not generate target events
that are exactly similar to the reference target
events, but are correct in the context of the passage
and source event. To investigate this, we analyze a
random sample of 100 points from the dev set. Out
of the erroneous samples, we observe the following
error categories (shown in Table 5):

• Polarity (7%): Predicted polarity was wrong
but the event was correct.

• Linguistic Variability (27%): Output was a
linguistic variant of the reference.

• Related event (23%): Output was related but
different reference expected.

• Wrong (40%): Output was fully unrelated.

• Erroneous reference (3%): Gold annota-
tions themselves were erroneous.

3.4 Consistency Analysis

Finally, we measure if the generated st-graphs are
consistent. Consider a path of length two in the gen-
erated st-graph (say, A → B → C). A consistent
graph would have identical answers to what does
A help eventually i.e., “C”, and what does B help
imminently i.e., “C”. To analyze consistency, we

manually evaluated 50 random generated length-
two paths, selected from WIQA-st dev set. We ob-
serve that 58% samples had consistent output w.r.t
the generated output. We also measure consistency
w.r.t. the gold standard (the true outputs in the dev
set), and observe that the system output is ≈48%
consistent. Despite being trained on independent
samples, st-graphs show reasonable consistency
and improving consistency further is an interesting
future research direction.

3.5 Discussion
In summary, CURIE allows adapting pretrained lan-
guage models to generate st-graphs that humans
meaningful and relevant with a high degree of cor-
rectness. We also perform an in-depth analysis of
the errors of CURIE. We establish multiple base-
lines with diverse language models to guide future
research. We show that context is more important
than model size for st-reasoning tasks.

4 RQ2: CURIE for Downstream Tasks

In this section, we describe the approach for aug-
menting st graphs for downstream reasoning tasks.
We first identify the choice of tasks (st-tasks) for do-
main adaptive pretraining (Gururangan et al., 2020)
and obtain CURIE language modelM (based on
GPT-2). The downstream task then provides input
context, st and (relation, type) tuples of interest,
and obtains the st-graphs (see Algorithm 1) from
CURIE. We describe one such instantiation in §4.1.

4.1 CURIE augmented WIQA-QA

We examine the utility of CURIE-generated graphs
in the WIQA-QA (Tandon et al., 2019) downstream
question answering benchmark. Input to this task
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is a context supplied in form of a passage T , a
starting event c, an ending event e, and the output
is a label {helps, hurts, or no_effect} depicting how
the ending e is influenced by the event c.

We hypothesize that CURIE can augment c and e
with their influences, giving a more comprehensive
scenario than the context alone. We use CURIE

trained on WIQA-st to augment the event influences
in each sample in the QA task as additional context.
We obtain the influence graphs for c and e by defin-
ing Rfwd = {(helps, imminent), (hurts, imminent)
} and Rrev = { (helped by, imminent), (hurt by,
imminent)}, and using algorithm 1 as follows:

G(c) = IGEN(T, c,Rfwd)

G(e) = IGEN(T, e,Rrev)

We hypothesize that WIQA-st graphs are able to
generate reasoning chains that connect c to e, even
if e is not an immediate consequence of c. Fol-
lowing Tandon et al. (2019), we encode the input
sequence concat(T, c, e) using the BERT encoder
E (Devlin et al., 2019), and use the [CLS] token
representation (ĥi) as our sequence representation.

We then use the same encoder E to encode the
generated effects concat(G(c), G(e)), and use
the [CLS] token to get a representation for aug-
mented c and e (ĥa). Following the encoded inputs,
we compute the final loss as: li = MLP1(ĥi), and
la = MLP1(ĥa) and L = α×Li + β ×La, where
li, la represent the logits from ĥi and ĥa respec-
tively, and Li and La are their corresponding cross-
entropy losses. α and β are hyperparameters that
decide the contribution of the generated influence
graphs and the procedural text to the loss. We set
α = 1 and β = 0.9 across experiments.

QA Evaluation Results Table 8 shows the ac-
curacy of our method vs. the vanilla WIQA-BERT

model by question type and number of hops be-
tween c and e. We also observe from Table 8 that
augmenting the context with generated influences
from CURIE leads to considerable gains over WIQA-
BERT based model, with the largest improvement
seen in 3-hop questions (questions where the e and
c are at a distance of three reasoning hops in the
influence graphs). The strong performance on the
3-hop question supports our hypothesis that gener-
ated influences might be able to connect two event
influences that are farther apart in the reasoning
chain. We also show in Table 8 that augmenting
with CURIE improves performance on the difficult

Query WIQA-BERT + WIQA-BERT

Type CURIE

1-hop 78.78 71.60
2-hop 63.49 62.50
3-hop 68.28 59.50

Out-of-para 64.04 56.13
In-para 73.58 79.68

No effect 90.84 89.38

Overall 76.92 73.80

Table 8: QA accuracy by number of hops, and question
type. WIQA-BERT refers to the original WIQA-BERT re-
sults reported in Tandon et al. (2019), and WIQA-BERT
+ CURIE are the results obtained by augmenting the QA
dataset with the influences generated by CURIE.

Out-of-para category of questions, which requires
background knowledge.

Source of improved performance: st graphs?
Since CURIE uses GPT-2 model to generate the
graphs, we perform an additional experiment to
verify whether simply using GPT-2 classifier for
WIQA would achieve the same performance gains.
To establish this, we train a GPT-2 classifier, and
augment it with CURIE graphs to compare their
relative performances on WIQA. Table 9 shows
that augmenting CURIE graphs to both WIQA-BERT

and GPT-2 classifiers provides consistent gains,
suggesting the effectiveness of CURIE graphs.

Model Accuracy

WIQA-BERT 73.80
WIQA-BERT + CURIE 76.92∗

GPT-2 72.70
GPT-2 + CURIE 74.33∗

Table 9: WIQA-QA results for both WIQA-BERT and
GPT-2 augmented with CURIE graphs. Across both
classifiers, augmenting CURIE graphs shows perfor-
mance gains. ∗-indicates statistical significance

WIQA-BERT scores are slightly lower than the
GPT-2 scores for WIQA classification despite hav-
ing similar parameter size. We hypothesize that
this is due to the pretrained classification token
([CLS]) in WIQA-BERT, while GPT-2 uses the
pooling operation over the sequence for classifi-
cation. In summary, the evaluation highlights the
value of CURIE as a framework for improving per-
formance on downstream tasks that require coun-
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terfactual reasoning and serves as an evaluation of
the ability of CURIE to reason about st-scenarios.

4.2 Discussion
In summary, we show substantial gains when a
generated st-graph is fed as an additional input to
the QA model. Our approach forces the model to
reason about influences within a context, and then
answer the question, which proves to be better than
answering the questions directly.

5 Related Work

Language Models for Knowledge Generation:
Using large scale neural networks to generate
knowledge has been studied under various task
settings (Sap et al., 2019; Bosselut et al., 2019;
Shwartz et al., 2020; Bosselut et al., 2021;
Malaviya et al., 2019). Another line of querying
language models (LMs) aims to understand the
type of knowledge LMs contain. Davison et al.
(2019) explore whether BERT prefers true or fic-
titious statements over ConceptNet (Speer et al.,
2017). Logan et al. (2019) observe that the LM

over-generalize to produce wrong facts, while Kass-
ner and Schütze (2019) show that negated facts are
also considered valid in an LM.

Our work closely aligns with Tandon et al.
(2019), Bosselut et al. (2019), and Bosselut et al.
(2021). Compared to Bosselut et al. (2019), CURIE

gives a method that can naturally incorporate con-
text and reason about situation via hops and na-
ture of the influence. Additionally, any node can
be arbitrarily expanded via the iterative procedure,
producing complete graphs for situations. We re-
formulate the task of studying event influence from
a QA task (Tandon et al., 2019) to a generation
task. Our framework is similar in spirit to Bosselut
et al. (2019), but extend it for situational reasoning
with LMs. Bosselut et al. (2021) aim to generate
events that can aid commonsense tasks. In contrast,
our focus is context-grounded st graph generation.
To this end, our formulation includes multiple for-
ward/backward reactions, imminent and eventual
edges, and an algorithm to compile the individual
nodes to a complete graph (Algorithm 1).

Situational reasoning : There has been im-
mense interest in extracting event chains (as causal
graphs) in stories and news corpora in both unsu-
pervised (Chambers and Jurafsky, 2008) and su-
pervised (Rudinger et al., 2015; Liu et al., 2018;
Asghar, 2016; Dunietz et al., 2017; Nordon et al.,

2019; Zhao et al., 2017) settings. Such approaches
often depend on events that are explicitly men-
tioned in the input text, thereby unable to generate
events beyond the input text.

Recently, there has been interest in st reasoning
from a retrieval setting (Lin et al., 2019) and also
generation setting, attributed partially to the rise
of neural generation models (Yangfeng Ji and Ce-
likyilmaz, 2020) as knowledge bases (Petroni et al.,
2019; Roberts et al., 2020; Talmor et al., 2020;
Shwartz et al., 2020; Sap et al., 2019). Qin et al.
(2019) present generation models to generate the
path from a counterfactual to an ending in a story.
Current systems make some simplifying assump-
tions, e.g. that the ending is known. Multiple st
(e.g., more sunlight, more pollution) can happen at
the same time, and these systems can only handle
one situation at a time. All of these systems assume
that st happens once in a context. Our framework
strengthens this line of work by not assuming that
the ending is given during deductive st reasoning.

6 Conclusion

We present CURIE, a situational reasoning that:
(i) is effective at generating st-reasoning graphs,
validated by automated metrics and human eval-
uations, (ii) improves performance on two down-
stream tasks by simply augmenting their input with
the generated st graphs. Further, our framework
supports recursively querying for any node in the
st-graph. Our future work is to design models that
seek consistency, and study recursive st-reasoning
as a bridge between dialog and reasoning.
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A Appendix

A.1 Polarity Words
To compute polarity for error analysis, we use the
following words as guidelines.

Increasing words helps, more, higher, increase,
increases, stronger, faster, greater, longer, larger,
helping

Decreasing words hurts, less, lower, decrease,
decreases, weaker, slower, smaller, hurting, softer,
fewer

B Examples from CURIE

In table 12, we show some qualitative QA examples
from CURIE. Here, Topic Matches signifies whether
the generated answers is relevant to the context.
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Path
Length Question Answer Predicted Answer Topic

Matches

2
hurts more magma
is released

LESS igneous rock forming
LESS or SMALLER
eruptions.

Yes

2
hurts more water
in solid or
liquid phase

MORE evaporation? LESS vapor being made. Yes

2
hurts less flowers
for bees to visit

MORE flowers being
pollinated?

a LARGER cake?. No

1
helps changes in the
atmosphere

if the moon orbits slower
MORE/LARGER
solar power
being generated?.

No

2 helps less time goes by there are fewer fissures
LESS or SMALLER
eruptions.

Yes

3
hurts there is less
water in the lakes

a MORE INTENSE
water cycle?

MORE salt being
removed
from the water.

No

2
helps tectonic plates
rub less

SMALLER mountains
LESS or SMALLER
eruptions.

Yes

1 hurts Better crop watering LESS crops LESS vegetables. Yes

3
hurts weather is
accommodating for frogs

LESS frogs LESS or SMALLER Frogs. Yes

1
helps there will be
more eggs

MORE fish? MORE birds. No

3
helps Urine levels
increase

LESS waste being removed
from the body

MORE waste
being removed
from the body.

Yes

3
helps Having normal body
functions

HURTING the DNA to
replicate properly

MORE cells being
damaged.

Yes

2
helps not having a water
source nearby

vines will grow faster
LESS or SMALLER
grapes.

Yes

1
hurts bees may
become extinct

more bees are collecting
pollen

LESS butterflies. Yes

3
hurts more bees fly
around

LESS flowers being
pollinated

a SMALLER flowers. Yes

2
hurts the earths core
gets warmer

less volcanic mountains
are formed

LESS or SMALLER
valleys
being formed.

Yes

3
hurts more land
available

LESS igneous rock
forming

less magma cools. Yes

3
hurts there is less water
on the ground

a MORE INTENSE
water cycle

MORE salt being
removed
from the water.

No

Table 10: Sample Generations. Topic matches captures whether the topic of the generated event matches with the
context. (section 3). Path length = 1 refers to the immediate effects, and Path length > 1 refers to eventual effects.
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Path
Length Question Answer Predicted Answer Topic

Matches

3
hurts more conservation
achieved

LESS flowers being
pollinated

less nectar available. Yes

2
hurts the eggs become
food for
other fish

MORE fish Less larvae eat and grow. Yes

2
helps more magma inside
volcano

more magma changes
in pressure

MORE/GREATER
eruptions?.

Yes

2
helps less commercial
fishing

more fry emerge LESS damage by acid rain.

2
hurts more stormy
weather occurs

less plant growth occurs MORE vegetables. Yes

2
helps more pumpkin
seeds planted

MORE or LARGER
pumpkins

more water used for
more flowers.

No

2
hurts more Global
warming causes
extreme temperatures

Rains are plentiful and
more regular

MORE vegetables?. Yes

2
helps warmer weather
evaporates
more water

a MORE INTENSE
water cycle

MORE/STRONGER
storms?.

Yes

2
helps dry hot environment
evaporates water

LESS frogs MORE or LARGER frogs. Yes

3
helps stronger
heat source

MORE evaporation
more heat causes
the molecules
to increase in energy.

Yes

2
helps living in a
rain forest

more water collects in
the bodies of water

MORE salt being removed
from the water.

No

2
hurts there is no tadpole
from the egg

MORE frogs
MORE ELABORATE
swimming.

No

1
helps more pulling and
stretching
of tetonic plates

more cracks in earths
crust

MORE or STRONGER
earthquakes.

Yes

2
hurts less animals that
hunt frogs

less tadpoles loses their
tails

more fish grow bigger. No

2
hurts both kidneys are
present and
functioning

less waste is removed
from the blood

less waste is removed
in the blood.

Yes

Table 11: Sample Generations. Topic matches captures whether the topic of the generated event matches with the
context. (section 3). Path length = 1 refers to the immediate effects, and Path length > 1 refers to eventual effects.
(section 3).
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Path
Length Question Answer Predicted Answer Topic

Matches

2
helps the bees have a very
hairy leg gene

the bees would carry
more pollen
away from the flower

a LARGER nectar star. Yes

2
hurts If more eggs
are layed

MORE frogs
the mouth will grow
smaller.

No

1 hurts bees are imported
fewer bees land on
flowers

a SMALLER hive. No

1
hurts more adolescent fish
grow to adulthood

fewer fish can lay
more eggs

LESS damage by
acid rain.

No

2 helps the heat rises
greater precipitations
will happen

MORE/STRONGER
.

Yes

2
helps All the eggs
were eaten

There were few eggs
laid

less eggs are laid.. Yes

1
hurts plates move away
from each other

edges of plates crumple
more

MORE or GREATER
eruptions.

Yes

1
hurts more proteins
available

less help occurs
less endowment of
nucleotides.

Yes

Table 12: Sample Generations. Topic matches captures whether the topic of the generated event matches with the
context. Path length = 1 refers to the immediate effects, and Path length > 1 refers to eventual effects. (section 3).

63


