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Abstract
Starting from the COMET methodology by
Bosselut et al. (2019), generating common-
sense knowledge from commonsense trans-
formers has recently received significant atten-
tion. Surprisingly, up to now no materialized
resource of commonsense knowledge gener-
ated this way is publicly available. This pa-
per fills this gap, and uses the materialized re-
sources to perform a detailed analysis of the
potential of this approach in terms of precision
and recall. Furthermore, we identify common
problem cases, and outline use cases enabled
by materialized resources. We posit that the
availability of these resources is important for
the advancement of the field, as it enables an
off-the-shelf-use of the resulting knowledge,
as well as further analyses on its strengths and
weaknesses.

1 Introduction

Compiling comprehensive collections of common-
sense knowledge (CSK) is an old dream of AI.
Besides attempts at manual compilation (Liu and
Singh, 2004; Lenat, 1995; Sap et al., 2018) and text
extraction (Schubert, 2002; Tandon et al., 2014;
Mishra et al., 2017; Romero et al., 2019; Nguyen
et al., 2021a), commonsense knowledge compila-
tion from pretrained language models (Bosselut
et al., 2019; Hwang et al., 2021; West et al., 2021)
has recently emerged. In 2019, Bosselut et al. in-
troduced Commonsense Transformers (COMET),
an approach for fine-tuning language models on ex-
isting corpora of commonsense assertions. These
models have shown promising performance in gen-
erating commonsense assertions after being trained
on established human-authored commonsense re-
sources such as ATOMIC (Sap et al., 2018) and
ATOMIC20

20 (Hwang et al., 2021).
More recently, West et al. (2021) extracts com-

monsense assertions from a general language
model, GPT-3 (Brown et al., 2020), using sim-
ple prompting techniques. Surprisingly, using this

machine-authored commonsense corpus to fine-
tune COMET helps it outperform GPT-3, which
is 100x larger in size, in terms of commonsense
capabilities.

Despite the prominence of this approach (the
seminal COMET paper (Bosselut et al., 2019) re-
ceiving over 300 citations in just two years), to
date, no resource containing commonsense knowl-
edge compiled from any COMET model is publicly
available. As compilation of such a resource is a
non-trivial endeavour, this is a major impediment
to research that aims to understand the potentials
of the approach, or intends to employ its outputs in
downstream tasks.

This resource paper fills this gap. We fine-tune
the COMET pipeline on two established resources
of concept-centric CSK assertions, CONCEPTNET

(Speer et al., 2017) and ASCENT++ (Nguyen et al.,
2021a), and execute the pipeline for 10K promi-
nent subjects. Unlike the ATOMIC resources, which
were used to train COMET in (Bosselut et al., 2019;
Hwang et al., 2021) and have their main focus on
events and social interactions, the two resources
of choice are mostly about general concepts (e.g.,
lions can roar, or a car has four wheels). Fur-
thermore, as those two resources were constructed
using two fundamentally different methods, crowd-
sourcing and web text extraction, it enables us to
discover potentially different impacts they have on
the COMET models.

By taking the top-10 inferences for each subject-
predicate pair, we obtain four resources, CONCEPT-
NET (GPT2-XL, BART) and ASCENT++ (GPT2-
XL, BART), containing 900K to 1.4M ranked as-
sertions of CSK. We perform a detailed evaluation
of the intrinsic quality, including fine-grained preci-
sion (typicality and saliency) and recall of each re-
source, derive qualitative insights into the strengths
and weaknesses of the approach, and highlight ex-
trinsic use cases enabled by the resources.
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Our contributions are:

1. The materialization of the COMET ap-
proach for two language models (GPT2-XL,
BART) on two concept-centered common-
sense knowledge bases (CONCEPTNET, AS-
CENT++);

2. Quantitative and qualitative evaluations of the
resulting resources in terms of precision, re-
call and error categories, showing that in terms
of recall, COMET models outperform crowd-
sourced construction and are competitive with
web text extraction, while exhibiting moderate
gaps in terms of precision to both;

3. Illustrative use cases of the materialized re-
sources in statement aggregation, join queries,
and search.

The materialized resources, as well as an in-
teractive browsing interface, are available at
https://ascentpp.mpi-inf.mpg.de/comet.

2 Related work

Early approaches at CSK compilation relied on ex-
pert knowledge engineers (Lenat, 1995) or crowd-
sourcing (Liu and Singh, 2004), and the latter
approach has recently been revived (Sap et al.,
2018). To overcome scalability limitations of man-
ual compilation, text extraction is a second pop-
ular paradigm. Following early attempts on lin-
guistic corpora (Mishra et al., 2017), increasingly
approaches have targeted larger text corpora like
Wikipedia, book scans, or web documents (Tandon
et al., 2014; Romero et al., 2019; Nguyen et al.,
2021a,b), to build CSK resources of wide coverage
and quality.

Recently, both approaches have been com-
plemented by knowledge extraction from pre-
trained language models: Language models like
BERT (Devlin et al., 2019) or GPT (Radford et al.,
2019; Brown et al., 2020) have seen millions of
documents, and latently store associations among
terms. While West et al. (2021) used prompting
to extract symbolic CSK from GPT-3, Bosselut
et al. (2019) proposed to tap this knowledge by
supervised learning: The language models are fine-
tuned on statements from existing knowledge re-
sources, e.g., trained to predict the object Africa
when given the subject-predicate pair elephant, At-
Location, based on the ConceptNet triple 〈elephant,
AtLocation, Africa〉. After training, they can be

used to predict objects for unseen subject-predicate
pairs, e.g., locations of wombats.

The approach gained significant attention, and
variants are employed in a range of downstream
tasks, e.g., commonsense question answering
(Bosselut and Choi, 2020), commonsense expla-
nation (Wang et al., 2020), story generation (Guan
et al., 2020), or video captioning (Fang et al., 2020).

Yet, to date, no materialized knowledge re-
source produced by any COMET model is avail-
able (AUTOTOMIC from (West et al., 2021) be-
ing based on prompting GPT-3). The closest to
this is a web interface hosted by the AllenAI insti-
tute at https://mosaickg.apps.allenai.org/

model_comet2020_entities. However, this visu-
alizes only predictions for a single subject, making,
e.g., aggregations or count impossible, and only
shows top-5 predictions, and without scores.

3 Methodology

We follow the implementations in the offi-
cial code repository1 of the COMET-ATOMIC20

20

project (Hwang et al., 2021) to compute assertions,
and decide on output thresholds.

Training CSKBs. We use two established
concept-centered commonsense knowledge bases
(CSKBs), CONCEPTNET 5.7 (Speer et al., 2017)
and ASCENT++ (Nguyen et al., 2021a) as training
resources, considering 13 CSK predicates from
each of them: AtLocation, CapableOf, Causes,
Desires, HasA, HasPrerequisite, HasProperty,
HasSubevent, MadeOf, MotivatedByGoal, PartOf,
UsedFor and ReceivesAction.

1. CONCEPTNET (Speer et al., 2017) is arguably
the most widely used CSKB, built by crowd-
sourcing. CONCEPTNET 5.7 is its lastest ver-
sion2, consisting of 21 million multilingual as-
sertions, spanning CSK as well as general lin-
guistic and taxonomic knowledge. We retain
English assertions only, resulting in 207,210
training assertions for the above-mentioned
predicates.

2. ASCENT++ (Nguyen et al., 2021a) is a project
aiming for automated CSK extraction from
large-scaled web contents based on open in-
formation extraction (OpenIE) and judicious

1https://github.com/allenai/
comet-atomic-2020/

2https://github.com/commonsense/
conceptnet5/wiki/Downloads
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Parameter GPT2-XL BART

num_beams 10 10
temperature 1.0 1.0
top_p 0.9 1.0
repetition_penalty 1.0 1.0
max_length 16 24
no_repeat_ngram_size 0 3
early_stopping True True
do_sample False False

Table 1: Configurations for beam-search decoders.

cleaning and ranking approaches. The AS-
CENT++ KB consists of 2 million English
CSK assertions for the 13 mentioned predi-
cates.

Language models. We consider two autoregres-
sive language models (LMs) that were also used
in the original COMET paper, GPT2-XL (Radford
et al., 2019) and BART (Lewis et al., 2020).

Materialization process. We query the fine-
tuned COMET models for 10,926 subjects in CON-
CEPTNET which have at least two assertions for the
13 CSK predicates. For each subject-predicate pair,
we use beam search to obtain completions, with
different configurations (see Table 1) for BART
and GPT2-XL, following the parameters speci-
fied in the published code repository and models.
We retain the top-10 completions for each subject-
predicate pair, with their beam scores (i.e., sum
of log softmax of all generated tokens) returned
by the generate function3 of the Transformers li-
brary (Wolf et al., 2020).

Output. The resulting resources, CONCEPTNET

(GPT2-XL, BART) and ASCENT++ (GPT2-XL,
BART), contain a total of 976,296 and 1,420,380
and 1,271,295 and 1,420,380 assertions after dedu-
plication, respectively, as well as their correspond-
ing beam scores. All are available for browsing,
as well as for download, at https://ascentpp.
mpi-inf.mpg.de/comet (see screenshot of brows-
ing interface in Figure 2).

4 Analysis

We perform three kind of analyses: (1) a quanti-
tative evaluation of the intrinsic quality of the as-
sertions, based on crowdsourcing, (2) a qualitative

3https://huggingface.co/docs/
transformers/main/en/main_classes/text_
generation#transformers.generation_utils.
GenerationMixin.generate

evaluation that outlines major strengths and weak-
nesses, and (3) an illustration of use cases enabled
by both resources.

4.1 Quantitative evaluation

The original paper (Bosselut et al., 2019) only eval-
uated the top-1 triple per subject-predicate pair.
Furthermore, it solely evaluated triples by plausi-
bility, which is a necessary, but only partly a suffi-
cient criterion for being considered commonsense
(Chalier et al., 2020).

In the following, we evaluate samples from the
generated resources along two precision dimen-
sions, typicality (top-100 assertions per subject)
and saliency (top-10 assertions per subject). We
also evaluate recall, by measuring the degree to
which each resource covers the statements in a
human-generated ground truth.

Precision: Typicality and saliency. Follow-
ing Romero et al. (2019); Nguyen et al. (2021a),
we assess assertions in the CSK resources along
two precision dimensions: typicality and saliency,
which measure the degree of truth and the degree
of relevance of assertions, respectively. We use
the Amazon Mechanical Turk (AMT) platform to
obtain human judgements. Each dimension is eval-
uated based on a 4-point Likert scale and an option
for no judgement if the annotator is not familiar
with the concepts. Assertions are transformed into
human-readable sentences using the templates in-
troduced by Hwang et al. (2021). Each assign-
ment is done by three different workers. Follow-
ing Hwang et al. (2021), any CSK assertion that
receives the two higher scores in the Likert scale
is labelled as Typical or Salient, and the two lower
scores as Untypical or Unsalient. The final judge-
ments is based on majority vote.

In terms of sampling process, for typicality, we
draw 500 assertions from each resource when re-
stricting to top-100 assertions per subject. For
saliency, we pick 500 random samples from the
pool of top-10 assertions per subject.

Results are reported in the left part of Table 2.
We see a significant drop in the quality of asser-
tions in the LM-based generations compared to the
training resources. In terms of the neural mod-
els, for both training CSKBs, the BART mod-
els demonstrate better typicality than the GPT2-
XL ones. Assertions in BART-ASCENT++ also
have significantly better saliency than in GPT2-XL-
ASCENT++. Interestingly, BART-CONCEPTNET
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Figure 1: Resource recall in relation to resource size, at
similarity threshold t = 0.98.

is nearly on par with ASCENT++ on both metrics.

Recall. We reuse the CSLB dataset (Devereux
et al., 2014) that was processed by Nguyen et al.
(2021a) as ground truth for recall evaluation. The
CSLB dataset consists of 22.6K human-written
sentences about property norms of 638 concepts.
To account for minor reformulations, following
Nguyen et al. (2021a), we also use embedding-
based similarity to match ground-truth sentences
with statements in the CSK resources. We specifi-
cally rely on precomputed SentenceTransformers
embeddings (Reimers and Gurevych, 2019). We
also restrict all CSK resources to top-100 assertions
per subject.

The evaluation results are shown in the right
part of Table 2, where we report recall at similarity
thresholds 0.96, 0.98 and 1.0, as well as resource
size. We also plot the recall values at different top-
N assertions per subject in Figure 1 with similarity
threshold t = 0.98. As one can see, ASCENT++
outperforms both COMET models trained on it even
though it is significantly smaller. We see opposite
results with the CONCEPTNET-based resources,
where the COMET models generate resources of
better coverage than its training data. Our presump-
tion is that the LMs profits more from manually
curated resources like CONCEPTNET, but hardly
add values to resources that were extracted from
the web, as LMs have not seen fundamentally dif-
ferent text. Furthermore, in contrast to precision,
GPT2-XL models have better results than BART
models in terms of recall, on both input CSKBs.

4.2 Qualitative observations

LMs have the strength to generate an open-ended
set of objects, even for subjects seen rarely or not

at all in the training data. For example, while
CONCEPTNET stores only one location for rab-
bit: “a meadow”, both BART- and GPT2-XL-
CONCEPTNET can generalize to other correct loca-
tions, such as wilderness, zoo, cage, pet store, etc.
In the recall evaluation, we pointed out that CON-
CEPTNET, a manually-built CSK resource with
relatively small size, considerably benefits from
LMs generations as they improve the coverage of
the resource substantially.

However, as indicated in the precision evalua-
tion, LM generations are generally of lower preci-
sion than those in the training data. Common error
categories we observe are:

• Co-occurrence misreadings: LMs fre-
quently predict values that merely frequently
co-occur, e.g., 〈locomotive, atLocation, bus
stop〉, 〈running, capableOf, put on shoes〉,
〈war, desires, kill people〉, 〈supermarket, ca-
pableOf, buy milk〉.

• Subject-object-copying: LMs too often re-
peat the given subject in predictions. For in-
stance, 45 of 130 objects generated by BART-
CONCEPTNET for the subject chicken also
contain chicken, such as 〈chicken, CapableOf,
kill/eat/cook chicken〉 or 〈chicken, UsedFor,
feed chicken〉.

• Quantity confusion: LMs struggle to distin-
guish quantities. For example, GPT2-XL-
CONCEPTNET generates that bike has four
wheels (top-1 prediction), and then also two
wheels (rank 3), three wheels (rank 4) and
twelve wheels (rank 5). The weakness of deal-
ing with numbers is known as a common is-
sue of embeddings-based approaches (Berg-
Kirkpatrick and Spokoyny, 2020).

• Redundancy: Generated objects often over-
lap, bloating the output with redundan-
cies. Most common are repetitions of sin-
gular/plural nouns, e.g., the top-2 genera-
tions by BART-CONCEPTNET for doctor-
CapableOf : “visit patient” and “visit pa-
tients”. Redundancies also include para-
phrases, e.g., 〈doctor, CapableOf, visit pa-
tients / see patients〉; or 〈doctor, CapableOf,
prescribe medication / prescribe drug / pre-
scribe medicine〉 (GPT2-XL-ASCENT++ gen-
erations). Clustering might alleviate this issue
(Nguyen et al., 2021a).
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Resource Typicality@100 Saliency@10 Recall@100 Size@100

Typical Untypical Salient Unsalient t=0.96 t=0.98 t=1.00 #triples

ASCENT++ 78.4 11.0 62.8 34.6 8.9 7.9 4.6 202,026
GPT2-XL-ASCENT++ 57.2 27.4 37.2 58.4 6.0 4.9 2.6 1,091,662

BART-ASCENT++ 69.8 17.4 50.6 42.6 2.6 1.9 1.0 1,092,600

CONCEPTNET 93.6 3.6 80.0 16.8 2.3 1.7 0.9 164,291
GPT2-XL-CONCEPTNET 66.6 21.4 63.8 32.6 9.0 7.3 3.8 967,343

BART-CONCEPTNET 72.6 17.0 63.4 33.4 5.3 3.7 1.0 1,092,600

Table 2: Intrinsic evaluation (Typicality, Saliency and Recall - %) and size of CSK resources.

4.3 Downstream use of materialized
resources

Beyond systematic evaluation, materialized re-
sources enable a wide set of downstream use cases,
for example context-enriched zero-shot question
answering (Petroni et al., 2020), or KB-based com-
monsense explanation (Wang et al., 2020). We ex-
emplarily illustrate four enabled types of basic anal-
yses, (1) frequency aggregation, (2) join queries,
(3) ranking and (4) text search.

Frequency aggregation. Materialized resources
enable to count frequencies. In Table 3, we demon-
strate the three most common objects for each
predicate in the GPT2-XL-CONCEPTNET resource.
Interestingly, the third most common location of
items in the KB is “sock drawer”, which is only
ranked as the 190th most common location in CON-
CEPTNET. Similarly, the top-3 objects for Capa-
bleOf in the generated KB rarely occur the training
data.

Join queries. One level further, materialized
knowledge enables the construction of join queries.
For example, we can formulate conjunctive queries
like:

• Animals that eat themselves include chicken,
flies, grasshopper, mice, penguin, worm.

• The most frequent subevents of subevents are:
breathe, swallow, hold breath, think, smile.

• The most common parts of locations are:
beaches, seeds, lot of trees, peel, more than
one meaning.

Ranking. Since statements in our materialized
resources come with scores, it becomes possible
to locally and globally rank assertions, or to com-
pare statements pairwise. For example, in GPT2-
XL-CONCEPTNET, the triple 〈librarian, AtLoca-
tion, library〉, which is at rank 140, has a score

Predicate Most common objects

AtLocation desk (3210), cabinet (2481), sock drawer (1771)

CapableOf branch out (963), branch off (747), taste good
(556)

Causes death (2504), tears (1290), happiness (1254)

Desires eat (949), have fun (816), sex (742)

HasA more than one meaning (1387), seeds (1316),
peel (1170)

HasPrerequisite metal (1965), plastic (1594), water (1423)

HasProperty good (2615), useful (2585), good for (1746)

HasSubevent breathe (1006), swallow (721), take off shoes
(658)

MadeOf plastic (1427), aluminum (1297), wood (905)

MotivatedByGoal have fun (994), enjoyment (493), succeed (444)

PartOf new testament (914), human experience (683), al-
abama (667)

ReceivesAction found in house (1110), eaten (800), found in hos-
pital (779)

UsedFor cooking (627), decoration (454), transport (448)

Table 3: Most common objects generated by GPT2-
XL-CONCEPTNET. Numbers in parentheses indicate
frequency of the corresponding objects.

of −0.048, which is much higher than that of
〈elephant, CapableOf, climb tree〉 (score =−0.839,
ranked 638,048 globally).

Text search. Finally, we can use materialized re-
sources for text search. For example, we can search
in GPT2-XL-CONCEPTNET for all assertions that
include the term “airplane”, finding expected
matches like 〈airplane, AtLocation, airport〉 and
〈flight attendant, CapableOf, travel on airplane〉,
as well as surprising ones like 〈scrap paper, Used-
For, making paper airplane〉 and 〈traveling, Has-
Subevent, sleeping on airplane〉.

5 Conclusion

We introduced four CSKBs computed using two
COMET models (BART and GPT2-XL) trained on
two existing CSK resources (CONCEPTNET and
ASCENT++). Our findings are:
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1. The COMET methodology produces better re-
sults on modest manually curated resources
(CONCEPTNET) than on larger web-extracted
resources (ASCENT++).

2. COMET’s recall can significantly outper-
form that of modest manually curated ones
(CONCEPTNET), and reach that of large web-
extracted ones (ASCENT++).

3. In terms of precision, a significant gap re-
mains to manual curation, both in typicality
and saliency. To web extraction, a moderate
gap remains in terms of statement typicality.

We also identified common problems of the
COMET generations, such as co-occurrence mis-
readings, subject copying, and redundancies, which
may be subject of further research regarding post-
filtering and clustering.
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