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Abstract

The mechanisms underlying human commu-
nication have been under investigation for
decades, but the answer to how understanding
between locutors emerges remains incomplete.
Interaction theories suggest the development
of a structural alignment between the speak-
ers, allowing for the construction of a shared
knowledge base (common ground). In this pa-
per, we propose to apply metrics derived from
information theory to quantify the amount of
information exchanged between participants,
the dynamics of information exchanges, to pro-
vide an objective way to measure the common
ground instantiation. We focus on a corpus
of free conversations augmented with prosodic
segmentation and an expert annotation of the-
matic episodes. We show that during free con-
versations, the amount of information remains
globally constant at the scale of the conver-
sation, but varies depending on the thematic
structuring, underlining the role of the speaker
introducing the theme. We propose an original
methodology applied to uncontrolled material.

1 Introduction

Theories of interaction explain how participants
elaborate their discourse in the perspective of ex-
changing information, executing a task, establish-
ing a joint action, etc. These theories stipulate in
particular that such activity is correlated with the
building of a shared knowledge between partici-
pant, also called common ground (Pickering and
Garrod, 2004, 2021). In these frameworks, the
quality of an interaction depends on the capacity of
building such mutual knowledge, which to its turn
depends on the alignment of linguistic representa-
tions between participants. These mechanisms are
based on different levels of convergence between
the participants, that can occur at any level: lexical,
syntactic, prosodic, as well as gestures, behaviors,
etc. One hypothesis is that this phenomenon is also
visible at the semantic level, showing a coordina-

tion between participants in terms of information
exchange that can be uncovered by studying the
amount of such information and its dynamics dur-
ing a conversation.

The goal of this work is therefore to eval-
uate these questions by means of information-
theoretical measures (Shannon, 1948): sharing
information relies on the use of simple symbols
which can be combined, concatenated to transfer
increasingly complex knowledge. Moreover, it is
possible to analyze the dynamics of this process,
whether the amount of transfer vary during a con-
versation, at what position, and whether an align-
ment between participants can also be observed
at this level. An estimation of the quantity of in-
formation exchanged between participants and its
dynamics could therefore constitute an objective
way to measure the common ground instantiation.

Several works have been done in this direction,
based on lexical information measured by entropy,
and showing a convergence between participants.
Inspired by Xu and Reitter (2016), we study the dy-
namics of information transfer at three levels: first
globally, at the scale of an entire conversation, by
taking into account productions from both speakers
into a same system. Doing that, we propose to iden-
tify whether some specific phenomena (e.g. peaks)
appear in the amount of exchanged information and
that could be related with discourse-level structures
(e.g. topic shift). Second, we will study the global
evolution of entropy for each speaker, trying to
exhibit some convergence patterns (e.g. phase syn-
chronization). Third, we propose to apply the same
type of analysis at the scale of a topic, by study-
ing the dynamics of information exchange within
a topic (e.g. decrease of entropy) as well as the
complementary patterns between speakers. Last,
but not least, this is the first work in this domain
applied to unrestricted natural conversations.

This paper presents several contributions, corre-
sponding to important differences with the litera-
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ture. First, we propose to explore this question ap-
plied to free conversations instead of task-oriented
or controlled ones. Second, in difference with ex-
isting works, we evaluate the dynamics of the ex-
change based on well-defined inter-pausal units
instead of sentences (a not adequate notion for spo-
ken languages). Finally, we base our analysis on
thematic annotation made by an expert (human lin-
guist) instead of an automatic topic segmentation.

The paper is organised as follows. In Section 2,
we review the different approaches to these ques-
tions in the litterature. In Section 3, we describe
our conversational dataset and the methodology we
apply. Our experiments and a discussion of the
results are presented in Section 4.

2 Related Works

Several studies have proposed to use information-
theoretic measures to study language processing.
The general idea is to approach an evaluation of the
cognitive load through quantitative estimation. In a
seminal work, Hale (2001) introduced the notion of
surprisal, defined as the negative log-probability of
a word given the preceding context, to measure pro-
cessing difficulty. This approach has been picked
up by many studies in psycholinguistic, showing in
particular a correlation between reading times and
surprisal (Monsalve et al., 2012; Frank et al., 2015).
In the same vein, based on grammatical probability
distributions, entropy reduction has been proposed
to evaluate the informational contributions of each
word as a complexity processing measure (Hale,
2016). At the lexical level, without any additional
syntactic information than what is understood by
the linguistic model, entropy has been proposed to
estimate sentence information content in discourse.
We offer in this section an overview of the main
works done in this direction by first presenting the
main approaches to measure information content
and second the methods for studying variations of
such measures at the discourse level.

2.1 Measuring Information Content

In discourse, each lexical choice can be described
as a random variable Xi that is constrained by a
number of influences, both short range (sentence
structure, local topic) and long range (global con-
text). As the relevant context builds up, the next
word prediction is assumed to become easier and
easier as more contextual cues are available to the
discussion. The information density of this random

variable is estimated as the entropy H(Xi) defined
by Shannon (1948). We especially follow Xu and
Reitter 2018; Giulianelli et al. 2021 in modeling
the information content.

The influence of the local context on the word
choice is typically modelled at utterance or sen-
tence level with conditional probabilities; sentence
entropy is taken as the average entropy of the words
comprising that sentence. Therefore, for a given
sentence S comprising of a sequence of n words
w1, w2, ...wn

H(w1...wn) = − 1

n

∑

wi∈S
logP (wi|w1...wi−1)

(1)
Keller (2004) and Genzel and Charniak (2003)

exposing a correlation between sentence length and
entropy values, we also compute a normalized ver-
sion of our entropy metric to remove dependence
to sentence length, by dividing the previously com-
puted metric by the average obtained on all sen-
tences of the same length:

H ′(S) =
H(S)

∑
W∈L(n) H(W )

#{L(n)}

(2)

where L(n) is the set of sentences of length n, ie
sentences of the same length as our sentence S.

The initial studies use n-gram language models
to estimate word probabilities, which fail to take
more long range dependencies into account. The
natural reaction is to question the effect of context,
which is the approach taken by Giulianelli et al.
(2021). They introduce the distinction between
decontextualised entropy, that only uses the local
sentence S as context, and contextualised entropy,
which utilises the global context C, i.e. all previ-
ously mentioned sentences up to the current word,
as context. The contextualised entropy of a word
is therefore computed as the conditional entropy
of a word depending on both the local and global
context.

The difference between the amounts of informa-
tion at the local and global contexts if carried by
the mutual information term MI(S|C):

H(S|C) = H(S)−MI(S|C) (3)

2.2 Entropy variations in language processing

Genzel and Charniak (2002) proposed the entropy
rate constancy principle stipulating that the rate
of transmitted information remains approximately
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constant. Initially enunciated for written texts, this
principle has been applied to natural conversation,
albeit with some adaptations.

Following the entropy rate constancy principle,
the conditional entropy remains constant through
the dialogue. As a consequence, local entropy and
mutual information have to vary in the same pro-
portions. At the scale of a dialogue, it has been
shown that the two arguments of this equation reg-
ularly increase in the same way (Genzel and Char-
niak, 2002). But at the same time, even though
the entropy should remain constant throughout the
dialogue, local variations are possible. This as-
pect has been explored by studying the entropy at
specific positions, taking into account the role of
the participants in the conversation (Xu and Reit-
ter, 2016, 2018; Giulianelli and Fernández, 2021).
These studies are based on a segmentation of the
discourse in a sequence of separate topics, with the
idea that this succession of thematic episodes could
be associated with a variation in the entropy. In this
perspective, Qian and Jaeger (2011) has shown a
correlation between entropy decrease and potential
topic shift in written text: topic shift corresponds
to the drop of the mutual information term. More
recently, Xu and Reitter (2016) exhibited a sym-
metry in the entropy fluctuations within a topic
depending on the speakers’ roles. A new topic cor-
responds to introducing new information into the
context, which means high entropy at the begin-
ning of a topic for the speaker who introduces it
(topic initiator). Reciprocally, their partner (called
in these studies responders) progressively update
the context, which means that for them, entropy
starts low and progressively increases until the next
topic. As a consequence, these fluctuations show a
convergence pattern between interlocutors within a
topic.

3 Datasets and Models

3.1 Datasets

Previous work on information density focusing
mostly on task-related conversational datasets such
as MapTask (Anderson et al., 1991), we explore
whether conclusions drawn on such specific data
further generalise to natural conversation by apply-
ing the same methods on the Paco-Cheese corpus
(Priego-Valverde et al., 2020; Amoyal et al., 2020).
Indeed, since vocabulary is not as controlled in nat-
ural conversations as it is in tasks, the conversation
might drift onto less predictable topics that rely

more on common knowledge.

Paco-Cheese (PC) (Priego-Valverde et al., 2020)
is a multimodal corpus containing audio and video
recordings of 26 interactions between dyads of par-
ticipants. Conversations are in French and lasting
15 to 20 minutes. Participants were given a short
prompt to read to elicit conversation but were oth-
erwise free to talk about the topics of their choice.
About half (16) of the conversations happened be-
tween participants that were not acquainted. Man-
ual transcription was obtained, then automatically
aligned to the audio signal and segmented using
SPPAS (Bigi, 2012). Consequently, the speech
segments we consider here are inter-pausal units
(IPUs) - segments boundaries are defined by pauses
longer than 200ms of silence - which commonly
are shorter than sentences. The corpus is also en-
riched with annotations for noise, laugh, pauses,
feedbacks, head nods and smiles (Amoyal, 2018;
Amoyal and Priego-Valverde, 2019). Expert the-
matic annotation has been added to 16 of the dia-
logues. Excerpts from the corpus can be found in
Appendix A.

Relying on these annotations, we compute infor-
mation content values for the dialogues and con-
sider its evolution at two levels: global evolution
throughout the conversation, and local evolution in
a given conversational theme.

3.2 Language Models

We estimate information content throughout the
dialogue by computing per-word entropy for each
sentence, using language models trained on differ-
ent corpora and finetuned on the dataset of interest.

Previous works relied both on n-gram models
(Xu and Reitter, 2018) and Transformer models
(Giulianelli et al., 2021). Models were then not
straightly compared however the latter method pro-
vides with two advantages: first, Transformers al-
low for the possibility to take larger amounts of
contextual information into account; second, de-
fault Tokenizers in the pipeline are trained using a
Byte-Pair Encoding, which allows them to properly
deal with out-of-vocabulary (OOV) tokens. Those
rarer words would be especially important in pre-
dicting surprise and information content in the con-
versation.

After experimenting with n-gram models, RNNs
and the GPT-2 language model (Radford et al.,
2019) - we disregard more recent models using
masking-based learning in order to focus on more
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Table 1: Perplexity for the models used compared to
that of GPT-2 pretrained models

model lang. pretraining finetuning perplexity OOV
SRILM FR decoda x 132,32 0.5%
RNN FR wikipedia x 83,16 -
GPT-2 FR wikipedia 125,39 -
GPT-2 FR wikipedia x 32,51 -

cognitive-plausible models - we chose to focus
on the latter as GPT-2 demonstrates both lower
perplexity and has been shown to better correlate
with human surprisal in language understanding
(Michaelov et al., 2021). We rely on Hugging-
Face’s implementation of the model1, using default
tokenizers and parameters (Wolf et al., 2020). Fine-
tuning is required to adapt the language model from
written input to the specificities of natural conver-
sation. We therefore finetune the models on a 70%
split of each target corpus. As shown in Table
1, finetuning yields a substantial reduction in the
model’s perplexity.

The information content of an utterance is com-
puted sequentially, using log-probabilities pre-
dicted by the model for each token in the sentence.
Several lengths of context are considered (current
utterance only H(S); several utterances; every pre-
ceding utterance H(S|C)) and Mutual Information
is computed from the difference between H(S) and
H(S|C).

More information on models parameters and
finetuning can be found in Appendix B.

3.3 Statistical Models

With our experiments, we study the dynamics of
information transfers at two levels: i) globally, at
the level of the entire conversation; ii) locally, at
the level of topic episodes. We fit linear models
on information content estimated by the language
models on those two conditions. In those models,
the logarithm of the information content is the re-
sponse variable (H(S|C) or H(S)) and the logarithm
of turn position (whether global, logp, or rela-
tive to the local theme, logt) is the fixed effect.
Dialogues are considered a random effect in this
analysis.

We also include in our analysis a comparison
between utterance lengths to validate that using
IPUs does not affect the conclusions we draw from
the data.

1https://huggingface.co/gpt2, using weights
from dbddv01/gpt2-french-small for the french
model

Figure 1: Evolution of normalised contextualised en-
tropy on one example dialogue. The two speakers are
plotted in different colors. Dashed lines indicate the
start of new themes in the manual annotation (top) and
automated annotation (bottom).

3.4 Peak identification and correlation to
thematic annotation

Topic Segmentation Information content evo-
lution is typically studied at the dialogue level
(global context), but also locally, at the level of
topic episodes. Annotations for this partitioning
can be derived automatically using tools such as
TextTiling (Hearst, 1997). This algorithm relies
on lexical co-occurrences patterns to compute a
similarity score between sentences and segment a
text into subtopic shifts.

To complement the manual annotation of themes
in Paco-Cheese, we obtain automatic extraction of
theme changes using NLTK’s implementation2 of
the TextTiling algorithm. This step furthermore al-
lows to compare human sensitivity to topic change
to lexical changes (see Figure 1), an analysis which
has not been done on the corpus yet.

Entropy Peak Detection and Analysis Investi-
gating the location of information exchanges, we
consider peaks of entropy as potential locations
for the introduction of new data to the conversa-
tion. Assimilating those values to outliers, two
unsupervised methods are used to detect those val-
ues. Entropy series are detrended and scaled before

2https://www.nltk.org/api/nltk.
tokenize.html#module-nltk.tokenize.
texttiling
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Table 2: Estimates and significance for the effect of
position on information content for the linear mixed-
effect models on Paco-Cheese

interaction theme
global log position 0.027 ***

log position -0.032 ***
initiator log position -0.021 **
follower log position -0.015

further computations. The first method of outlier
detection involves local detection of unusual val-
ues; we rely on scikit-learn (Pedregosa et al.,
2011) implementation of Local Outlier Factor for
this. The second method (hereafter NormOutlier)
involves globally comparing the values and select-
ing the highest two percent. For both methods,
parameters were chosen as optimal values on a
subset of the data based on accuracy, precision
and recall metrics. We finally compare the perfor-
mances of those methods in predicting thematic
episodes boundaries, to basic classifiers from the
scikit-learn dummy module.

We also leverage Part-of-Speech tagging and
Feedback annotations from the dataset to explore
which words are most unexpected for the model.

4 Experiments

In this section we present the results of our exper-
iments with the Paco-Cheese dataset. Taking the
values of H(S) (i.e., the information content of
a sentence) and H(S|C) (i.e., the contextualised
entropy) estimated by the language model, we also
compute the difference between contextualised and
decontextualised entropy (MI). We extend results
obtained by previous works with this new corpora
containing free conversations. We then explore
those results using qualitative and quantitative anal-
ysis of locations with high information content.

4.1 Speakers behavior in natural conversation

Global evolution We find a positive effect of
turn position on information content when taking
the entire Paco-Cheese dialogues as the context
unit (see Table 2). This effect can however be
entirely attributed to the structure of the corpus as
conversation usually start with a few sentences of
explanation of the experiment and two one-sided
readings of the jokes. Indeed when focusing only
on the free conversation, we find that this positive
effect disappears (see Figure 2 for the difference of
entropy evolution between the two conditions).

Local evolution: themes We do however ob-
serve an effect of turn position on information con-
tent at the level of themes (β = -0.032, p < 0.001)
(see Figure 3), which seems to be entirely driven by
the behavior of the topic initiator (β = -0.021, p <
0.001). We observe no effect of turn position on in-
formation content for the other locutor responding
to the topic initiation.

We attribute the lack of overall effect of posi-
tion to the structure of the conversation, as in a
natural paradigm speakers will naturally shift from
one topic to the next, without necessarily relying
on previously mentioned context to move the con-
versation forward. Themes, however, make up
smaller, coherent units of a conversation. The neg-
ative effect of turn position on information con-
tent in themes would seem to be going against the
principle of Uniform Information Density (Jaeger
and Levy, 2006) and its applications to dialogue
which indicate that information content should be
increasing; it is however in line with Xu and Reit-
ter (2018)’s findings that the information content
will be either constant or slightly decreasing the
more the topic progresses. We postulate that the
reason why we do not observe an effect of posi-
tion is because the responder is active in helping
constructing the theme and does not simply fall
back into a passive role at the introduction of a new
topic.

The full results of the statistical analysis and
accuracy of theme change detection can be found
in Appendix C.3

4.2 Units of sense in a conversation: IPUs vs.
sentences?

Unlike other works that compute entropy at the
level of a "sentence" (which is not valid when
studying spoken language), the input to our models
are inter-pausal units (speech separated by 200ms
pauses). IPUs being shorter than sentences or turns
and potentially made of fewer words, they offer the
possibility of a finer granularity, more in line with
linguistic characteristics of dialogues.

One might expect this change of scale to affect
the patterns displayed in information content, as
longer interventions would bring in more informa-
tion at once. Differences between topic initiator
and responder might appear more strongly with a
more frequent use of short utterances and feedback.

3Codes and statistical analysis are available at https:
//github.com/ejmaes/multimodal-itmodels
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Figure 2: Average evolution of the entropy throughout the conversation for the Paco-Cheese corpus. Left: starting at
file start; Right: removing introductions and prompt reading to start analysis at the beginning of the free conversation.
In red, the approximate duration of conversation starters (varies between dialogues)

Figure 3: Average information content in the utterances
surrounding the start of a new theme, for both speakers.

To test this hypothesis, we aggregated IPUs by
a given speaker that were separated by silences
shorter than 1 second and were not interupted by
the other speaker. The obtained utterances are akin
to sentences in terms of length and semantic con-
tent. For the comparison to be more accurate, we
remove the IPUs of the first part of the dialogs,
which correspond to the reading of jokes and not to
actual conversation. We then fed this new data into
the language model. Results (see Table 3) mostly
appear robust to the aggregation, with a main effect
of position on entropy at the level of themes and
for the speaker initiating the theme.

Table 3: Comparison between IPUs and sentences -
Estimates and significance for the effect of position on
information content

IPUs sentence - 1s
global both speakers 0.015 -0.22 **

both speakers -0.030 *** -0.029 ***
theme initiator -0.024 ** -0.033 **

follower -0.014 -0.017

4.3 Distribution of entropy peaks against
themes

The distribution of information in the conversation,
despite being stable on a global level, is not smooth
on a local scale, as the even flow of entropy is some-
times intersected with peaks of local uncertainty.
We ponder whether those peaks only correlate to
endemic features of the conversation, such as the
introduction of new information to the discussion,
or whether they inform on model shortcomings that
need to be addressed to better understand the char-
acteristics of information transmission and com-
mon ground instantiation in conversation.

4.3.1 Theme change in conversation: smooth
or abrupt behavior?

Inspired by the behavior observed in entropy val-
ues around theme breaks (see Figure 3) and the
decrease in entropy for the initiator throughout the
theme they introduced, we wonder whether it is
possible to predict theme breaks from entropy val-
ues and more specifically entropy peaks.

We first start by exploring how similar automatic
and manual annotations actually are. A first quan-
titative approach reveals that TextTiling system-
atically overestimates the number of themes by
conversation in our dataset (Figure 4), predicting
565 thematic episodes whereas the dataset only has
268 (see Table 4). This might be an indicator of the
existence of subtopics in the conversations; how-
ever, locations indicated by TextTiling as the start
of new themes only weakly correlate with expertly
annotated locations. A first hypothesis as to explain
those results involves the existence of transitions
phases in-between two thematic episodes. Transi-
tions are frequently annotated in the corpus, with
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Table 4: Average number of themes per dialogue in each
dataset, as annotated vs estimated by TextTiling

Annotations TextTiling
PACO-CHEESE 16.4 (± 2.8) 34.5 (± 7.0)

Figure 4: Average number of themes discussed in the
conversation as a function of IPU index, according
to manual annotation (blue) and automatic annotation
(orange). Some conversations are shorter than others,
which might cause the average number of themes to
drop around some indexes.

13.6 ± 3.3 transitions per conversation, slightly less
than the number of themes per dialogue. Indeed, if
transitions are annotated, then boundaries between
themes must be considered to be flexible enough.
We then consider that a prediction falling within
a small window of a boundary will be an accurate
one; this yields better results, despite prediction ac-
curacy remaining quite low (80 common locations
out of 288 annotated theme changes, see Table 5).

Manual and automatic annotation therefore ap-
pear to consider different features and rules to estab-
lish thematic boundaries. But if automatic annota-
tion is more sensitive to new vocabulary introduced
in the conversation to label thematic changes, we
hypothesize might also correlate more with entropy
values. For this reason we compare the location
of information content peaks to the distribution of
topics both manually and automatically predicted.

Peak location does not accurately predict theme
changes or TextTiling results, though correlat-
ing peaks to TextTiling yields slightly better re-
sults than manual annotation. For manual anno-
tation, Local Outlier detection allows for the de-
tection of the largest number the theme changes
(precision = 0.172 / recall = 0.65 within a 5
IPUs window), predicting a larger number of loca-
tions of interest than annotated. Peak detection fur-

ther correlates with automated annotation of theme
changes, which further support the hypothesis of
entropy peaks appearing around locations where
new content is introduced. This method for pre-
dicting thematic boundaries however does not fare
better than a baseline classifier trained directly on
entropy values and sentence length to detect topic
boundaries.

4.3.2 Language models and natural
conversation

To further analyze model and participants behavior
throughout the conversation, we shift our focus to
per-word entropy. We focus on two aspects: words
with high entropy on the one hand, and the way the
model deals with conversational feedback on the
other.

From peak locations, a set of vocabulary with
the highest entropy values is extracted. We cross
this list with part-of-speech tagging and feedback
annotation available in the corpus before going fur-
ther. We note that most of those words are nouns,
with the stronger occurrences being proper nouns,
which is expected since those words wouldn’t be
known to the model - or, in the case of locations,
logical in the conversation - prior to encountering
them. Some of those unexpected words would how-
ever not be evaluated by the speakers as this sig-
nificant, since they are already part as their shared
knowledge (nearby locations, daily life abbrevia-
tions, names of known individuals...). Thus most
of these words may simply be unexpected in this
context or too unusual for the model, and do not
provide any new information to the topic at hand.
However, a small percentage of words do; and in
the case of words reappearing later in the conver-
sation, a slight decrease in entropy is observed. A
list of unusual words with high entropy causing the
appearance of peaks is provided in Appendix D.1.

We finally turn our attention to backchannels, a
discourse-specific occurrence through which a lis-
tener can interact with the speaker and notify them
on their thought process without requiring taking
the floor. Backchannels typically include move-
ments (head nods, smiles or facial expressions),
small words (yes, okay, no, sure...) or short utter-
ances that do not disrupt the conversation flow. A
qualitative analysis of peak locations had revealed
the presence of feedbacks among the utterances
of interest; further inspection actually reveals this
is not an issue in modeling. Indeed, most feed-
backs generate lower than average entropy. But
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Table 5: Comparison of manually annotated theme changes locations to peak locations and theme breaks according
to automated annotation. A baseline classifier (DumStrat) trained to predict theme breaks is added for reference.

features target best result True Positive precision recall
TextTiling text window=5 80 0.136 0.299
LocalOutlier entropy manual annotation window=5 173 0.172 0.646
NormOutlier entropy window=5 23 0.174 0.086
DumStrat entropy + text features - 261 0.268 0.113
LocalOutlier entropy TextTiling window=5 381 0.278 0.674

sometimes longer feedbacks conveying meaning
a bit more specific generate uncertainty, same as
other utterances in the dialogue, with the difference
than those productions from the listener are more
concise than utterances from the speaker. It is espe-
cially the fact for unexpected, negative input, but
makes perfect sense on a cognitive standpoint.

A more detailed view into feedbacks types, fre-
quencies and related entropy is available in Ap-
pendix D.2.

5 Conclusion

The results presented in this paper represent a new
contribution for the study of information exchange
during conversation. First, this work only relies
on free natural conversations, without adding more
controlled corpora. In particular, in difference with
other works in the literature, we do not add any
task-oriented dialogue (such as MapTask) nor tele-
phone conversation (such as Switchboard), that
have known specific impacts on turn taking and
topic shift. In terms of methodology, we decided
to use a prosodic segmentation of the input (pauses
longer than 200ms) generating identify inter-pausal
units usually used in studies on spoken language.
IPUs are discourse segments with a certain coher-
ence only identified on the basis of the acoustic
signal. These segments offer a finer-grained view
of the input in comparison with the segmentation
into sentences that are usually used in the litera-
ture. This notion of sentence is not only problem-
atic when applied to spoken language (the existing
works do not precisely explain to what they corre-
spond), but may also introduce a bias when study-
ing topic shift, these two segments being possibly
the same. Finally, we are using with this analysis a
thematic segmentation that was done manually by
experts, rather than relying on automatic segmenta-
tion as previous works might have done. TextTiling
identifies topics based on semantic similarity; here
annotations are based on higher-level information,
bringing together all different linguistic and non-
verbal information, providing a much more reliable

segmentation.
Our results first confirm that at the scale of a

conversation, entropy remains stable, as it has been
observed in other works. At a local level, when seg-
menting the discourse in themes, we also observe
a specific behavior, showing a decrease in the en-
tropy of the speaker introducing the theme, which
is expected. However, no significant pattern can
be observed for the responder, for who the entropy
remains approximately stable. To be more precise,
we did not observe any increase in the entropy. As
a consequence, we cannot say that a convergence
in the entropy rate between the different speak-
ers can be observed at the scale of a theme. This
result is important in the study of conversational
interactions. It means that convergence between
speakers, which is necessary during a conversation,
is a complex phenomenon that cannot be observed
only on the basis of quantity measures. At the same
time, the analysis of entropy constitutes a robust
cue for evaluating how much and when informa-
tion is transferred between speakers in a natural
setup; however it must be complemented with data
from other sources to assist the model in isolating
truly important sections of the dialogue, from noise
(rarer words that are logical in the context).

This work opens the door to further study.
For starters, as previously mentioned, enriching
the models with information, coming from other
modalities would most likely refine the analysis.
Among the modalities of interest are audio (speech
rate is known to be modulated according to the diffi-
culty of the information), video (gaze), and cerebral
activity. Indeed, we think that the dynamics of the
entropy is correlated with information exchange
and more generally with the building of the com-
mon ground. It becomes therefore possible to start
studying the brain basis of mutual understanding
by looking specifically at the brain signal associ-
ated with entropy peaks. Our hypothesis is that this
entropy-based indicator could offer the possibility
to analyze the brain signal in a time-locked event
paradigm (evoked-related potentials) as well as the
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time-frequency level (frequency bands).
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A Corpus Excerpt

Table 6 shows an excerpt of a Paco-Cheese dia-
logue, annotated with utterance position in the dia-
logue, current discussion theme, speaker identifiers
and information content estimates (contextualised,
decontextualised, and difference between the two).

B Language Models Training and
comparison

B.1 Transformers

We experiment with GPT-2 (Radford et al., 2019),
an autoregressive Transformer-based (Vaswani
et al., 2017) language model, relying on Hugging-
Face’s implementation, pretrained models4 and de-
fault tokenizers.

Considering the corpora peculiarity (dialogue)
which differs from most of the training data, we
finetune the models on 70% of the target corpora.
The finetuned models yield significantly lower per-
plexity on the portion of the dataset reserved for
testing. One epoch with a training loss of 5e-05
(default) and batches of size 8 leads to significant
improvement on the English corpus. The French
model is finetuned for 20 epochs with a learning
rate of 1e-05 and batches of size 16.

For inference, the model’s maximum sequence
length is used (1024) so as to maximize the model’s
ability to extract context from the discourse.

To match the SRILM execution output as well as
to give context to the prediction of the first sentence
token, we include a sentence beginning token at
the start of the sentence for the prediction, but this
token’s information content is not computed.

B.2 Other language models

RNN models Data in input of the RNN mod-
els is parsed using the same Tokenizers as GPT
in order to facilitate comparison between models;
the models are trained on the same fraction of the
corpus. After a first pass on a set of wikipedia
data, the model are finetuned for 2 epochs on
the target dataset. The model’s architecture is as
follows: one embeddings layer, one GRU layer
(hidden_size=128). The RNN cell output is
then fed to a Linear layer through a Dropout layer.

SRILM Language Models Unlike neural net-
work models which training relied on tokenizers
which virtually removed the problem of out of vo-
cabulary (OOV) tokens, SRILM Language Models
can only rely on the vocabulary encountered during
training for inference of probabilities. Choosing
the model therefore involves balancing perplexity
and number of OOV tokens matched during infer-
ence. The fraction of OOV in the held-out data

4Pretrained model used for English corpora was the
default gpt2 weights; for French corpora, weights from
dbddv01/gpt2-french-small were used.
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Table 6: 20 lines from the Paco-Cheese corpora, excerpt of the conversation between AA and OR.

index theme speaker text H(S|C) H(S) MI
120 exams OR ça venait de la psycho de l’anthropo enfin de plein de euh domaines 1.18 1.30 0.13
121 exams AA ouais ouais 0.31 0.43 0.12
122 exams OR je pense c’était juste simplement euh ça 1.04 1.01 -0.04
123 exams AA ben ouais mais moi le truc c’est que genre la veille ben du coup je 0.76 0.77 0.01

l’avais revu et tout
124 exams OR et 0.40 0.62 0.21
125 exams AA genre les j’ai vu mes deux résumés je les ai regardés j’ai fait euh 0.95 0.91 -0.03
126 exams AA pouah c’est bon ça tombera non non j’ai fait non c’est bon ça 0.76 0.74 -0.01

tombera pas sur ça
127 exams OR la flemme 1.38 1.03 -0.35
128 exams OR ouais 0.37 0.65 0.28
129 exams AA genre du coup je les ai lu vite fait en diagonale 1.51 1.55 0.04
130 exams AA et 0.51 0.62 0.11
131 exams AA après j’ai eu la première question du partiel j’ai fait 0.80 0.85 0.06
132 exams AA ah 0.74 0.79 0.05
133 exams OR ouais voilà 0.65 0.65 -0.00
134 exams AA ah bon 1.41 1.12 -0.29
135 exams OR et moi je m’étais même pas rendue compte que c’était là-dedans 0.80 0.88 0.08

c’est après cristèle elle m’a dit mais tu vois que c’est tu as
exactement ton résumé genre

136 exams AA j’aurais dû 0.78 0.75 -0.03
137 exams OR alors qu’en plus le résumé quand elle a corrigé il m’a dit très bon 1.11 1.16 0.06

résumé
138 exams AA ouais moi aussi 0.72 0.76 0.04
139 exams AA du coup j’étais un petit peu deg quoi 1.77 1.57 -0.20

was between 1 and 5% with non-finetuned models,
lower with finetuned models. Following Xu and
Reitter (2017) who train their language model on a
different corpus, we compare different data sources
for the language model. We find that pretraining
the model on a larger dialogue corpus (we use DE-
CODA, (Bechet et al., 2012)) then finetuning it on a
fraction of the target corpus yields the best balance
in terms of perplexity and number of OOV tokens.
Indeed perplexity will be lower with large corpus
that are closer in structure to the target data; thus
training on dialogue data will be better than train-
ing on written corpus such as wikipedia, especially
considering that the larger the original corpus, the
smaller the effect of finetuning.

B.3 Building up contextual information

One interrogation that came with using models
with context was how context buildup allowed for
better expectations of the upcoming words. The
mind is capable of selecting relevant information
from an utterance and reusing it long distance, al-
beit with limits, as the memory span is not infinite.
How much pull would long distance information
have in the predictions? The biggest information
input happens with the addition of the previous sen-
tence to the context (see Figure 5); further additions
to the context have a more limited impact. Thus
computed values of entropy for each sentence can

Figure 5: Correlation between entropy values given by
the model, depending on the length of the contextual
information, in IPUs

mostly be explained by language understanding
and local structure of the sentence, with previous
utterances and long distance information selection
refining the predictions.

C Experimental Results

C.1 Linear Models results
Table 7 summarise the results of our statistical anal-
ysis. The same four linear models are fitted on in-
formation content estimated on different sets of the
data: the utterance column refers to the length of
the context, the IPU being the main condition, and
concat 1s referring to paradigms where IPUs
from one speaker are aggregated as long as they
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Table 7: Results of linear mixed-effect models on the Paco-Cheese dataset

whole dialogues free conversation only
estimate p sig estimate p sig

model utterance test_label var
H(S|C) IPU Position in INTERACTION (Intercept) -0.269 0.000 *** -0.009 0.863

logp 0.027 0.000 *** -0.015 0.111
Position in THEME (Intercept) -0.023 0.174 -0.010 0.577

logt -0.032 0.000 *** -0.030 0.000 ***
Position in THEME - initiator (Intercept) -0.056 0.017 * -0.010 0.668

logt -0.021 0.002 ** -0.024 0.001 ***
Position in THEME - responder (Intercept) -0.082 0.032 * -0.087 0.023 *

logt -0.015 0.114 -0.014 0.153
concat 1s Position in INTERACTION (Intercept) -0.004 0.924

logp -0.022 0.005 **
Position in THEME (Intercept) -0.016 0.570

logt -0.029 0.000 ***
Position in THEME - initiator (Intercept) 0.003 0.891

logt -0.033 0.002 **
Position in THEME - responder (Intercept) -0.082 0.059 .

logt -0.017 0.123
H(S) IPU Position in INTERACTION (Intercept) -0.112 0.000 ***

logp 0.010 0.004 **
Position in THEME (Intercept) -0.011 0.344

logt -0.015 0.000 ***
Position in THEME - initiator (Intercept) -0.018 0.213

logt -0.012 0.015 *
Position in THEME - responder (Intercept) -0.053 0.028 *

logt -0.004 0.534

are not interrupted by pauses longer than 1 sec-
ond and are not interrupted by the other speaker.
Whole dialogue and free conversation only refer to
whether the dialogue data is considered as a whole
or whether the start of the dialogue (introductions,
reading of jokes to kickstart conversation) is re-
moved only to keep the free flowing conversation.
In those models, the logarithm of the information
content is the response variable (H(S|C) or H(S))
and the logarithm of turn position (whether global,
logp, or relative to the local theme, logt) is the
fixed effect. Dialogues are considered a random
effect in this analysis.

All models yield similar results in terms of es-
timates and p-value for the 4 conditions, with the
exception of the effect of position in interaction that
disappears in the free conversations only condition.

C.2 Peaks and Theme Change Locations

Manual annotation is compared to automated anno-
tation based on lexical similarity using the TextTil-
ing algorithm (Hearst, 1997). Figure 6 shows the
distribution of annotated themes throughout two
example conversations, with dashed lines indicated
the start of new themes as annotated manually and
automatically. TextTiling shows a higher sensitiv-
ity than human annotation to lexical changes in the
conversation, resulting in a number of annotated

themes twice as large on average.

Peak detection is run using two methods. The
first method (LocalOutlier in the table) relies on
the implementation of Local Outlier Factor by
scikit-learn (Pedregosa et al., 2011), which
allows for comparison of a value to its neighbors
(n=5) to detect locally unusual values. The second
method (NormOutlier) relies on a global, where
only the top 2% values are considered outliers (see
Figure 7). Both methods are applied to series of
contextualised entropy H(S|C) as well as mutual
information (MI) as both would be expected to be
sensitive to the introduction of new information to
the conversation. Neighbors number and percent-
age threshold value were chosen as optimal values
based on accuracy, precision and recall, on a subset
of the data.

Table 8 summarises how peak location and Text-
Tiling theme break prediction fare in predicting
the location of manually annotated theme changes.
There is a total of 268 of theme changes in the
dataset (excluding moments annotated as transi-
tions between two themes). We consider that the
location of a theme change might not be an accu-
rate consideration since it depends on the annotator
sensitivity and consider the prediction might match
a location within a small window of IPUs centered
around it. Windows of size 2 and 5 were consid-
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Figure 6: Evolution of normalised contextualised entropy on two dialogues. The two speakers are plotted in different
colors. Bold points indicate outliers detected by the NormOutlier method. Dashed lines indicate the start of new
themes - left: manual annotation; right: predicted by TextTiling

Figure 7: Probability distribution function of entropy (normalised and scaled) observed individually for the various
speakers in the corpora (left) and cumulative (right), with ticks at 90, 95 and 99% density.

ered (larger windows were discarded as themes can
change frequently). Table 9 compares the location
of peaks and that of lexical changes as annotated by
the TextTiling algorithm. In both tables, precision
and recall refer to commonly used metrics count-
ing the number of exact prediction (True Positives)
compared to the number of peaks that weren’t lo-
cated at theme breaks (False Positives) and theme
breaks which did not result in entropy peaks (False
Negatives).

LocalOutlier systematically yields a larger num-
ber of locations identified as peaks whereas Nor-
mOutlier is more sparse - which was expected by
design of NormOutlier. Focusing LocalOutlier on
outliers that increase entropy does not improve pre-

diction. Both algorithms detect a smaller number of
locations of interest when only taking into account
evolution of the contextualised entropy (H(S|C))
over the dialogue rather than mutual information.
TextTiling is not more accurate than peak detec-
tion to detect manually annotated theme change
locations, but a larger number of peaks matched
theme change predicted by TextTiling. However
none of those methods perform better than a base-
line classifier (stratified Dummy Classifier from
the scikit-learn library) trained to predict
boundaries of thematic episodes based on values
for H(S|C), MI and utterance length.

Increasing the window size reliably increases
the number of theme breaks matched, substanti-
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ating the hypothesis that theme changes involves
adding new information to the conversation, which
is detectable using entropy metrics.

D In-depth per-word entropy analysis

D.1 Choice of words and peaks of entropy in a
discussion

We select the sentences which have been labelled
as peaks of entropy and analyse entropy word by
word, how each word contributes to the sentence,
and what category those words fall into. Examples
of these words are given in Table 10. What we
find is that most words with high entropy are sim-
ply rare enough that they are deemed improbable;
most of them are either nouns (48%), adjectives
(20%) or verbs. Some peaks however are caused
by words falling into one of the following cate-
gories (disregarding words from the transcription
that still contain typos): Proper Nouns (Arthur, Jas,
Danemark, Luminy...), contractions or abreviations
(FLE, QCM), technical words that might be taken
from other languages (slides, rift...) which would
be highly unusual for the model, but part of the
shared knowledge for the two interlocutors.

The more an unexpected word is linked to a
theme, the more we would expect it to reappear,
and if it had caused a peak of entropy at first, we
would expect that surprise being smoothed over
time. Indeed, on a conversational level, the more a
word occurs in conversation, it becomes part of the
shared knowledge and is expected to be reused by
any locutor. As a consequence, reused references
are subject to compression throughout a dialogue
(Giulianelli and Fernández, 2021) as they are ex-
pected to be understood without much cognitive
load the more they appear. Context (previous words
mentioned in the conversation) being available to
our models they should equally be able to not be
surprised by the reappearance. In our case, most
words causing peaks are not reoccurring (68%),
but those that do indeed become slightly more pre-
dictable (generating slightly less entropy, p < 0.1)

D.2 The role of backchannels

Backchannels are words or movements (nods,
smiles) that a listener will spontaneously produce
to signal the speaker of their attention, encourage
them to continue with their story or on the contrary
signal their lack of understanding or disagreement.
Several kinds of feedbacks are annotated in Paco-
Cheese, based on speech production, nods, smiles

and context: generic (hm, yes, ok, sure...) and
specific (context-dependant productions, whether
positive or negative).

Considering that some feedback productions
seemed to appear in the list of peaks, we analyzed
in more details how well the models - which were
initially designed for written language, devoid of
backchannels - adjust to such phenomena after fine-
tuning. A supposition was that feedbacks might
appear as "disruptive" in the written flow of con-
versation, since productions are often partial or
context-dependent.

We expected generic feedbacks to be well
adapted to; specific feedbacks however would be
contextual and generate slightly more entropy. In-
deed, productions labelled as generic feedback are
associated with per-sentence entropy values that
are lower (p < 0.01) that those of productions that
do not contain feedbacks. Specific feedbacks are
associated with higher entropy values than generic
feedbacks, but in the majority of cases (negative-
unexpected feedbacks excepted) associated with
lower entropy values than the productions not con-
taining any feedback (p < 0.05) (see Table 11).
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Table 8: Comparing TextTiling theme change locations and information content peaks to manually annotated theme
changes. Baseline classifier (DumStrat) is added for consideration. TP indicates the number of elements, that either
directly match a manual annotation or fall within a small window of that point.

exact prediction window=2 window=5
TP precision recall TP precision recall TP precision recall

input data algorithm nb elements
text TextTiling 565 28 0.050 0.104 28 0.060 0.108 80 0.136 0.299
MI LocalOutlier 2137 71 0.033 0.265 118 0.066 0.440 193 0.154 0.720

NormOutlier 70 3 0.043 0.011 3 0.086 0.011 8 0.129 0.030
H(S|C) LocalOutlier 1602 59 0.037 0.220 101 0.072 0.377 173 0.172 0.646

NormOutlier 138 6 0.043 0.022 9 0.101 0.034 23 0.174 0.086
DumStrat 261 15 0.057 0.027 28 0.115 0.050 64 0.268 0.113

Table 9: Comparing information content peaks to the locations of TextTiling theme changes. TP indicates the
number of elements, that either directly match a manual annotation or fall within a small window of that point.

exact prediction window=2 window=5
input number of TP precision recall TP precision recall TP precision recall
data algorithm elements
H(S|C) LocalOutlier 1602 112 0.070 0.198 162 0.125 0.287 318 0.280 0.563

NormOutlier 138 15 0.109 0.027 14 0.159 0.025 31 0.225 0.055
MI LocalOutlier 2137 122 0.057 0.216 203 0.117 0.359 381 0.278 0.674

NormOutlier 70 1 0.014 0.002 2 0.071 0.004 14 0.200 0.025

Table 10: Words with the highest entropy that appear in utterances labelled as peaks

’arthur’, ’improbable’, ’rift’, ’interagir’, ’mesuré’, ’aram’, ’anthropologie’, ’jugé’, ’jas’, ’autes’, ’deg’,
’opposés’, ’ent’, ’moinl’, ’laide’, ’pas’, ’identifie’, ’quarantaine’, ’danemark’, ’audience’, ’ets’, ’saint’,
’conte’, ’sû’, ’comparent’, ’qcm’, ’coup’, ’implicite’, ’anonyme’, ’explicite’, ’dis’, ’calédonie’, ’didons’,
’tain’, ’maléfique’, ’géologie’, ’dirigés’, ’exemp’, ’londres’, ’craintes’, ’médhia’, ’incompréhension’,
’montrer’, ’décennie’, ’ydis’, ’dit’, ’tien’, ’règles’, ’temps’, ’cont’, ’pt’, ’dénonce’, ’allée’, ’devoirs’,
’discours’, ’là’, ’fle’, ’vêtement’, ’cing’, ’lie’, ’occupé’, ’anova’, ’emmener’, ’énorme’, ’suppose’,
’bianca’, ’trois’, ’humoristique’, ’obliger’, ’professeur’, ’particuliers’, ’sociale’, ’oculus’,
’totallement’, ’alcooliques’, ’la’, ’bas’, ’intro’, ’teint’, ’techniquement’, ’régression’, ’suisse’,
’interêt’, ’luminy’, ’clés’, ’quantité’, ’perspective’, ’morphologie’, ’vive’, ’istres’, ’smaines’, ’cognitive’,
’contraignant’, ’stricto sensu’, ’afrique’, ’occupe’, ’pénal’, ’voyage’, ’apprécies’, ’psychologue’

Table 11: Number of feedbacks of each category in the corpus and length compared to that of productions that don’t
contain feedbacks

Production type # occurrences average length average entropy comparison (t.test) of entropy: pvalue
less than ’no-feedback’ more than ’generic’

no-feedback 8.2 1.084 ± 0.51 <0.001
generic 799 2.0 0.651 ± 0.41 <0.001
négative-expected 339 4.4 0.920 ± 0.54 <0.001 <0.001
négative-unexpected 303 4.2 1.055 ± 0.55 0.32 <0.001
positive-expected 110 4.7 1.010 ± 0.60 0.01 <0.001
positive-unexpected 75 3.7 0.983 ± 0.55 <0.001 <0.001
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