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Abstract

We present the Norwegian Anaphora Resolu-
tion Corpus (NARC), the first publicly avail-
able corpus annotated with anaphoric relations
between noun phrases for Norwegian1. The
paper describes the annotated data for 326 doc-
uments in Norwegian Bokmål, together with
inter-annotator agreement and discussions of
relevant statistics. We also present preliminary
modelling results which are comparable to ex-
isting corpora for other languages, and discuss
relevant problems in relation to both modelling
and the annotations themselves.

1 Introduction

Coreference resolution (CR) is a central NLP task
which enables a wide range of applications aiming
to extract and aggregate various types of informa-
tion from text, e.g. relations, events and opinions.
While a number of datasets for CR have been de-
veloped for a range of different languages, no such
openly available dataset is currently available for
Norwegian.

In this paper, we describe the annotation of the
Norwegian Anaphora Resolution Corpus (NARC).
The annotation effort enriches the existing anno-
tation of the Norwegian Dependency Treebank
(NDT) (Solberg et al., 2014), which has been
converted to the Universal Dependencies standard
(Øvrelid and Hohle, 2016; Velldal et al., 2017) and
has further been annotated with named entities in a
separate effort, resulting in the NorNE dataset (Jør-
gensen et al., 2020). Norwegian has two written
standards: Bokmål and Nynorsk, and the dataset
consists of 300,000 tokens from each.2

The paper is organized as follows: we start out
by reviewing related work, then we describe the

1https://github.com/ltgoslo/NARC
2We here focus on the annotation of the Bokmål part of

the NDT, however, annotation of the Nynorsk part of the
treebank follows the same guidelines and is currently close
to completion. The final version of the corpus will include
statistics and data for both written standards.

annotation effort, summarize the annotation proce-
dure, explain guidelines developed for the project
and the inter-annotator agreement scores. Finally,
corpus statistics and initial experiments with Nor-
wegian CR are presented, before concluding the
paper.

2 Related Work

In this section we review some related work, both
in terms of existing datasets with coreference anno-
tation and research on coreference modelling based
on these datasets.

2.1 Datasets

Early datasets for CR were MUC (Grishman and
Sundheim, 1996) and ACE (Doddington et al.,
2004), which enabled considerable research on
this task, further spurred by the CoNLL-2011 and
2012 shared tasks on CR (Pradhan et al., 2011,
2012) based on the widely used OntoNotes dataset
(Weischedel et al., 2011).

There are now a wide range of annotated coref-
erence datasets. A majority of these are in English,
such as Quiz Bowl Coreference (Guha et al., 2015),
Character Identification, (Chen and Choi, 2016),
WikiCoref (Ghaddar and Langlais, 2016), GUM
(Zeldes, 2017), BASHI (Rösiger, 2018), PreCo
(Chen et al., 2018), GAP (Webster et al., 2018),
ARRAU (Uryupina et al., 2020) and LitBank (Bam-
man et al., 2020).

There is also a growing number of non-English
corpora being made available to the research com-
munity, including datasets for Catalan/Spanish
(Recasens and Martí, 2010), Czech (Nedoluzhko
et al., 2016), Danish (Korzen and Buch-Kromann,
2011), Dutch (Hendrickx et al., 2008), German
(Lapshinova-Koltunski et al., 2018; Bourgonje and
Stede, 2020), Hungarian (Vincze et al., 2018),
Lithuanian (Žitkus and Butkiene, 2018), Polish
(Ogrodniczuk et al., 2016) and Russian (Toldova
and Ionov, 2017). The recent Universal Anaphora

https://github.com/ltgoslo/NARC
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initiative3 constitutes an important step towards the
harmonization of different annotation standards for
corpora annotated with various types of anaphoric
information. A dataset of particular relevance to
the current work is BREDT (Borthen et al., 2007)
– annotated with coreference and other anaphoric
relations in Norwegian. BREDT covers in total 12
different kinds of relations, all linguistically mo-
tivated. The data has been previously used both
to test a rule-based (Holen, 2007) and a machine
learning-based system (Nøklestad, 2009) for Nor-
wegian CR. Unfortunately, however, the BREDT
dataset is not openly available.

2.2 Modelling

A variety of CR approaches have been pub-
lished using the MUC and ACE datasets, rang-
ing from linear programming, probabilistic and
rule-based mention–pair models (Ng and Cardie,
2002; Luo et al., 2004; Culotta et al., 2007; Denis
and Baldridge, 2007; Finkel and Manning, 2008;
Haghighi and Klein, 2009). These datasets were of
limited size, and Poon and Domingos (2008) found
that unsupervised models were comparable to su-
pervised models at the time – an important observa-
tion for low-resource languages. After the SemEval
2010 (Recasens et al., 2010) and CoNLL shared
tasks (Pradhan et al., 2011, 2012), more extensive
models were proposed, such as the ranking mod-
els by Björkelund and Farkas (2012); Durrett and
Klein (2013), the sieve-based deterministic model
by Lee et al. (2013) and other machine learning-
based methods (Clark and Manning, 2015, 2016).
Recent state-of-the-art models, however, such as
those by Agarwal et al. (2019); Wu et al. (2020);
Kantor and Globerson (2019); Xu and Choi (2020);
Joshi et al. (2020); Kirstain et al. (2021) and Do-
brovolskii (2021) have mostly been evaluated on
the OntoNotes dataset. This is perhaps due to lack
of compatability in terms of formats, annotation
styles, and genres across datasets. Consequently,
there are several concerns regarding real-world use
of models that are not evaluated on other domains,
especially regarding domain generalizability and
robustness (Guha et al., 2015; Moosavi, 2020; Suk-
thanker et al., 2020). The same issues will likely
translate to NARC, as data sources are limited (see
Section 3.1). To tackle these issues, cross-domain
adaptability will be a central topic for future evalu-
ation.

3https://github.com/UniversalAnaphora

For computing preliminary benchmark results
for NARC – as presented in Section 5 – we adopt
the approach for word-level coreference resolution
developed by Dobrovolskii (2021)4. Rather than
directly predicting coreference links between word
spans, the problem is split into two sub-tasks; first
predicting coreference links between individual
words, and then predicting the corresponding spans.
This substantially reduces the computational com-
plexity while still maintaining SotA performance
when evaluated on OntoNotes for English, owing
in particular to gains in recall (Dobrovolskii, 2021).

3 Annotation

We here detail the annotation effort and present the
underlying data for annotation, the pre-annotation
of markables, the annotated NARC mentions and
relations, as well as the review and curation process
and inter-annotator agreement.

3.1 Data source

As mentioned above, the underlying data for the
annotation effort is the Norwegian Dependency
Treebank (NDT), a richly annotated dataset (Sol-
berg et al., 2014; Øvrelid and Hohle, 2016; Jør-
gensen et al., 2020). The original treebank con-
tains manually annotated syntactic and morpho-
logical information for both varieties of written
Norwegian – Bokmål and Nynorsk – comprising
roughly 300,000 tokens of each and a total of
around 600,000 tokens. The corpus contains a ma-
jority of news texts (comprising around 85% of
the corpus), but also other types of texts, such as
government reports, parliamentary transcripts and
blog data.

3.2 Pre-annotation

In order to alleviate the annotators’ job of locating
potential mentions for coreference, we make use
of the existing syntactic annotation of the data to
perform a pre-annotation step. In particular, we for-
mulate simple heuristics over parts-of-speech and
dependency relations which derive noun phrases
from the dependency syntax of the treebank. Us-
ing the dependency syntax, we extract all nominal
heads that are either i) nouns (both common and
proper nouns), ii) referential personal pronouns 5,

4Information on the modelling setup is available from the
data repository.

5The NDT annotation identifies so-called formal sub-
jects/objects, which are non-referential or expletive uses of
the pronoun det ‘it’.

https://github.com/UniversalAnaphora
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iii) possessive pronouns, or iv) adjectives in a nom-
inal syntactic function (subject, object or preposi-
tional complement). The full NP is constructed by
traversing all syntactic dependents of these nom-
inal heads. For coordination, we extract the full
coordinated phrase as well as potential markables
for individual nominal conjuncts. The annotators
are instructed to treat the pre-annotated markables
as suggestions only, since the syntactic units do not
always correspond to coreference mentions (Popel
et al., 2021).

3.3 Annotation guidelines
The annotation guidelines were developed during
an initial pilot phase, where the documents used for
training of the annotators were annotated by two of
the project PIs. The guidelines were based largely
on the guidelines from Ontonotes and the previous
Norwegian BREDT dataset, as described in section
2.1 above, and were continuously refined following
discussions and inputs from the annotators. The
full set of annotation guidelines are released along
with the dataset.

3.4 NARC markables
The annotators are presented with the pre-annotated
markables for annotation. As mentioned above,
these include nouns, referential personal and pos-
sessive pronouns, as well as adjectives in a nomi-
nal function. Below we describe some of the spe-
cific cases regarding the annotation of markables
in NARC.

Markable boundaries Compounding is highly
productive in Norwegian and compounds are writ-
ten as one word, e.g. innebandylag ‘field hockey
team’. Even so, markables in NARC always corre-
spond to full tokens and are never sub-token units.
Additional information that is often provided in
parentheses behind a noun, e.g. John (53) is part
of the noun phrase and therefore also part of the
markable in NARC. Both relative clauses and appo-
sitions are also included in the span of the markable
that they modify.

Nested markables NARC allows for nested
markables, i.e., when a nominal markable is con-
tained within a larger markable. When consider-
ing pre-annotated markables that were nested, the
annotators were instructed to assess whether it is
possible for the individual nominals making up
the larger markable to have a reference that is in-
dependent of the markable as a whole. Only in

cases where this is in fact possible should nesting
of markables be allowed. Proper nouns are always
considered to be atomic and they are not annotated
as nested even if it is possible to identify compos-
ite proper nouns within the names, such as e.g.,
Oslo in the proper name University of Oslo. This
treatment is also in line with the flat annotation of
such names in both the original treebank (Solberg
et al., 2014) and NorNE (Jørgensen et al., 2020),
the named entity annotated version of the treebank
as described above.

3.5 NARC relations

Three relations are used in NARC: COREFERENCE,
BRIDGING and SPLIT-ANTECEDENT.6 In the fol-
lowing we describe the annotation of these relations
in NARC, relating to annotation efforts for other
datasets wherever possible.

3.5.1 Coreference
COREFERENCE is the relation reserved for core-
ferring markables. The annotation guidelines are
to a large extent based on those of OntoNotes
(Weischedel et al., 2011). Two broad categories of
coreferring expressions are recognised in NARC:
anaphors and what we might called repeated core-
ferring entities. Anaphors, or anaphoric expres-
sions, usually need to be resolved to an antecedent
to be interpreted. This includes third person pro-
nouns and possessive determiners such as hun, ‘she’
and hans, ‘his’, but also definite nouns such as
bilen, ‘the car’. The second category, repeated
coreferring entities, are markables such as proper
names and first and second personal pronouns,
which are not inherently anaphoric, but which still
can corefer with a markable in the previous text.
Indefinite nominals, including many quantified ex-
pressions, are not assumed to be coreferent with
a markable in the previous text, but they can be
antecedents of anaphors.

Markables are generally linked to the nearest
coreferring markable to the left. Figure 1 illus-
trates this: The spans marked with boxes are the
markables of the text. The pronoun han, ‘he’, has
a coreferent relation to Henrik Bjørnstad in the
preceding sentence. This is, however, not always
the case. In some instances, pronouns may resolve
to markables that follow rather than precede – a

6Unlike OntoNotes, there is no relation for appositives
(BBN Technologies, 2007, 1.2). Instead, the adjacent, corefer-
ring nouns in an appositive construction are taken as part of
the same markable span.
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Henrik Bjørnstad falt ned til 52.-plass. Han endte på 13 slag under par. Bjørnstad må (. . . )
Henrik Bjørnstad fell down to 52. place He finished at 13 strokes under par Bjørnstad must

COREFERENCE

COREFERENCE

Figure 1: Example of a coreference relation in NARC.

phenomenon called cataphora. In cataphoric ex-
pressions, the markable is linked to the nearest
antecedent to the right. This is shown in Figure 2,
where the antecedent of the pronoun appears after
the reference.

OntoNotes permits certain markables which are
neither nominals nor determiners. Firstly, coref-
erence relations are drawn between anaphoric ex-
pressions and verbs in OntoNotes. This means
that e.g. event-denoting definite descriptions such
as the large growth can refer back to a verb such
as grew, which thereby becomes a markable. In
NARC, however, all markables are nominal. Sec-
ondly, temporal adverbials such as now and then
may participate in coreference chains in OntoNotes
(BBN Technologies, 2007, 1.1.4; 2.8), whereas we
only annotate temporal expressions that are nomi-
nal.

In NARC, we have chosen not to include verbs
and adverbs in the set of possible markables. While
this may leave certain anaphoric markables without
an antecedent, it makes the annotation task easier
and removes a potential source of inconsistencies.
It is, for example, not always clear if the actual
antecedent of an anaphoric expression is a verb or
an entire proposition.

3.5.2 Split antecedent

The anaphoric possibilities of plural pronouns and
definite nouns are a bit broader than for singular
anaphors. They may corefer with a plural nominal
or a coordinated structure in the textual context, in
which case it is annotated with a COREFERENCE

relation in NARC. Quite often, however, the refer-
ence of the plural anaphor is not coreferent with one
single markable, but rather has multiple ‘partial’ an-
tecedents in the discourse. Such cases are treated
differently in different datasets. In OntoNotes, they
are not annotated at all. In the ARRAU corpus,
they are handled as a kind of bridging (Uryupina
et al., 2020, pp. 106-107). In NARC, we use a spe-
cial relation in such cases: SPLIT-ANTECEDENT. A
split antecedent relation is drawn from the anaphor

to each of its partial antecedents. This is shown in
figure 3.

3.5.3 Bridging

BRIDGING indicates an anaphoric relation between
two markables that are not coreferent, but associ-
ated in such a way that the correct identification of
the anaphoric referent requires that the hearer estab-
lishes the relation to the antecedent. For example,
in Figure 4, rattet ‘the wheel’ refers to the steering
wheel of the mentioned car, den gullfargede Rov-
eren ‘the gold-colored Rover‘. Typical relations
involved in bridging are part–whole relations and
various types of possession (Clark, 1977). Bridg-
ing can also involve verbal antecedents, where a
following definite nominal is understood to have
filled a particular thematic role: John was murdered
yesterday. The knife laid nearby. In line with our
decision to exclude verbal antecedents, we do not
annotate these.

There are fewer corpora with bridging annota-
tion compared to those which annotate corefer-
ence. For example, OntoNotes does not include
bridging annotation, although two later efforts, IS-
notes (Markert et al., 2012) and BASHI (Rösiger,
2018), each added this for 50 WSJ articles from
OntoNotes. The ARRAU corpus (Uryupina et al.,
2020) also includes bridging annotations.

Bridging is a complex phenomenon, with several
sub-types and no established annotation standard;
see the discussion in Roesiger et al. (2018). For
our purposes, we adopted a very simple heuristic:
when encountering a definite NP, annotators were
asked first to look for a coreferent antecedent. If
there is none, they should look for a related but not
coreferent NP (e.g. bearing a part–whole relation
or a possessive relation) and consider whether that
related NP explains the use of the definite article by
imagining the text without the antecedent. If this
makes the definite infelicitous, it should be marked
with BRIDGING. We make no attempt to identify
sub-types of bridging.
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Michelle, Malia og Sasha er med ham . Obama smiler mens supporterne roper
Michelle, Malia and Sasha are with him . Obama smiles while the supporters shout

COREFERENCE

Figure 2: Example of a cataphora relation in NARC.

I 22 år hadde han vært sammen med Åse . I mange av åra hadde de vært gift.
For 22 years had he been together with Åse . For many of those years had they been married.

SPLIT-ANTECEDENT

SPLIT-ANTECEDENT

Figure 3: Example of a split antecedent relation in NARC.

3.6 Annotation Procedure

Annotation was performed using the Brat anno-
tation tool (Stenetorp et al., 2012). Six students
with a background in NLP and linguistics anno-
tated the Norwegian Bokmål part of the corpus.
The students received financial remuneration for
their annotation work. All annotators completed an
initial training round where they were tasked with
annotation of the same set of documents, followed
by a round of discussion and consolidation, along
with updates to the annotation guidelines.

Due to restrictions in the annotation software,
and the time needed to annotate, documents of
over 150 sentences in length were split into smaller
sections and annotated separately. All other docu-
ments were sorted into groups of 10 which were
balanced according to length to ensure a constant
workload for the annotators across the annotation
period. During weekly meetings, the annotators
had the opportunity to discuss challenges encoun-
tered when annotating or unclarities in the guide-
lines, so that these could be resolved, and the guide-
lines updated. Note that the documents set aside for
measuring inter-annotator agreement were exempt
from these discussions.

3.6.1 Review and Curation
Following the initial annotation process, all docu-
ments were re-annotated in one of two ways. The
documents annotated by a single annotator were re-
viewed by a second annotator in a subsequent step.
In this case, the second annotator only corrected
errors from the first annotation round. In the case

Markables Relations Coref. Bridg.

1.7 5.9 4.5 1.5

Table 1: Differences in numbers before and after review.
Numbers are average differences between documents.

of documents annotated for inter-annotator agree-
ment, a third annotator would base the curation of
the document on one annotation, and then make
changes based on the other, ensuring that both an-
notations are taken into account, while at the same
time making sure there are no errors. Although
both addition and removal of annotations were seen
in the review process, the average changes were
positive in all cases. These differences in numbers
for the relations are summarized in Table 1.

3.7 Inter-Annotator Agreement

59 documents, divided into 5 groups of 10 and
one group of 9, were set aside for inter-annotator
agreement towards the end of the annotation pe-
riod. Each document group was annotated by two
annotators. All annotators annotated at least one
group for IAA, while some annotated more, due
to differences in capacity. These documents were
chosen as they are believed to represent a point in
time where annotators should be familiar with the
guidelines and the annotation task. In order to get
a reliable indication of which areas are the most
problematic, we look at agreement scores for differ-
ent components separately. We follow Nedoluzhko
et al. (2016) in using an F1 score to look at the
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Det plasker på panseret til den gullfargede Roveren . Bak rattet sitter Øyvind Staveland.
It rains on the hood of the the gold-colored Rover Behind the wheel sits Øyvind Staveland.

BRIDGING

Figure 4: Example of a bridging relation in NARC.

agreement for all relations, and Cohen’s κ for the
specific labels. We also use the F1 score for the
markable agreement, following Kopeć and Ogrod-
niczuk (2014).

We see that annotators largely agree on the mark-
ables in the document, with some minor differences.
On average, there was a difference of 2.2 mark-
ables per document, giving an F1 score of 0.99. We
see this as a confirmation that the pre-annotation
provided a satisfactory basis for the annotation. No-
tably, 17% of the disagreement is due to the word
seg ‘oneself’, which was known to fall outside of
the pre-annotations in certain cases.

For the relations, we measure an overall F1 score
of 0.83. We see that although annotators tend to
agree on many relations, there was still disagree-
ment that had to be addressed during the review
phase. When calculating the observed Cohen’s κ,
we follow Kopeć and Ogrodniczuk (2014), who
notes that Cohen’s κ must be calculated separately
for each document, then averaged across docu-
ments in order to avoid including the probability
of annotating across documents. The agreement
score was calculated based on the markables that
were already used in some relation by the anno-
tators, and the relations for each annotator. The
resulting values are presented in Table 2. We note
that IAA scores are relatively high, especially for
COREFERENCE. Both SPLIT-ANTECEDENT and es-
pecially BRIDGING have lower scores than COREF-
ERENCE, but they also have fewer annotated ex-
amples. The low score for BRIDGING is also not
surprising, based on the observation that this is a
much more difficult annotation task.

4 Corpus statistics

Table 3 summarizes the most important statis-
tics for the dataset 7. We see that unsurprisingly
the most common type of relation by far is the
COREFERENCE relation, followed by BRIDGING

7These statistics correspond to the first version of the
NARC corpus. Subsequent releases of the dataset will contain
the full Bokmål part of NDT as well as the Nynorsk part of
the corpus.

and SPLIT-ANTECEDENT. However, some of these
low numbers for BRIDGING can be explained by
the difficulty of identifying bridging in the first
place. We see that despite a large number of pos-
sible markables from the pre-annotation process,
only 37% are used in relations. Relations are over-
whelmingly anaphoric, with only 1.3% being cat-
aphoric. As we do not pose any restrictions on
how far back a relation can be drawn in a doc-
ument, there are some relations with long edges.
Looking at the distance based on tokens, the mode
distance is 6, but the distribution has a long tail to
the right with many long-distance relations. An ex-
ample of this is in one of the documents with more
than 150 sentences, where a relation was drawn
from near the end of the document to an antecedent
near the start, separating the elements of the rela-
tion by 5629 tokens. These cases do require that
no relevant antecedent be mentioned in between.
Due to the long tail, the average distance is 70.4,
while the median is 19.0 for COREFERENCE. For
BRIDGING, the average is 32.1 while the median
is 16.0. Note that the annotators were told to think
about whether the removal of the antecedent in a
BRIDGING relation would change the viability of
the definite form believed to have a BRIDGING rela-
tion. This might have caused an implicit restriction
on bridging-relation lengths. For COREFERENCE

there were no such restrictions, and annotators were
asked to mark all COREFERENCE relations where
possible. The median for the split antecedent rela-
tions is 22.0.

Clusters are collections of relations that have
markables in common. The average length for
COREFERENCE clusters is 4.7 tokens, while for
BRIDGING it is 2 tokens. Most clusters, regard-
less of type, are of length 2, i.e. from a single
antecedent to an anaphoric or bridging expression.
Despite the low average, there are still some very
long clusters.

Finally, we also analyzed the data to investigate
what types of expressions occur as anaphoric ex-
pressions. As noted earlier, there are primarily two
types of relations that fall under COREFERENCE.
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Overall F1 Anaphor κ Cataphor κ Coref. κ Bridging κ Split Ant. κ

Scores 0.83 0.82 0.80 0.84 0.44 0.66

Table 2: IAA scores for the 59 documents annotated for agreement. The overall score is in F1, while the others are
represented by Cohen’s κ, showing scores for specific directions (anaphor and cataphor) and labels (coreference,
bridging, split antecedent).

Type Value

Documents 326
Sentences 15125
Tokens 231363
Total markables 6979
Used markables 26005
Singletons 43788
Single word markables 34
Discontinuous markables 499
COREFERENCE relations 19420
BRIDGING relations 990
SPLIT-ANTECEDENT relations 292
COREFERENCE clusters 5350
BRIDGING clusters 962
Anaphor relations 20425
Cataphor relations 277
Sentences per document 46.4
Tokens per document 709.7
Markables per document 214
Avg. COREFERENCE cluster length 4.7
Avg. BRIDGING cluster length 2.0
Avg. COREFERENCE distance 70.4
Avg. BRIDGING distance 32.1
Avg. SPLIT-ANTECEDENT distance 53.9

Table 3: Counts and average values for some key statis-
tics in the dataset. Singletons are markables that are not
used in any relation. The last three values are the aver-
age distance between the antecedent and the referring
expression in tokens.

The most common COREFERENCE expressions are
pronouns, but both true anaphoric pronouns and
pronouns referring to repeated entities are common.
About 38% of all COREFERENCE relations are from
a pronoun. As only third person pronouns and def-
inite nouns can give rise to BRIDGING relations,
this is naturally reflected in the types of expres-
sions found. The most common is the pronoun de
‘they’, but another notable feature of the BRIDGING

relations is that we see word forms such as hodet
‘the head’ øynene ‘the eyes’ hånden ‘the hand’ and
skuldrene ‘the shoulders’ among the most common

words. These are all typical of inalienable body
parts, a type of bridging mentioned specifically in
BREDT (Borthen et al., 2007).

5 Experiments

This section presents preliminary benchmarking
experiments on the new dataset. Below we describe
the distribution format of the data, the framework
used for modelling and evaluation, and the results.

5.1 Format
Prior to modelling, the resulting files from the
annotation tool (Brat) were converted to the for-
mat JSON Lines. This format has been com-
mon in coreference modelling since Lee et al.
(2018) described the minimization process from
the OntoNotes’ CoNLL-format to JSON Lines,
stripped of PoS-tags, lemmas and word sense in-
formation. For NARC, the annotations represent
tokens structured in sentences along with corefer-
ence mention clusters, similar to LitBank (Bam-
man et al., 2020), GUM (Zeldes, 2017) and PreCo
(Chen et al., 2018). Singleton mentions, i.e. mark-
ables not included in a coreference chain (see Table
3), have been discarded from the post-processing
tasks, but may be used separately to model the im-
pact of a separate mention detection system, as
briefly studied by Chen et al. (2018), or a variation
of the mention-ranking systems by Clark and Man-
ning (2016). The dataset will include the data as
JSON Lines and CoNLL, with and without single-
ton mentions. Furthermore, aligning NARC with
the Norwegian Dependency Treebank (NDT), we
will release the dataset in the CorefUD (Corefer-
ence Universal Dependencies) format, as described
by Nedoluzhko et al. (2022).

5.2 Modelling framework
We apply the framework for word-level coreference
resolution (wl-coref) developed by Dobrovolskii
(2021), as mentioned in Section 2. This two-stage
approach first predicts candidate antecedents for
each token, before reconstructing the full spans by
predicting the most likely start- and end-tokens in
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Model MUC B3 CEAFe LEA CoNLL

P R F1 P R F1 P R F1 P R F1 Mean F1

NorBERT2 90.40 79.35 84.52 63.15 62.71 62.93 55.52 33.54 41.82 61.94 61.50 61.72 63.09
XLM-R 84.97 84.51 84.74 61.09 49.09 54.44 51.17 51.17 51.17 58.87 47.11 52.34 63.45

Table 4: Evaluation of predictions on the held-out test split of NARC.

the same sentence. To create the required training
data, the syntactic head for each annotated span is
added to the dataset through the Norwegian parser
available with spaCy8. On the basis of this, two
training sets are created; one for predicting the
word-level coreference links and one for predicting
the corresponding spans (Dobrovolskii, 2021).

The original wl-coref system was trained with a
48 GB GPU resource. Our model was trained using
a 40 GB GPU resource, which was sufficient to run
the base model of XLM-RoBERTa with the same
hyperparameters as Dobrovolskii (2021), but not
the large version.

For evaluation we use the standard coreference
metrics as computed by the CoNLL 2012 scor-
ing script, including the MUC metric proposed
by Vilain et al. (1995), B3 as proposed by Bagga
and Baldwin (1998), CEAFe as proposed by Luo
(2005), and finally the aggregated score of Mean
F1 as proposed by Pradhan et al. (2012), referred to
as the CoNLL-F1. We also evaluate with the Link-
based Entity-Aware metric (LEA) by Moosavi and
Strube (2016), using standard settings for entity
importance scores.

Training a model for Norwegian text limits the
options for pretrained language models. We chose
four transformer-based language models for intro-
ductory testing on a subset of the data, two Nor-
wegian and two multilingual, namely NorBERT2
(Kutuzov et al., 2021), NB-BERT (Kummervold
et al., 2021), XLM-RoBERTa (XLM-R base) (Con-
neau et al., 2020) and multilingual BERT (mBERT)
(Devlin et al., 2019).

Dobrovolskii (2021) report the choice of pre-
trained language models to be important for the
system’s performance. They use large, monolin-
gual versions of RoBERTa, SpanBERT and Long-
former. Such models are presently not available for
Norwegian.

5.3 Results

The four language models were evaluated using
wl-coref. Based on these initial results, as seen

8https://spacy.io/

nb- nor-
mBERT BERT BERT2 XLM-R

51.3 51.8 54.0 56.1

Table 5: The four preliminary selected pretrained lan-
guage models and their F1 scores according to the wl-
coref evaluation.

in Table 5, the NorBERT2 and XLM-RoBERTa
models were selected for further experimentation.
We proceeded with fine-tuning the two models on
the training set, comprising 80% of the data. Two
other splits – dev and test – were used for evalua-
tion and a held-out test set respectively. Results on
the test set are shown in Table 4. The high MUC
scores indicate that the model was able to properly
group mention clusters. The somewhat lower re-
call scores shows that there are still some lacking
clusters, regardless of the groups they were linked
to. B3 and CEAFe scores are significantly lower,
meaning that while a lot of mentions were found,
the models discovered fewer entities and was un-
able to correctly assign mention clusters. The LEA
score also represents the lack of entity assignment
within the discovered clusters, and the higher score
compared to CEAFe of the NorBERT2 model is
likely due to LEA supporting a weighted one-to-
many assignment of clusters.

Regardless, we find that the scores are compa-
rable to existing work on CR, with the main dif-
ference being the MUC values scoring higher than
current state-of-the-art models on the OntoNotes
dataset. The reason for lower scores on the follow-
ing metrics are, as discussed, likely due to issues
with entity resolution and assignment, and this is
thus an important takeaway for future work.

6 Conclusion

This paper has introduced a new corpus for corefer-
ence resolution: the Norwegian Anaphora Resolu-
tion Corpus (NARC). It is the first openly available
corpus of this kind for Norwegian and represents
the result of a large annotation effort which en-

https://spacy.io/
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riches the Norwegian Dependency Treebank (Sol-
berg et al., 2014; Øvrelid and Hohle, 2016) with
annotation of document-level coreference resolu-
tion, including the annotation of split antecedents
and bridging. The paper has detailed the annotation
effort, including a summary of guidelines, annotion
procedure, inter-annotator agreement and resulting
dataset statistics, as well as provided results from
initial modelling experiments. While this paper
focuses on the annotation of the Bokmål section
of the corpus, the final corpus will contain the full
treebank dataset, including also its Nynorsk sec-
tions, corresponding to the second written standard
of Norwegian. NARC, including the annotation
guidelines, will be made freely available9. It will
further be aligned with the underlying treebank,
allowing for smooth interaction with the other an-
notation layers such as PoS, dependency syntax and
named entities, thus constituting a richly annotated
resource for Norwegian NLP in the future.
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