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Abstract

Despite neural language models qualitatively
capturing many human linguistic behaviors, re-
cent work has demonstrated that they under-
estimate the true processing costs of ungram-
matical structures. We extend these more fine-
grained comparisons between humans and mod-
els by investigating the interaction between
Principle B and coreference processing. While
humans use Principle B to block certain struc-
tural positions from affecting their incremental
processing, we find that GPT-based language
models are influenced by ungrammatical posi-
tions. We conclude by relating the mismatch
between neural models and humans to prop-
erties of training data and suggest that certain
aspects of human processing behavior do not
directly follow from linguistic data.

1 Introduction

Neural models trained on text data alone have been
shown to qualitatively capture aspects of a large
variety of human linguistic behaviors (e.g., Gulor-
dava et al., 2018; Wilcox et al., 2019; Warstadt
et al., 2020; Hu et al., 2020; Jumelet et al., 2021).
Investigations have evaluated a range of levels of
linguistic knowledge, including: i) syntax (Marvin
and Linzen, 2018; Warstadt et al., 2019; Wilcox
et al., 2019, 2021a), ii) semantics (Pannitto and
Herbelot, 2020; Misra et al., 2020), and iii) dis-
course structure and pragmatics (Schuster et al.,
2020; Davis and van Schijndel, 2020).

Recent work has placed increased attention on
finer-grained comparisons between neural models
and humans (e.g., van Schijndel and Linzen, 2021;
Wilcox et al., 2021b; Paape and Vasishth, 2022).
The growing consensus is that neural models un-
derestimate the processing costs seen with humans,
while nonetheless capturing the broad patterns (see
Wilcox et al., 2021b). The present study adds to this
literature by comparing the incremental processing
of coreference in humans and neural models.

While coreference, more generally, is modulated
by discourse, pragmatics, and information struc-
ture (e.g., Arnold, 1998, 2001; Rohde et al., 2006;
Hartshorne, 2014; Rohde and Kehler, 2014), there
are sentential restrictions on coreference that have
immediate effects on human incremental process-
ing (e.g., Nicol, 1988; Clifton et al., 1997; Sturt,
2003; Chow et al., 2014). This study finds that, con-
trary to humans, autoregressive neural models do
not similarly restrict their behavior in coreference
processing.

In particular, the present study investigated the
interaction between the Binding Principles, articu-
lated in Chomsky (1981), and incremental process-
ing. Binding Principles account for the constrained
distribution of pronouns (and anaphora) and their
possible linguistic antecedents:

(1) Binding Principles
PRINCIPLE A An anaphor is bound in its

governing category
PRINCIPLE B A pronominal is free in its

governing category
PRINCIPLE C An R-expression is free

Roughly, Principle A excludes examples like John
thinks that Mike hates himself from meaning that
“John thinks that Mike hates John”. Conversely,
Principle B excludes examples like John thinks that
Mike hates him from meaning that “John thinks that
Mike hates Mike”. Finally, Principle C excludes
He hates John from meaning “John hates John”.
These principles are mediated by a structural rela-
tion, c-command, rather than linear order. While
the specific binding conditions have been refined
within syntactic theory (e.g., Reinhart and Reuland,
1993), we focused here on the empirical results
concerning Principle B and incremental processing,
putting aside explicit theoretical commitments.

(2) Bill told Clark that Robert had deceived
him.
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In (2), despite him agreeing in gender with Bill,
Clark, and Robert, only two of these are possible
antecedents of him: Bill and Clark. Principle B
blocks the structural location occupied by Robert
from serving as an antecedent of him. In human
incremental processing, this restriction has immedi-
ate effects, preventing the gender of this embedded
subject from influencing the processing of the pro-
noun (see Chow et al., 2014). Moreover, Principle
B can restrict the prediction of nouns following
certain cataphoric pronouns – pronouns that oc-
cur before their coreferring noun phrase (Kush and
Dillon, 2021). For example, in (3), him can only
corefer with Mark and not Michael. In human in-
cremental processing, the cataphoric pronoun him
has no effect on the processing of the subject (e.g.,
Michael).

(3) Before offering him a fancy pastry, Michael
politely asked Mark for help.

In what follows, we evaluate whether GPT-like
autoregressive neural models use Principle B to
restrict their incremental processing like humans.
Specifically, we investigated two broad effects of
Principle B: i) its interaction with “vanilla” pro-
nouns (as in (2)), and ii) its interaction with cat-
aphora (as in (3)).

While models appear to learn aspects of Princi-
ple B (treating apparent violations in unique ways),
we find that neural models, in contrast to humans,
do not categorically ignore structural positions
blocked by Principle B. Ultimately, the present
study suggests that, beyond underestimating the
processing costs seen in humans, models fail, at
least in some cases, to learn qualitatively similar
patterns to humans. This suggests, in turn, that
certain aspects of human parsing behavior are not
directly evidenced in linguistic data.

2 Background

In human coreference processing, a major question
is whether antecedent retrieval, triggered by the
presence of a pronoun, is restricted first by agree-
ment features (e.g., gender, number), returning pos-
sibly ungrammatical antecedents, or by structural
constraints, like Principle B, which serve as an ini-
tial filter. As an illustration consider the following
set of stimuli discussed in Chow et al. (2014):

(4) a. John thought that Bill liked him.
b. John thought that Mary liked him.

c. Jane thought that Bill liked him.
d. Jane thought that Mary liked him.

If Principle B immediately restricts the set of pos-
sible antecedents of him, then we would expect
the reading times at him to be the same for (4-a)
and (4-b), as in both cases the structurally licit an-
tecedent agrees in gender. If instead structurally
ungrammatical antecedents can influence the im-
mediate processing of him, then we would expect
that (4-a)–(4-c) would pattern together, to the ex-
clusion of (4-d), where no antecedent is given in
the linguistic context. Put another way, whether the
structurally ungrammatical antecedent influences
reading times at him is indicative of the status of
Principle B in human linguistic processing.

The bulk of work investigating these, and similar
constructions, has found that structural constraints
like Principle B do immediately influence human
incremental processing (e.g., Clifton et al., 1997;
Sturt, 2003; Chow et al., 2014; Kush and Phillips,
2014; Kush and Dillon, 2021). That is, finding that
(4-a) and (4-b) pattern together and (4-c) and (4-d)
pattern together.1

Within work in natural language processing, ex-
isting models have been claimed to capture as-
pects of Principle A (e.g., Warstadt et al., 2020;
Hu et al., 2020). Principle C has received less at-
tention, though see Mitchell et al. (2019) which
found that LSTM language models failed to obey
Principle C. Coreference, more broadly, has also
been explored, with results suggesting that mod-
els encode features of coreference resolution (e.g.,
Sorodoc et al., 2020) and the interaction of implicit
causality and pronouns (verb biases that influence
preferred antecedents for pronouns; Upadhye et al.,
2020; Davis and van Schijndel, 2021; Kementched-
jhieva et al., 2021).

The present study straightforwardly extends ex-
isting studies of neural models to Principle B.
While we cannot assess whether neural models
truly “interpret” the pronoun as coreferring with
certain antecedents (and thus fully verify whether
they have learned Principle B, or even Principle A),
we can compare the difference in model behavior
conditioned on minimally contrastive stimuli. In
fact, human online sentence comprehension stud-

1However, some other work has suggested that grammat-
ically illicit antecedents can in fact have measurable effects
(e.g., Badecker and Straub, 2002; Kennison, 2003). Such ef-
fects may be capturing later stages of processing (see Sturt,
2003). Nevertheless, the plurality of the evidence suggests
that Principle B has immediate effects on human processing.
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ies are similarly limited. Since we cannot directly
measure the content retrieved in reading a pronoun,
online reading times are taken as a proxy for the
consideration of certain antecedents.

3 Neural Models and Measures

We analyzed four autoregressive models with GPT-
like architectures: GPT-2 XL (1.5B parameters;
Radford et al., 2019), GPT-Neo (2.7B parameters;
Black et al., 2021), GPT-J (6B parameters; Wang
and Komatsuzaki, 2021), and GPT-3 (175B param-
eters; Brown et al., 2020). GPT-2 XL, GPT-Neo,
and GPT-J were accessed via HuggingFace (Wolf
et al., 2020), and GPT-3 by using OpenAI’s API.2

In evaluating model performance, we used sur-
prisal (Hale, 2001; Levy, 2008):

−log Prob(word|context) (1)

Surprisal has a linear relationship with human
reading times (Smith and Levy, 2013). We follow a
growing body of work in utilizing this relationship
to compare the behavior of neural models and hu-
mans (e.g., van Schijndel and Linzen, 2021; Wilcox
et al., 2021b).3

To aid the interpretation of the results, we calcu-
lated by-item gender mismatch effects (GMMEs).
GMMEs are used in human experiments to index
the increased cost in processing incurred when en-
countering a pronoun (or a postcedent, in the case
of cataphoric pronoun processing) that was not ex-
pected (e.g., van Gompel and Liversedge, 2003;
Reali et al., 2015; Kush and Dillon, 2021). Thus,
GMMEs are a means of measuring human predic-
tions by providing evidence for mismatches be-
tween expectations and reality. We calculated two
classes of GMMEs for neural models targeting gen-
der prediction for, i) “vanilla” pronouns, and ii)
subjects after reading cataphoric pronouns.

For predictions about upcoming pronouns, con-
sider:

(5) a. Fred thought Kathy hated him
b. Mike thought Kevin hated him

To calculate the GMME for (5), we took the dif-
ference between the surprisal for him in (5-a) and

2We used the version of GPT-3 called text-davinci-002.
All the stimuli, results, and scripts for recreating the statis-
tics and figures can be found at https://github.com/
forrestdavis/PrincipleB.

3For a more explicit comparison between human self-
paced reading times and neural models see Section 6.1.

the surprisal for him in (5-b). More generally, we
calculated a GMME by taking the difference in
the surprisal of the target (either a pronoun or the
subject noun) between minimal pairs. A positive
GMME would suggest that the model was more
surprised when the embedded subject mismatched
in gender with the pronoun; in other words, the
gender of the embedded subject influenced the sur-
prisal of the pronoun. In this case, comparing the
GMME for him and his is informative about the
status of Principle B in neural models. Humans
have been shown to exhibit no GMME dependent
on the embedded subject with him, because Princi-
ple B blocks co-indexation between these positions.
For his, however, co-indexation is possible, and a
GMME is obtained (see Chow et al., 2014).4

For predictions about upcoming antecedents af-
ter cataphoric pronouns, consider:

(6) a. While he was at work, Fred ate food.
b. While he was at work, Keisha ate food.

For (6) we calculated a GMME by taking the dif-
ference in surprisal of Keisha in (6-b) and the sur-
prisal of Fred in (6-a). A positive GMME would
indicate that the neural model was more surprised
when the subject mismatched with the gender of
the cataphoric subject pronoun.5

4 Principle B and Pronouns

Recall, humans restrict their incremental process-
ing of coreference to just those antecedents which
are grammatically licensed (e.g., Chow et al., 2014).
That is, in sentences like Fred thought Amy hated
him, him cannot be co-indexed with the structural
position that Amy occupies, and thus, the gender of
Amy does not hinder the processing of him. In this
section, we evaluated the ability of GPT-like autore-
gressive neural models to replicate this qualitative
effect across four experimental conditions.

4.1 Stimuli

In this section, we consider four experiments:

(7) Experiments

4Because the feminine pronoun her is ambiguous between
a possessive and an object pronoun when processing left to
right (e.g., Sue loves her and Sue loves her friend) only mas-
culine pronouns were evaluated in pronoun prediction.

5All subject nouns investigated were encoded by the neural
models as single tokens rather than being split into multiple
tokens as in Randolf mapping to ‘Rand’ + ‘olf’ in GPT-J.
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a. SIMPLE SUBJECT: Single clause with
simple subject

b. COMPLEX SUBJECT: Single clause
with complex subject containing a
prepositional phrase

c. 2NP: Clause with embedding and sim-
ple subjects

d. 3NP: Clause with embedding and sim-
ple subjects and an object

Examples of each are included below:

(8) Stimuli Examples
a. SIMPLE SUBJECT: The boy meets

him.
b. COMPLEX SUBJECT: The story about

Eric hurt him.
c. 2NP: Jason hadn’t expected that

Adam was investigating him.
d. 3NP: Liam advised the nephew that

Patrick can praise him.

We used the data generation scripts and vocabu-
lary provided with the BLiMP dataset to create our
stimuli (Warstadt et al., 2020). The sentences are
all grammatical and generally semantically felici-
tous (despite certain interpretations being blocked
by Principle B). The stimuli for COMPLEX SUB-
JECT always had a subject comprised of “the X
about. . . ”, where X ranged over inanimate nouns
like book or story.6

There were 1000 base sentences for each experi-
ment, with each sentence having exponents that var-
ied gender in all relevant positions (e.g., (8-c) has
four forms varying whether the matrix subject is Ja-
son or Amanda and whether the embedded subject
is Adam or Victoria).7 The applicability of Prin-
ciple B varied by experiment. For SIMPLE SUB-
JECT, Principle B blocks co-indexation between
the subject and the object pronoun. For COMPLEX

SUBJECT, Principle B does not block co-indexation
between the lower noun (e.g., Eric in (8-b)) and
the pronoun. Principle B, however, does block
the higher nouns (e.g., the story in (8-b)) from co-
indexing with the pronoun him.8 For 2NP and
3NP, Principle B blocks co-indexation between the

6The full set contained book, pamphlet, brochure, play,
movie, newspaper article, story, essay, report, documentary,
commentary, and show.

7No noun was repeated in a single sentence. That is, there
were no sentences like The man advised the nephew that the
man can praise him.

8Additionally, all higher nouns were inanimate, again
blocking the applicability of him.

Figure 1: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by two condi-
tions: i) SIMPLE SUBJECT, and ii) COMPLEX SUBJECT
(e.g., (Bill|The book about Bill) worried him). Error
bars are 95% confidence intervals.

embedded subject (e.g., Adam in (8-c) and Patrick
in (8-d)) and the pronoun, but not the matrix subject
(e.g., Jason in (8-c) and Liam in (8-d)) or matrix
object for 3NP (e.g., the nephew in (8-d)). If neural
models patterned like humans, then we should find
no GMME when Principle B blocks co-indexation,
and positive GMMEs elsewhere.

4.2 Simple Sentences and Pronoun Prediction

First, we investigated the influence on pronoun
prediction that subjects had in single clause con-
structions (the SIMPLE SUBJECT and COMPLEX

SUBJECT experiments; see (8-a) and (8-b) above
for the relevant contrasts).

Results grouped by model, condition, and pro-
noun are given in Figure 1. Statistical analyses
were conducted via linear-mixed effects models.9

Starting with the results for possessive pronouns,
we found that all models showed a positive GMME.
That is, models expected possessive pronouns to
agree in gender with the subject, both in simple
sentences (e.g., Fred worried his. . . ) and sentences
with complex subjects (e.g., The book about Fred
worried his. . . ).

For object pronouns, GMME differed by subject
type. For complex subjects, where co-indexation
between the object pronoun and the lower noun
(e.g., Fred in The book about Fred) is possible,

9We used lmer (version 1.1.30; Bates et al., 2015) and
lmerTest (version 3.1.3; Kuznetsova et al., 2017) in R. Models
were fit to predict the surprisal of the pronoun him or his with
a main effect of condition (i.e. whether the noun matched the
gender of the pronoun) with by-item random intercepts.
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Figure 2: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by whether i)
the matrix subject, or ii) the embedded subject agrees in
gender (e.g., (Bill|Hannah) thinks that (Mark|Sue) hates
him). Error bars are 95% confidence intervals.

models again exhibited a positive GMME, suggest-
ing that agreement between the object pronoun and
the lower noun was expected. For simple subjects,
where co-indexation between the subject and the
pronoun is not possible (e.g., him cannot refer to
Fred in Fred worried him), a negative GMME was
obtained. That is, despite the subject not being
a possible coreferent for the object pronoun, the
gender of the subject (negatively) influenced the
surprisal of the object pronoun.

4.3 Multiple NPs

We found evidence that, in cases where co-
indexation is blocked by Principle B, models ex-
pected pronouns to mismatch with the gender of
the antecedent. While suggesting that models con-
sider antecedents that humans do not, it nonetheless
suggests models capture aspects of the ungrammat-
icality of violations of Principle B. In this section,
we evaluated models on more complex sentences
containing two or three noun phrase antecedents
(the 2NP and 3NP experiments; see examples (8-c)
and (8-d) in Section 4.1 for the relevant contrasts).

Results for the 2NP case are given in Figure 2
(with results for the 3NP case given in Figure 7 in
Appendix A). Statistical analyses were conducted
via linear-mixed effects models.10 Starting with

10Models were fit to predict the surprisal of the pronoun
him or his with an interaction between the matrix subject
gender (i.e. whether it matched with the pronoun) and the
embedded subject gender, in the two noun phrase case, or
the matrix subject gender, the matrix object gender, and the
embedded subject gender (e.g., Fred|Mary told Mark|Karen

the results for possessive pronouns, in both condi-
tions, all models exhibited a positive GMME in all
positions (e.g., matrix subject, embedded subject).
That is, models predicted that possessive pronouns
would agree with the antecedent nouns.

For object pronouns, we again found a mismatch
in the direction of the GMME conditioned on the
structural position of the relevant antecedent. When
co-indexation is grammatically licensed (e.g., him
can refer to Bill in Bill knows that Mary loves him),
a positive GMME was obtained for all models. In
cases where Principle B blocks co-indexation, all
models exhibited a negative GMME instead. As in
Section 4, this suggests that grammatically unavail-
able antecedents influenced the surprisal of object
pronouns contrary to the results obtained in human
incremental processing.

4.4 Interim Discussion
Broadly, the above experiments demonstrated that
neural models exhibited GMMEs when pronouns
mismatched in gender with preceding nouns. For
the possessive pronoun his, this amounted to pos-
itive GMMEs across-the-board. That is, mis-
matches in gender between his and any antecedent
increased the surprisal of his. For the object pro-
noun him, the GMME interacted with Principle
B. Positive GMMEs were obtained when gram-
matically licit antecedents mismatched in gender,
suggesting models predicted him to agree with
these antecedents. However, when Principle B
blocked the structural position from permitting co-
indexation between the antecedent and the object
pronoun, a negative GMME was obtained. That is,
models expected him to mismatch in gender with
grammatically unavailable antecedents.

As evidenced by the COMPLEX SUBJECT exper-
iment, this negative GMME is not merely a dispref-
erence for local agreement with object pronouns.
For sentences like The book about Fred surprised
him, the more recent noun in linear order agrees in
gender with him, but we found a positive GMME.
Rather, neural models appear to have learned, at
least some, aspects of Principle B (in so far as cer-
tain structural positions are marked). However, the
negative GMME was unexpected given the findings
in the literature surrounding incremental process-
ing of such constructions in English. Ultimately,
neural models appear to use information in predic-
tion that the human parser does not.

that Frank|Sue hated him), in the three noun phrase case, and
with by-item random intercepts.
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5 Principle B and Cataphora

The above section explored the role Principle B
plays in pronoun prediction for GPT-like neural
models, finding a qualitative mismatch between
the incremental processing of neural models and
humans. Recent work in psycholinguistics has also
demonstrated that Principle B can restrict the pre-
diction of subjects following cataphoric object pro-
nouns (Kush and Dillon, 2021).

(9) a. While baking him some cookies,
Nicholas chatted with Mark.

b. While an employee baked him some
cookies, Nicholas happily chatted with
Mark.

In (9), him is a cataphoric pronoun – the noun
phrase it corefers with comes later in the sentence.
While him can be co-indexed with Nicholas in
(9-b) (meaning Nicholas had some cookies baked
for him), him cannot be co-indexed with Nicholas
in (9-a).11 Principle B excludes this latter co-
indexation.12 Kush and Dillon (2021) found that
humans exhibited a GMME at the subject (e.g.,
Nicholas) only in cases where co-indexation be-
tween the catphoric him and the subject was pos-
sible (e.g., (9-b)). As with “vanilla” pronouns, it
seems, then, that Principle B immediately restricts
the human parser, such that grammatically unavail-
able structural positions are ignored.

In the following section, we evaluated whether
neural models patterned like humans in this re-
spect. That is, whether models exhibited a GMME
only in cases where Principle B did not block co-
indexation. First, we also verified that the neural
models could use cataphoric pronouns to restrict
the prediction of subjects more generally.

5.1 Stimuli

In this section, we consider two experiments:

(10) Experiments
a. SUBJECT CATAPHORA: Sentences

with a cataphoric subject pronoun
b. OBJECT CATAPHORA: Sentences

with a cataphoric object pronoun
11A natural interpretation of (9-a) is that Nicholas was bak-

ing cookies for Mark while chatting with Mark
12Obligatory control of the PRO in the adjunct is also im-

plicated by this construction. We abstract from the relevant
syntactic analysis here, and instead focus on the empirical find-
ings from human experiments (for full discussion see Kush
and Dillon, 2021, and references therein).

Figure 3: GMME for subject following a cataphoric
object pronoun (him) for each neural model by whether
Principle B applies (e.g., (While driving him|While
someone drove him), (Bill|Sue)). Stimuli adapted from
Kush and Dillon (2021). Error bars are 95% confidence
intervals.

Examples of each are included below.

(11) Stimuli Examples
a. SUBJECT CATAPHORA: When he

was off work, Richard. . .
b. OBJECT CATAPHORA: While driv-

ing him to school on Friday,
Thomas. . .

For SUBJECT CATAPHORA, we used the 32 stim-
uli from Experiment 1 in van Gompel and Liv-
ersedge (2003). The gender of the cataphoric pro-
noun and the matrix subject (e.g., he and Richard in
(11-a)) were manipulated resulting in male and fe-
male versions of each. Moreover, for each stimulus
in van Gompel and Liversedge (2003), we evalu-
ated models on ten unique subjects per gender.

For OBJECT CATAPHORA, we drew on the 24
stimuli from Experiment 2 in Kush and Dillon
(2021), which were already balanced for gender
(i.e. 12 with him). As with SUBJECT CATAPHORA,
the experiment manipulated the gender match be-
tween the cataphoric pronoun and the subject noun.
Additionally, Kush and Dillon (2021) manipulated
whether Principle B applied to the construction.
For instance, Principle B applies in (11-b), block-
ing him from co-indexing with Thomas. However,
a minimal different string, While a parent drove
him to School on Friday, Thomas. . . , does not im-
plicate Principle B. We again evaluated models on
ten unique subject nouns per sentence.

In this section, Principle B was only relevant for
Object Cataphora, with Subject Cataphora serving
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as a baseline to ensure that models can, in fact,
use cataphoric pronouns to predict the gender of
upcoming subjects.

5.2 Simple Subject Cataphora
We turn first to the ability of neural models to mod-
ulate their predictions of upcoming subjects by the
presence of cataphoric subject pronouns (see (11-a)
for a relevant example). Results are given in Fig-
ure 8 of Appendix A, and statistical analyses were
conducted via linear-mixed effects models.13 All
models exhibited a positive GMME, suggesting
that models use cataphoric pronouns to constrain
upcoming predictions about the gender of nouns.

5.3 Cataphora and Principle B
Given that neural models can use cataphoric pro-
nouns in prediction, we evaluated whether models
capture the interaction of cataphoric processing and
Principle B (see Section 5.1 for discussion of the
relevant contrast). Results are given by model and
experimental condition in Figure 3. Statistical sig-
nificance was determined via linear-mixed effects
models.14

Recall, that humans exhibit a GMME only in the
case that Principle B does not block coreference
between the cataphoric pronoun and the subject
(e.g., him cannot be co-indexed with Fred in While
driving him to the store, Fred. . . ). If neural models
capture this aspect of human incremental process-
ing, a GMME should be obtained only in cases
where Principle B is not active. We found, how-
ever, that not all models captured this distinction.

GPT-3 and GPT-J demonstrated no significant
GMME in cases where Principle B blocked coref-
erence, in line with humans. GPT-2 XL and GPT-
Neo, on the other hand, had a positive GMME
suggesting that models used the gender of the cat-
aphoric pronoun to predict the gender of the subject.
That is, the models predicted that the gender of the
subject would agree with the cataphoric pronoun,
despite co-indexation being ungrammatical for hu-
mans. When Principle B was not implicated, all
models showed a positive GMME suggesting that,

13Models were fit to predict the surprisal of the subject noun
with a main effect of contrast (whether the cataphoric pronoun
agreed with the subject) and by-item and by-gender (he or she)
random intercepts.

14Models were fit to predict the surprisal of the subject
noun with an interaction of the gender agreement of the cat-
aphoric pronoun (i.e. whether the pronoun and subject agreed
in gender) and the presence of Principle B (i.e. whether co-
indexation was possible between the cataphoric pronoun and
the subject) with by-item random intercepts.

Figure 4: Mean GMME for subject following a cat-
aphoric object pronoun (him) for humans (reported in
Experiment 2 of Kush and Dillon (2021)), GPT-Neo,
and GPT-J. Predicted reading times (in milliseconds) for
the neural models were obtained by fitting the self-paced
reading times for the fillers following the methodology
outlined in van Schijndel and Linzen (2021).

as with subject cataphora, object cataphora can re-
strict the prediction of subjects.

6 General Discussion

This study investigated whether autoregressive neu-
ral models displayed similar incremental corefer-
ence processing to humans. Specifically, we ex-
amined the interaction between Principle B and
coreference processing with two broad case stud-
ies: i) “vanilla” pronouns (where the antecedent
precedes the pronoun), and ii) cataphoric pronouns
(where the pronoun precedes its coreferring noun
phrase). For the first case study, we found that the
pronoun predictions of all models were influenced
by structural positions deemed ungrammatical by
Principle B, inconsistent with the incremental pro-
cessing behavior of humans. For the second case
study, we found that two of the four models (GPT-J
and GPT-3), displayed human-like processing be-
havior in predicting subjects after cataphoric object
pronouns (e.g., him), specifically with Principle
B blocking the influence of the pronoun on the
prediction of the later subject.

Three questions remain concerning the behavior
of neural models: 1) how closely do models pre-
dict the observed processing cost in human studies,
2) why do GPT-J and GPT-3, and not the other
models, pattern like humans in cataphoric process-
ing, and 3) why do models consider ungrammatical
antecedents in their incremental processing of pro-
nouns.
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Figure 5: Absolute value of the GMME by model size (in millions of paramters) across four experiments: i) SIMPLE
SUBJECTS (Section 4.2), ii) 2NP, iii) 3NP (Section 4.3), and iv) OBJECT CATAPHORA (Section 5.3).

6.1 Finer Comparison Between Model and
Human Behavior

Following the methodology outlined in van Schijn-
del and Linzen (2021), we can directly compare the
GMME observed in humans and in neural models.
In what follows, we report on comparisons between
the GMME observed for humans in Experiment
2 of Kush and Dillon (2021) and the predicted
GMME in milliseconds from GPT-Neo (which was
demonstrated to have non-human like behavior)
and GPT-J (which did have qualitatively similar
behavior to humans). To foreshadow the results,
we found that both models greatly underestimate
the processing cost observed in humans, even in
cases of qualitative overlap.

We fit a linear-mixed effects model with read-
ing times from the filler items in Kush and Dillon
(2021) as the dependent variable, and, as fixed ef-
fects, the surprisal of the current word, the surprisal
of each of the preceding three words, word length
(of the current word and preceding three words),
and frequency (of the current word and the preced-
ing three words). Additional, we included fixed
effects for the interaction between word length and
frequency and by-participant random intercepts.15

The predicted reading times (in milliseconds) at
the subject (i.e. where we expect a GMME) were
determined for GPT-Neo and GPT-J by applying
the significant coefficients for the surprisal terms
of their statistical model (as in van Schijndel and

15That is, we fit the model (excluding the entropy and en-
tropy reduction terms) given in Equation 1 of van Schijndel
and Linzen (2021).

Linzen (2021)). For both models, the surprisal of
the current word and the preceding two words were
significant.16

Figure 4 gives the GMME for humans and the
predicted GMME for the two neural models. As is
visually apparent, neural models greatly underesti-
mate the processing cost. For example, the GMME
reported for humans in the condition without an
interaction with Principle B was 63 milliseconds,
while GPT-Neo predicted an average of around 5.7
milliseconds and GPT-J an average of around 4.7
milliseconds. Similar results have been obtained
in prior work for non-pronominal constructions,
suggesting a broader inability for surprisal mea-
sures from neural models to capture the processing
cost of grammatical violations (van Schijndel and
Linzen, 2021; Wilcox et al., 2021b; Paape and Va-
sishth, 2022).

6.2 Model Behavior and Scale

With regards to the second remaining question,
GPT-J and GPT-3 differ from the other models in
one obvious way: they are the two largest models
we investigated. Scaling laws suggest that larger
models will outperform smaller models (e.g., Ka-
plan et al., 2020; Wei et al., 2022). Figure 5 plots
the absolute value of the GMMEs for four of the
experiments investigated in this paper, including
additional results from smaller versions of GPT-2

16In particular, for GPT-Neo, the coefficients were 1.857
ms/bit for the current word, 1.802 ms/bit for the preceding
word, and 1.987 ms/bit for the word two time steps in the past.
Similarly, for GPT-J, the coefficients were 1.929 ms/bit, 2.037
ms/bit, and 1.980 ms/bit.
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Figure 6: Proportion of each gender preceding pro-
nouns in three positions: i) when there is exactly one
antecedent, and when there is at leat two antecedents,
ii) the first antecedent, and iii) the last antecedent. Data
from the Pile (Gao et al., 2020) which is the training
data for GPT-J and GPT-Neo.

and GPT-Neo for a larger range of model sizes.
Generally, the GMME increases with model size
(though GPT-3 is at times an outlier). However, for
the experiment with cataphoric processing, we see
that the GMME decreases with scale, suggesting
that larger models learn to ignore ungrammatical
positions in cataphoric pronouns, while simultane-
ously considering ungrammatical positions more
strongly with “vanilla” pronouns.

6.3 Model Behavior and Training Data

Turning to the final remaining question (why mod-
els consider ungrammatical antecedents), the SIM-
PLE SUBJECT experiments are an instructive case
study. Sentences like Bill adores him are not
ungrammatical, only the interpretation that “Bill
adores Bill” is blocked. Suppose the world is such
the following two schema are produced at equal
rates:

(12) a. Bill adores [MALE NOUN]
b. Bill adores [FEMALE NOUN]

(12-a) has two possible pronominal exponents, Bill
adores him and Bill adores himself, while (12-b)
has just one, Bill adores her. Suppose further, that
the first exponent of (12-a) is twice as likely as the
second. The resultant set of productions will be
50% Bill adores her, 33% Bill adores him, and 17%
Bill adores himself.17 Models trained on data of

17That is, we are, for expository purposes, assuming the
world consists of only structures drawn from the set {Bill

this sort would presumably come to favor pronouns
that mismatch with the subject.

In fact, the training data for GPT-J and GPT-Neo
(which is publicly available) bears resemblance
to this. We took the Pile (Gao et al., 2020) and
extracted all sentences with pronouns. These sen-
tences were then parsed and chunked into noun
phrases using Spacy and gender was assigned by
checking for their inclusion in the male and female
nouns in the BLiMP vocabulary.18 The results are
compiled in Figure 6. As is visually apparent, the
data is highly indicative of a gender mismatch in
the case just discussed, and skewed, to a lesser de-
gree, towards a gender mismatch in more complex
cases implicated by Principle B (e.g., 3NP stimuli).

The Binding Principles, in other words, distort
the surface distribution of pronouns such that the
models ultimately favor mismatches in gender in
just those positions where co-indexation is impos-
sible. Moreover, we see in the scaling figure dis-
cussed above (Figure 5), that smaller models show
no, or weaker, GMMEs. Given the findings that
large models have a higher capacity to memorize
training data (e.g., Carlini et al., 2022; McCoy et al.,
2021), we may take the GMME in the SIMPLE

SUBJECT experiment to be a case of models over-
fiting their training data.

6.4 Conclusion

The present study argues that autoregressive mod-
els do not (uniformly) process pronouns like hu-
mans. We showed that models fail to capture the
qualitative patterns of human incremental coref-
erence processing, in addition to underestimating
processing costs in constructions already noted in
the literature (see van Schijndel and Linzen, 2021;
Wilcox et al., 2021b). Models appear to learn only
aspects of Principle B that have predictable reflexes
in training data.19 Therefore, models can mimic hu-
mans without a full human-like system. Ultimately,
this work provides evidence suggesting that certain
aspects of human parsing behavior do not directly
follow from linguistic data. We leave bridging the
gap to future work.

adores him, Bill adores her, Bill adores himself } with Bill
adores herself excluded. This is to highlight how Principle B
restricts the possible strings in such a way that mismatch is
more common.

18We used the small pretrained English model from Spacy.
19For a fuller discussion of mismatches between neural

models and humans, as well as what these results may mean
for a linguistic theory, see Davis (2022).
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Figure 7: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by whether
i) the matrix subject, ii) the matrix object, or iii) the
embedded subject agrees in gender (e.g., (Bill|Hannah)
told (Aaron|Amy) that (Mark|Sue) hates him). Error bars
are 95% confidence intervals.

A Appendix

Additional Figures
Results for the 3NP case are given in Figure 7. For
the possessive pronoun his, we found a positive
GMME for all positions, suggesting that models
expected his to match the gender of any of the pre-
ceding antecedents. For the object pronoun him,
a positive GMME was obtained when grammati-
cally available antecedents (i.e. those not blocked
by Principle B) mismatched in gender. A nega-
tive GMME was found for the grammatically un-
available antecedent (i.e. the embedded subject),
suggesting models expected him to mismatch with
antecedents in that structural position.

Results for subject cataphora are given in Fig-
ure 8. All models exhibited a positive GMME
when the subject mismatched in gender with the
cataphoric subject pronoun, suggesting that models
use cataphoric subject prnouns to constrain their
predictions of upcoming subjects.

Limitations
There are three main limitations: 1) whether mod-
els truly “interpret” the correct coreference rela-
tions, 2) our reliance on stereotypical gender, 3) we
only investigated English.

The first was noted in Section 2. It applies to any
investigation of coreference in neural models, in-
cluding existing investigations of Principle A (e.g.,
Warstadt et al., 2020). While probing has been used
to investigate model representations (e.g., Ettinger

Figure 8: GMME for subject following a cataphoric
subject pronoun, (e.g., he), for each neural model (e.g.,
While he was working, (Bill|Sue). . . ). Stimuli adapted
from van Gompel and Liversedge (2003). Error bars are
95% confidence intervals.

et al., 2016; Voita and Titov, 2020), which may be
suggestive of something like co-indexation, we do
not take models to be interpreting language, that
is comprehending the meaning of sentences in a
human-like fashion (see the discussion in Bender
and Koller, 2020). At present, techniques are lim-
ited, and thus, we set aside the issue of whether
models interpret pronouns in a human-like fashion,
and instead, focus on comparing model behavior to
humans, which has proved fruitful in other domains
(e.g., Linzen et al., 2016). Future work might con-
sider analyses of the attention mechanisms to dig
deeper into what information models are using.

The second limitation has been noted in related
literature (e.g., Warstadt et al., 2020). We rely
on stereotypical associations between nouns and
pronouns, which does not cleanly map on to the
real world (e.g., for example, we do not consider
singular they). In using the vocabulary items al-
ready actively manipulated in the literature, we
can, nonetheless, make meaningful comparisons to
existing work.

The final limitations is driven, primarily, by the
existing resources in the field. There exist many
pre-trained models for English, and less so for other
languages (for discussion of the broader English
bias in NLP, see Bender, 2009). Additional, the
bulk of psycholinguistic work is focused on En-
glish, making comparisons between neural models
and humans beyond English, challenging. Thus,
the generalizability of the present study is limited
to just those pronominal systems that are English-
like.
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