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Abstract

Humans exhibit garden path effects: When reading
sentences that are temporarily structurally ambigu-
ous, they slow down when the structure is disam-
biguated in favor of the less preferred alternative.
Surprisal theory (Hale, 2001; Levy, 2008), a promi-
nent explanation of this finding, proposes that these
slowdowns are due to the unpredictability of each
of the words that occur in these sentences. Chal-
lenging this hypothesis, van Schijndel and Linzen
(2021) find that estimates of the cost of word pre-
dictability derived from language models severely
underestimate the magnitude of human garden path
effects. In this work, we consider whether this un-
derestimation is due to the fact that humans weight
syntactic factors in their predictions more highly
than language models do. We propose a method for
estimating syntactic predictability from a language
model, allowing us to weigh the cost of lexical and
syntactic predictability independently. We find that
treating syntactic predictability independently from
lexical predictability indeed results in larger esti-
mates of garden path. At the same time, even when
syntactic predictability is independently weighted,
surprisal still greatly underestimate the magnitude
of human garden path effects. Our results support
the hypothesis that predictability is not the only fac-
tor responsible for the processing cost associated
with garden path sentences.

1 Introduction

Readers exhibit garden path effects: When reading
a temporarily syntactically ambiguous sentence,
they tend to slow down when the sentence is dis-
ambiguated in favor of the less preferred parse. For
example, a participant who reads the sentence frag-
ment

(1) The suspect sent the file . . .

a. . . . to the lawyer.
b. . . . deserved further investigation.

can construct a partial parse in at least two dis-
tinct ways: In one reading, the verb sent acts as
the main verb of the sentence, and the continua-
tion of the sentence as an additional argument to
sent (as in 1a). In another, less likely, reading, sent
the file acts as a modifier in a complex subject,
which then requires an additional verb phrase to
form a complete sentence (as in 1b). Prior work
has demonstrated that regions like deserved further
investigation, which disambiguate these temporar-
ily ambiguous sentences in favor of the modifier
parse (1b), are read slower than those same words
would be in an unambiguous version of sentence,
such as the following:

(2) The suspect who was sent the file deserved
further investigation.

In (2), the presence of who was signals to the reader
that sent the file acts as a modifier (Frazier and
Fodor, 1978).

One account of this phenomenon, surprisal the-
ory (Hale, 2001; Levy, 2008), suggests that read-
ers maintain a probabilistic representation of all
possible parses of the input as they process the
sentence incrementally. Processing difficulty in
garden path sentences is the cost associated with
updating this representation; this cost is propor-
tional to the negative log probability, or surprisal,
of the newly observed material under the reader’s
model of upcoming words. This theory predicts
that the slowdown associated with garden path sen-
tences can be entirely captured by the differences
in surprisal between the disambiguating region in
ambiguous garden path sentences and that same
region in a matched unambiguous sentence.

Van Schijndel and Linzen (2021) tested this hy-
pothesis. They estimated the surprisals associated
with garden path sentences using LSTM language
models (LMs) trained over large natural language
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corpora. Based on the core assumption of surprisal
theory—that processing difficulty on a word, when
all lexical factors are kept constant, stands in a
constant proportion to the word’s surprisal, regard-
less of its syntactic context—they estimated a con-
version factor between surprisal and reading times
from non-garden path sentences. Applying this con-
version factor to the critical words in garden path
sentences, van Schijndel and Linzen found that
surprisal theory, when paired with the surprisals
estimated by their models, severely underestimated
the magnitude of the garden path effect for three
garden path constructions, consistent with attempts
to estimate the magnitude of other syntactically-
modulated effects (Wilcox et al., 2021). Moreover,
the predicted reading times did not correctly pre-
dict differences across the difference garden path
constructions, suggesting that no single conversion
factor between surprisal and reading times could
predict the magnitude of the garden path effect in
all three constructions.

The underestimation documented by van Schi-
jndel and Linzen can be interpreted in one of two
ways: Either (1) surprisal theory cannot, on its own,
account for garden path effects; or (2) predictability
estimates derived from LSTM LMs fail to capture
some aspect of human prediction that is crucial to
explaining the processing of garden path sentences.
This work investigates the latter possibility. We
ask if the gap between the magnitude of human
garden path effects in humans and the magnitude
that surprisal theory predicts from LMs is due to
a mismatch between how humans and LMs weigh
two contributors to word-level surprisal: syntactic
and lexical predictability. We hypothesize that the
LM next-word prediction objective does not suf-
ficiently emphasize the importance that syntactic
structure carries for human readers, who may be
more actively concerned with interpreting the sen-
tence. In this scenario, since garden paths are the
product of unpredictable syntactic structure—as
opposed to an unpredictable lexical item—using a
LM predictability estimate for the next word could
lead to underestimation of garden path effects.

We test the hypothesis that the gap between
model and human effects can be bridged by teas-
ing apart the overall predictability of a word from
the surprisal associated with the syntactic structure
implied by the word (see Figure 1) and weighting
the two factors independently, possibly assigning
a higher weight to syntactic surprisal. In this rea-
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The newfound microbes were...

Three girls trying to 

save up for a trip...

Owls are more flexible...

Figure 1: A depiction of the relationship between syn-
tactic and lexical surprisal. Some word tokens, such
as are in the context of owls are more flexible, are
highly predictable in all respects. Others are unpre-
dictable due to the syntactic structures they imply (try-
ing in girls trying to save up), and are expected to be
assigned high syntactic and lexical surprisal. Tokens
such as microbes in the context the newfound microbes
were, on the other hand, appear in a predictable syn-
tactic environment, but are unpredictable due to their
low lexical frequency; such words should be assigned
low syntactic surprisal but high lexical surprisal. Since
words that appear in unpredictable syntactic environ-
ments are themselves unpredictable, we do not expect
to find words with high syntactic surprisal but low lexi-
cal surprisal.

soning, we follow prior work on syntactic or unlex-
icalized surprisal carried out in the context of sym-
bolic parsers, where the probability of a structure
and particular lexical item can be explicitly disen-
tangled (Demberg and Keller, 2008; Roark et al.,
2009). But while past work has demonstrated that
that unlexicalized suprisal from symbolic parsers
correlates with measures of human processing dif-
ficulty (Demberg and Keller, 2008), simple recur-
rent neural networks trained to predict sequences
of part-of-speech tags have been shown to track
processing difficulty even more strongly (Frank,
2009), suggesting that even fairly limited syntac-
tic representations like part-of-speech tags can act
as a reasonable proxy of syntactic structure when
modeling human behavior.

To compute LSTM-based syntactic surprisal,
we train the LM with an auxiliary objective—
estimating the likelihood of the next word’s su-
pertag under the Combinatory Categorial Grammar
(CCG) framework (Steedman, 1987)—following
Enguehard et al. (2017). Such supertags can be
viewed as enriched part-of-speech tags that encode
syntactic information about how a particular word
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can be combined with its local environment. We
then define syntactic surprisal in terms of the like-
lihood of the next word’s CCG supertag, and pro-
pose a method of estimating that likelihood us-
ing our modified LMs. We validate our formula-
tion of syntactic surprisal by demonstrating that it
captures syntactic processing difficulty in garden
path sentences, while, crucially, not tracking un-
predictability that is due to low frequency lexical
items. Following van Schijndel and Linzen (2021),
we then use the syntactic and lexical surprisal val-
ues derived from those models to predict reading
times for three types of garden path sentences. We
find that adding syntactic surprisal as a separate
predictor does lead to larger estimates of garden
path effects, but those estimates are still an order of
magnitude lower than empirical garden path effects.
Finally, we discuss the implications of these find-
ings for surprisal theory and single-stage models
of syntactic processing.

2 Computing Syntactic Surprisal

Each incoming word can cause an adjustment in
the reader’s beliefs about the syntactic structure
of the sentence; when a syntactic structure that
was assigned a low probability prior to reading
the word now has high probability, the word can
be said to have high syntactic surprisal. We will
operationalize this intuition as the predictability
of next word’s supertag under the Combinatory
Categorial Grammar (CCG) formalism (Steedman,
1987):

surpsyn = − log(P (cn | w1, ..., wn−1)), (1)

where cn is the CCG supertag of the n-th word.
A CCG supertag encodes how a word combines
syntactically with adjacent constituents. For ex-
ample, a token with the tag S\NP combines with
an NP to its left to form an S constituent, and a
token with the tag (S\NP)/NP combines with an
NP to its right to form an S\NP constituent. Since
the sequence of supertags associated with all of the
words of a sentence often allows only one valid
parse, accurately predicting a sentence’s supertags
has been described as “almost parsing" (Bangalore
and Joshi, 1999); consequently, incremental CCG
supertagging can be seen as almost incremental
parsing.

We contrast this syntactic surprisal measure with
the standard token surprisal measure, which we

refer to as lexical surprisal:

surplex = − log(P (wn | w1, ..., wn−1)). (2)

Note that what we call lexical surprisal captures all
factors that contribute to a token’s predictability,
including syntactic ones.

In order to compute syntactic and lexical sur-
prisal for a given word, we need models that pre-
dict, given a left context, not only the next token,
as a standard LM does, but also the next token’s su-
pertag. To do this, we train models with both a lan-
guage modeling and CCG supertagging objective,
and estimate the distribution over the next word’s
tag by marginalizing over the distribution over the
next word that is defined by the LM. Formally, for a
sequence of words w1, ..., wn ∈ W with supertags
c1, ..., cn ∈ C, our model estimates the probability
of the next word given all observed words, pwn+1 =
P (wn+1 | w1, ..., wn), and the probability of the
most recent word’s supertag given all currently ob-
served words, pcn|wn

= P (cn | w1, ..., wn). We
then infer the distribution over the next word’s su-
pertag as

P (cn+1|w1, ..., wn) =
∑

w∗
n+1∈W

pcn+1|w∗
n+1

pw∗
n+1

(3)

If we knew the supertag of the next word cn+1,
we could simply compute the surprisal of that su-
pertag, − logP (cn+1 | w1, ..., wn). By contrast
with lexical surprisal, however—where there is no
uncertainty about the identity of wn+1 once that
word has been read—a word’s supertag is often am-
biguous during incremental processing. Consider
the verb gathered in the following sentences, for
example:

(3) The squirrels gathered near the tree.

(4) The squirrels gathered a few acorns.

In (3), gathered would eventually be assigned the
supertag S\NP, indicating that gathered is used in
its intransitive frame—a number of squirrels as-
sembled together as a group—and takes no direct
object. In (4), on the other hand, the appropri-
ate supertag would be (S\NP)/NP, which indicates
that in this sentence gathered is used in a transi-
tive frame and takes the noun phrase a few acorns
as a direct object. When processing this sentence
incrementally, a reader must maintain this uncer-
tainty over the appropriate supertag for a word past
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the point at which they have read that word. A
measure of syntactic surprisal that aims to model
processing difficulty at a particular word should
similarly take into account uncertainty over the su-
pertag of a word even after the word itself has been
processed. We take this uncertainty into account by
using the distribution pcn|wn

that our models define
over supertags, and computing syntactic surprisal
by marginalizing over this distribution:

pcn+1|wn
= P (cn+1 | w1, ..., wn) (4)

surpsyn = − log
∑

c∗n+1∈C
pc∗n+1|wn

pcn+1|wn+1

(5)

2.1 Model Architecture and Training

We trained four models, differing only in their ran-
dom seed, on both a language modeling and CCG
supertagging objective. The models consisted of
an LSTM shared across the two objectives, which
we refer to here as the encoder, and two classifiers,
one for language modeling and another for CCG
supertagging, which we refer to as the decoders.

Following Gulordava et al. (2018), the encoder
was a two-layer LSTM with 650 units per layer.
Each decoder consists of a single linear layer fol-
lowed by the softmax operation. For the supertag-
ging objective, we trained using CCGBank (Hock-
enmaier and Steedman, 2007), a set of CCG anno-
tations for the Wall Street Journal section of the
Penn Treebank (Marcus et al., 1993). The corpus
we used for language modeling was a concatena-
tion of the Wall Street Journal portion of the Penn
Treebank and the 80 million words from the En-
glish Wikipedia used by Gulordava et al. (2018).
Language modeling and supertagging losses were
weighted equally during training.

Models achieved language modeling perplexities
ranging from 74.76 to 75.70 on the test portion of
the Gulordava et al. (2018) corpus, while Gulor-
dava et al. (2018)’s best language model achieved
a perplexity of 52.0. Models assigned the high-
est likelihood to the correct CCG supertag in the
CCGBank test set between 84.1% and 84.5% of the
time, compared to bi-LSTM supertaggers which
can achieve an accuracy of 94.1% (Vaswani et al.,
2016). Note that these supertagging numbers are
not directly comparable, as our models use uni-
directional LSTMs and thus have no access to a
word’s right context when supertagging.

2.2 Experimental data
We evaluated our model on a subset of the Syntactic
Ambiguity Processing (SAP) Benchmark (Huang
et al., 2022), a dataset containing self-paced read-
ing times from 2000 native English speakers who
read a variety of syntactically complex construc-
tions as well as comparatively simple filler sen-
tences. The large size of the dataset allows us to
get precise estimates of the magnitude of the gar-
den path effect for each of the three types of garden
path sentences it contains. We describe each of
these constructions in what follows.

Main Verb/Reduced Relative (MVRR) This
ambiguity is illustrated in (5):

(5) The suspect sent the file deserved further
investigation given the new evidence.

(6) The suspect who was sent the file deserved
further investigation given the new evi-
dence.

In (5), before reading the word deserved, the
reader can interpret sent the file either as a main
verb and direct object (where the subject has sent
the file) or as a reduced relative clause (where the
subject has had the file sent to them). This is dis-
ambiguated in favor of the reduced relative clause
reading by the next word, deserved, which is the
true main verb of the complete sentence. We can
measure the processing difficulty incurred by this
disambiguation by comparing the reading times at
deserved in (5) with the reading times at deserved
in (6), where the relative clause who was sent the
file is unreduced and thus unambiguous.

Noun Phrase/Sentence (NPS) The NPS ambi-
guity is illustrated in (7):

(7) The suspect showed the file deserved fur-
ther investigation during the murder trial.

(8) The suspect showed that the file deserved
further investigation during the murder
trial.

Before reading deserved in (7), the file can be inter-
preted as either a direct object, where the suspect
is presenting a file to someone, or as the beginning
of a sentential complement, where the suspect is
making a point. The word deserved disambiguates
the sentence in favor of the less frequent senten-
tial complement reading. As before, the matched
control sentence (8) avoids the ambiguity, here by
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using the explicit complementizer that before the
file; this control makes it possible to measure the
slowdown associated with disambiguation.

Noun Phrase/Zero (NPZ): Finally, in (9), be-
fore reading deserved, changed can be interpreted
in two ways: as a transitive verb taking the file
as a noun phrase direct object (where the file was
changed by the suspect); or as an intransitive verb,
with the file as the subject of a separate clause
(where the suspect was changed):

(9) Because the suspect changed the file de-
served further investigation during the jury
discussions.

(10) Because the suspect changed, the file de-
served further investigation during the jury
discussions.

The word deserved disambiguates the sentence
in favor of the less frequent intransitive reading.
Introducing a comma between the clauses in the
matched sentence (10) removes the ambiguity.

3 Validating Syntactic Surprisal

We first validate that our syntactic surprisal mea-
sure successfully isolates syntactic predictability
from word predictability. To be satisfied that that
is the case, we will require two things be true: first,
we expect syntactic surprisal to capture process-
ing difficulty that is the result of syntactic unpre-
dictability; and second, we expect that syntactic
surprisal is not redundant with lexical predictabil-
ity. We will evaluate each of these desiderata in
turn.

3.1 Syntactic Surprisal Captures Syntactic
Processing Difficulty

To verify that syntactic surprisal can capture syn-
tactic unpredictability, we investigate differences
in syntactic surprisal between the ambiguous and
unambiguous garden path sentences in Huang et al.
(2022). Since garden path effects are the result of
ambiguity about the syntactic structure of a sen-
tence, a difference in surprisal at the point of dis-
ambiguation indicates sensitivity to differences in
syntactic predictability.

We found differences in the expected direction
for all three types of garden sentences. This was
the case both for lexical surprisal—consistent with
prior work (Hale, 2001; van Schijndel and Linzen,
2021)—and for syntactic surprisal (Figure 2). We

did not find differences in the same direction before
the point of disambiguation, indicating that the
differences we observe after disambiguation are
not a consequence differences in surprisal earlier
in the sentence that the LM has not fully recovered
from.

3.2 Syntactic Surprisal Captures Only
Syntactic Predictability

To verify that syntactic surprisal successfully iso-
lates syntactic factors on predictability, we make
two comparisons: first, to lexical surprisal, to ver-
ify that syntactic surprisal does not capture all of
the variance captured by lexical surprisal; and sec-
ond, to unigram frequency, to verify that syntactic
surprisal is not driven by the frequency of specific
lexical items.

Syntactical surprisal does not capture all of the
variance captured by lexical surprisal If syn-
tactic surprisal captures a strict subset of the vari-
ance captured by lexical surprisal, we expect to
see a subset of words with high lexical surprisal
and low syntactic surprisal (in addition, perhaps,
to words with highly correlated syntactic and lexi-
cal surprisals). This subset should represent words
that are unpredictable for reasons that are inde-
pendent of the syntactic structures they imply. By
contrast, words that introduce infrequent syntactic
structures should have both high syntactic surprisal
and high lexical surprisal, as the unpredictability
of the syntactic structure means that a word that
implies that structure is necessarily unpredictable.
This matches what we see in Figure 3a: The rela-
tively frequent verb trying introducing a reduced
relative clause has high syntactic and lexical sur-
prisal, while infrequent nouns like microbe have
low syntactic surprisal but high lexical surprisal.

High syntactic surprisal does not reflect low un-
igram frequency In Figure 3b, we plot the syn-
tactic surprisals of words from the filler items with
their log-frequency in the Corpus of Contemporary
American English (COCA; Davies 2008–). We find
a significant but small positive correlation between
the two (r = 0.064, t = 3.18, p < 0.005), indicat-
ing that more frequent words have a higher syntac-
tic surprisal — the opposite of what we would ex-
pect if lexical frequency were driving syntactic sur-
prisal effects. This may be due to the fact that func-
tion words, which are generally high-frequency,
typically introduce additional syntactic structure
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Figure 2: Differences in surprisal estimates between ambiguous and unambiguous garden path sentences at and
around the disambiguating verb. Bars indicate 95% confidence intervals.

An early task will be to make sure the

newfound microbes were not introduced

while drilling through the ice into the lake.

Police in Georgia have shut down a

lemonade stand run by three girls trying

to save up for a trip to a water park.

0

3

6

9

0 5 10 15 20

Lexical Surprisal

S
y
n

ta
c
ti
c
 S

u
rp

ri
s
a

l

(a) Lexical vs. syntactic surprisal.

An early task will be to make sure the

newfound microbes were not introduced

while drilling through the ice into the lake.

Police in Georgia have shut down a

lemonade stand run by three girls trying

to save up for a trip to a water park.

0

3

6

9

4 8 12 16

log(count)

S
y
n

ta
c
ti
c
 S

u
rp

ri
s
a

l

(b) Log unigram frequency vs. syntactic surprisal.

Figure 3: Correlations between syntactic surprisal, lexical surprisal, and unigram frequency for each word in the
filler items of Huang et al. (2022). Since these results are fairly consistent across model instances, we present
results from a single instance. Two words — one with high syntactic surprisal and high lexical surprisal and one
with high lexical surprisal but low syntactic surprisal — are labeled with their context.

and thus have higher-than-average syntactic sur-
prisal.

These three results — that syntactic surprisal
captures garden path effects, that we find a sub-
set of words with low syntactic surprisal and high
lexical surprisal, and that we find no evidence of
low lexical frequency driving syntactic surprisal —
suggest that syntactic surprisal captures only the
syntactic contributions to a word’s unpredictability.
We will now use syntactic surprisal in concert with
lexical surprisal to directly predict the magnitude
of garden path effects.

4 Evaluating Against Human Reading
Times

Recall that surprisal theory assumes a linear rela-
tionship between surprisal and measures of pro-
cessing difficulty such as reading times. We follow
van Schijndel and Linzen (2021) and estimate a
mapping between our surprisal measures and read-
ing times by fitting linear mixed-effects models
to the filler (i.e., non-garden path) materials from
Huang et al. (2022). In order to compare syntactic
and lexical surprisal, we fit four conversion models:
one with syntactic surprisal as a predictor, one with
lexical surprisal, one with both types of surprisal,
and one that does not include either surprisal mea-
sure. All four models included baseline predictors
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other than surprisal — unigram frequency, word
position, and word length — which on their own
are not expected to capture garden path effects. To
account for spillover effects, where processing diffi-
culty from a word spills over to affect reading times
at future words, we included all of the aforemen-
tioned factors (except word position) not only for
the current word but also for the two prior words (a
simplification of the technique of van Schijndel and
Linzen 2021). This process is repeated with each
of the four sets of surprisals extracted from our four
language model/supertagger instances. Further de-
tails about the surprisal-to-RT conversion process
are presented in Appendix A.1. After all four of
our models have been fit to the filler items, we use
the estimated coefficients to predict reading times
for the each of the critical items.

5 Results

Predicted RT differences from our conversion mod-
els, as well as the RT differences observed in hu-
mans, are presented in Figure 4a. Regardless of the
predictors used in the mixed-effects model—lexical
surprisal, syntactic surprisal, neither, or both—
predicted reading time differences greatly under-
estimate the reading time differences observed in
humans. This is unlikely to be an issue with our
surprisal-to-reading-times conversion method more
broadly, as at the pre-disambiguation word, RTs
and predicted RTs match much more closely than
in post-disambiguation regions (particularly in cap-
turing effects in the pre-disambiguation region in
NPS sentences), indicating that the difference in
magnitudes is due specifically to an underestima-
tion of the garden path effect.

While the inclusion of syntactic surprisal does
not close the gap between model predictions and
the empirical reading times, it does typically lead
to a larger predicted garden path effect. To see this
difference more clearly, in Figure 4b we exclude
the human reading times and zoom in on the garden
path effects predicted by the models. To determine
whether adding syntactic surprisal as a predictor
affected the magnitude of the garden path effects
we predicted, we fit a Linear Mixed Effects Model
over all of our conversion models’ predicted read-
ing times for each garden path construction at each
word in the critical region. We present the results
of this analysis for the effect of interest (the interac-
tion between the conversion model and the garden
path effect) in Table 1. We find that (1) models

containing both surprisals predicted the largest gar-
den path effects at the disambiguating word and
first spillover word, (2) models with only syntac-
tic surprisal predicted greater garden path effects
than models with only lexical or no surprisal at the
disambiguating word, and (3) models with only lex-
ical surprisal predicted larger garden path effects
than models with only syntactic or no surprisal in
the spillover regions. Note that while models with
only lexical surprisal did predict larger effects than
other conversion models at the second spillover
word, the fact that this only takes place long after
the disambiguating word suggests that this differ-
ence is due to differing spillover profiles amongst
our surprisal measures. Since this work focuses
on the estimation of the magnitude of garden path
effects, we leave an investigation of this to future
work.

6 Discussion

What is the source of the discrepancy between the
magnitude of garden path effects in humans and
surprisal-based estimates of those magnitudes from
neural network language models? In this paper, we
have evaluated one possible answer to this ques-
tion: that word predictability estimates from LMs
underweight the importance of syntax to the pre-
dictions made by humans. We have proposed a
method of estimating syntactic predictability from
LSTM LMs augmented with a CCG supertagging
auxiliary objective; confirmed that this measure
matches our intuitive desiderata from a syntactic
surprisal measure; and compared garden path ef-
fect magnitude predictions derived from standard,
lexical surprisal and syntactic surprisal. Our main
finding is that while the syntactic surprisal measure
we propose does typically lead to larger predicted
garden path effects, model-predicted garden path
effects still vastly underestimate the magnitude of
garden path effects found in humans.

We defined syntactic surprisal in terms of the pre-
dictability of the next word’s CCG supertag. This
choice is motivated by the relative simplicity of
computing this measure—a straightforward auxil-
iary objective that can be added to any conceivable
neural language model—as well as two substan-
tive desiderata: First, we would like the measure to
capture processing difficulty due to syntactic unpre-
dictability. Since a word’s CCG supertags captures
how the word combines with the local syntactic
structure, we hypothesize that the surprisal of that
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Figure 4: Empirical and model-predicted readings times for the three garden path constructions. Bars indicate the
difference between the mean readings times for the ambiguous and unambiguous sentences across participants for
each condition. Error bars indicate bootstrapped 95% confidence intervals.

supertag—which indicates the extent to which that
syntactic combination is unexpected—is a good
predictor of syntactic unpredictability. This was
borne out in our analysis that showed that syntactic
surprisal predicts differences in the correct direc-
tion in three garden path constructions.

Second, since syntactic surprisal is designed to
isolate syntactic predictability from other forms
of predictability, it should not be perfectly corre-
lated with lexical factors. The comparisons to lexi-
cal surprisal and word frequency showed that this
desideratum was met: We were able to identify
in our materials words that were lexically surpris-
ing but had low syntactic surprisal, and we found
a positive correlation between frequency and syn-
tactic surprisal — the opposite of what would be

predicted if high syntactic surprisal was driven by
low word frequency.

The increase in model-predicted garden path
magnitudes when we use syntactic surprisal, com-
pared to using just standard lexical surprisal, sug-
gests that predictability estimates from LSTM LMs
indeed understate the role that syntactic factors play
in human prediction. To see why that is, recall that
syntactic surprisal captures a subset of the variance
that lexical surprisal does. The fact that adding
syntactic surprisal produces a better fit to human
reading times than lexical surprisal, then, suggests
that syntactic factors affect lexical surprisal less
than they would need to in order to capture vari-
ation in human reading times. One potential ex-
planation for this discrepancy is the difference in
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Disambig MVRR NPS NPZ

Both vs. Syntactic Only β = 0.37, p < 0.001 β = 1.19, p < 0.001 β = 0.15, p = 0.056
Syntactic Only vs. Lexical Only β = 3.26, p < 0.001 β = 0.89, p < 0.001 β = 1.89, p < 0.001
Syntactic Only vs. Neither β = 6.77, p < 0.001 β = 2.85, p < 0.001 β = 1.77, p < 0.001

Spillover 1 MVRR NPS NPZ

Both vs. Syntactic Only β = 1.80, p < 0.001 β = 1.25, p < 0.001 β = 2.09, p < 0.001
Syntactic Only vs. Lexical Only β = −1.02, p < 0.001 β = −0.53, p < 0.001 β = −1.62, p < 0.001
Syntactic Only vs. Neither β = 5.10, p < 0.001 β = 3.27, p < 0.001 β = 2.36, p < 0.001

Spillover 2 MVRR NPS NPZ

Both vs. Syntactic Only β = 1.68, p < 0.001 β = 0.92, p < 0.001 β = 2.10, p < 0.001
Syntactic Only vs. Lexical Only β = −4.59, p < 0.001 β = −3.86, p < 0.001 β = −5.03, p < 0.001
Syntactic Only vs. Neither β = −0.30, p < 0.001 β = −0.92, p < 0.001 β = −3.61, p < 0.001

Table 1: Results of a Linear Mixed Effects analysis over our model-predicted reading times for our effect of inter-
est: the interaction between ambiguity and the conversion model. A significant result with a positive coefficient
indicates that the conversion model on the left side of the contrast label predicted a significantly larger garden path
effect than the model on the right. See Appendix A.2 for further details.

the tasks humans and LMs perform: While LMs
need only predict words in corpora, humans must
to comprehend what they read. While both tasks
demand some sensitivity to syntactic structure, the
need to interpret sentences may place greater im-
portance on predicting structure, leading to a higher
sensitivity to syntactic unpredictability.

While models with syntactic surprisal provided
a better fit to the human data than those with just
lexical surprisal, there remained a very large dis-
crepancy between model-predicted and human gar-
den path effect sizes. It may be possible to further
close this gap within the surprisal framework using
different approaches to estimating syntactic pre-
dictability; one such approach could rely on Recur-
rent Neural Network Grammars (Dyer et al., 2016),
which derive word-level predictability estimates
from explicit syntactic parsing mechanisms.

Another possibility is that the discrepancy is not
due to flaws in our estimates of human predictabil-
ity: perhaps surprisal, even based on a perfect sim-
ulation of human predictions, is simply not the
correct account of the magnitude of the garden
path effect observed in humans (van Schijndel and
Linzen, 2021). One family of alternative accounts
consists of two-stage, serial models of processing
(Frazier and Fodor, 1978; Fodor and Inoue, 1994;
Lewis, 1998; Bader, 1998; Sturt et al., 1999). In
such a model, when readers first read through the
ambiguous fragment of the sentence, they commit
to a small set of preferred parses. When they reach
a disambiguating region where all of the parses they
have committed to are no longer consistent with the

input, a reader would engage a separate, costly re-
analysis process in order to construct a new partial
parse consistent with the all of the currently avail-
able input. The processing cost associated with
this reanalysis procedures incurs a slowdown in
reading times that does not occur in an unambigu-
ous sentence where the incorrect initial parse is not
available, resulting the garden path effects that we
observe. Unlike surprisal-based accounts, however,
it is often unclear how to derive broad-coverage,
quantitative predictions for the size of garden path
effects from existing two-stage accounts. As a
result, it is difficult to know whether the quanti-
tative mismatches between surprisal-accounts and
human reading times that we observed should be
taken as evidence for an explicit reanalysis process.
This further highlights the need for precise imple-
mentations of two-stage serial models that we can
quantitatively evaluate against surprisal accounts.
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A Appendix

A.1 Converting Surprisals to Reading Times

In order to gauge the impact of syntactic surprisal
on the predicted reading time at word n, rtn, we fit
four mixed effects models over the filler data: one
containing only lexical surprisal (slexn ), one con-
taining only syntactic surprisal (ssynn ), one contain-
ing both, and one containing neither. As reading
times are sensitive to other features of the word
being read like unigram frequency (fn), position
in sentence p, and length in characters (cn), we
include those variables as additional factors in the
regression. In order to account for spillover effects,
where processing difficulty from a word often sur-
faces in the reading times of subsequent words, we
include all of the aforementioned factors for the
prior two words. We additionally include random
intercepts by item and by participant, as well as
random slopes by item for all of the surprisal fixed
effects. This gives us the following linear mixed
effects model formulas:

rtn ∼ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 | item) + (1 | participant)

(neither)

rtn ∼ slexn + slexn−1 + slexn−2

+ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 + slexn + slexn−1 + slexn−2 | item)

+ (1 | participant)

(lexical)

rtn ∼ ssynn + ssynn−1 + ssynn−2+

+ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 + ssynn + ssynn−1 + ssynn−2 | item)

+ (1 | participant)
(syntactic)

rtn ∼ slexn + slexn−1 + slexn−2

+ ssynn + ssynn−1 + ssynn−2

+ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 + slexn + slexn−1 + slexn−2

+ ssynn + ssynn−1 + ssynn−2 | item)

+ (1 | participant)

(both)

These models were fit using filler data from Huang
et al. (2022), and the coefficients from each model
were used to predict reading times for all of the
critical, garden path items from the corresponding
surprisals, frequencies, lengths, and positions.

A.2 Statistical Analysis of Predicted RTs
To analyze the predicted reading times that come
from our four models of surprisal-to-reading time
conversion, we fit three separate linear mixed ef-
fects models: one over MVRR garden paths, one
over NPS garden paths, and one over NPZ garden
paths. Each model includes fixed effects of ambi-
guity and the types of surprisals used in predicting
reading times: syntactic surprisal only, lexical sur-
prisal only, both surprisals, or neither. Crucially,
we include the interaction between these two fac-
tors, representing how our choice of surprisal-to-RT
conversion model affects the size of the predicted
garden path effect. We additionally include random
intercepts by item and by participant. This results
in the following mixed effects model formula:

pred_rt ∼ ambiguity ∗model

+ (1 | item) + (1 | participant).

Since we have four different models converting
between surprisals and RTs, we estimate three con-
trasts for the interaction term: the model with both
surprisals vs. the model with only syntactic sur-
prisals, the model with only syntactic surprisals
vs. the model with only lexical surprisals, and the
model with only lexical surprisals vs. the model
with neither surprisal. The estimated magnitude
(represented by the β coefficient) as well as signifi-
cance of the difference for each of these contrasts
is reported in the main text in Table 1.

A.3 Variability in Conversion Analysis
Results Across Model Instances

In order to assess the robustness of our results with
respect to the randomness in the training of our
neural network models, we repeated our analysis
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using surprisals generated from four instances of
our LM/supertagging model. These models dif-
fered only in the random seed used during the ini-
tialization and training procedure. In Figure 4b
in the main text, we presented predicted reading
times averaged across these analyses. In Figure 5
we present the same results broken out across each
model instance.
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Figure 5: Empirical and model-predicted readings times for the three garden path constructions, broken out by the
LM/Supertagger models used to generate the surprisals. Bars indicate the difference between the mean readings
times for the ambiguous and unambiguous sentences across participants for each condition. Error bars indicate
bootstrapped 95% confidence intervals.
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