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Abstract

Humans process natural language online,
whether reading a document or participating in
multiparty dialogue. Recent advances in neural
coreference resolution have focused on offline
approaches that assume the full communication
history as input. This is neither realistic nor
sufficient if we wish to support dialogue under-
standing in real-time. We benchmark two ex-
isting, offline, models and highlight their short-
comings in the online setting. We then modify
these models to perform online inference and
introduce rollback: a short-term mechanism
to correct mistakes. We demonstrate across
five English datasets the effectiveness of this
approach against an offline and a naive online
model in terms of latency, final document-level
coreference F1, and average running F1.

1 Introduction

In environments like multiparty spoken dialogue
and social media streams, text in the form of to-
kens and sentences are available in (near) real-time.
To promptly make use of this data, NLP systems
often need to process text before additional tokens
or sentences are available. For example, this could
enable interruptions with a response or a clarifica-
tion question (Boyle et al., 1994; Li et al., 2017),
make decisions during a social media stream (Math-
ioudakis and Koudas, 2010), or recognize and trans-
late speech live (Oda et al., 2014; Ma et al., 2020).
While some language technologies operate incre-
mentally in the online setting, many document-
level understanding models and tasks do not.

A core task in language understanding is resolv-
ing references. Recent work has made significant
progress on improving accuracy for single doc-
uments (Lee et al., 2017; Wu et al., 2020) and
in the cross-document setting (Caciularu et al.,
2021). However, this focus on document-level
resolution makes use of global higher order infer-
ence and document-level encodings. As interest

Joey Y’know what, I kinda need to work on my stuff  tonight.

Lauren Oh, okay. I’ll see you tomorrow. G’night.

Kate Yeah, I guess.

Hey! So, since we’re getting off  early, do you want to go 

paint mugs?Lauren

This is a terrible play! I’ll see you in the morning.Director

Kate I can’t believe we go in, in a week.

Joey Ah, are you okay?

Joey Hey, it’s gonna be all right.

t = 6

t = 7

Figure 1: In this scene from Friends, viewers can deduce
who "you" refers to at t = 6, and we want coreference
models to be similarly capable. At t = 7, viewers
may need more context, such as the identity of the next
speaker, to be certain of who "you" refers to. Absent
that context for a text-based model, its predictions will
be incorrect. Our proposed rollback is a cheap and local
revision mechanism that corrects these type of mistakes.

in coreference resolution is shifting back towards
dialogue (Khosla et al., 2021), the offline setting
is inconsistent with how dialogue is found in the
real world. Now equipped with neural models and
large-scale data, we revisit the online coreference
resolution setting (Stoness et al., 2004; Schlangen
et al., 2009).1

In this work, we are motivated by the human abil-
ity to resolve references without looking into the
future (Figure 1). We simulate the online setting for
two offline models (Xu and Choi, 2020; Xia et al.,
2020) by making full predictions after each sen-
tence and masking the future context. This either
leads to significantly increased latency or lowered
accuracy. We then modify the latter model to prop-
erly perform online inference and show that while
accuracy does drop relative to the offline baselines,
the latency is substantially lower. Finally, we pro-
pose rollback, a backtracking method which allows

1Xu and Choi (2022) recently explore the online setting in
contemporaneous work.



14

the model to correct recently made decisions. On
several coreference datasets, we show that this can
recover performance comparable to that of the of-
fline model with the latency of online models.

2 Task: Online Coreference Resolution

In offline (single doc) coreference resolution, the in-
put is a document D, and the output is a set of clus-
ters (or chains) of text mentions, C = {C1, ..., Cn}
such that any two mentions in a given Ci core-
fer. Evaluation can be performed at the document
level, S(Cpred, Cgold), by comparing the predicted
clusters to the gold reference clusters with an av-
erage of three corpus-level metrics, MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFϕ4 (Luo, 2005), for the accuracy of mentions,
links, and clusters. When each metric is instead
computed at the corpus level instead before averag-
ing, we refer to this as final F1 (identical to CoNLL
2012 F1).

In the sentence-level online setting, D =
[X1, X2, ..., XT ] is a stream of sentences or utter-
ances. After time t, we predict clusters Cpred,t =
{C1,t, ..., Cn,t} conditioned on only [X1, ...Xt].
For the reference clusters Cgold,t, we restrict clusters
in Cgold,t to contain only mentions up to sentence
Xt. This may lead to empty clusters which are
ignored when calculating the score.2 To evaluate,
we propose additionally using running F1 for each
document:

Srunning(Cpred, Cgold) =

T∑
t=1

1

T
S(Cpred,t, Cgold,t).

These document-level scores are subsequently aver-
aged across the corpus (macro-average), in contrast
to the already corpus-level metrics of final F1.

We are not the first to observe that references
should be resolvable without future context. Prior
work (Stoness et al., 2004; Schlangen et al., 2009;
Poesio and Rieser, 2011) has also emphasized the
importance of incremental (online) prediction of
reference, especially in the context of dialogue.
Since most models at that time already operated at
the sentence level, their work is at the token-level
granularity. Our work does not go as far; our goal
is to first rein back document level neural models
to the sentence level, which is still appropriate in
applications where full utterances are available.

2Singletons may also be ignored depending on the dataset.

Dataset Training Dev Test Avg. sents

OntoNotesall 2,802 343 348 26.8
OntoNotesconv. 393 75 71 54.9
OntoNotestext. 2,409 268 277 22.2

CI 987 122 192 19.0
LitBank 80 10 10 84.4
QBCoref 240 80 80 4.7

Table 1: Number of documents in each split for each
corpus considered in this work. Avg. sents refers to
number of sentences per document in the training set

Finally, we would like to compare the latency
of different systems. Unlike token-level work in
speech (Zhang et al., 2016) or translation (Gu et al.,
2017), we are primarily interested in sentences, and
we do not have readily available timestamps. Fur-
thermore, modern models can process a single sen-
tence in under a second, while sentences take sub-
stantially longer to be spoken or typed. Therefore,
we mainly report document-level latency, which is
the wait time between the end of the document and
production of predictions. We revisit and discuss
sentence-level latency in Section 4.4.

3 Method

3.1 Datasets

We select several coreference datasets to study, de-
tailed in Table 1, that will let us analyze a variety
of domains. We split the CoNLL 2012 Shared
Task (OntoNotes) (Pradhan et al., 2013) into the
conversational (telephone and broadcast conversa-
tions) and nonconversational text (newswire, news-
groups, broadcast news, weblogs, religious texts)
genres. Character Identification (CI) (Zhou and
Choi, 2018) consists of transcripts from the TV
show Friends and is another source of social and
informal conversations. LitBank (Bamman et al.,
2020) is a collection of long excerpts from liter-
ature, which allows us to study latency scaling.
Finally, QBCoref (Guha et al., 2015) is a collection
of trivia questions where players are expected to
interrupt with the answer, which is an example of a
task needing a fast NLU model.

3.2 Models

We use Xu and Choi (2020) and Xia et al. (2020) as
our offline baselines. We then modify the inference
algorithm of the latter for our online experiments.3

3Code is available at https://github.com/
pitrack/incremental-coref.

https://github.com/pitrack/incremental-coref
https://github.com/pitrack/incremental-coref
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C2F (Xu and Choi, 2020) is a reimplementation
of the coarse-to-fine coreference model (Lee et al.,
2018) which detects mention spans in the entire
document, scores them with each other, and finds
the most likely antecedent for each span. It then
uses higher order decoding strategies to promote
pairwise consistency within a cluster. In this work,
we do not use these decoding strategies as they
are slower and only improve performance slightly.
We do, however, use the extension to the training
loss that accommodates singletons (Xu and Choi,
2021).

ICOREF (Xia et al., 2020) is a memory-efficient
incremental coreference resolution model, itself a
variant of the C2F model. They achieve this by
segmenting the document into pieces that fit into
a single SpanBERT (Joshi et al., 2020) window,
incrementally processing each segment, and sav-
ing the set of found entity clusters after each step.
Within each segment, they detect mention spans,
find each span’s most likely entity cluster, merge
it (or form a new cluster), and update that cluster’s
embedding. After each text segment, the predic-
tions for that segment are committed. This hard
decision foregoes any higher-order decoding strate-
gies, but this locality offered is exactly what we
wish to extend in the sentence-level online setting.

Naive online C2F is a baseline where C2F is
used to make full predictions after every sentence.
For a document with n sentences, this costs n calls
to the full C2F model, and effectively acts as an
upper limit on model performance.

Online ICOREF For the online models, we
choose to modify the inference process in ICOREF.
This is because ICOREF already processes the doc-
ument incrementally and it also foregoes global
inference across all clusters. Like prior models,
ICOREF encodes a variable number of sentences
per encoder forward pass, and each sentence would
have access to future contexts. To make this fully
online, we modify the algorithm by segmenting
the text by sentences instead of by tokens. Thus,
instead of making predictions every fixed number
of tokens (e.g. 512), the model makes predictions
every u sentences. Setting u = 1 would make an
online model at the sentence level.

Online ICOREF with rollback A drawback of
both ICOREF and online modeling in general is the
inability to correct mistakes in light of future con-

Algorithm 1 Online coreference with rollback
Input: Sentences S = s1, s2, ...; update frequency u; roll-
back frequency r; initial clusters C0 = ∅.
for st ∈ S do

if t ≡ 0 (mod ur) then
Ct−ur+1 = REVERT(Ct−1)
Ct = ICOREF(S[t− ur + 1 : t], Ct−ur+1)

else if t ≡ 0 (mod u) then
Ct = ICOREF(S[t− u+ 1 : t], Ct−1)

else
Ct = Ct−1

yield Ct

∆ Final F1 C2F ICOREF
Masked Training? No Yes No Yes

OntoNotesconv -7.8 -1.8 -8.0 -7.6
OntoNotestext -6.0 -0.3 -8.0 -6.9
LitBank -5.3 -1.9 -5.1 -5.4
QBCoref -4.9 -0.5 -1.1 -2.7
CI -5.5 -1.0 -11.0 -9.6

Table 2: We train a model with and without sentence-
level causal attention masks. We then report the dif-
ference in F1 between inference with and without this
mask in the offline setting. Full numbers in Appendix C.

text. We also introduce “rollback,” which is run ev-
ery r sentences (Algorithm 1). This process reverts
all predictions made in the previous r sentence-
window and remakes them all, batch-mode, with
the full (r-sentence) context. The trade-off of in-
creasing r is that the intermediate prediction qual-
ity can suffer, while decreasing r incurs additional
latency.

4 Experiments and Results

We first show that current models rely on future
context, which is not readily available in the online
setting. We demonstrate the effectiveness of online
models under latency and average running F1. In
particular, we analyze the benefits of rollback. Fi-
nally, we verify that for reasonable input stream
speeds, online approaches are indeed appropriate.

4.1 Masking the future
We first investigate the reliance of the two baseline
(offline) models, C2F and ICOREF, on future con-
text. As shown in Figure 1, models often use future
contexts to make predictions such as linking “you”
with the next speaker. For each model, we consider
applying a sentence-level causal mask in the en-
coder and remove any global decoding algorithms.
The causal mask restricts each token’s attention
only to other tokens in its sentence or a previous
one. With this mask at inference, we find that with
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naive online C2F ICOREF Online ICOREF + rollback
Metric Run. F1 Fin. F1 wt (ms) Run. F1 Fin. F1 wt (ms) Run. F1 Fin. F1 wt (ms) Run. F1 Fin. F1 wt (ms)

OntoNotesconv 79.2 77.0 237.8 24.9 76.2 319.3 74.8 72.7 52.0 76.6 75.2 79.0
OntoNotestext 82.3 80.6 195.2 28.9 80.5 223.8 77.8 77.4 62.1 79.1 79.9 87.9

LitBank 73.8 72.2 807.4 54.5 72.7 173.3 71.9 70.6 73.5 72.6 71.3 93.7
QBCoref 76.6 70.5 107.9 15.6 71.9 82.3 72.5 71.1 45.8 72.7 71.6 54.9

CI 74.7 73.0 137.5 14.2 71.9 227.8 65.1 66.7 47.3 67.3 70.1 59.3

Table 3: Final F1, running F1, and wait time for each datasets and four inference algorithms. Our proposed rollback
mechanism offers a strong compromise with higher F1s and comparable wait times vs. the fastest online models,
and a final F1 comparable to offline ICOREF. Naive online C2F is the strongest method, but also the slowest.

Dataset #Edits Ment. New Existing

LitBank 453 12.1, 9.3 12.6, 10.4 27.2, 6.0
QBCoref 145 20.0, 8.3 16.6, 13.1 16.6, 7.6

CI 429 4.9, 4.4 17.0, 5.6 27.0, 13.3

Table 4: We classify the edits made in each dev set via
rollback: Mention detection errors, missed New clus-
ters, and incorrect links to Existing clusters. We report
the percentage of (wrong→right, right→wrong) edits.
The unreported fraction of edits are wrong→wrong. We
omit OntoNotes because that dataset does not include
singleton clusters, making this type of analysis difficult.

both models, performance drops considerably (Ta-
ble 2). However, by training with the causal mask,
the C2F model recovers from these drops in the
masked setting. This suggests that coreference res-
olution models can be retrained to make better use
of previous context and rely less on “easy” future
signals. This finding is also quite promising for
future investigation into training methods.

On the other hand, masked training does not
affect the performance of the ICOREF model.
Nonetheless, the incremental nature of ICOREF

and ability to predict singletons is more amenable
to extension to an online setting, and so we proceed
with ICOREF without masking.

4.2 Online inference strategies

To properly evaluate online performance (as op-
posed to only simulating masking the future), we
apply the modifications to ICOREF described in
Section 3.2 and compare the running F1, final F1,
and wait time. By increasing update sizes, u, we
can interpolate between an online model (u = 1)
and the unmasked offline ICOREF model (where u
is the encoder window size). This “hybrid” mode
trades off wait time for F1, as increasing u leads to
longer wait times but better performance. In addi-
tion, we find that changing the rollback frequency
does not correlate with wait time because larger

updates are both costlier and rarer. So, we choose
the best r based on each dev set.

Table 3 shows that the online models are faster
than the offline ICOREF model and do better on
running F1, but worse on final F1. Online with
rollback is usually the best approach, as it achieves
high F1 scores across all datasets, while it also has
short wait times. Naive online C2F performs well
on F1, but it is substantially slower on especially
short or long documents.

The small margin on QBCOREF could be ex-
plained by the fact that the forward pass for online
ICOREF is equal to that of a causally masked of-
fline model and Table 2 shows that the gap between
a masked and unmasked model is small.

4.3 Error correction with rollback
In Table 4, we calculate the number of predictions
that are changed with rollback. In general, more
edits are corrections (wrong→right) than errors
(right→wrong), which demonstrates the effective-
ness of rollback. For all three datasets, many of the
corrections made address correctly assigning spans
to existing clusters, such as the "you" in Figure 1.
In QBCOREF, many corrections are un-predicting
a non-mention, while in CI, many corrections are
correctly predicting new starts of entity clusters.

4.4 Latency analysis
In this work, we assume that each sentence arrives
after all computation has been completed for the
previous sentence, which motivates our use of wait
time as a metric. However, this assumption may not
always be true in situations where utterances are
highly frequent or short, like in online chat rooms.

To verify this empirically, we run simulations to
find the token arrival speeds for which offline and
online models have equivalent sentence latency (de-
tails in Appendix E). For all datasets, we find that
this point is at over 200 words per second (wps).
Additionally, if the stream is slower than 20 wps,
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there is never a "delay" caused by processing a sen-
tence. This is substantially faster than the speaking
(Yuan et al., 2006) and reading (Brysbaert, 2019)
rates of around 3-5 wps. Therefore, sentence-level
predictions are being made faster than tokens are
produced, which validates our metric of wait time
in this work. This may not extend to some settings
with high arrival rates, like livestream comments.

5 Conclusion

We look at reining back document-level models for
neural coreference resolution to the utterance level
by proposing a shift towards online inference. We
propose a model with the capability for making pre-
dictions online, after every sentence. This leads to
lower latency than a corresponding offline model,
and maintains a consistently high running F1 after
each sentence. To edit predictions made without
future context, we introduce a rollback mechanism
which reverts and corrects recently made predic-
tions, bringing the F1 closer to that of the offline
model while maintaining its ability to make online
predictions with low latency.

Future work may consider extensions to this
approach by handling online processing at the
word-level, revisiting the scenario considered by
Schlangen et al. (2009).
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A Experimental Details

A.1 Datasets Preprocessing

We use the same preprocessing as Joshi et al. (2019)
for OntoNotes, Xia and Van Durme (2021) for Lit-
Bank (first fold) and QBCoref (first fold), and Tosh-
niwal et al. (2021) for CI. For the genre split in
OntoNotes, we split the full dataset into a conver-
sational and text-based component. Some weblog
documents are conversations on message boards.
We maintain this split because they are less conver-
sational than spoken dialogue, and it is consistent
with the split originally used in by ICOREF. While
OntoNotes does have non-English splits, we only
study English data in this work. To our knowl-
edge, the datasets and codebases were released
intended to advance research in coreference resolu-
tion, which is aligned with the focus of this work.

Since ICOREF does not readily take speaker em-
beddings, we augment the underlying text of CI
with speakers by prepending each utterance with
the name of the speaker(s), following the strategy
outlined by Wu et al. (2020), and we only filter
out these mentions before evaluation. We note that
there could be other ways of representing the speak-
ers, especially in plural situations, which we do not
explore as it is beyond the scope of the work. While
this follows the same preprocessing as Toshniwal
et al. (2021), we do not do this for C2F, as this
model uses the speakers as a feature. We do not

evaluate CI following the metrics outlined in Zhou
and Choi (2018) as we are primarily interested in
exploring online coreference by using the dialogue
and conversational nature of the dataset and not in
the plural mentions and multiparty aspect.

A.2 Hyperparameters

We maintain all the default hyperparameters for
both the C2F model4 and ICOREF model.5 For
C2F, we train with and without mention detection
loss (coefficient=1), depending on the dataset. At
inference, we would also include positive scoring
mentions in the predicted clusters. In addition, we
follow the previous findings on continued train-
ing (Gururangan et al., 2020; Xia and Van Durme,
2021) by continuing training from the publicly re-
leased OntoNotes checkpoints of each model. We
train each model once. Again, the goal of our short
paper is to highlight online coreference resolution,
specifically, online inference.

To that end, we explore several val-
ues of u ∈ [1, 2, 3, 4, 5, 6, 7, 8] and
r ∈ [2, 4, 5, 6, 8, no rollback] for each of the
datasets. We plot u in Figure 2 to interpolate
between the online and offline models. We select
r = 4 for QBCoref, r = 6 for LitBank, and r = 8
for the other splits. Furthermore, following the
findings in Section 4.1, we train all models with
and without the causal mask. Models without the
mask performs better.

For each test set and model (i.e. point in Fig-
ure 2), we run inference three times and take the
minimum time rather than the average. We use min-
imum because in rare cases, one of the runs would
be significantly slower, which would disproportion-
ately affect the average. Overall, the mean differ-
ence between the max and min wait time across all
datasets is around 10.5ms, or 12% relative to the
min wait time, and the median is 5.8ms.

A.3 Computing Revisions

To compute revisions due to rollback in Section
4.3, we split each mention identified by the model
either before or after rollback based on its gold
reference antecedent: not a mention, first mention
of a cluster, or part of another cluster. We count the
number of revisions for the first two classes. For
the third, we consider a cluster link correct if the

4https://github.com/lxucs/coref-hoi
5https://github.com/pitrack/

incremental-coref/
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∆ Final F1 C2F ICOREF
Masked Training? No Yes No Yes
Masked Inference? Yes No Yes No Yes No Yes No

OntoNotesconv 69.2 77.0 75.0 76.7 68.2 76.2 68.4 76.0
OntoNotestext 74.7 80.6 79.9 80.2 72.5 80.5 73.4 80.3

LitBank 66.9 72.2 68.8 70.7 67.6 72.7 67.5 72.9
QBCoref 64.9 69.8 70.0 70.5 70.8 71.9 69.7 72.5

CI 67.6 73.0 71.8 72.8 60.9 71.9 61.2 70.9

Table 5: This is the full version of Table 2, on the test set. Each entry instead shows the score with mask and the
score without mask instead of the difference
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Figure 2: We plot the average wait time against the final F1 (test) and the running F1 (×) for select models. By
varying the update frequency, we interpolate between online and offline ICOREF models in both final F1 and wait
time.

majority of the predicted cluster overlaps with the
reference cluster.

A.4 Compute

We run all experiments on a single NVIDIA RTX
Quadro 6000 GPU. Training each model completes
in under 24 hours, with some datasets like QBCoref
taking significantly less times (under an hour). In-
ference runs in 1-5 minutes per trial. Because our
focus was not on training (we trained each model
only once and we leveraged continued training),
we estimate we use around 15 GPU-days for all
results presented in this paper, and not substantially
(at most 3x) more than that in the development of
this work. Each model is dominated by the size of
SpanBERT-large (334M). C2F models have 381M
parameters and ICOREF has 373M.

B Usage

Like any improvements to information extraction
or natural language understanding technologies,
malicious users can more easily automate harm-
ful applications (e.g. illegal web scraping). For
this work in particular, introducing an online coref-
erence resolution model could make such appli-
cations even faster and shift the paradigm further
towards harmful (algorithmically) online applica-

tions. Nonetheless, these coreference resolution
models themselves are not a complete technology,
and so the harms of this work are minimal. Both
of the baseline models we use in this work and
the subsequently released code are licensed under
Apache 2.0.

C Masked Training and Inference

Table 5 is a more complete version of Table 2 from
Section 4.1.

D Visual comparison of strategies

We can also visualize Table 3 in Figure 2, which
shows several inference procedures. This figure
more clearly shows that by modifying the rollback
frequency, a hybrid inference method can be cho-
sen to favor a purely online approach or a slower,
offline approach.

E Latency

To compute sentence-level latency, we assume each
(sub)token arrives uniformly at a specified rate.
When the last token of a sentence arrives, if the
model decides to process the preceeding chunk, we
simulate running inference over the previous sen-
tence(s). In parallel, we assume tokens continue
arriving.
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Figure 3: Simulated mean sentence-level latency given different token arrival rates.

We compute the latency between the end of each
sentence and when the predictions for that sen-
tence are produced by the simulated model. Since
ICOREF is sequential, if the model is due to process
a segment before the previous one is completed, the
next segment is blocked until the previous one is
complete.

We run inference once to obtain the size of the
job for each of these segments, and then simulate
sentence-level latency with different rates. We do
this for just the online and offline ICOREF models,
as the goal is to gain some intuition over token
arrival rates and these were usually the fastest and
slowest. The results are plotted in Figure 3


