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Abstract

State-of-the-art neural (re)rankers are notori-
ously data-hungry which – given the lack of
large-scale training data in languages other
than English – makes them rarely used in mul-
tilingual and cross-lingual retrieval settings.
Current approaches therefore commonly trans-
fer rankers trained on English data to other
languages and cross-lingual setups by means
of multilingual encoders: they fine-tune all
parameters of pretrained massively multilin-
gual Transformers (MMTs, e.g., multilingual
BERT) on English relevance judgments, and
then deploy them in the target language(s).
In this work, we show that two parameter-
efficient approaches to cross-lingual transfer,
namely Sparse Fine-Tuning Masks (SFTMs)
and Adapters, allow for a more lightweight and
more effective zero-shot transfer to multilingual
and cross-lingual retrieval tasks. We first train
language adapters (or SFTMs) via Masked Lan-
guage Modelling and then train retrieval (i.e.,
reranking) adapters (SFTMs) on top, while
keeping all other parameters fixed. At infer-
ence, this modular design allows us to compose
the ranker by applying the (re)ranking adapter
(or SFTM) trained with source language data
together with the language adapter (or SFTM)
of a target language. We carry out a large scale
evaluation on the CLEF-2003 and HC4 bench-
marks and additionally, as another contribution,
extend the former with queries in three new lan-
guages: Kyrgyz, Uyghur and Turkish. The pro-
posed parameter-efficient methods outperform
standard zero-shot transfer with full MMT fine-
tuning, while being more modular and reducing
training times. The gains are particularly pro-
nounced for low-resource languages, where our
approaches also substantially outperform the
competitive machine translation-based rankers.

1 Introduction

In recent years, neural rankers (Nogueira et al.,
2019b; MacAvaney et al., 2019; Khattab and Za-
haria, 2020), trained on large-scale datasets (Ba-

jaj et al., 2016; Dietz et al., 2017; Craswell et al.,
2021), have substantially pushed the performance
on various retrieval benchmarks. Since such mod-
els are generally too computationally involved
(i.e., too slow) for ad-hoc retrieval on large doc-
ument collections, they are commonly leveraged
as rerankers, i.e., they rerank the output of some
fast model (e.g., BM25) that produces the initial
ranking. Large-scale datasets for training neural
rerankers, however, exist only in English, which
impedes their adoption in retrieval scenarios that
involve other languages: (a) monolingual retrieval
in other languages and (b) cross-lingual informa-
tion retrieval (CLIR) in which, for a given query in
one language, one needs to determine relevance of
documents written in one or more other languages.

While CLIR is often instantiated in the form of
standalone tasks (e.g., to allow users from differ-
ent countries to search over the aggregated global
collection of COVID-19 news and findings in their
native language (Casacuberta et al., 2021)), it also
supports a range of IR-backed NLP tasks such
as cross-lingual question answering (Asai et al.,
2021), entity linking (Liu et al., 2021a), and cross-
lingual summarization (Zhu et al., 2019; Vitiugin
and Castillo, 2022). A truly multilingual search
engine requires reliable estimation of both mono-
lingual (for a wide range of languages) as well
as cross-lingual query-document relevance, which
both crucially rely on the alignment of text repre-
sentations across different languages (Nie, 2010).
The lack of large-scale retrieval datasets in lan-
guages other than English means that monolingual
reranking for those languages has to be achieved
by means of cross-lingual transfer of a reranking
model trained on English relevance judgments.

Pretrained massively multilingual Transformers
(MMTs) like multilingual BERT (mBERT) (De-
vlin et al., 2019) or XLM-R (Conneau et al., 2020)
have been leveraged to this effect, but were shown
to require substantial task-specific (i.e., ranking-



1072

oriented) fine-tuning for reliable prediction of se-
mantic similarity and relevance scores (Reimers
and Gurevych, 2020; Litschko et al., 2021). MMTs
offer zero-shot cross-lingual transfer of neural
(re)ranking models out of the box – an MMT is fine-
tuned on English relevance judgments and then em-
ployed in (monolingual or cross-lingual) retrieval
tasks that involve other languages. Conceptually,
via such transfer, no fine-tuning data (i.e., relevance
judgments) is required for the target language(s).

This procedure, in principle, enables down-
stream zero-shot transfer to any language seen by
the MMT in pretraining (e.g., for mBERT, 104
languages). However, in language understand-
ing tasks (Hu et al., 2020), massive performance
drops have been observed when transferring be-
tween distant languages, and especially in trans-
fer to low-resource languages, underrepresented
in MMT pretraining (Lauscher et al., 2020). Our
results (§4) confirm these findings for ad-hoc IR.
This is the consequence of the effect known as
the curse of multilinguality (Conneau et al., 2020):
sharing MMT parameters (i.e., its fixed parameter
budget/capacity) across more and more languages
makes text representations for individual languages
less accurate. This effect is especially detrimental
to low-resource languages, those least represented
in multilingual pretraining corpora. What is more,
large-scale full fine-tuning on the source language
data (e.g., English) is likely to lead to catastrophic
forgetting and interference effects (McCloskey and
Cohen, 1989; Mirzadeh et al., 2020) that further
bias the multilingual representation space towards
the source language, at the expense of represen-
tation quality for low-resource languages. Be-
sides the standard zero-shot cross-lingual trans-
fer (MacAvaney et al., 2020; Huang et al., 2021a),
other cross-lingual transfer approaches, commonly
applied in other NLP tasks, such as training data
translation (Shi et al., 2020), or leveraging exter-
nal word-level alignments (Huang et al., 2021b),
as well as distant supervision (Yu et al., 2021)
have been explored as means to improve the cross-
lingual transfer of neural rankers in IR. While
translation-based approaches are competitive for
high-resource languages, they may not be as effec-
tive for low-resource languages for which reliable
MT models are missing; also, translation-based
cross-lingual transfer has been shown to suffer from
unwanted artifacts, such as “translationese” (Zhao
et al., 2020; Vanmassenhove et al., 2021).

Contributions. Even if one would have suffi-
cient amounts of labelled data in target languages,
training language- or language-pair specific neu-
ral rerankers for all languages and language pairs
would be prohibitively computationally expensive
and unsustainable (Strubell et al., 2019). In this
work we additionally remedy for this by com-
posing (re)rankers in a modular way that enables
more sustainable cross-lingual transfer. Concretely,
we introduce neural (re)ranking models for cross-
lingual and multilingual document retrieval based
on MMTs that enable much more parameter effi-
cient fine-tuning and more effective cross-lingual
transfer for relevance prediction. Our (re)rankers
are based on two styles of modular components:
1) Adapters (Rebuffi et al., 2017; Houlsby et al.,
2019; Pfeiffer et al., 2020) and 2) Sparse Fine-
Tuning Masks (SFTMs) (Ansell et al., 2022). When
integrated into the architecture of a pretrained
MMT, both allow for (1) the pretrained multilin-
gual knowledge to be fully preserved, alleviating
the negative interference and forgetting effects, and
(2) offer additional language-specific model capac-
ity which is used to improve the MMTs’ represen-
tations for target languages, thus remedying for the
curse of multilinguality.

We provide an extensive evaluation of both ap-
proaches in (i) zero-shot transfer for monolingual
retrieval and (ii) CLIR, on two established bench-
marks (Braschler, 2003; Lawrie et al., 2022). As
an additional contribution, we expand the CLEF
dataset (Braschler, 2003) with three query lan-
guages from the Turkic family (Turkish, Kyrgyz,
and Uyghur, the latter two being low-resource lan-
guages), typologically and etymologically distant
from the Indo-European languages.1 Our results
show that our modular neural (re)rankers are not
only faster to train, but also outperform standard
zero-shot transfer based on full MMT fine-tuning,
and especially so in retrieval tasks that involve
linguistically distant and low-resource languages.
Moreover, our adapter- and SFTM-based rerankers
generally outperform a strong preranker that uti-
lizes state-of-the-art machine translation.

2 Methodology

We first introduce the general multi-stage rank-
ing (i.e., preranking-reranking) framework, com-

1In this manner, our work addresses the calls for more
linguistic diversity in NLP and IR research (Bender, 2011;
Joshi et al., 2020; Ponti et al., 2020; Ruder et al., 2021).



1073

Figure 1: Overview of the multi-stage ranking approach
to ad-hoc retrieval. Stage 1 - Preranking: We rank
the document collection C by (a) running sparse BM25
retrieval on translated queries, or (b) according to the
cosine similarity between dense query and document
representations yielding an initial ranking R0. Stage
2 - Reranking: We refine R0 by reranking the top-k
documents according to relevance scores predicted by a
Cross-Encoder, yielding the refined ranking R1.

monly used in information retrieval tasks, within
which our work is embedded. We then introduce
adapters and sparse fine-tuning masks (SFTMs),
and present how to leverage them as crucial vehi-
cles of the parameter-efficient cross-lingual transfer
of the reranking component.

2.1 Multi-Stage Ranking

Pretrained Transformers like BERT (Devlin et al.,
2019) are often used as Cross-Encoder (CE) scor-
ing models: the Transformer encodes a query-
document concatenation fed as input to the model,
and the encoding is then fed to a dense layer that
predicts the relevance score (MacAvaney et al.,
2020; Jiang et al., 2020; Nogueira et al., 2019b).
Computing scores for all query-documents pairs
with Cross-Encoders is too slow for practical IR ap-
plications: they are thus primarily used as rerankers
in a multi-stage ranking approach (MacAvaney
et al., 2020; Geigle et al., 2021). In this work
we adopt this paradigm for cross-lingual ad-hoc
retrieval: Figure 1 illustrates its workflow.2

Preranking, based on a fast and efficient ranking
method, is applied to every document from the doc-
ument collection in order to provide a good initial
ranking, targeting high recall. Let ql1 be a query
in language l1 and Cl2 = {di}ni=1 be a document

2Alternative approaches that leverage pretrained encoders
for IR include late interaction models (Khattab and Zaharia,
2020; Gao et al., 2021; Nair et al., 2022; Santhanam et al.,
2022), embedding-based retrieval (Hofstätter et al., 2021;
Litschko et al., 2021), and augmentation (Nogueira et al.,
2019c,a).

collection containing n documents in language l2.
Associating and ranking documents w.r.t. relevance
scores si we obtain an initial ranking

R0 = [(d1, s1), (d2, s2) . . . (dn, sn)], (1)

where s1 > s2 > . . . sn. We transfer our rerankers
based on MMTs – and trained on English relevance
judgments – to (i) CLIR tasks as well as to (ii)
monolingual IR tasks in target languages. The latter
task, termed MoIR, is effectively zero-shot cross-
lingual transfer for monolingual retrieval. In MoIR,
we opt for a lexical preranker and score documents
with sbm25 = BM25(q, d).3 In CLIR we follow
the widely used approach of machine translating
the query (Bonifacio et al., 2021; Lawrie et al.,
2022): this process effectively translates CLIR into
a noisy variant of MoIR. In addition, we experi-
ment with a representation-based approach based
on pretrained multilingual Bi-Encoders (BE): here,
we embed the query and documents independently,
and then use the cosine similarity between their em-
beddings sbe = cos(BE (q),BE (d)). In the pre-
ranking stage, unlike later in reranking, we use the
encoders merely as general-purpose text encoders,
without any additional retrieval-specific training.

Reranking: This stage refines the initial rank-
ing obtained via preranking. It relies on a CE
model which captures fine-grained (but more costly
to model and run) semantic interactions between
queries and documents. The ranking is then:

R1 = [(d1, s
ce
1 ), (d2, s

ce
2 ) . . . (dk, s

ce
k )] (2)

To this end, we rely on multilingual CEs to com-
pute the binary relevance score sce on the con-
catenation of query and document pairs: sce =
CE ([CLS]q[SEP]di[SEP]). We adopt a com-
mon practice (MacAvaney et al., 2019; Craswell
et al., 2020; Naseri et al., 2021) of reranking the top
k = 100 pre-ranked documents, yielding the final
ranking R1. Finally, it is also possible to ensem-
ble the preranker’s and reranker’s ranked lists via
simple rank averaging. In our experiments (4), we
evaluate such preranking-reranking ensembles as
well and show that such interpolations often bring
additional performance gains.

3We used the pyserini implementation of BM25 (Lin
et al., 2021) with the suggested (i.e., default) parameter con-
figuration.



1074

Figure 2: Overview of parameter-efficient transfer learning for neural (re)ranking. Left: A reranker is composed by
stacking a pretrained target Language Adapter (LA) and a Ranking Adapter (RA; trained with source language data)
on top of the original Transformer layers of an MMT (e.g., mBERT). Right: Sparse fine-tuning of a Ranking Mask
(RM) and a Language Mask (LM) from mBERT parameters; rerankers are composed by adding the RM and LM
values to the original mBERT parameters.

2.2 Parameter-Efficient Cross-Lingual
Ranker Transfer

In this work, we propose a modular and parameter-
efficient framework that allows faster training
and more effective cross-lingual transfer of neu-
ral rerankers, that enhances both CLIR and
MoIR. We first learn language-specific Adapters
(LAs) or Sparse Fine-Tuning Masks (SFTMs) via
Masked Language Modelling (MLM) on unanno-
tated monolingual corpora of respective languages,
while keeping the original MMT parameters in-
tact. We then train Ranking Adapters (or Ranking
SFTMs) using source-language data on top of the
source-language LAs (language SFTMs), while
keeping all other parameters frozen. At inference
time, for a given IR (MoIR or CLIR) task, we com-
pose our reranker by placing the Ranking Adapters
(Ranking SFTMs) on top of the LAs (language
SFTMs) of the query and/or document languages
of that concrete retrieval task. The modular frame-
work is illustrated in Figure 2.

Adapters. We train Ranking Adapters (RA) and
Language Adapters (LA) based on the architec-
ture of Pfeiffer et al. (2020). In the Transformer
architecture, each layer l consists of a multi-head
attention block (i.e., sub-layer) and a feed-forward
network (FFN), both followed by a residual con-
nection and layer normalization. We denote the
residual connection (output of FFN) with rl and
the hidden state after the layer norm with hl.

LA(hl, rl) = Ul(ψ(Dl(hl)) + rl (3)

RA(hl, rl) = Ul(ψ(Dl(LAl))) + rl (4)

Adapters are parameterized by the down-projection
matrix D ∈ Rh×d and the up-projection matrix

U ∈ Rd×h, where h and d denote the hidden size
of the Transformer and the bottleneck dimension
of the adapter, respectively. The ratio between h
and d is also called the reduction factor, and cor-
responds to the level of parameter compression
(i.e., how many times fewer parameters are up-
dated if we train adapters instead of updating all
Transformer parameters). The forward pass of a
Language Adapter consists of a down-projection of
hl, a non-linear activation function ψ(·) and an up-
projection. Ranking Adapters are stacked on top of
LAs and process their output. Both adapters have
residual connections to the output of the FFN.4 We
train LAs using the standard MLM objective (De-
vlin et al., 2019), whereas we train RAs together
with the dense scoring layer by means of minimiz-
ing the standard binary cross-entropy loss.

In CLIR setups, queries and documents are in
different languages. It is thus, in principle, pos-
sible to stack the RA on top of (i) the query lan-
guage adapter LAQ, (ii) document language adapter
LAD, or by using (iii) split adapters LAS: here,
we encode query tokens up to the separator token
([SEP]) using the LA of the query language and
the document tokens (after [SEP]) with the LA of
language of the document collection (cf. Fig. 2).

Sparse Fine-Tuning Masks. Like adapters,
SFTMs (Ansell et al., 2022) aim to decouple task
knowledge from language knowledge, but instead
of introducing additional parameters, the idea is

4To alleviate the mismatch between the multilingual vocab-
ulary of the MMT and the target language vocabulary, Pfeiffer
et al. (2020) also additionally place invertible adapters INV on
top of the embedding layer along with their inverses INV−1

placed before the output layer. In our experiments we adopt
this variant; for more details we refer the reader to the work
of Pfeiffer et al. (2020).
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to directly update only small subsets of MMT’s
original parameters. Sparse Fine-Tuning (SFT)
consists of two phases. In Phase 1 we fine-tune
all mBERT’s parameters θ(0), resulting in updated
parameter values θ(1). We then select the top K
parameters with the largest value change, i.e., those
with the largest values |θ(0)i − θ

(1)
i |. We then con-

struct a binary mask: the selected K parameters
remain trainable, whereas all other parameters are
frozen. In Phase 2 all parameters are reset to
θ(0) and training restarts, but this time only the
selected parameters of the mask are updated, yield-
ing θ(2). The final update (i.e., the SFTM) is then
obtained as the difference vector M = θ(2) − θ(0).
As is the case with Language Adapters, we ob-
tain the Language Masks (LM) by means of (ad-
ditional) MLM training on language-specific cor-
pora; whereas the Ranking Mask (i.e., the mask for
the ranking task, RM) is learned via binary cross-
entropy objective on source-language (English) rel-
evance judgments. At inference, the reranker is
composed as θ(0) + RM + LM (cf., Figure 2). In
our CLIR settings (§3), we explore using (i) the
query language mask (LMQ), (ii) document lan-
guage mask (LMD) or (iii) the combination of both
masks (LMB = LMQ + LMD). Note that SFTMs
represent a more computationally efficient solu-
tions at inference time: unlike adapters, they do not
extend (i.e., deepen) the Transformer architecture.

3 Experimental Setup

Adapter and SFTM Training. We train adapters
following the recommendations from Pfeiffer et al.
(2020). Unless noted otherwise, we train LAs
with the reduction factor of 2 (i.e., h/d = 2) on
Wikipedias of respective languages, for 250K steps
with batch size 64 and learning rate of 1e-4. For
RAs we experimented with the different reduction
factors: 1, 2, 4, 8, 16, 32 (cf. §4). Following Ansell
et al. (2022), for fair comparisons between adapters
and SFTMs, we set the mask size K for SFTMs to
the same number of parameters that adapters with
a certain reduction factor have.5

Reranking Training. We train mBERT-based6

rerankers on MS-MARCO (Craswell et al., 2021),
with a linear warm-up over the first 5K updates, in

5Leading to the number of trainable parameters (sparsity)
of 14M (8.5%), 7.1M (4.2%), 3.6M (2.1%), 1.8M (1.1%),
894K (0.52%) and 452K (0.27%) respectively.

6Pretrained bert-base-multilingual-uncased
weights from the HuggingFace Transformers library (Wolf
et al., 2020) are used.

batches of 32 instances with a maximum sequence
length of 512, and using a learning rate of 2e-5.
We evaluate the model on the validation data every
25K updates and choose the checkpoint with the
best validation performance.

Evaluation Data. We evaluate the models on
the standard CLEF-2003 benchmark (Braschler,
2003)7 as well as on the recently introduced HC4
benchmark (Lawrie et al., 2022). With CLEF, we
use monolingual test collections in EN, DE, IT, RU,
and FI for MoIR, and experiment with the follow-
ing cross-lingual directions: EN-{FI, DE, IT, RU},
DE-{FI, IT, RU}, FI-{IT, RU}. Each experimental
run covers 60 queries, whereas the document col-
lection sizes are as follows: RU – 17K, FI – 55K,
IT – 158K, and DE – 295K.

We additionally evaluate the models in CLIR
tasks with CLEF queries posed in lower-resource
languages. To this end, (i) we leverage Swahili
(SW) and Somali (SO) queries (Bonab et al., 2019),
where the queries were obtained via manual transla-
tion of English queries; (ii) we create another set of
translated CLEF queries in three languages: Turk-
ish (TR), Kyrgyz (KG), and Uyghur (UG). The
new set covers one high-resource and two low-
resource languages and is intended to facilitate and
diversify evaluation of CLIR with low-resource
languages in future work. The queries were con-
structed via the standard post-editing procedure
borrowed from other data collection tasks (Glavaš
et al., 2020; Hung et al., 2022): we obtained ini-
tial query translations via Google Translate, which
were then post-edited by native speakers.

HC4 comprises queries and document collec-
tions in three languages: Persian (FA), Russian
(RU) and Chinese (ZH). Compared to CLEF, HC4
collections are considerably larger, spanning 646K,
486K and 4.72M documents per each respective
language, associated with 50 test queries in each
language. We use title and description fields as
queries following Lawrie et al. (2022). HC4 is
used in MoIR experiments.

Baseline Models. The primary baseline for our
adapter- and SFTM-based transfer is the standard
and well established method for zero-shot trans-
fer of English-trained rerankers (MacAvaney et al.,
2020), termed MonoBERT. This is the reranking
Cross-Encoder where we allow for full-tuning of
the underlying monolingual or multilingual BERT

7http://catalog.elra.info/en-us/
repository/browse/ELRA-E0008/

http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
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Model TR-EN TR-IT TR-DE TR-FI TR-RU EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG ENS

DISTILDmBERT (PR) .183 .251 .190 .252 .260 .294 .290 .313 .247 .300 .267 .284 .221 .302 .261 -
MonoBERT .235 .197 .208 .285 .217 .339 .315 .248 .295 .329 .270 .246 .197 .174 .254 .274

+RA +LAS .269 .253 .252* .362 .186 .363 .352 .197 .317* .329 .300 .223 .266 .207 .277 .287
+RA +LAD .252 .234 .222 .267 .267 .366* .366* .248 .314* .350 .302 .315 .220 .234 .283 .298
+RA +LAQ .270 .243 .242 .293 .191 .370 .355 .189 .318 .325 .279 .223 .247 .182 .266 .285

+RM +LMB .229 .228 .197 .244* .168 .299 .344 .181* .303 .309 .302 .191* .206 .108* .236 .269
+RM +LMD .231 .226 .229 .317 .149* .394* .359 .173* .320* .376 .304 .187 .239 .166* .262 .279
+RM +LMQ .239 .252 .232 .316 .162* .359 .349 .191 .310* .391 .323* .195 .255* .160 .267 .280

Table 1: CLIR results (Mean Average Precision, MAP) with DISTDmBERT as Stage 1 preranker. Bold: Best neural
retrieval model for each language pair. *: significance tested against MonoBERT at p ≤ 0.05, computed via paired
two-tailed t-test. Ranking and Language Adapters have a reduction factor of 16 and 2 (see §2), respectively. Ranking
and Language Masks both correspond to a reduction factor of 2 (see §3). We report average results (AVG), and
also averaged ensemble (ENS) results where we combine ranking lists from Stage 1 and Stage 2 rankings; see §2.1.
Superscripts over LAs and LMs denote query language (Q), document language (D), split adapters (S) for LAs, and
‘(B)oth masks’ for LMs (see §2.2).

Model TR-EN TR-IT TR-DE TR-FI TR-RU EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG ENS

NMT+BM25 (PR) .392 .353 .308 .307 .227 .378 .446 .285 .355 .367 .385 .272 .364 .271 .336 -
MonoBERT .415 .375 .339 .345 .307 .386 .411 .351 .371 .409 .380 .322 .367 .340 .366 .360

+RA +LA .448 .408* .353 .371 .327 .388 .435 .367 .385 .413 .405 .348 .381 .365 .385 .374
+RM +LM .447 .414 .356 .386 .336 .413 .429 .345 .390 .468 .407 .363 .395 .364 .394 .371

Table 2: CLIR results (Mean Average Precision, MAP) with NMT+BM25 as Stage 1 preranker. For modular
rerankers, we report the numbers with the best-performing configurations from CLEF experiments: +RA +LAD

and +RM +LMQ; see also the caption of Table 1.

model on MS-MARCO. For CLIR experiments,
we opt for DISTILDmBERT as our Bi-Encoder pre-
ranker (PR), as it showed strong performance in
our recent comparative empirical study (Litschko
et al., 2021). In brief, DISTILDmBERT is trained via
knowledge distillation where sentence-similarity
features are distilled from a monolingual English
teacher, specialized for semantic encoding of sen-
tences, into a multilingual student model; see
(Reimers and Gurevych, 2020) for further details.

Finally, also for CLIR, we couple a state-of-the-
art NMT system of Fan et al. (2020) (FAIR-MT),
which we use to translate queries to the document
collection language, with the BM25 ranker in the
target language. For Kyrgyz and Uyghur, we use
another NMT model, provided by the Turkic In-
terlingua (TIL) community8 (Mirzakhalov et al.,
2021), because we failed to obtain meaningful
{KG, UG}→ l2 translations with FAIR-MT.

4 Results and Discussion

Cross-Lingual Retrieval (CLIR). Tables 1 and 2
show the CLIR results, for fourteen language pairs

8https://turkic-interlingua.org

from the augmented CLEF 2003 benchmark9 us-
ing DISTILDmBERT and NMT+BM25 as Stage 1
prerankers, respectively. With DISTILDmBERT as
the preranker (Table 1), Adapter- and SFTM-based
rerankers consistently improve the initial prerank-
ing results, with gains of up to 2.7 MAP points, and
EN-RU as the only exception. Importantly, com-
pared to full fine-tuning (MonoBERT), our modu-
lar reranking variants bring gains between 1 and 4
MAP points on average, across all language pairs.
Interestingly, the best adapter configuration (RA
+LAD), where at inference we stack the RA on top
of the LA of the document collection language)
outperforms the best SFTM-based reranker (RM
+LMQ and RM +LMD) by 1.6 MAP points. Some-
what surprisingly, adapting only to the language of
the document collection (LAD; LMD) yields better
performance than adapting to both the query and
collection language of the target task (LAS; LMB).

The language pairs in Tables 1 and 2 consist of
high-resource languages for which large parallel
corpora and, consequently, reliable NMT models
exist. However, even when starting from a more

9We add TR-* pairs to the evaluation, enabled by our
EN→TR translations of the queries.

https://turkic-interlingua.org
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CLEF 2003 HC4

Model SW–EN SO–EN KG–EN UG–EN EN–FA EN–ZH EN–RU AVG ENS
NMT+BM25 (PR) .325 .157 .228 .091 .183 .113 .186 .183 -
MonoBERT .362 .158 .255 .157 .246 .172 .218 .224 .216
+RA + LAD .407 .166 .305 .155 .259 .189 .234 .245 .228
+RM + LMD .389 .161 .311 .165 .267 .196 .241 .247 .225

Table 3: CLIR results on extended CLEF pairs with low-resource query languages (Swahili, Somali, Kyrgyz, and
Uyghur) and three language pairs from the HC4 benchmark.

competitive MT-based preranker (NMT+BM25; Ta-
ble 2), our modular cross-lingual transfer of the
reranker yields performance gains. In fact, with this
stronger preranker, the gains from modular rerank-
ing are even more pronounced: +5/+6 MAP points
for Adapters and SFTMs, respectively, compared
to preranker and +2/+3 MAP points, respectively,
compared to MonoBERT. This could explain why
interpolating between the preranking and rerank-
ing (ENS, last column) yields further gains with
DISTILDmBERT as the preranker (Table 1), but not
when we prerank with NMT+BM25 (Table 2).

Table 3 shows CLIR results for (a) language
pairs from extended CLEF with queries written
in low-resource languages – Swahili and Somali
queries created by Bonab et al. (2019), as well
as Kyrgyz and Uyghur queries that we created;
and (b) three cross-lingual pairs of arguably distant
languages (EN-{Farsi, Chinese, Russian}) from
the HC4 benchmark. The gains that our SFTM-
and Adapter-based modular rerankers bring for
language pairs involving low-resource languages,
over the MT-based preranker and the full fine-
tuning (MonoBERT), are generally more substan-
tial than those for high-resource language pairs:
e.g., +8 and +4 MAP points w.r.t. NMT+BM25
and MonoBERT, respectively for SW-EN, and +8
and +5 points for KG-EN. The gains are simi-
larly prominent for more distant language pairs
from the HC4 dataset (+8 MAP points over the
NMT+BM25 preranker for EN-FA and EN-ZH).
With such prominent gains of the modular rerank-
ing over the preranker, it is no surprise that averag-
ing the preranking and reranking document ranks
(ENS) reduces the performance of the reranker. We
believe that these results in particular emphasize
the effectiveness of modular cross-lingual transfer
that allows to increase the capacity of MMTs for
individual languages, by means of LMs or LAs.
The representations of low-resource languages, for
which MMTs have seen little data in pretraining,
particularly suffer from the curse of multilinguality

(Conneau et al., 2020; Lauscher et al., 2020) – this
is why particularly prominent gains are achieved
for those languages when we increase the MMTs
capacity for their representation via LMs/LAs.

Cross-Lingual Transfer for MoIR. Table 4 dis-
plays the results of monolingual retrieval with our
best-performing modular rerankers for EN (as the
source language) and four target languages (DE,
IT, FI, RU).10 Unlike the fully fine-tuned reranker
(MonoBERT), our modular Adapter- and SFTM-
based rerankers improve the initial rankings pro-
duced by BM25. These results strengthen the find-
ing that our modular rerankers are not just more
parameter-efficient (i.e., faster to train), but also
lead to better cross-lingual transfer due to decou-
pling of language- and ranking-specific knowledge.
In MoIR tasks the SFTM-based transfer outper-
forms its Adapter-based counterpart, same as in the
case of CLIR with NMT+BM25 preranking (Table
1). Also as in the case of the latter CLIR results
(Tables 1 and 3), interpolating between preranking
and reranking results does not bring any gains.

It is worth noting that all MoIR scores are sub-
stantially higher than CLIR results from Tables 1
and 2. This is expected and reflects the fact
that matching representations within a language –
where models can still rely on exact lexical matches
between queries and documents – is easier than
aligning text representations across languages.

Effectiveness vs Efficiency. Adapters increase
query latency because they deepen the Trans-
former. Rücklé et al. (2021) show that one can
drop adapters from lower layers with small-to-
negligible effect on performance. Table 5 shows
the results of a similar analysis, where we drop
the adapters from the first N layers at inference.
Dropping adapters from only the first two layers
(row 1-2) only slightly decreases the MoIR per-
formance whereas it even slightly increases the

10Note that in MoIR, the actual reranking is always mono-
lingual (albeit in the target language). Both queries and docu-
ments are thus encoded with the same target language LA/LM.
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CLEF 2003 HC4

Model EN FI DE IT RU FA ZH RU AVG ENS

BM25 (PR) .480 .505 .434 .494 .361 .279 .196 .228 .372 -
MonoBERT .464 .528 .444 .463 .363 .356 .283 .245 .398 .402

+RA + LA .512 .537 .457 .495 .389 .372 .284 .261 .413 .410
+RM + LM .515 .564 .459 .502 .379 .398 .307 .264 .423 .417

Table 4: Results of zero-shot cross-lingual transfer for monolingual retrieval (MoIR) on CLEF 2003 and HC4
datasets. Results with reduction factors of 16 and 2 for Adapters and SFTMs, respectively.

Layer CLIR MoIR AVG Latency ∆ Speed-Up ∆ MAP

None .282 .418 .331 34.6 ms - -
1-2 .295 .412 .337 33.7 ms +2.6% +.006
1-4 .269 .395 .314 32.8 ms +5.0% −.017
1-6 .229 .375 .281 31.9 ms +7.7% −.050
1-8 .134 .284 .187 31.0 ms +10.4% −.143
1-10 .086 .210 .130 30.0 ms +12.9% −.200
1-12 .086 .208 .129 29.5 ms +14.2% −.201

Table 5: Trade-off between efficiency and effectiveness
when dropping adapters in +RA + LAD. Average over
all CLIR/MoIR setups and all reduction factors.

Figure 3: Retrieval performance at different parameter
reduction factors; average MAP performance for CLIR
(top) and MoIR (bottom).

CLIR results. Dropping adapters from more lay-
ers, however, substantially reduces the retrieval
performance: e.g., removing adapters from the first
10 layers reduces CLIR performance by almost
20 MAP points, while reducing the query latency
by only 13%. While Adapters and SFTMs yield
comparable performance in our experiments, these
observations favor SFTMs: for the same query la-
tency,11 SFTMs will yield better performance.

11The query latency of an SFTM-based reranker is the same
as that of MonoBERT as SFTMs do not increase the number

Parameter Efficiency. We also investigate the
relation between various levels of parameter effi-
ciency and retrieval performance. Figure 3 shows
the performance of our modular rerankers for dif-
ferent parameter reduction factors. SFTMs exhibit
stronger performance with smaller reduction fac-
tors (2 and 4), i.e., when we update a larger per-
centage of mBERT’s original parameters. SFTMs
shift the pretrained values of mBERT’s parameters:
this constrains the range of values that individual
parameters can take, requiring the modification of
the larger number of parameters for injecting com-
plex language- and ranking-specific knowledge. In
contrast, Adapters show better performance with
higher reduction factor (8, 16, 32), i.e., when we
add a relatively smaller number of Adapter parame-
ters. This could be the consequence of the “uncon-
strained” initialization of the new Adapter param-
eters, which allows the complementary language-
and ranking-specific knowledge to be compressed
into a smaller number of parameters. Comparing
those effects between CLIR and MoIR we observe
the same trends. However, MAP gains compared
to MonoBERT are larger in MoIR than in CLIR.
This seems intuitive as ranking adapters (masks)
are able to adapt for exact matches.

Impact of NMT on CLIR. In the cross-lingual
setup the quality of retrieved documents crucially
depends on the quality of query translations when
NMT is used. In Table 6 we show original En-
glish queries together with their respective trans-
lations from Swahili and Somali. As expected,
translations from Swahili are generally of higher
quality compared to Somali, which explains the
big performance gap reported in Table 3. In the
best case the translation is semantically very close
to the original query (cf., SW�EN; QID:172), or it
contains only slight lexical (flooding vs. floods)
and semantic variations, e.g., near-synonyms (Hol-
land vs. Netherlands). In other cases, error prop-

of layers (nor parameters within layers) of the MMT.
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QID English Query (original) NMT: Swahili → English NMT: Somali → English

151 Wonders of Ancient World Look
for information on the existence
and/or the discovery of remains of
the seven wonders of the ancient
world.

Search for information about the
existence and/or development of
the seventh universe of the ancient
world.

Thus, therefore, it is necessary to
bear in mind that the truth is the
truth, and that the truth is the truth,
and that the truth is the truth.

172 1995 Athletics World Records
What new world records were
achieved during the 1995 athletic
world championships in Gothen-
burg?

What new world records were
recorded at the 1995 World Horses
in Gothenburg?

The 1995 World Trade Organiza-
tion (WTO) announced that a new
international trade agreement has
led to a global trade agreement in
Gothenburg.

187 Nuclear Transport in Germany
Find reports on the protests against
the transportation of radioactive
waste with Castor containers in
Germany.

Nuclear Delivery in Germany A
report on the anti-trafficking of ra-
dioactive pollutants and Castor
containers in Germany.

The Nugleerka department of Jar-
malka Hel has been prepared for the
development of the Nugleerka de-
partment of Castor district in Jar-
malka.

200 Flooding in Holland and Germany
Find statistics on flood disasters in
Holland and Germany in 1995.

The floods in the Netherlands and
Germany have recorded the floods
in the Netherlands and Germany in
1995.

The Netherlands Federation and the
United Nations have agreed with
the Netherlands Federation and the
Netherlands Federation in 1995.

Table 6: Comparison between original CLEF queries and translations from Swahili and Somali to English. Tokens
that occur both in the original query and translations are highlighted in bold (ignoring case, excluding stopwords).

agation from NMT impacts CLIR performance to
different extents. Those include, e.g., missing key-
words (statistics; QID:200), topic shifts (sports vs.
business; SO�EN, QID:172) or queries consisting
of unrelated text and repetitions (i.e., ‘hallucina-
tions’; SO�EN, QID:151, QID:200). Especially repe-
titions and hallucinations12 are known unwanted
artifacts in NMT (Fu et al., 2021; Raunak et al.,
2021) and can cause retrieval models to empha-
size unrelated keywords by inflating their term fre-
quency.13 Lastly, in cases where source words are
copied instead of translated, e.g., Nugleerka (Nu-
clear) or Jarmalka (Germany) in QID:187, neural
retrieval models need to rely on imperfect internal
alignment of word translations (Cao et al., 2019).

5 Related Work

Next to Adapters and SFTMs there exist other pa-
rameter efficient transfer (PET) methods. For ex-
ample, BitFit trains only bias vectors (Ben Zaken
et al., 2022), LoRa trains low-rank decompositions
of weight matrices in dense layers (Hu et al., 2022)
and methods that learn continuous prompts (Liu
et al., 2021b; Lester et al., 2021; Li and Liang,
2021, inter alia). In the context of retrieval for

12This phenomenon has been reported to occur in low-
resource and out-of-domain settings (Müller et al., 2020). We
confirm this finding as we find hallucinations appearing more
often in EN�SO than in EN�SW query translations.

13Further investigation of NMT+BM25 on SO�EN reveals
that manually filtering out queries containing more than two
repetitions/hallucinations leaves us with 22 remaining queries
on which results improve from 0.157 to 0.280 MAP.

English, concurrent work focuses on the learning-
efficiency (Ma et al., 2022) and out-of-domain
generalization (Tam et al., 2022) of PET meth-
ods, whereas we investigate PET both on task- and
language-level adaption for CLIR.

6 Conclusion

In this work, we introduced modular and parameter-
efficient neural rerankers for effective cross-lingual
retrieval transfer. Our models, based on Adapters
and Sparse Fine-Tuning Masks, allow for decou-
pling of language-specific and task-specific (i.e.,
ranking) knowledge. We demonstrate that this
leads to more effective transfer to cross-lingual
IR setups as well as to better cross-lingual transfer
for monolingual retrieval in target languages with
no relevance judgment improving over strong pre-
rankers based on state-of-the-art NMT. Encourag-
ingly, we observe particularly pronounced gains for
low-resource languages included in our evaluation.
We hope that our results will encourage a broader
investigation of parameter-efficient neural retrieval
in monolingual and cross-lingual setups. We make
our code and resources available at: https://
github.com/rlitschk/ModularCLIR.
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