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Abstract

Cross-lingual transfer of parsing models has
been shown to work well for several closely-
related languages, but predicting the success in
other cases remains hard. Our study is a com-
prehensive analysis of the impact of linguistic
distance on the transfer of Universal Dependen-
cies (UD) parsers. As an alternative to syntactic
typological distances extracted from URIEL,
we propose three text-based feature spaces and
show that they can be more precise predictors,
especially on a more local scale, when only
shorter distances are taken into account. Our
analysis also reveals that the good coverage in
typological databases is not among the factors
that explain good transfer.1

1 Introduction

The goal of cross-lingual parsing is to process a
target language as well as possible by exploiting
training data available from (an)other language(s).
While we know that parsing models can be trans-
ferred well across some well-known closely related
languages (de Lhoneux et al., 2018), the success
of cross-lingual transfer in all other cases remains
hard to predict. Surprising cases of syntactic trans-
fer between unrelated languages such as Irish and
Indonesian (Lynn et al., 2014) illustrate well this
unpredictability.

A possible explanation for such cases is that
genealogically unrelated languages can still be sim-
ilar enough to allow transfer. But what is the rele-
vant measure of language similarity in such cases?
One possible solution is to rely on language fea-
tures stored in typological databases such as WALS
(Dryer and Haspelmath, 2013; Comrie et al., 2013)
or Glottolog (Hammarström et al., 2018). Taking
these features as vector representations, languages

1The analysis notebooks are available at https://
github.com/MorphDiv/transfer-lang.

can be embedded and compared regardless of their
genealogical relations. A popular library URIEL
(Littell et al., 2017) has facilitated the use of ty-
pological features to measure similarity between
languages at different levels (phonology, syntax, ge-
ographical distribution). The problem with this so-
lution is that the information in linguistic databases
is often incomplete and unevenly distributed. Some
languages are fully described, while only a few fea-
ture values are known for others (Ponti et al., 2019).
Nevertheless, a study by Lauscher et al. (2020) on
transferring models from English to several other
languages suggests that the URIEL language sim-
ilarity score is a good predictor of cross-lingual
transfer for parsing Universal Dependencies (UD).

Our study brings a comprehensive analysis of the
relationship between language similarity and the
cross-lingual transfer in UD parsing. It extends pre-
vious work in two directions: first, we cover many
more languages than any previous study (which
are typically limited to a small set); second, we
compare the URIEL representation with three text-
based alternatives. These extensions allow us to
ask new questions such as: What should we do
for languages that do not have close relatives? Do
measures of language similarity predict the transfer
at any scale (for close and for distant languages)?
Are there good alternatives to linguistic databases
for measuring language similarity? We perform
correlation tests between linguistic distances and
parsing scores on various samples of UD treebanks
designed to neutralize two kinds of biases. First, we
balance the samples at the level of language, genus,
and family,2 reducing gradually the known bias of
the UD towards Indo-European languages. Second,

2Genus and family are two levels of language genealogy
commonly used to group languages of the world. A list of fam-
ilies and genera can be found at https://wals.info/
languoid/genealogy.
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we investigate the impact of the scale by comparing
global correlations (considering a whole language
space) with local correlations (considering smaller
partitions of a language space).

We show that typological distances extracted
from URIEL are reasonably good global predictors,
while text-based distances are better local predic-
tors. A surprising outcome of our analysis concerns
the uneven coverage of languages in typological
databases: most of the UD languages with many
missing features are Indo-European. On the other
hand, good database coverage does not guarantee
good predictability of transfer for the languages
outside of the Indo-European family.

2 Related Work

Thanks to evident structural alignments between
languages the possibility of transferring syntactic
parsing models across languages was investigated
even before the wide-spread adoption of pre-trained
language models in NLP (McDonald et al., 2006;
Zeman and Resnik, 2008). However, this task
proved non-trivial because such clear alignments
tend to be found in similar languages, but are much
rarer overall (Seeker and Kuhn, 2013; Goldberg
and Elhadad, 2013).

The idea of using data from another language or
a set of languages to improve syntactic parsing on
any given language is tempting because annotated
data is not available for the majority of the world’s
languages. Early work typically focused on sev-
eral languages selected according to the availability
of training data. In the meantime, the Universal
Dependencies (UD) treebanks have become avail-
able for many different languages (Zeman et al.,
2021)3 opening the question of what language pairs
are most suitable for model transfer. Most of the
time, polyglot4 models are trained on multiple lan-
guages, but preserving the identity of the languages
(by adding the language ID to the text representa-
tion) turns out useful (Ammar et al., 2016). Smith
et al. (2018) cluster languages according to similar-
ity before training polyglot models. Cross-lingual
parameter sharing is found to improve the perfor-
mance overall, but especially for closely-related
languages, which can share parameters in different
layers of neural representation (de Lhoneux et al.,
2018; van der Goot and de Lhoneux, 2021).

3http://universaldependencies.org
4We here used the term polyglot model (Mulcaire et al.,

2019) most often also referred to as multilingual model.

Cross-lingual transfer started being explored in
other tasks too after the introduction of large pre-
trained models (Pires et al., 2019), making the ques-
tion of linguistic similarity relevant to a more gen-
eral scope of NLP research. Lin et al. (2019) pro-
pose a range of measures that can be used in order
to choose the best transfer language, which they
divide into data-dependent (data size, token over-
lap, TTR) and data independent (various distance
measures extracted from the URIEL database).
Lauscher et al. (2020) study how well different
similarity scores predict the success of the transfer
on different tasks (with mBERT and XLM-R as
pretrained models) and find that syntactic features
extracted from URIEL correlate strongly with the
zero-shot cross-lingual UD parsing performance.
Interestingly, these features are better predictors
than genealogical relatedness, but data-dependent
measures, such as the size of the training data, seem
to predict better the cross-lingual zero-shot perfor-
mance on other tasks such as XQuAD (Artetxe
et al., 2020; Rajpurkar et al., 2016) or XNLI (Con-
neau et al., 2018; Bowman et al., 2015; Williams
et al., 2018). While English turns out to be a good
transfer language for many tasks due to the size of
the training data, Turc et al. (2021) show that Ger-
man is a better transfer language than English for
quite a few, even less-related, languages. The fact
that English is not the best transfer language on the
task of part-of-speech (POS) tagging is confirmed
by the most wide-scope study of cross-lingual trans-
fer up to now (de Vries et al., 2022). Similarly to
Lauscher et al. (2020), this study too finds that a
surface string similarity measure (LDND distance,
Wichmann et al. (2010)) is a better predictor of the
transfer than genealogical relatedness. Somewhat
contrary to this, Kudugunta et al. (2019) find an
interesting genealogical clustering in the represen-
tations created by machine translation models.

Having counted mentions of successful cross-
lingual transfer on many different tasks in the pre-
vious works (Ruder et al., 2021; Turc et al., 2021;
Vázquez et al., 2021; Hu et al., 2020; Lauscher
et al., 2020; Lin et al., 2019; Paul et al., 2013), we
notice that English is most frequently mentioned
as the best transfer language overall, but these men-
tions are almost entirely related to European target
languages. For targets located outside of Europe,
the best transfer languages are different and hard
to predict. For instance, Greek is a good transfer
language for Thai and Hindi, while Russian works
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well for these two languages and Arabic.
Our study shares the wide cross-lingual scope

with de Vries et al. (2022). In contrast to their work,
we focus on syntactic parsing models, rather than
POS tagging. We follow some other previous stud-
ies in working with both typological and text-based
language similarity measures, but our text-based
measures can be regarded as generic rather than
data-dependent and can be used as an alternative to
URIEL in many cases.

3 Language Spaces and Similarity:
Genealogy, Typology, Text

The most widely accepted method for comparing
languages relies on genealogical classification: we
consider languages located in the same region of a
phylogenetic tree to be similar. This method cur-
rently prevails in NLP. Practitioners often discuss
language similarity in terms of language family
(Ponti et al., 2019; Tan et al., 2019; Shaffer, 2021).
However, language families can be too broad for
a meaningful comparison as they include typo-
logically very different languages. For instance,
English and Armenian belong to the same family
(Indo-European), but are very different in terms of
phoneme inventories, morphology, and word order.
On the other hand, languages can be rather similar
even if they are genealogically unrelated. For ex-
ample, Bulgarian is closely related to other Slavic
languages, but its morphology, word order and the
use of the definite article makes it more similar to
English than to other Slavic languages.

Typological features and geographical placement
of languages can be regarded as potentially more
objective and fine-grained alternatives to genealog-
ical similarity. In other words, genealogically unre-
lated languages can turn out to be close in a typolog-
ical vector space or in the geographical (physical)
space. It is less common to have an intuitive per-
ception of languages that are close in such spaces
as similar, but typological proximity seems to be
more useful as a predictor of cross-lingual transfer
than genealogical relatedness (see Section 2).

The URIEL database and its associated Python
library lang2vec (Littell et al., 2017) are
very convenient resources for measuring the dis-
tance between languages in all of these spaces.
URIEL combines features from several linguistic
databases: Ethnologue (Lewis et al., 2015), Glot-
tolog, PHOIBLE (Moran et al., 2014), SSWL5 and

5Syntactic Structures of the World’s Languages by Chris

WALS. It describes over 4,000 languages, but the
available information strongly depends on the types
of features. For example, geographic and genealog-
ical feature values are known for all languages,
while syntactic feature values, which are relevant
to our study, are often missing.

When assessing linguistic similarity with
lang2vec, one can use various subsets of fea-
tures and the knn prediction option to fill in the
missing features, which is what is typically used in
previous research. With this option, all feature slots
are filled with some predicted value. If a value is
missing for some feature, the corresponding value
from the most similar language (nearest neighbor)
is returned. We work with the union of syntactic
features (WALS + SSWL) completed with the knn
prediction, but we also analyze the coverage of the
UD languages in the URIEL sources by extracting
the values before the knn prediction.

Text-based features can be regarded as a poten-
tial alternative to the features extracted from ty-
pological databases. Type-token ratio (TTR), for
instance, is higher in morphologically rich than in
morphologically poor languages and can be used
for language comparison when the data size is con-
trolled (Biber, 1988; Tweedie and Baayen, 1998;
Bentz et al., 2017). Other text statistics, such as the
mean word length (MWL) are also characteristic
of languages (words are longer in morphologically
rich languages), while being even less dependent
on the data. In the work on cross-lingual transfer,
it is common to consider all text-based measures
to be data-dependent as opposed to typological
measures, which are data-independent (Lin et al.,
2019).6 We assume that text-based features can
reach various levels of data-independence, while
providing a means for measuring language similar-
ity at a more fine-grained level.

In the remainder of this section, we describe two
text-based measures that we propose for compar-
ing languages at two structural levels, morphology
and syntax. Our morphological measure is more
generic than the syntactic measure, which is more
data-dependent.

Collins and Richard Kayne
6In NLP, data-dependent measures require access to text

samples of the languages to estimate similarity statistics,
which are viewed as specific to the samples (not easily gen-
eralized). In contrast to this, data-independent measures are
often derived from data or linguistic observations yet the text
sample is not required at estimation time.
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3.1 The Language Space of BPE Subword
Productivity

Capturing morphological phenomena, this measure
departs from the observation that subword tokeniza-
tion with BPE compresses the text vocabulary in
a way that depends on typological properties of
languages. Analyzing subword tokens formed in
the first few hundred merges (Gutierrez-Vasques
et al., 2021), we can distinguish between languages
that have productive morphology (e.g. Hungarian),
from languages that form words in a more idiosyn-
cratic fashion (e.g. Chinese).

Following this intuition, we describe each lan-
guage in terms of three features calculated over the
tokens formed in the first 200 BPE merges. The
first feature, subword productivity is the number
of word types in which a subword appears. The
second feature, subword frequency is the cumula-
tive frequency of all word types in which a given
subword appears. The third feature, subword id-
iosyncrasy is the ratio between the subword fre-
quency and the subword productivity. A single vec-
tor representation for each language is constructed
by averaging the values of all subword tokens. The
resulting three-dimensional vectors are centered
around zero and scaled with respect to the standard
deviation. In this way, we construct a new space for
comparing languages distinguishing between mor-
phological types such as analytic, synthetic, and
polysynthetic languages.

It is noteworthy that this approach does not de-
pend on access to the information extracted from
grammars and stored in typological databases. It
also does not require any annotation: the scores
are extracted directly from a relatively small sam-
ple of raw text (e.g. 50,000 words, fixed for our
UD samples) in an unsupervised fashion. It thus
provides a good alternative to hand-crafted descrip-
tions which are hard to obtain. The drawback of
this method is that it captures morphological fea-
tures, which, despite the known universal trade-offs
between syntax and morphology (Sinnemäki, 2010;
Ehret and Szmrecsanyi, 2016; Futrell et al., 2015),
might not be the most useful features for predicting
the transfer of syntax.

3.2 The Language Space of Dependency
Probes

To obtain text-based features capturing more pre-
cisely syntactic phenomena, we make use of syn-
tactic probes, minimal models that can perform the

dependency parsing task at hand. In constructing a
language space with dependency probes, we build
on the DepProbe approach of Müller-Eberstein et al.
(2022) and the intuition that linear subspaces cap-
ture syntactic information while being much easier
to interpret than the parameters of full parsers. Mea-
suring the similarity of these linear subspaces using
subspace angles (Knyazev and Argentati, 2002), we
can further compare whether dependency structures
and relations are represented similarly or dissim-
ilarly across languages — even across unrelated
languages not covered by manual typological anno-
tations — which is crucial for cross-lingual trans-
ferability.

Conceptually, each probe contains the informa-
tion on how pre-trained embeddings map to depen-
dency structures. Therefore, similar mappings are
expected to indicate similar languages. Compar-
ing these subspaces for the purpose of transferabil-
ity estimation has shown to be highly predictive
(Müller-Eberstein et al., 2022). We rely on the
same intuition, but use the probes for a different
purpose: instead of predicting the performance of
a full parser, which was the main goal for Müller-
Eberstein et al. (2022), we see the probes as a sort
of language embeddings for comparing different
languages. This leads us to extend this initial study
to the full set of languages in UD, and to analyze
how these data-driven measures relate to linguisti-
cally motivated typological information.

There has been debate regarding what constitutes
an appropriately parametrized probe (Hewitt and
Liang, 2019; Voita and Titov, 2020). We follow
the most common linear probing paradigm for de-
pendency parsing by Hewitt and Manning (2019).
It can be seen as learning a linear subspace within
the existing, pre-trained latent space in which de-
pendency information is particularly salient. For
DepProbe specifically, these are the dependency
structural subspace A and the dependency rela-
tional subspace L, which are respectively learned
using the mean square error and cross-entropy loss
to the target dependency tree. This approach is
intermediary to training a full parser, which is com-
putationally expensive, and manual features such
as those from URIEL, which may lack coverage of
the specific language variant used in any particular
treebank. However, this measure requires at least
some syntactically annotated data.
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Figure 1: URIEL embeddings (reduced to 2 dimensions using PCA) for 62 UD languages that appear as target
languages in our experiments. The color indicates the percentage of missing features in the URIEL sources.
Languages with most missing features are located in the densely populated regions.

URIEL Squared Euclidean distance in the
URIEL space using WALS+SSWL
syntax features and KNN prediction

probe-A The distance between dependency
probes trained on our UD samples to
predict the dependency link (attach-
ment)

probe-L The distance between dependency
probes trained on our UD samples to
predict the dependency label

BPE Squared Euclidean distance in the BPE
productivity space constructed from
the raw text extracted from our UD
samples

MWL The difference between mean word
lengths, estimated on the raw text ex-
tracted from our UD samples as the av-
erage number of characters per word
token in a treebank

MSL The difference between mean sentence
lengths, estimated on the raw text ex-
tracted from our UD samples as the
average number of word tokens per
sentence in a treebank

Table 1: Linguistic distances and baselines as experi-
mental settings. Note: the MWL and MSL differences
are, in fact, distances in a monodimensional space.

4 Data and Methods

From the linguistic spaces and measures described
in Section 3, we create distance matrices. We then
calculate multiple correlation scores between each
of the linguistic distance matrices on one side and
the scores obtained while testing parsers on a set of
languages on the other. For each pair transfer-target
language, we have one labeled attachment score
(LAS), which we name xLAS in our experiments
to underline the fact that these scores are obtained
via cross-lingual transfer.7 We expect higher xLAS
scores when linguistic distances are smaller, thus a
negative correlation.

In this section, we describe the details of the
experimental design and the analyses.

4.1 Data

We carry out all our experiments on the Uni-
versal Dependencies V2.9 data (Zeman et al.,
2021), and the additional unofficial set of tree-
banks used in van der Goot et al. (2021). In
total our data has 116 languages in 223 tree-
banks. We removed all multi-word tokens with
ud-conversion-tools.8

7We exclude all self-tranfer cases.
8Code-switched pairs are considered a new language as

specified by the treebank-creators. Arabic-NYUAD and
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Since data size has been identified as a factor that
has an impact on cross-lingual transfer, controlling
for the data size is necessary in order to isolate
potential effects of linguistic distances, which are
of interest for our study. We fix the training data
size to 50,000 tokens for each transfer language.
This size is determined as a good balance between
the size of the data needed to achieve a reasonable
parsing performance and the availability of the data
for different languages. We thus use only treebanks
with more than 50,000 tokens for training and cap
them to the fixed size. This leaves us with 78 tree-
banks in 47 languages for training. Because we
are not attempting to improve the state-of-the-art in
this work and we do not tune the parser, we report
our scores on the development data. To cover as
many language varieties as possible in our analysis,
we decided to use the test data set if there is no
development set available for a treebank. On the
target side, we have 116 treebanks in 62 languages.

4.2 Parser

To investigate how well linguistic distances defined
by the three different language spaces (Section 3)
predict the cross-lingual transfer of UD models, we
perform zero-shot cross-lingual transfer from each
of the 78 transfer treebanks to each of the 116 target
treebanks (in a one-to-one setting). For this, we use
MaChAmp, an NLP toolkit for training and test-
ing models in a transfer-learning framework. This
toolkit uses a transformer based language model as
encoder, and can employ multiple decoder heads
for multiple tasks. In our setup, we use the default
UD model, but remove the morphological tagging
and lemmatization task, as not all treebanks have
annotation for these tasks. We use MaChAmp v0.3
beta (van der Goot et al., 2021) with default settings
and mBERT embeddings (Devlin et al., 2019).

We train a single parser for each of the transfer
treebanks, and evaluate on all of the target tree-
banks using the official CoNLL2018 evaluation
script (Zeman et al., 2018). We disable early stop-
ping in all experiments, and take the model after
the whole training procedure (20 epochs) to avoid
overfitting on the development data. Thus, for each
target treebank, we test 78 parsers fine-tuned on
transfer treebanks, one parser per transfer treebank.
This results in a matrix of 78 × 116 labeled accu-
racy scores (xLAS). From these scores, we create
various samples on which we then calculate cor-

Japanese-BCCWJ are excluded as they are not freely available.

relation scores. For the 78 datasets, we checked
the amount of unknown subwords assigned by the
tokenizer of mBERT, which were on average only
0.4%. Outliers are Ancient Greek (~6%) and Old
East Slavic (~14%). So, the scripts are mostly
covered, and altough some languages might be un-
derrepresented (Rust et al., 2021), at least almost
all subwords are represented in the vocabulary.

4.3 Stratified sampling: language, genus,
family

Recall that the UD data set is biased towards Indo-
European languages in two ways. First, it contains
many more treebanks in Indo-European languages
than in language from any other family (Nivre et al.,
2020). Second, for some languages (and those are
usually Indo-European), there are multiple tree-
banks in the data set, while only single treebanks
are available for other languages. To deal with
the representation biases in the UD data set, we
create stratified samples at three levels. Stratified
sampling at the level of language means that we
select one treebank per language; at the level of
genus one treebank per genus; at the level of fam-
ily, one treebank per family. The representatives
of the three categories are selected randomly, but
we repeat the tests 30 times to account for the vari-
ance in random sampling. We always report mean
correlation scores of 30 random selections. The
only level that neutralizes the bias towards Indo-
European languages is the level of family, but we
perform analyses at all the three levels to see how
the scores change between them. Also, the analysis
of the scales of the linguistic distances (Section
4.4) is performed only at the level of language.

4.4 Scales: global vs. local
When analyzing the effects of linguistic distances
on the cross-lingual parsing scores, we distinguish
between two scales. In the first case, which we
call the global scale, we consider the whole spaces,
that is all the data points sampled at the level of lan-
guage regardless of where they are located in a lin-
guistic space. The global scale thus includes both
short and long distances. In the second case, called
the local scale, we partition the linguistic spaces
into smaller regions and consider the correlation
scores within each region separately. To make the
comparison between different spaces more straight-
forward, we consider only one partition created
with the URIEL space and map all the other lin-
guistic measures to this partition. The local scale
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Figure 2: K-means clustering over URIEL embeddings (reduced to 2 dimensions using PCA) for 62 UD languages
that appear as target languages in our experiments.

setting thus includes only short distances.
This analysis is motivated by some previous

work on the interaction between linguistic variation
and geographical phenomena, which has identified
potential scale-related limitations. For instance,
Jeszenszky et al. (2017) find that traveling times
correlate with linguistic distances between Swiss
dialects, but the correlation is stronger at shorter
distances suggesting a non-linear relationship be-
tween the two measures. In other words, traveling
times predict linguistic diversity well at short dis-
tances, but not so well at longer distances. On the
other hand, if a correlation only holds on the global
scale, then the observed effect might be driven by
(or limited to) a subset of data points, while the rest
of the data remains largely unexplained, as pointed
out by Moran et al. (2012). Ideally, the correlation
scores should not vary depending on the scale and
this analysis is expected to show potential limita-
tions of the observed effects.

4.5 Correlation settings

In all our correlation tests, the xLAS scores con-
stitute the predicted variable and the linguistic dis-
tances are predictors. When calculating global cor-
relations, we distinguish between three xLAS set-
tings, depending on the sampling level: language,
genus, family. Local correlations are only calcu-
lated in one setting, language, because other levels

Correlation with xLAS
Linguistic Language Genus Family
distance level level level
URIEL -0.48 -0.39 -0.35
probe-A -0.66 -0.53 -0.50
probe-L -0.57 -0.38 -0.32

BPE -0.39 -0.26 -0.10
MWL -0.38 -0.36 -0.34
MSL -0.12 -0.14 -0.16

Table 2: Global Spearman rank correlation between lin-
guistic distance and xLAS scores. The reported values
are the means of 30 random selections.

would give extremely sparse observations. How-
ever, we comment on the phenomena related to
linguistic diversity in presenting the results.

Table 1 summarizes the settings regarding the
linguistic distances. Each of the spaces described
in Section 3 is one predictor. In addition to these
distances, we perform tests with two kinds of data
statistics. We choose MWL as a good representa-
tive of text statistics that can be data-independent
(see Section 3) and MSL as a representative of
data-dependent text statistics.
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5 Results

5.1 UD languages in URIEL
Having checked the coverage of the UD languages,
we find that more than half of the feature values
are missing. We note that missing features are
not equally distributed across languages: some lan-
guages are well described with over 100 feature
values, while for some no syntactic feature val-
ues are known. The full list of languages with the
counts of missing features is in Appendix A.

To see how the UD languages are distributed
in the URIEL space, we create a two-dimensional
transformation of the original space with principle
component analysis (PCA) and plot in Figure 1 all
the languages tested as targets of UD transfer in
our experiments (N=62). We color each data point
according to the percentage of missing features.

The first thing that can be observed in the plot is
a considerable asymmetry in the space density: the
most populated area (in the left lower corner) hosts
mostly European languages, showing the known
bias of the UD data sets. We can also see a consider-
able covariance between typological, genealogical
and geographical factors, which holds only at a
very coarse level: Asian languages tend to occupy
the right-hand side of the plot, African the upper-
left corner. When we zoom in, we see quite a few
mismatches between genealogical and syntactic (ty-
pological) proximity, especially in the areas outside
of the the European corner. For instance, Hungar-
ian and Chinese are rather close in URIEL but they
are very far apart in the phylogenetic tree. Inter-
estingly, one such case is the pair Irish-Indonesian
mentioned before. Indonesian is an Austronesian
language, but it is closer to Irish (which is an Indo-
European language) than any other Indo-European
language outside of the Celtic group.

Regarding the missing feature values, we notice
that all the languages for which more than 50% of
feature values are missing are European and their
placement with the knn prediction is globally cor-
rect. At a more fine-grained level, we see some
mismatches with what would be expected knowing
the properties of languages. For example, Croatian
and Serbian are placed rather far apart although
they are syntactically identical, genealogically the
same language and geographically adjacent. Also,
the six languages in the rightmost cluster (Marathi,
Korean, Tamil, Telugu, Japanese, Uyghur) come
from five different languages families (genealogi-
cally distant).

We conclude that the URIEL space represents
rather well the knowledge about language similar-
ity globally, but it is rather imprecise at a more
fine-grained level.

5.2 Global correlation

Table 2 shows the results of one-to-one correla-
tion tests (one for each predictor). We report the
Spearman rank correlation score, which is a non-
parametric test best suited for our data. In this
setting, we ask how well different linguistic dis-
tances predict xLAS scores generally, taking into
account the whole spaces. First of all, we can see
that the mean sentence (MSL) is the worst predic-
tor despite the fact that its values vary considerably
across treebanks. MWL, on the other hand, ap-
proaches some of the more elaborated linguistic
distances. The values for these two statistics are
listed in Appendix B.

The best predictor with solid scores turns out
to be probe-A, the probe that encodes most of
the structural information. This is not very sur-
prising given the fact that the probes are trained
to perform lightweight UD parsing. However, it
is interesting to see that probe-A is a much bet-
ter predictor than probe-L and more consistent
across the samples. This means that the representa-
tions obtained for a structural task can be regarded
as more relevant linguistic features than the repre-
sentations obtained in a labeling task. The URIEL
language space is a reasonably good predictor with
moderate scores.9 The BPE productivity space is
close to MWL and sometimes even below it. A
reason for this could be the fact that this space
captures morphological properties which are not
informative enough for predicting xLAS.

All the scores with linguistic distances and MWL
decrease with higher sampling levels, which means
that the scores at the level of language and genus
might still be driven by representation biases in
the data. While confirming the expected trends,
our results provide a general sense of how big the
change is.

5.3 Local correlations

To investigate the impact of the scale on the cor-
relation between linguistic distances and xLAS,

9The scores that we observe are considerably lower than
what was observed in previous work (Lauscher et al., 2020).
This could be due to many reasons since our settings are very
different, but it is most likely due to the different sampling
approaches.
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Linguistic Correlation with xLAS
distance Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
URIEL -0.35 -0.14 -0.11 -0.42 -0.54 0.03 0.11
probe-A -0.86 -0.82 -0.63 -0.83 -0.79 -0.11 -0.34
probe-L -0.71 -0.51 -0.55 0.80 -0.59 -0.08 -0.35

BPE -0.55 0.11 -0.30 -0.38 -0.55 -0.01 -0.30
MWL -0.55 -0.09 -0.45 -0.33 -0.18 -0.11 -0.39
MSL -0.80 -0.21 -0.44 0.06 -0.30 0.14 0.31

Table 3: Local Spearman rank correlation between linguistic distance and xLAS scores. Cluster obtained from the
URIEL space with k-means.

we measure local correlations within smaller ar-
eas. Figure 2 shows the partition of the URIEL
space obtained by k-means clustering. The local
correlation scores are given in Table 3. Depen-
dency probes are still the best predictors within this
scope, but the URIEL space is often below BPE
and MWL. An important finding of this analysis
is the difference in the correlations between the
clusters: the correlations are stronger in clusters
1, 4, and 5, while they are very low in the other
clusters (except for MWL in the cluster no. 7). An
extreme case is the cluster no. 6, where no measure
provides any explanation for the xLAS scores. We
note that languages in this cluster come from many
different families (6 languages from 5 families).
The exceptional linguistic diversity is likely to be
the reason for this result, but the exact explanation
is still to be found. One possible explanation might
be that these languages might be wrongly grouped
together due to insufficient or inadequate linguistic
descriptions in the linguistic databases. This might
lead to overestimating their linguistic proximity,
while cross-linguistic parser are struggling with
real differences. Overall, predicting xLAS scores
seems much more straightforward if the languages
in a given sample come from the same language
family.

6 Conclusion

In this paper, we have shown that various linguistic
features can be good predictors of cross-linguistic
transfer of UD parsing models. As an alternative
to the typological syntactic features extracted from
the URIEL database, we propose several text-based
features and show that they are often better pre-
dictors. Those that encode syntactic structural in-
formation by design (dependency probes) are the
strongest predictors, while those that capture mor-
phology (BPE, MWL) are comparable to syntactic

features extracted from URIEL, especially on a
more local scale. In addition to the distance scales,
all the scores are impacted by the genealogical com-
position of the language samples. Explanations for
these findings remain an open question for future
work.

Limitations

Focusing on the linguistic distances in this paper,
we have not addressed the variation in xLAS scores,
that is whether it is easier to predict higher than
lower scores. Investigating different cases, we no-
ticed that moderate scores seem to be associated
with more noise in the correlation analysis, but this
effect would need to be quantified and established
in a separate study.

Another limitation of our work concerns poten-
tial interaction between the predictors that we stud-
ied. It might turn out that a combination of two or
more of our predictors in a linear model would pro-
vide a better explanation for the xLAS scores than
any individual predictor. Since we have introduced
two novel measures, our principal goal in this paper
was to test them in isolation. We leave the question
of potential interactions for future work.
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Olga Loginova, Stefano Lusito, Andry Luthfi, Mikko
Luukko, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Menel Mahamdi, Jean Maillard, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Ruli Manurung, Büşra Marşan, Cătălina Mărăn-
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Cenel-Augusto Perez, Natalia Perkova, Guy Per-
rier, Slav Petrov, Daria Petrova, Jason Phelan, Jussi
Piitulainen, Tommi A Pirinen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnin, a, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Ti-
ina Puolakainen, Sampo Pyysalo, Peng Qi, An-
driela Rääbis, Alexandre Rademaker, Mizanur Ra-
homan, Taraka Rama, Loganathan Ramasamy, Car-
los Ramisch, Fam Rashel, Mohammad Sadegh Ra-
sooli, Vinit Ravishankar, Livy Real, Petru Rebeja,
Siva Reddy, Mathilde Regnault, Georg Rehm, Ivan
Riabov, Michael Rießler, Erika Rimkutė, Larissa Ri-
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A Missing Syntax Features in URIEL

ISO-3 Count ISO-3 Count
Lang feats Lang feats
code no value code no value
afr 66 lat 70
grc 70 lav 24
arb 37 lit 29
eus 18 mlt 97
bel 70 mar 37
bul 17 pcm 103
cat 47 nno 103
zho 1 chu 103
cop 36 fro 70
hrv 91 pes 18
ces 30 pol 29
dan 29 por 26
nld 32 ron 29
eng 0 rus 13
est 23 gla 28
fao 70 srp 68
fin 5 slk 103
fra 6 slv 43
glg 70 spa 2
deu 16 swe 23
got 71 swl 103
ell 17 tam 33
heb 16 tel 42
hin 21 tur 14
hun 12 ukr 26
isl 28 urd 40
ind 3 uig 45
gle 27 vie 10
ita 26 cym 22
jpn 13 hye 26
kor 15 wol 22

Table 4: The counts of missing syntactic features in
URIEL for languages included in UD. The table con-
tains some languages that were not included in our ex-
periments (due to sampling), but are listed as available
in UD.
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B Data Statistics

Treebank MSL MWL
UD_Afrikaans-AfriBooms 25.76 4.98
UD_Ancient_Greek-PROIEL 12.46 5.06
UD_Ancient_Greek-Perseus 13.93 4.59
UD_Arabic-PADT 31.58 4.52
UD_Armenian-ArmTDP 21.18 5.0
UD_Basque-BDT 13.52 5.6
UD_Belarusian-HSE 11.95 5.31
UD_Bulgarian-BTB 13.96 4.63
UD_Catalan-AnCora 31.75 4.29
UD_Chinese-GSD 24.67 1.58
UD_Chinese-GSDSimp 24.67 1.58
UD_Classical_Chinese-Kyoto 4.84 1.04
UD_Coptic-Scriptorium 11.89 5.4
UD_Croatian-SET 22.11 5.0
UD_Czech-CAC 20.09 5.06
UD_Czech-CLTT 32.27 5.45
UD_Czech-FicTree 13.1 4.01
UD_Czech-PDT 17.1 4.84
UD_Danish-DDT 18.34 4.41
UD_Dutch-Alpino 15.14 4.7
UD_Dutch-LassySmall 12.98 4.83
UD_English-Atis 11.38 4.71
UD_English-ESL 19.04 3.87
UD_English-EWT 16.1 4.11
UD_English-GUM 18.05 4.18
UD_English-GUMReddit 18.45 3.94
UD_English-LinES 18.06 3.98
UD_English-ParTUT 24.41 4.53
UD_English-Tweebank2 15.1 4.08
UD_Estonian-EDT 13.99 5.55
UD_Estonian-EWT 12.05 4.7
UD_Faroese-FarPaHC 22.64 3.58
UD_Finnish-FTB 8.5 5.95
UD_Finnish-TDT 13.31 6.49
UD_French-FTB 29.96 4.33
UD_French-GSD 23.86 4.41
UD_French-ParTUT 29.04 4.64
UD_French-Rhapsodie 14.67 3.5
UD_French-Sequoia 22.03 4.57
UD_Galician-CTG 31.66 4.86
UD_German-GSD 18.76 5.27
UD_German-HDT 17.99 5.67
UD_German-tweeDE 9.25 4.74
UD_Gothic-PROIEL 10.34 5.21
UD_Greek-GDT 24.8 5.11
UD_Hebrew-HTB 18.76 4.03
UD_Hindi-HDTB 21.13 3.83
UD_Hindi_English-HIENCS 13.95 3.75
UD_Hungarian-Szeged 22.16 5.46
UD_Icelandic-IcePaHC 20.72 4.04
UD_Icelandic-Modern 23.04 4.43
UD_Indonesian-GSD 21.39 5.25
UD_Irish-IDT 23.94 4.52

Treebank MSL MWL
UD_Italian-ISDT 19.63 4.65
UD_Italian-ParTUT 25.53 4.93
UD_Italian-PoSTWITA 17.77 4.72
UD_Italian-TWITTIRO 19.91 4.56
UD_Italian-VIT 25.22 4.75
UD_Japanese-GSD 23.88 1.65
UD_Japanese-GSDLUW 18.48 2.13
UD_Korean-GSD 12.88 2.84
UD_Korean-Kaist 12.88 2.84
UD_Latin-ITTB 17.16 5.06
UD_Latin-LLCT 26.64 4.91
UD_Latin-PROIEL 10.81 5.38
UD_Latin-UDante 32.76 4.9
UD_Latvian-LVTB 16.92 5.1
UD_Lithuanian-ALKSNIS 20.35 5.58
UD_Lithuanian-HSE 20.98 5.1
UD_Maltese-MUDT 20.37 4.56
UD_Marathi-UFAL 7.32 4.03
UD_Naija-NSC 15.37 2.97
UD_Norwegian-Bokmaal 15.54 4.47
UD_Norwegian-Nynorsk 17.31 4.51
UD_Norwegian-NynorskLIA 10.32 3.15
UD_Old_Church_Slavonic-PROIEL 9.08 4.5
UD_Old_East_Slavic-TOROT 8.9 4.5
UD_Old_French-SRCMF 11.21 3.5
UD_Persian-PerDT 17.01 3.82
UD_Persian-Seraji 25.0 3.78
UD_Polish-LFG 7.6 4.64
UD_Polish-PDB 15.78 5.07
UD_Portuguese-Bosque 22.65 4.42
UD_Portuguese-GSD 24.75 4.34
UD_Romanian-Nonstandard 22.09 3.77
UD_Romanian-RRT 23.02 4.69
UD_Romanian-SiMoNERo 31.19 5.19
UD_Russian-GSD 19.46 5.28
UD_Russian-SynTagRus 17.3 5.04
UD_Russian-Taiga 11.01 4.58
UD_Scottish_Gaelic-ARCOSG 19.02 4.2
UD_Serbian-SET 22.31 4.93
UD_Slovak-SNK 9.5 4.41
UD_Slovenian-SSJ 17.37 4.63
UD_Spanish-AnCora 30.98 4.43
UD_Spanish-GSD 26.44 4.41
UD_Swedish-LinES 17.46 4.46
UD_Swedish-Talbanken 15.49 4.98
UD_Swedish_Sign_Language-SSLC 7.4 8.91
UD_Tamil-TTB 14.34 7.21
UD_Telugu-MTG 4.84 4.66
UD_Turkish-Atis 8.47 6.65
UD_Turkish-BOUN 12.46 5.51
UD_Turkish-FrameNet 7.14 5.36
UD_Turkish-IMST 10.05 5.41
UD_Turkish-Kenet 9.31 5.41
UD_Turkish-Penn 11.21 5.61
UD_Turkish-Tourism 4.64 5.03
UD_Turkish_German-SAGT 17.31 4.53
UD_Ukrainian-IU 16.8 4.64
UD_Urdu-UDTB 26.88 3.57
UD_Uyghur-UDT 11.63 5.48
UD_Vietnamese-VTB 14.49 3.99
UD_Welsh-CCG 19.73 4.06
UD_Western_Armenian-ArmTDP 18.13 5.06
UD_Wolof-WTB 19.21 3.46

Table 5: Mean Sentence Length (MSL) and Mean Word
Length (MWL) values per treebank.
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