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Abstract

Large-scale visual-linguistic pre-training aims
to capture the generic representations from
multimodal features, which are essential for
downstream vision-language tasks. Existing
methods mostly focus on learning the seman-
tic connections between visual objects and lin-
guistic content, which tend to be recognition-
level information and may not be sufficient for
commonsensical reasoning tasks like VCR. In
this paper, we propose a novel commonsen-
sical vision-language pre-training framework
to bridge the gap. We first augment the con-
ventional image-caption pre-training datasets
with commonsense inferences from a visual-
linguistic GPT-2. To pre-train models on image,
caption and commonsense inferences together,
we propose two new tasks: masked common-
sense modeling (MCM) and commonsense type
prediction (CTP). To reduce the shortcut effect
between captions and commonsense inferences,
we further introduce the domain-wise adaptive
masking that dynamically adjusts the mask-
ing ratio. Experimental results on downstream
tasks, VCR and VQA, show the improvement
of our pre-training strategy over previous meth-
ods. Human evaluation also validates the rel-
evance, informativeness, and diversity of the
generated commonsense inferences. Overall,
we demonstrate the potential of incorporating
commonsense knowledge into the conventional
recognition-level visual-linguistic pre-training.

1 Introduction

Vision-language multimodal tasks have received
vast attention in the deep learning field in recent
years. Tasks, like Visual Question Answering
(VQA) (Antol et al., 2015; Goyal et al., 2017) and
Visual Commonsense Reasoning (VCR) (Zellers
et al., 2019), require different levels of multimodal
reasoning ability to make task-specific decisions.

*These authors contributed equally. The majority of this
work is finished during their master’s degree at Columbia
University.

Pre-training Fine-tuning

Why is [person0] holding on to a rope?

Because Jessie wanted to get 
into the water, a girl Jessie on 
a beach pulls a horse on a 
rope

A girl Jessie on a beach pulls a 
horse on a rope 

(a) [person0] is climbing over the boat.
(b) To keep from being washed away.
(c) [person0] is trying to tie the rope to 
something.
(d) The rope helps [person0] get to the 
other side of the train tracks.

(c) [person0] is trying to tie the rope to 
something.

Figure 1: An example of our commonsensical visual-
linguistic pre-training (bottom) compared against the
conventional visual-linguistic pre-training (top). Com-
monsensical knowledge (e.g., the bold underlined text)
is generated and learned by models during our com-
monsensical pre-training. Such knowledge becomes
useful for downstream commonsense reasoning tasks:
our model correctly answers the question while the con-
ventional method is wrong.

Motivated by the advancement of pre-training
in both computer vision (CV), such as backbone
networks pre-trained on ImageNet (Deng et al.,
2009), and natural language processing (NLP),
such as BERT (Devlin et al., 2018) and GPT-2
(Radford et al., 2019), numerous visual-linguistic
pre-training strategies were proposed to learn the
generic feature representations for vision-language
tasks. Most of them (Su et al., 2020; Lu et al.,
2019a; Chen et al., 2020; Tan and Bansal, 2019;
Gan et al., 2020) take advantage of large-scale im-
age captioning datasets, such as Conceptual Cap-
tions (Sharma et al., 2018) and MSCOCO Captions
(Lin et al., 2014). These pre-training tasks mostly
focus on learning the modality alignments between
regions-of-interest (RoIs) from images and words
from captions by applying the visual-linguistic ex-
tensions of the masked language modeling (MLM)
objective. There are also other multimodal objec-
tives, such as word-region alignment (Lu et al.,
2019a; Chen et al., 2020), image-text matching
(Chen et al., 2020) and scene graph prediction (Yu
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Recognition-level Commonsensical
Type Low-level Caption Commonsense Inference High-level Caption
Dataset MSCOCO VisualCOMET Ours
Example A girl Jessie on a beach

pulls a horse on a rope
<intent> get into the water Because Jessie wanted to get into the water, a

girl Jessie on a beach pulls a horse on a rope.

Table 1: Terminologies used in this paper, along with their corresponding datasets and examples. The bold text
represents the commonsense inference and the underlined text represents template tokens for the commonsense
type, <intent>. The example captions correspond to the left image in Figure 1.

(a) Recognition-level VQA Example.
Q: What are the people racing?
A: Horses.

(b) Commonsensical VQA Example.
Q: Why are the men jumping?
A: To catch frisbee.

(c) VCR Example (Commonsensical).
Q: Why is [person4] pointing at [person1]?
A: He is telling [person3] that [person1]
ordered the pancakes.

Figure 2: Recognition-level and commonsensical visual question answering examples from VQA and VCR.

et al., 2020).

Despite the variety of those proposed pre-
training strategies, they mostly capture the
recognition-level relationship between the two
modalities, which might not be sufficient for vision-
language tasks that require cognition-level reason-
ing abilities. Here, the term cognition is taken from
VCR to represent reasoning abilities and is more ad-
vanced than recognition. In this work, we rephrase
cognition-level as commonsensical to avoid con-
fusion. As an example, being aware of the word
“man” referring to the human-alike object in the
image is insufficient to infer his future behavior. Su
et al. (2020); Chen et al. (2020) also showed the
similar discrepancy between recognition-level pre-
training and commonsensical fine-tuning. Thus,
the motivation of this work is to bridge the gap be-
tween the two learning stages for vision-language
reasoning tasks.

Not to be confused with the term “common-
sense” described in CommonsenseQA (Talmor
et al., 2019), we approach it from a cognitive per-
spective and take the concept of “commonsense
inference” proposed in VisualCOMET (Park et al.,
2020) as the starting point. It introduced three spe-
cific types of commonsense knowledge, which are
the possible incidents before or after the current
event (i.e., temporal), and the potential intentions
of the target subjects (i.e., intentional). Unfortu-
nately, these information does not normally exist
in conventional captions. Therefore, a natural ques-
tion would be whether introducing additional com-
monsense knowledge in pre-training can further
improve upon the downstream commonsensical

tasks.

To answer this question, we develop a novel com-
monsensical vision-language pre-training frame-
work, which contains two main components: (1)
Generating commonsense inferences for the con-
ventional image-caption dataset; (2) Introducing
suitable pre-training strategies for image, caption,
and commonsense inference together.

As for commonsense inference generation, we
fine-tune a visual-linguistic GPT-2 on Visual-
COMET (Park et al., 2020) as our common-
sense generator and infer the temporal and inten-
tional commonsense for the image-caption pairs
in MSCOCO dataset. We define the conventional
captions such as MSCOCO captions as the low-
level captions. We then combine the low-level
captions with the commonsense inferences using
pre-defined templates to get the high-level captions.
The terminologies used in this paper are collected
in Table 1 and examples are shown in Figure 2.

Given additional commonsense inferences be-
sides the image and caption, the pre-training strat-
egy is the key to bridge the recognition-level infor-
mation and commonsense. In short, we replace the
low-level captions used in most conventional pre-
training methods with the high-level captions. We
propose two tasks toward commonsense inferences:
masked commonsense modeling (MCM) and com-
monsense type prediction (CTP). MCM requires
the model to predict the commonsense inference
masked by the domain-wise adaptive masking strat-
egy. It dynamically adjusts the masking ratio based
on the semantic similarity between commonsense
inferences and captions, for the sake of avoiding ob-
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vious shortcuts. In CTP, the type of commonsense
among <intent>, <before> or <after> is predicted
without knowing the template tokens, which forces
the model to learn global relationships among com-
monsense, captions, and images.

Eventually, we take VCR and VQA as two down-
stream evaluation tasks to demonstrate the effec-
tiveness of our framework. We further provide
qualitative analysis and human evaluation to reveal
the insights behind it.

Our main contributions in this paper are:

• We propose a novel commonsensical visual-
linguistic pre-training framework for incor-
porating commonsense knowledge into the
conventional image-caption pre-training;

• We fine-tune a visual-linguistic GPT-2 model
as the commonsense generator that takes as
input a low-level image-caption pair;

• We develop two commonsensical pre-training
tasks—MCM and CTP, which encourages the
model to internalize commonsensical reason-
ing ability;

• We conduct comprehensive comparison and
ablation study to show that our pre-training
framework leads to improvements of 1.43%
on VCR and 1.26% on VQA. Moreover, a hu-
man evaluation is conducted to validate the
quality of the generated commonsense infer-
ences.

2 Related Work

2.1 Visual-linguistic Model
Vision and language models have been advanc-
ing rapidly and, with the introduction of Faster
R-CNN (Ren et al., 2015) and Transformer-based
models (Vaswani et al., 2017) (e.g., GPT (Radford
et al., 2018, 2019; Brown et al., 2020) and BERT
(Devlin et al., 2018)), many vision-language tasks
are becoming easier to solve. The original BERT
can be easily extended to vision-language multi-
modal settings by concatenating the visual features
of regions-of-interest (RoIs) and linguistic features
of word tokens. Multiple BERT variants were intro-
duced to solve the visual question answering tasks
in the past few years and they can be grouped into
two categories: single-stream cross-modal Trans-
formers and two-stream cross-modal Transformers.
Single-stream Transformers (Su et al., 2020; Chen

et al., 2020; Li et al., 2019; Huang et al., 2019)
have only one encoder. The visual features and the
linguistic features are concatenated together into
a single input sequence. On the other hand, two-
stream Transformers (Lu et al., 2019b; Yu et al.,
2020; Tan and Bansal, 2019) have two independent
encoders, one for the visual feature stream and the
other one for the linguistic feature stream. Then
a third encoder is used to capture the cross-modal
relationship between the two modalities.

2.2 Visual-linguistic Pre-training

Visual-linguistic pre-training is widely applied to
multimodal tasks using large-scale image caption-
ing datasets, such as Conceptual Captions (Sharma
et al., 2018) and MSCOCO (Lin et al., 2014). Two
common pre-training tasks are masked language
modeling with visual clues (MLM) and masked
RoI classification with linguistic clues (MRC) (Su
et al., 2020), which are the extensions of the origi-
nal MLM task from BERT. Word-region alignment
(Lu et al., 2019a; Chen et al., 2020), image-text
matching (Chen et al., 2020), and RoI feature re-
gression (Tan and Bansal, 2019) were also pro-
posed. ERNIE-ViL (Yu et al., 2020) proposed the
scene graph prediction task based on the semantic
graphs parsed from the captions.

Other approaches for improving visual question
answering performance were also proposed in ad-
dition to visual-linguistic pre-training. Wu et al.
(2019) proposed to generate question-relevant cap-
tions jointly with answering the VQA questions.
Kim and Bansal (2019) proposed to fuse the im-
age, question, and answer inputs with an additional
paragraph that provides a diverse and abstract de-
scription of the image. A similar idea is found in
(Li et al., 2018) where generated captions are used
to explain the image and combined with the ques-
tion to produce more accurate answers. A detailed
study (Singh et al., 2020) investigated the effect of
the similarity between pre-training and fine-tuning
datasets.

3 Our Method

3.1 Commonsense Inference Generation

Prior to our pre-training, we first generate com-
monsense inferences from the conventional image-
caption pairs. In addition to the image domain and
the caption domain, commonsense inferences are
treated as a third knowledge domain that is required
for our proposed pre-training. We take a visual-
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⟨image, low⟩

⟨CI⟩

Training
VisualCOMET

Inference
MSCOCO

⟨image, low⟩

⟨CI⟩

Visual-Linguistic GPT-2 Visual-Linguistic BERT

⟨image, high⟩ ⟨image, question⟩

MCM CTPMRC

Pre-training
MSCOCO + CI

Fine-tuning
VCR / VQA

⟨answer⟩

<before> walk onto the 
deck

<intent> think deeply 
about something

<after> talk with 2 
about his problems

[Person1] leans on the 
railing looking 
pensively into the 
water

A girl Jessie on a beach 
pulls a horse on a rope 

<before> get up on the 
horse

<intent> get into the 
water

<after> pet the horse

Because Jessie [MASK] to get 
into the [MASK], a girl Jessie on 
a beach pulls a [MASK] on a rope

Why is [person3] not looking at [person1] ?
(a) Something else has captured her 
attention.
(b) [person3] is turned around because 
[perons1] is speaking with her

Why is [person3] not looking at [person1] ?
(a) Something else has captured her 
attention.
(b) [person3] is turned around because 
[perons1] is speaking with her

Because Jessie wanted to get 
into the water, a girl Jessie on a 
beach pulls a horse on a rope……

…… ……

……

MLM

Commonsense Inference Generation Commonsensical Training

Figure 3: An overview of our commonsensical pre-training framework. The left part shows the commonsense
inference generator; the right part shows the pre-training and fine-tuning pipelines. The bold text in the pre-training
stage is the generated commonsense inference (CI) and the template tokens. The blue arrows point from the inputs
to the target outputs. That is, the bottom images and sentences are the inputs while the top images and sentences are
the objectives. “Low” and “high” stand for low-level captions and high-leval captions, respectively.

linguistic GPT-2 as the commonsense generator
and fine-tune it on the VisualCOMET (Park et al.,
2020) dataset. VisualCOMET introduces three
specific types of commonsense inferences given
the images and the captions (termed as <event>),
which are the possible incidents before or after the
current event (<before>, <after>) and the potential
intentions of the people in the image (<intent>).
Different from the GPT-2 model proposed in Visu-
alCOMET that requires additional location infor-
mation, our GPT-2 only takes image and caption
as inputs, as shown in the left half of Figure 3. In
general, it can be easily applied to any existing
large-scale image captioning dataset. In this pa-
per, we generate commonsense inferences for the
image-caption pairs in MSCOCO (Lin et al., 2014).
Appendix A.3 includes more details about how our
GPT-2 model is fine-tuned. Instead of simply con-
catenating the features from the three knowledge
domains, captions and commonsense inferences
are combined by a set of pre-defined templates. We
term the combined sequence as the high-level cap-
tion. An example is shown in Table 1 and template
details are included in Appendix A.4.

3.2 Commonsensical Pre-training

To exploit the additional knowledge inside the com-
monsense inferences, we introduce a novel com-

monsensical pre-training strategy, which consists
of two new tasks: masked commonsense modeling
(MCM) and commonsense type prediction (CTP).
Both tasks are proposed to learn commonsense
from a fine-grained and global aspect, alongside
the conventional masked language modeling with
visual clues (MLM) and masked RoI classification
with linguistic clues (MRC). In MCM, instead of
the random masking used in previous works (Su
et al., 2020; Chen et al., 2020; Tan and Bansal,
2019; Devlin et al., 2018), we propose the domain-
wise adaptive masking to adjust the masking ratio
according to the semantic similarity between com-
monsense inferences and captions. We detail them
one by one below.

Masked Commonsense Modeling By incorpo-
rating commonsense inferences as the third knowl-
edge domain additional to images and captions, we
propose masked commonsense modeling. It is an
extension of MLM with commonsense inferences
as the input data and the domain-wise adaptive
masking as the masking strategy. Each common-
sense token is masked out by a probability that is
controlled by the strategy detailed in the following
“Domain-wise Adaptive Masking” subsection. The
masked commonsense token cm is replaced with
the special token [MASK]. The model aims to pre-
dict cm given the unmasked commonsense content
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c\m as well as the visual tokens v and linguistic to-
kens w by minimizing the negative log-likelihood:

LMCM(θ) = −E(c,w,v)∼D logPθ(cm|c\m, w, v)

where θ is the model parameters, and D is the
training dataset. We argue that the introduction of
commonsense knowledge will help the model gain
commonsensical reasoning ability.

For image regions and linguistic tokens, inher-
iting from previous works (Lu et al., 2019a; Su
et al., 2020; Chen et al., 2020), we still use MLM
and MRC tasks. One slight difference is that our
MLM/MRC task is conditioned on both common-
sense clues and visual/linguistic clues.

Domain-wise Adaptive Masking Since com-
monsense inferences are generated from low-level
image-caption pairs by a commonsensical GPT-2,
captions and commonsense inferences are likely to
be semantically related to each other. It means that
the model could potentially take the shortcut by
excessively relying on the low-level captions when
predicting the masked commonsense tokens and
vice versa, which makes MLM and MCM easier
to solve. Below is an example where [MASK]4 is
more likely be to predicted as “bridge” based on
the linguistic clues of “overlooking the river” rather
than visual clues, because “bridge” and “river” of-
ten coexist in a sentence:

“Before a man Casey in a wheelchair
and another [MASK]1 on a bench
[MASK]2 [MASK]3 overlooking the
river , Casey needed to walk onto the
[MASK]4.”

To tackle this issue, we introduce the domain-
wise adaptive masking strategy. In conventional
settings, each linguistic token has a probability of
15% to be masked. Domain-wise adaptive masking
considers the semantic distance between common-
sense inferences and low-level captions and com-
putes the masking ratio accordingly. It takes the
sentence embeddings of commonsense inferences
and low-level captions from a pre-trained BERT
(Devlin et al., 2018) and calculates their cosine
similarity. The similarity score is passed to a lo-
gistic function and rescaled to a high probability
interval. We pick the rescaling interval (0.5, 1.0)
to ensure high masking ratio. A higher semantic
similarity between the low-level caption and the
commonsense inference leads to a higher masking

ratio on either the low-level captions or the com-
monsense inferences. Thus, the masking ratio is
“adaptive” with respect to the embedding similar-
ity. Detailed formulae and examples are shown in
Appendix A.5.

During pre-training, adaptive masking is ran-
domly applied on either low-level captions or com-
monsense inferences. Therefore, it is “domain-
wise”. When domain-wise adaptive masking is
applied on low-level captions, it encourages the
model to focus more on the visual clues for MCM.
When domain-wise adaptive masking is applied on
commonsense inferences, the same idea follows for
MLM. The high masking ratio reduces the salience
of one domain and elicits more advanced reasoning
abilities, such as directly inferring commonsense
knowledge from the images with only a few lin-
guistic clues (heavily masked low-level captions).

Commonsense Type Prediction We also intro-
duce a novel task of commonsense type prediction
(CTP). It is an additional classification task that pre-
dicts the commonsense type (<intent>, <before> or
<after>). Note that the template tokens are forced
to be masked out in CTP since they are essentially
the indicators of commonsense type. We also in-
clude the language modeling objective of these
masked tokens in CTP. In general, it requires the
model to perform commonsensical inference on
the global relationship between commonsense and
image-caption pairs.

4 Experiments

4.1 Implementation Details

GPT-2 is fine-tuned on VisualCOMET for 5 epochs
using the AdamW optimizer with a learning rate
of 5.0 × 10−5. In pre-training and fine-tuning,
we use the VL-BERTBASE configuration (Su et al.,
2020), which is a single-stream cross-modal Trans-
former. VL-BERT is pre-trained for 10 epochs
using the AdamW optimizer with a learning rate of
1.0×10−7 and a weight decay of 0.0001. For down-
stream task evaluation on VCR, the pre-trained VL-
BERT is fine-tuned for 20 epochs using the SGD
optimizer with a learning rate of 7.0 × 10−5 and
a weight decay of 0.0001. For downstream task
evaluation on VQA, the pre-trained VL-BERT is
fine-tuned for 20 epochs using the AdamW opti-
mizer with a learning rate of 6.25 × 10−7 and a
weight decay of 0.0001. Our experiments are con-
ducted on 4 Nvidia TITAN RTX GPUs.
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Pre-training VCR VQA(v2)
Q→A test-std test-dev val-human

None 70.00 69.03 68.85 63.43

Recognition-level
70.46

(+0.46)
69.95

(+0.92)
69.71

(+0.86)
66.09

(+2.66)

Commonsensical
71.43

(+1.43)
70.29

(+1.26)
69.97

(+1.12)
66.46

(+3.03)

Table 2: Performance (accuracy) comparison on VCR
and VQA among 3 settings: fine-tuning from scratch,
fine-tuning from recognition-level pre-training, and fine-
tuning from commonsensical pre-training. “Q→A” rep-
resents the question answering task from the validation
set of VCR; “test-std” and “test-dev” represents the
two testing phases of VQA; “val-human” represents the
human-centric validation set of VQA.

4.2 Datasets

Pre-training We take MSCOCO (Lin et al.,
2014) as our low-level image captioning dataset
and apply our fine-tuned GPT-2 model on it to
generate commonsense inferences. To avoid noisy
labeling, we only augment the image-caption pairs
which depict humans since it is counter-intuitive
to infer intentions for non-human objects. Then
commonsense inferences and low-level captions
are combined by a set of pre-defined templates to
form high-level captions.

Fine-tuning To evaluate the effectiveness of our
commonsensical pre-training, we use Visual Com-
monsense Reasoning (VCR) (Zellers et al., 2019)
and Visual Question Answer v2.0 (VQAv2) (Goyal
et al., 2017) for downstream task evaluation. The
overall task of VCR is to select the correct an-
swer (A) as well as the rationale (R) given an
image-question (Q) pair. Existing works (Lu et al.,
2019a; Su et al., 2020; Chen et al., 2020; Tan and
Bansal, 2019; Yu et al., 2020) have shown that
Q→A is a more challenging task, which is what
we use to evaluate our proposed pre-training frame-
work. VQAv2 is another visual question answering
task, where it primarily targets recognition-level
understanding. In addition to the test set, we also
evaluate our pre-training on a validation subset of
VQAv2, where only images that depict humans
are considered. We term this subset as the human-
centric VQA. We argue that these image-question
pairs are more likely to be commonsensical (e.g.,
why is person...?). The subset is selected by the key-
word matching of VQA’s corresponding MSCOCO
captions by a pre-defined human entity dictionary
(e.g., student, firefighter).

4.3 Downstream Task Evaluation

To demonstrate the effectiveness of our pre-training
framework, we fine-tune VL-BERT with different
pre-train settings on VCR and VQA, including VL-
BERT without pre-training, VL-BERT with con-
ventional (i.e., recognition-level) pre-training, and
VL-BERT with our commonsensical pre-training.
Table 2 shows their performance comparison of
accuracy on downstream tasks.

VCR The 1.43% performance increase on VCR
from the no pre-training setting indicates the effec-
tiveness of our proposed method and, in turn, the
advantage of incorporating commonsense knowl-
edge in pre-training. The slight 0.46% performance
increase made by the conventional image-caption
pre-training is consistent with the findings in VL-
BERT and UNITER that the recognition-level pre-
training might not be sufficient for commonsensical
reasoning tasks. Our commonsensical pre-training
enabled a 0.97% improvement over the recognition-
level pre-training.

VQA As for VQAv2, there is a 1.26% perfor-
mance increase from no pre-training to our com-
monsensical pre-training in test-std set and a 1.12%
increase in test-dev set. Our pre-training also im-
proves over the conventional image-caption pre-
training by 0.34% and 0.28%, respectively. Such
increments are slightly smaller when compared to
that on VCR. The reasone is that the questions in
VQA mostly target recognition-level understanding
(e.g., What color is the ...?, What is the ...?, How
many ...?), the gap between recognition-level pre-
training and fine-tuning on VQA is much smaller
than that on VCR. In other words, commonsensical
pre-training might be less necessary for VQA. On
the other hand, the performance increment in the
human-centric VQA is larger, at 0.37%. The com-
parison of no pre-training settings between “val-
human” and the remaining VQA set (Table 2) has
shown that human-centric VQA is a more challeng-
ing problem than the general VQA.

The performance gap between our results and
the reported results from previous works (Su et al.,
2020) is expected since our pre-training dataset
is much smaller than the commonly used massive
image-caption datasets, such as Conceptual Cap-
tions (Sharma et al., 2018). We also did not perform
any hyperparameter tuning for the visual-linguistic
BERT or fine-tuning of the image feature extrac-
tor Faster R-CNN, since we are aiming for rela-
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Pre-training VCR Acc.
(Q→A)

(a) None 70.00
(b) MLMrec 70.46
(c) MLMrec (Aug. + Rand-1 + DAM) 70.55
(d) MLMrec + MCM (Top-1) 70.32
(e) MLMrec + MCM (Rand-1) 70.60
(f) MLMrec + MCM (Rand-1 + DAM) 71.02
(g) MLMrec + MCM (Rand-1 + DAM) + CTP 71.43

Table 3: Comparison of individual component of our
proposed pre-training on VCR. MLMrec: recognition-
level pre-training tasks, including MLM and MRC; Top-
1: pre-train using the top-1 commonsense inference
from our fine-tuned GPT-2; Rand-1: pre-train using
one commonsense inference randomly selected from
the five candidates at each iteration; MCM: masked
commonsense modeling; DAM: domain-wise adaptive
masking strategy; CTP: commonsense type prediction
task.

tive performance comparison rather than absolute
improvement with respect to the state-of-the-art
models.

4.4 Ablation Study

We further conduct a comprehensive ablation study
to analyze the effect of each component in our
commonsensical pre-training, as shown in Table 3.
The ablation study is on VCR because we are more
interested in commonsensical tasks and VCR is
specifically designed for that.

The improvement from (d) to (e) indicates that
the diversity of commonsense knowledge benefits
the learning. When comparing (e) against (b), we
can conclude that our commonsensical pre-training
is indeed more advantageous than recognition-level
pre-training. The performance increase from (e) to
(f) demonstrates the effectiveness of domain-wise
adaptive masking in encouraging better common-
sensical multimodal learning by adaptively reduc-
ing the salience of one knowledge domain. The
improvement of (g) over (f) demonstrates the ef-
fectiveness of the CTP task.

Since our high-level captions are essentially aug-
mented captions with commonsense knowledge,
we would like to see how it compares to other aug-
mentation methods. One obvious baseline is to
use a well-trained caption generator to obtain addi-
tional information for caption augmentation. We
use OSCAR (Li et al., 2020), a state-of-the-art cap-
tion generator, to augment the original image cap-
tion with its generated recognition-level informa-
tion. Then (c) represents the OSCAR-augmented
recognition-level pre-training with Rand-1 and

Relevance
(cap)

Relevance
(img+cap)

Informa-
tiveness Diversity

Ground Truth 3.88 3.95 3.29 3.21
Generated 3.43 3.48 3.58 3.66

Ratio 88.4% 88.0% 108.9% 114.2%

Table 4: Human evaluation of our generated common-
sense inference on MSCOCO compared to the ground
truth commonsense inference from VisualCOMET. “Ra-
tio” is the score ratio of “generated” against “ground
truth”. The scores are on the scale of 0-5.

domain-wise adaptive masking applied. Although
it improves from (b) approximately by 0.1%, it is
much weaker than the increment between (b) and
(f), at 0.56%. It demonstrates that the high-level
commonsensical captions contain more useful and
compatible information than the same amount of
low-level captions do. Thus, we can conclude that
the commonsense knowledge is indeed more com-
patible with the commonsensical reasoning ability
for the downstream VCR task.

4.5 Commonsense Inference Evaluation

Because the MSCOCO dataset does not contain
ground truth commonsense knowledge, we conduct
a human evaluation on the quality of the common-
sense inferences generated by our GPT-2. Follow-
ing the evaluation method used in (Dua et al., 2021),
we randomly sample image-caption pairs along
with their corresponding generated commonsense
inferences for MSCOCO and ground truth com-
monsense inferences from VisualCOMET, with a
mixture ratio of 4:1.

We ask 10 human evaluators and have each of
them evaluate 20 <image, caption, commonsense>
entries without knowing whether the commonsense
inferences are generated (MSCOCO) or annotated
(VisualCOMET). Evaluators are asked to evaluate
each commonsense inference from four dimensions
on the scale of 0 to 5: relevance (cap): how plau-
sible is the commonsense inference provided the
low-level caption only, relevance (img+cap): how
plausible is the commonsense inference given the
image and the low-level caption, informativeness:
how much extra information does the common-
sense inference contain compared to the low-level
caption, and diversity: the diversity of the five can-
didates commonsense inferences of each common-
sense type.

We receive 12000 scores (10× 20× 3× 5× 4)
in total. We then separate the results by generated
(MSCOCO) versus annotated (VisualCOMET) and
average the scores of each dimension. The results
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VQAhuman
VQAobject

VCR

Low-level
High-level

Figure 4: Corpus distribution of low-level captions,
high-level captions, VCR, VQAhuman, and VQAobject.

are shown in Table 4. The ground truth scores
are treated as the reference for the quantified as-
sessment of commonsense inferences quality. In
terms of relevance measure, both caption-only and
image-caption settings show considerable valid-
ity of our commonsense inferences on MSCOCO
dataset, which is 88.4% and 88.0% of the ground
truth relevance scores. It also shows that generated
commonsense inferences are often more informa-
tive and diverse compared to the ground truth com-
monsense inferences. Detailed examples and analy-
sis regarding the success and failure commonsense
inference cases are included in Appendix A.6.

4.6 Qualitative Analysis

To understand how our proposed pre-training
framework improves the downstream task perfor-
mance, we perform a qualitative analysis regard-
ing the semantic relationship among the conven-
tional caption corpora, our pre-training corpora,
and the corpora of VCR and VQA. We further sep-
arate VQA into VQAhuman and VQAobject, where
VQAhuman is the human-centric VQA whose im-
ages depict human. We term VQAobject as the
object-centric VQA whose images depict things
other than human. The visualization details are
included in Appendix A.7. The distance between
corpus distributions indicates different levels of
information (e.g., recognition-level or common-
sensical) and different knowledge domains (e.g.,
human-centric or object-centric) within each cor-
pus.

It is easy to see that different datasets are well-
separated in Figure 4. Considering the spatial re-
lationship in the embedding space, the corpus dis-
tribution of VCR is the furthest away from that of
VQAobject. This follows our intuition in that VCR
and VQAobject require different levels of under-
standing and reasoning and, additionally, VCR is

Fine-tuning VCRsub Acc. (Q→A)
VL-BERT 68.30

VL-BERT + Low-level 70.87
VL-BERT + High-level 71.17

Table 5: Fine-tuning performance comparison with ad-
ditional linguistic information (without, low-level, and
high-level) on the VisualCOMET subset of VCR.

human-centric while VQAobject is not. The overlap
between VQAhuman and VQAobject implies that a
large portion of VQAhuman is still at recognition-
level. The low-level pre-training dataset also con-
tains human-centric captions, which explains the
adjacency between low-level caption corpus and
VQAhuman. Although the low-level caption cor-
pus is closer to VCR than VQA is to VCR, there
still exists a gap between low-level caption cor-
pus and VCR. Our commonsensical (i.e., high-
level) pre-training corpus with commonsense in-
ferences generated by GPT-2 successfully bridges
the gap between the low-level caption corpus and
the downstream commonsensical corpus, which ex-
plains part of the performance improvement by our
proposed method. Additionally, the distance dif-
ference between high-level caption to VQAobject

and high-level caption to VQAhuman could ex-
plain why our proposed pre-training gains larger
improvement on VQAhuman. It demonstrates the
pre-training can generalize better to tasks with sim-
ilar knowledge domains, and implies that object-
centric commonsense might be more suitable for
improving VQAobject.

4.7 Fine-tuning with High-level Captions
Besides pre-training with high-level captions, we
could also introduce low-level or high-level cap-
tions as additional information to support fine-
tuning on VCR. We fine-tune the VL-BERT model
on a subset of VCR where the images overlap with
those in VisualCOMET (VisualCOMET uses a sub-
set of VCR images, which takes up about half the
size of the full VCR.). The three settings shown in
Table 5 are the original fine-tuning of VL-BERT,
fine-tuning with the addition of low-level captions,
and fine-tuning with the addition of high-level cap-
tions. Results show that the high-level captions are
also more useful than low-level captions in helping
VL-BERT improve performance during the fine-
tuning stage.

5 Discussion

Summary We propose a novel visual-linguistic
pre-training framework that incorporates common-
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sense knowledge in visual-linguistic pre-training to
enhance the commonsensical reasoning ability of
the model. The framework includes commonsense
inference generation and two novel commonsen-
sical pre-training tasks. The effectiveness of our
pre-training framework is reflected through down-
stream task evaluation on VCR and VQA. We also
perform extensive empirical analysis to get insights
behind the improvement and demonstrate that our
commonsensical pre-training is more compatible
with commonsensical downstream tasks.

Limitation It is noted that the current common-
sensical pre-training is bounded by the perfor-
mance of the commonsensical GPT-2. Theoreti-
cally speaking, this module is replaceable by any
other visual-linguistic commonsense generators or
retrievers. In addition, the scope of commonsense
knowledge within this work only covers the tem-
poral and intentional domains, while the potentials
of utilizing other commonsense knowledge (e.g.,
object-centric) in pre-training remains unexplored.

Future Work We plan to push the limits of the
proposed pre-training framework by the following
options: (1) Improve the quality of the existing
commonsense generator; (2) Scale up the com-
monsensical pre-training with larger image-caption
datasets, such as Conceptual Captions, and with
larger vision-language models; (3) Explore more
advanced commonsensical pre-training techniques
other than using the extensions of the MLM ob-
jective. Another interesting direction would be
exploring the pre-training effect of commonsense
other than temporal and intentional knowledge.
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A Appendix

A.1 Transformer Revisit
The core component of Transformer (Vaswani et al.,
2017) is Multi-head Self-Attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i ,KWK

i , V WV
i )

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where the trainable weights are WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv and WO ∈
Rhdv×dmodel ; dmodel, dk, dv are hyperparameters and
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h is the number of self-attention heads. Because
it is permutation equivariant, positional encodings
are injected into the token embeddings.

BERT (Devlin et al., 2018) is a deep bidirec-
tional Transformer, which is a stack of Transformer
encoder layers:

X = MultiHead(El−1
out , E

l−1
out , E

l−1
out )

X ′ = LayerNorm(X + El−1
out )

El
out = LayerNorm(FFN(X ′) +X ′)

where El
out are the encoder output at the lth layer.

In BERT pre-training, masked language modeling
(MLM) was proposed. It is a self-supervised setting
where the model needs to predict the tokens that
are masked out (with a probability of 15%) from
the remaining tokens.

GPT-2 (Radford et al., 2019) is a multi-layer
Transformer decoder where each decoder layer can
be expressed as:

X = MaskedMultiHead(Dl−1
out , D

l−1
out , D

l−1
out )

X ′ = LayerNorm(X +Dl−1
out )

Dl
out = LayerNorm(FFN(X ′) +X ′)

where Dl
out are the decoder output at the lth layer.

A.2 VL-BERT Visual Features
Visual features and detected object boxes for both
tasks are pre-computed and extracted by Faster R-
CNN (Ren et al., 2015) that is pre-trained on the
Visual-Genome (Krishna et al., 2016) dataset.

A.3 Commonsense Inference GPT-2
The GPT-2 model of VisualCOMET relies on not
only the low-level captions (named “event” in Visu-
alCOMET) but also a “place” descriptor. In order
to make the model more general, we fine-tune the
GPT-2 model without the “place” information: it
only takes as input a pair of image and low-level
caption and generates commonsense inferences, as
shown in the left half of Figure 3. The visual part
of the GPT-2 model is unchanged, which depends
on the visual features extracted by a Faster R-CNN
model.

More specifically, the input sequence is
[<|b_img|>, v0, . . . , vm, <|e_img|>, <|b_ev|>, l0,

. . . , ln, <|e_ev|>, <|before|>], where v and l
are visual features and word embeddings, respec-
tively; <|b_· · ·|> and <|e_· · ·|> are special to-
kens for marking the beginning and the end of the
image and “event” sequences; the <|before|>
token can also be replaced with <|after|> or

<|intent|> to specify what type of common-
sense inference to generate.

A.4 High-level Caption Construction
After the three types of commonsense inferences
are generated by GPT-2 for each image, we con-
struct high-level captions by merging the original
(low-level) caption with commonsense inference
using the following templates:

• Before [low], [person] wanted to [common-
sense inference].

• After [low], [person] will most likely [com-
monsense inference].

• Because [person] wanted to [commonsense
inference], [low].

where [person] is the extracted subject name, [low]
is the low-level caption and [commonsense infer-
ence] is the generated type-specific commonsense
inference; all other tokens are named template to-
kens (e.g., Before . . . wanted to). The “Inference
section” of Figure 3 includes an example of such
high-level caption.

We take the MSCOCO dataset (Lin et al., 2014)
as our base pre-training dataset. It contains 533K
unique image-caption pairs. Since VCR is a human-
centric reasoning task, we filter MSCOCO by key-
word matching with an pre-defined person-entity
vocabulary (e.g., student, firefighter) and obtain its
human-centric subset. We then generate human-
centric commonsense inference on it. Our final pre-
training dataset contains 257K unique low-level
image-caption pairs and 3915K (≈3×5×257K)
unique high-level image-caption pairs.

A.5 Domain-wise Adaptive Masking
Computation

The domain-wise adaptive masking ratio is com-
puted by the equations below:

score = cos_sim(hlow,hCI)

ratio = Rescale(σ(score)))

where hlow is the sentence embedding for the
low-level captions, and hCI is the sentence em-
bedding for its corresponding commonsense infer-
ences. The sentence representation is the repre-
sentation of the [CLS] token taken from BERT;
cos_sim(·) is the cosine similarity; σ(·) is the lo-
gistic function; Rescale is the min-max scaling,
where the prior minimum and prior maximum are
precomputed from the training data. In this work,
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the posterior range is (0.5, 1). Figure 5 is the his-
togram of the computed adaptive masking ratios
from the training data with the mean ratio equals
to 0.715. Examples of the calculated masking ratio
are shown in Figure 6. Since “stop skiing” is more
semantically related to “middle of a skiing jump”,
the function outputs a larger masking ratio com-
pared to “fear for his life”. The same idea follows
as the “get served piazza” is more semantically
related to “in front of two piazzas” compared to
“gather the ingredients”.

Figure 5: Histogram of the adaptive masking ratio from
the training data.

A.6 Commonsense Inference Evaluation

The generated commonsense inferences on
MSCOCO are evaluated by human annotators from
four dimensions on the scale of 0-5: relevant score
given the caption only, relevant score given the
image-caption pair, informative level, and diversity
level. We include two examples in Figure 7, which
corresponds to the success case and the failure case
of the commonsense inference considering the eval-
uation scores. In the success case (Figure 7a), even
though the caption mistakenly treats the Frisbee as
a white ball, our commonsense inference GPT-2
successfully identifies the Frisbee and generates the
commonsense inferences accordingly. The noisy
caption explains the low scores in rel1. The high
rel2 scores show the strength of our commonsense
generator. Commonsense inferences in Figure 7b
are evaluated as poorly generated. Both of its rel1
and rel2 scores are much lower. Compared to its
image with the success case, we can see that it de-
picts a much larger scene where object details are
harder to be perceived by the model. For example,
the skier is doing tricks, while it can be ambiguous
for the model to even identify human-alike shapes.
However, the GPT-2 seems to recognize the scene
as a big event. On the other hand, we can see
that high information-level can be due to either in-

adequate captions, valid and informative common-
sense inferences, or noisy commonsense inferences.
The examples also show how the diversity-level can
be positively correlated with the ambiguity-level
of the images and negatively correlated with the
relevant scores. It introduces some insights behind
the higher informative and diversity score of the
generated commonsense inferences in Table 4.

A.7 Corpora Visualization
We randomly sample 10K “sentences” from each
dataset to estimate their corpus distribution. For
low-level pre-training and commonsensical pre-
training, sentences simply refer to the low-level
captions and high-level captions, respectively. For
VQA, a sentence is the concatenation of a question
and its corresponding ground truth answer with the
highest confidence. The VQA corpus is further di-
vided into human-centric VQA and object-oriented
VQA. In VCR, a sentence is the concatenation of a
question, its corresponding answer, and the ground
truth rationale.

We use a pre-trained Sentence-BERT (Reimers
and Gurevych, 2020) to retrieve the embedding
of each sentence. Then each of the five datasets
is represented by an embedding matrix of size
10, 000× 768, where 10,000 is the sample size and
768 is the hidden dimension size. We use the t-SNE
nonlinear dimension reduction technique to project
and plot the corpus distributions in a 2-dimensional
space, as shown in Figure 4.
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<before>• gather the ingredients  
• get served piazza 

“a girl Pat si+ng at a table in front of two pizzas” 0.698 
0.826

“A fuzzy picture of a man Quinn in the middle of a skiing jump” • fear for his life  
• stop skiing <a=er>

0.682 
0.805

Figure 6: Examples of the calculated domain-wise adaptive masking ratio from low-level captions (left) and
commonsense inferences (right).

“a man Pat in a blue shirt playing with a white ball”

• have fun 
• enjoy the day 
• win the trophy 
• enjoy the experience of playing with the frisbee 
• be famous 

• have spo:ed the Frisbee on the ground 
• gather the frisbee together 
• see the Frisbee 
• hear the Frisbee becoming a crock 
• be walking around the field 

• throw the Frisbee in the air 
• pump the frisbee into the air 
• throw the frisbee back into the air 
• get good at his game 
• eat some food 

<Intent>

<before>

<aAer>

4 5 3 3
4 5 3 3
2 2 5 5
2 5 3 3
3 3 5 5
1 5 5 4
1 5 5 4
1 5 5 4
0 0 5 5
3 2 5 5
1 5 5 2
1 5 5 3
1 5 4 2
1 4 4 4
5 5 3 3

rel1 rel2 info div

(a) Success Case

“A person Kerry riding a snowboard  
down a snow covered ramp .”

• see 
• dive out to chase the penguins  
• see the surprise of the ice sculpture  
• enjoy the show 
• enjoy the show 

• win an ice sculpture award 
• pral the walk 
• go on board 
• purchase 9ckets for the event 
• perform 

• watch 
• dive for the ballet doors 
• go up on the chute 
• purchase 9ckets for the event 
• climb down the boat 

<Intent>

<before>

<a>er>

2 3 5 4
4 0 3 3
2 1 5 3
4 3 5 3
3 3 5 3
3 0 5 3
3 1 5 5
0 3 4 5
5 2 2 5
3 4 5 5
2 4 3 5
4 1 3 5
1 5 5 5
1 2 5 5
1 0 5 5

rel1 rel2 info div

(b) Failure Case

Figure 7: Examples of generated commonsense inference on MSCOCO with human evaluation. Left: image-caption
pair as the inputs of the commonsense generator; Middle: generated commonsense inference; Right: human
evaluation from four dimensions: rel1 is the relevant score given the caption only; rel2 is the relevant score given
the image-caption pair; info is the informative score; div is the diversity score.
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