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Abstract

Automatic depression detection on Twitter can
help individuals privately and conveniently un-
derstand their mental health status in the early
stages before seeing mental health profession-
als. Existing black-box methods for depression
detection largely focus on improving classifica-
tion performance. However, explaining model
decisions is imperative in health research be-
cause decision-making can often be high-stakes
and life-and-death. In this work, we propose a
novel explainable model for depression detec-
tion on Twitter. It comprises a novel encoder
combining hierarchical attention mechanisms
and feed-forward neural networks. To support
psycholinguistic studies, our model leverages
metaphorical concept mappings as input in or-
der to also detect implicit manifestations of
depression.

1 Introduction

Depression is a serious health and social issue that
afflicts many individuals in modern society and its
prevalence is predicted to increase globally. People
with depression are likely to express their feelings
and mental states over their social media before
seeing health professionals (Guntuku et al., 2017;
Ansari et al., 2022). An automatic, efficient ap-
proach for depression identification is imperative
to recommend adequate treatment, achieving remis-
sion and preventing relapse. Recent studies on au-
tomatic depression detection on social media (Gui
et al., 2019; Lin et al., 2020; Ji et al., 2022; Zo-
gan et al., 2021) have largely focused on achieving
higher detection accuracy. However, it is impossi-
ble to explain and interpret those black-box models
that rely on state-of-the-art (SOTA) deep learning
techniques. The recent development of explainable
AI emphasizes that it is crucial for health profes-
sionals to fully comprehend, monitor and trust the
AI decision-making mechanisms.

∗ These authors contributed equally.

People suffering from depression often use
metaphors to describe their emotions and the ex-
perience of living with mental illness (Coll-Florit
et al., 2021; Roystonn et al., 2021). In psychother-
apy, metaphors are a pivotal tool for helping people
with depression better understand themselves and
their problems and facilitating effective communi-
cation between therapists and patients (Kopp, 2013;
Siegelman, 1993). This is because metaphorical ex-
pressions implicitly reflect people’s different ways
of understanding the same target. Metaphor is not
only a linguistic phenomenon, but also a reflec-
tion of cognitive mappings of source and target
concepts (Lakoff and Johnson, 1980). Analyzing
metaphor concept mappings (MCMs) helps us un-
derstand the inner world of people with depres-
sion. Metaphoric expressions associated with de-
pression have been widely studied in psychology,
particularly as a form of case studies (Roystonn
et al., 2021; Coll-Florit et al., 2021). To the best
of our knowledge, however, there has not been an
automatic method that leverages MCM features ex-
tracted from a large corpus for depression detection.
We are motivated to bridge the gap and offer bet-
ter insights into automatic depression detection on
social media and conceptual metaphor understand-
ing. Furthermore, we argue that psychological and
psycholinguistic research communities can benefit
from automated, explainable tools for studying the
relationship between depression and metaphors.

In this work, we propose an explainable frame-
work1 for depression detection on Twitter, called
Hierarchical Attention Network (HAN). We pro-
pose a novel attention-based encoder which allows
HAN to learn important inputs for user-level binary
classification (i.e., depressed and non-depressed
users). To further improve the interpretability of
depression detection, we introduce MCMs as an
additional feature into the model.

1The source code is available at https://github.
com/senticnet/depression-detection

https://github.com/senticnet/depression-detection
https://github.com/senticnet/depression-detection
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Health professionals and potential patients can
use learned features (i.e., characteristics of depres-
sive tweets and MCMs) as justification. We eval-
uate our model on a publicly available Twitter de-
pression detection dataset (Shen et al., 2017) and
show that HAN achieves the SOTA performance.
It outperforms the strongest baseline (Zogan et al.,
2021) by increasing an F1 score by 6.0% on av-
erage. Additionally, our newly proposed encoder
outperforms several classical encoders. In particu-
lar, HAN improves LSTM (Hochreiter and Schmid-
huber, 1997) (the most competitive benchmark en-
coder for our task) by 1.9% on a validation set with
a quarter of the number of parameters of LSTM.
Finally, we visualize and analyze examples of at-
tention weights learned by HAN to demonstrate its
explainability.

The main contributions of this work can be sum-
marized as follows: (1) We propose an explainable
model for depression detection on Twitter. Unlike
most SOTA methods employing attention mecha-
nisms at word level (Vaswani et al., 2017; Liu et al.,
2021), our model employs context-level attention
mechanisms to identify the relative importance of
certain tweets and metaphors, which is crucial for
filtering out less significant information in the final
representation of contexts and justifying the out-
puts of the model. (2) We introduce MCMs as a
feature to improve explainability and performance.
This also helps a better understanding of the cogni-
tion of depressive individuals. (3) We demonstrate
that HAN achieves outstanding performance and
produces accurate and explainable results with a
smaller number of training parameters than classi-
cal encoders via extensive experiments.

2 Related Work

Traditional studies on depression focus on social,
psychological and biological factors, which are not
often readily available. This paper mainly focuses
on social media texts and machine-learning-based
depression detection. Several studies in psychol-
ogy have reported that conceptual metaphors are
used to express and understand the experience of
depression, but they are often used unconsciously
and pass unnoticed. Research into metaphors can
help better understand individuals with depression.
Depression Detection on Social Media. Zo-
gan et al. (2021) proposed a model combining
CNNs (LeCun et al., 1989) and BiGRUs (Deng
et al., 2019) for learning users’ behavior and textual

contents. For user behavior modeling, manually
curated features, which are associated with emo-
tions, domains, topics and social media metadata,
were employed. Some research exploited sentiment
analysis techniques for depression detection. Rao
et al. (2020) proposed a hierarchical architecture
leveraging gated units and CNNs to learn textual
contents of social media posts and users’ emotional
states expressed in posts. Aragon et al. (2021) pro-
posed an emotion-aware SVM-based model which
learns emotional dynamics expressed in social me-
dia posts. Chiong et al. (2021) proposed 90 features,
based on sentiment lexicons and textual contents
and used them as input to depression detection clas-
sifiers. A recent trend is to exploit multimodal
learning frameworks for depression detection (Gui
et al., 2019; Chiu et al., 2021; Lin et al., 2020; Yang
et al., 2018). Gui et al. (2019) proposed a multi-
modal multi-agent reinforcement learning model
incorporating BiGRU and VGGNet (Simonyan and
Zisserman, 2014) to learn texts and images posted
by users on Twitter, respectively. Chiu et al. (2021)
proposed a multimodal BiLSTM-based (Schuster
and Paliwal, 1997) architecture jointly learning
texts, images and temporal behaviors (i.e., time
intervals between posts) on Instagram. Lin et al.
(2020) proposed a multimodal model comprising a
CNN and a BERT. It jointly learns representations
of images and texts and fused them using a low-
rank multimodal fusion method. Zhang et al. (2021)
proposed a model combining BiLSTM and CNN
based on metaphor features and text. However,
their metaphor features are shallow, e.g., Part-of-
Speech (PoS) tags and the number of metaphors.

Metaphor Understanding. Traditional metaphor
studies on depression were mainly based on qual-
itative analysis and case studies (Roystonn et al.,
2021; Coll-Florit et al., 2021). This is because
of a lack of automatic tools that help psycholin-
guistic researchers parse and analyze metaphorical
expressions from large corpora. Recently, auto-
matic metaphor processing has achieved significant
developments. Metaphors can be identified with
sequence-tagging-based models (Mao et al., 2019;
Choi et al., 2021; Chen et al., 2021; Mao and Li,
2021). Then, the identified metaphors can be in-
terpreted by linguistic meanings (Bollegala and
Shutova, 2013; Mao et al., 2018, 2021) or concept
mappings (Mason, 2004; Shutova et al., 2017; Ge
et al., 2022). Linguistic metaphor interpretation
focuses on paraphrasing metaphors into their lit-
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eral counterparts. For example, Mao et al. (2022a)
proposed a system for metaphor identification and
interpretation, called MetaPro. It can be used as a
text pre-processing technique to achieve metaphor
paraphrases from end to end. Thus, NLP tech-
niques for downstream tasks, such as sentiment
analysis (Mao et al., 2022a) or machine transla-
tion (Mao et al., 2018), can achieve better perfor-
mance on the effectiveness of metaphor paraphras-
ing. However, Lakoff and Johnson (1980) argued
that metaphor is not only a linguistic phenomenon,
but also a reflection of humans’ cognition. Given
“this is the core2 of the matter”, core implies “im-
portance” (target) is “interiority” (source) (Lakoff
et al., 1991). Thus, one can analyze the inner world
of depressed people from their metaphoric expres-
sions and the associated concept mappings, e.g.,
IMPORTANCE IS INTERIORITY.

In this paper, we identify several limitations
of existing works on depression detection. Ex-
isting methods have largely focused on improv-
ing classification performance by using advanced
encoders, features and deep architectures, while
leaving model outputs inexplicable. The majority
of SOTA methods are limited to textual contents
of posts or rely on shallow features based on so-
cial media metadata. To our best knowledge, it is
the first work incorporating MCMs into machine-
learning-based depression detection on social me-
dia. Additionally, our model comprises context-
level explainable encoders while word-level atten-
tion mechanisms have been widely employed in
SOTA methods. This helps better understand how
certain tweets and MCMs are used by depressed
individuals, thereby justifying model predictions.

3 Methodology

3.1 Problem statement
In our task, a user (uk) is represented as a set of
tweets (Xk) and a set of the associated MCMs
(Mk) in the tweets. Therefore, a set of users is
denoted by U = {u1, · · · , ui}, where each user
uk = [Xk,Mk]. A set of a user’s tweet contents is
denoted by Xk = {xk,1, · · · , xk,n} which contains
n tweets. x is a tweet represented as a sequence
of words. A set of a user’s MCMs is denoted by
Mk = {mk,1, · · · ,mk,s} which contains s map-
pings. m is an MCM that is represented as a se-
quence of “A IS B”, where A is a target concept, B

is a source concept, and IS a relation mapping A to
2A metaphor is in italics.

B. An example is “IMPORTANCE IS INTERIORITY”.
The task is to predict the most probable label (ŷk)
for a user uk, where ŷk ∈ {0, 1}. ŷk = 1 if uk is
a depressed user, ŷk = 0 otherwise. yk denotes a
ground truth label.

3.2 Model Architecture
The overall architecture of HAN is shown in Fig-
ure 1. Given a set of tweets (X) of a user, we first
obtain embeddings of all tweets in X using a pre-
trained language model. BERT-base-uncased (De-
vlin et al., 2019) is used to be in line with our
strongest baseline (Zogan et al., 2021). Special
tokens [CLS] and [SEP] are added at the begin-
ning and at the end of each tweet xϵ, respectively.
The padded sequence “[CLS] xϵ [SEP]” is fed into
BERT. The vector representation at the [CLS] posi-
tion of BERT output is used as the embedding of
xϵ. We obtain an embedding matrix of all tweets
in X, denoted by T0. Formally,

T0 = BERT (X). (1)

Similarly, we obtain an embedding matrix of all
MCMs in M, denoted by C0. Formally,

C0 = BERT (M). (2)

Details about the acquisition of M are described in
Section 3.3.

HAN consists of l attention-based encoder lay-
ers. The ith encoder layer is defined as HANi(·)
(see Section 3.4 for details), where i ∈ {1, 2, · · · l}.
Given a query vector and a key matrix, HANi(·)
yields an updated query vector and key matrix.
Thus, given the query vector (vti−1) of tweets (t)
and the tweet embedding (key) matrix Ti−1 in the
(i− 1)th layer, the updated vti and Ti are given by

vti , Ti = HAN t
i (v

t
i−1, Ti−1). (3)

Similarly, given the query vector (vci−1) of MCM
(c) and the MCM embedding (key) matrix Ci−1 in
the (i− 1)th layer, the updated vci and Ci are given
by

vci , Ci = HAN c
i (v

c
i−1, Ci−1). (4)

For the first layers of the first training step, the in-
puts vt0 and vc0 (trainable parameters) are randomly
initialized. For the other training steps, vt0 and vc0
are values learned in the previous step.

Next, the output of the last layer of the
tweet encoder (vtl ) and that of the MCM en-
coder (vcl ) are concatenated (⊕). The concate-
nated representation is fed to three feed-forward
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Figure 1: Hierarchical Attention Network. Grey boxes denote computational layers with trainable parameters. Plain
text denotes input and output. T and C denote tweet and MCM embeddings, respectively.

neural networks (FNNs), denoted by FNNo(·).
The first two FNNo(·) are activated by ReLU
(ReLU(·)) (Agarap, 2018). The last FNN,
FNNo

3 (·), is activated by the Softmax. We do
not change the size of the hidden state given by
the outputs of the first two FNN layers. The last
FNN layer projects the hidden state into a vector of
the label size. Then, the probability of a predicted
label (ŷ) is given by

h = ReLU(FNNo(vtl ⊕ vcl ))×2 (5)

ŷ = Softmax(FNNo
3 (h))), (6)

where h is the hidden state after the first two (×2)
FNNs. Cross-entropy loss is used to optimize the
parameters in the model and is given by

L = CrossEntropy(ŷ, y). (7)

3.3 Concept mapping acquisition

Concept mapping acquisition process consists of
three components: a) metaphor identification
(MI(·)) (Mao and Li, 2021), b) metaphor para-

phrasing (MP (·)) (Mao et al., 2021) and c) con-
cept mapping generation (CG(·)) (Ge et al.,
2022). These algorithms are used because they
enable the end-to-end acquisition of MCM features
without pre-processing and domain-specific knowl-
edge. Here, we briefly introduce their algorithms,
inputs and outputs. For the details, please refer to
the original papers. Given a tweet (xϵ) comprising
g tokens τ , i.e., xϵ = {τϵ,1, τϵ,2, · · · , τϵ,g}. The
metaphor identification module (MI) is a multi-
task-learning-based sequence tagging model, yield-
ing a metaphor label sequence (rϵ) and a PoS label
sequence (ρϵ) defined by

rϵ, ρϵ = MI(xϵ), (8)

where rϵ = {rϵ,1, rϵ,2, · · · , rϵ,g} and ρϵ =
{ρϵ,1, ρϵ,2, · · · , ρϵ,g}. rϵ,j ∈ {metaphor, literal}
and ρϵ,j is a Universal-Dependency-scheme-based
PoS label, where j ∈ {1, 2, · · · , g} denotes the
index of a token in xϵ. To boost model perfor-
mance, Mao and Li (2021) proposed a Gated Bridg-
ing Mechanism for soft-parameter sharing between
the metaphor identification and PoS tagging tasks.
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Next, given an identified metaphoric open-class
word3 τϵ,j (i.e., one of verbs, nouns, adjectives
and adverbs), the metaphor paraphrasing module
first lemmatizes τϵ,j as τ ιϵ,j . Then, a pre-trained lan-
guage model is used to select the best fit word (ωϵ,j)
from a candidate set that consists of hypernyms and
synonyms of τ ιϵ,j in WordNet (Fellbaum, 1998) and
their inflections with the same PoS. The best fit
word denotes a candidate word that appears in the
context and has the highest probability.

A probability is given by a masked word pre-
diction of the pre-trained language model, which
has been widely used in prompt-based zero-short
learning tasks (Mao et al., 2022b). The best fit
word ωϵ,j is lemmatized as ωι

ϵ,j , which is consid-
ered the lemma of the paraphrased metaphor τϵ,j in
the context of xϵ. The above process is defined by

ωι
ϵ,j = MP (τϵ,j , ρϵ,j). (9)

Finally, the concept mapping generation mod-
ule abstracts the source concept (Aϵ,j) from τ ιϵ,j and
the target concept (Bϵ,j) from ωι

ϵ,j . Formally,

Aϵ,j = CG(τ ιϵ,j), (10)

Bϵ,j = CG(ωι
ϵ,j). (11)

CG(·) is a knee algorithm (Satopaa et al., 2011)
and a WordNet-based conceptualization method,
proposed by Ge et al. (2022). It abstracts a word
into a concept by looking up a hypernym that can
cover the major senses of a word. After obtaining
Aϵ,j and Bϵ,j , the concept mapping is defined as

MCMϵ,j = Bϵ,j IS Aϵ,j. (12)

Ge et al. (2022) argued that Lakoff et al. (1991)
summarized concept mappings with different pat-
terns due to the subjectivity of annotators. We
take the concept mappings given by Eq. 12, which
follows one of the concept mapping principles
of Lakoff et al. (1991) (see Section 2). We ob-
tain all concept mappings in xϵ. If no metaphor is
detected in xϵ, concept mapping is none for such
a tweet. All concept mappings from all tweets of
each user are collected, forming an MCM feature
set (M) for depression detection.

3.4 Hierarchical attention network encoder
The HAN encoder (HAN(·)) is based on scaled
dot-product attention and FNNs. Attention mecha-
nisms enable the model to identify input features

3Closed-class words are not paraphrased because they do
not convey much semantic information in their context.

(i.e., tweets and MCMs) that are highly significant
and useful for depression detection, thereby en-
hancing model explainability. FNNs allow feature
embeddings to better fit the task via multiple non-
linear projections. Unlike self-attention (Vaswani
et al., 2017), the feature information of our encoder
is not shared with each other within each feature
set, i.e., Ti and Ci in Eqs. 3 and 4. Thus, features
fed to the last encoder layer (i.e., Tl−1 and Cl−1)
represent the features of individual inputs even af-
ter several non-linear projections. Important fea-
tures are learned by query vectors. These are the
main differences between our explainable encoder
and other classical black-box-like encoders, e.g.,
LSTM, BiLSTM, GRU (Cho et al., 2014), BiGRU
and Transformer (Vaswani et al., 2017), hidden
states of which cannot be easily disentangled after
encoding.

Given a query vector (qi−1 ∈ R1×d) and a key
matrix (Ki−1 ∈ Ro×d) in the (i− 1)th layer, where
d denotes an embedding size and o denotes the
number of input features, attention weights (wi ∈
R1×o) in the ith layer are given by

wi = Softmax

(
qi−1 ⊗K⊺

i−1√
d

)
, (13)

where ⊗ denotes matrix product. The query vec-
tor (qi ∈ R1×d) in the ith layer is given by the
weighted sum of the vectors in Ki−1 and a non-
linear projection. Formally,

qi=LN(ReLU(FNN query
i (wi⊗Ki−1))), (14)

where LN(·) denotes layer normalization (Ba et al.,
2016). The key matrix (Ki ∈ Ro×d) in the ith layer
is defined by

Ki = LN(ReLU(FNNkey
i (Ki−1))). (15)

The input and output of the HAN encoder have
the same size. For the tweet content encoder, q,K
and o denote a tweet query vector (vt), a tweet
embedding matrix (T ) and the number of tweets
(n), respectively. For the MCM encoder, q,K, and
o denote an MCM query vector (vc), an MCM
embedding matrix (C) and the number of MCMs
(s), respectively.

We use the attention weights from the last
(the lth) encoder layer as the final representation
of tweet contents and MCMs. wl shows important
inputs that have higher attention weights for the
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Dataset Total # of tweets Mean # of tweets
per user

Positive Negative Positive Negative
D1 156,013 153,328 72 75
D2 151,538 119,188 71 58
D3 142,057 118,611 66 58
D4 143,725 124,925 66 61
D5 148,039 134,700 69 66

Table 1: Statistics of the five randomly sampled datasets.
The number of positive users and that of negative users
are 2,159 and 2,049 for all the datasets.

depression status prediction of a user. Analysis
results of attention weights to demonstrate model
explainability are described in Section 5.5.

4 Experiments

4.1 Datasets and pre-processing
Table 1 presents the statistics of the datasets used
in our experiments. We use a publicly available
Twitter dataset, called MDL (Shen et al., 2017),
which was designed for depression detection. In
this dataset, Twitter users, who have posted tweets
containing pre-defined patterns (i.e., I’m/I was/I
am/I’ve been diagnosed depression), were labeled
as depressive (i.e., positive). Those who never
posted any tweet containing the term “depress”
were labeled as users not suffering from depres-
sion (i.e., negative). Due to the updates of MDL
over time, its statistics varies across existing works
which used it for their experiments (Gui et al., 2019;
Lin et al., 2020; Zogan et al., 2021). We argue that
the model of Zogan et al. (2021) is the most com-
parable to our model as regards architecture and
features, e.g., employing two independent encoders
to encode textual features from multiple sources.
To make our results comparable with this work,
2,159 positive and 2,049 negative users are ran-
domly sampled from the latest version of MDL.
For a fair comparison, we generate five datasets
with randomly selected users. 60%, 20% and 20%
of the full dataset are used for train, validation and
test sets, respectively, which results in 2,524 users
in a train set and 842 users in each of validation
and test sets. We exclude tweets with less than 4
tokens because they are less informative. URLs
and mentions are removed because they are likely
to introduce noise (Gao et al., 2020).

4.2 Baselines
We compare our model with three depression de-
tection baselines.

Model P R F1 Acc.
Gui et al. (2019) 0.900 0.901 0.900 0.900
Lin et al. (2020) 0.903 0.870 0.886 0.884
Zogan et al. (2021) 0.909 0.904 0.912 0.901
HANours-AvgD1−D5 0.975 0.969 0.972 0.971
D1 0.981 0.965 0.973 0.973
D2 0.988 0.956 0.972 0.971
D3 0.972 0.972 0.972 0.971
D4 0.968 0.970 0.969 0.968
D5 0.964 0.981 0.972 0.971

Table 2: Depression detection results. Our model result
is averaged over the five testing sets (D1-D5).

• Gui et al. (2019): A reinforcement-learning-
based model based on cooperative multi-agent pol-
icy gradients. Tweet texts and images are encoded
using GRUs and VGGNets, respectively.

• Lin et al. (2020): A model comprising a CNN and
a BERT for learning images and texts, respectively.
The final representation of inputs is obtained via
low-rank multimodal fusion.

• Zogan et al. (2021): A model jointly learning
tweet texts and user behavior using CNNs and Bi-
GRUs. BERT-base and BART-large are used for
tweet text modeling.

We do not benchmark the work by Zhang et al.
(2021) because their model was designed for classi-
fying different types of mental disorders. Besides,
their model (i.e., CNNs+BiLSTMs) is similar to
the architecture proposed by Zogan et al. (2021).

4.3 Setups

We employ two HAN encoder layers (i.e., l =
2). The maximum input length (i.e., the maxi-
mum numbers of tweets and MCMs per user) is
set to 200. The batch size (i.e., the number of
users per batch) is 64. Dropout rates for query
vectors and key matrices are set to 0.2. The
learning rate and weight decay of the Adam op-
timizer (Kingma and Ba, 2015) are set to 1e-4 and
1e-5, respectively. BERT-base-uncased is used to
obtain tweet and MCM embeddings. The model
is trained with a GeForce GTX 1080 Ti GPU with
CUDA 9.2 (NVIDIA et al., 2020) and PyTorch
1.7.1 (Paszke et al., 2019). Following our baselines,
four performance metrics are adopted in our exper-
iments: accuracy (Acc.), precision (P), recall (R)
and F1 score (F1). P, R and F1 are computed with
respect to the positive class, i.e., depressive.
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Model F1 on MDL-validation F1 on IMDL-validation
D1 D2 D3 D4 D5 Avg D1 D2 D3 D4 D5 Avg

HAN 0.985 0.960 0.971 0.976 0.975 0.973 0.939 0.911 0.933 0.927 0.931 0.928
HAN-MCM 0.972 0.947 0.963 0.967 0.962 0.962 0.914 0.897 0.914 0.905 0.918 0.909
∆ 0.013 0.013 0.008 0.009 0.013 0.011 0.025 0.014 0.019 0.022 0.014 0.019

Table 3: Ablation study results on validation sets, measured by F1 score. ∆ is defined by F1HAN − F1HAN-MCM.

5 Results

5.1 Classification performance

As shown in Table 2, our proposed model advances
SOTA performance for all of the five datasets.
HAN achieves an average F1 score of 97.2% and
an accuracy of 97.1%. The comparison results
show that HAN yields the increases of 6.0% and
7.0% in F1 score and accuracy over the strongest
baseline model (Zogan et al., 2021), respectively.
We observe that performance is almost identical
for different randomly sampled datasets (i.e., D1-
5), which shows that HAN is robust to different
characteristics of users on Twitter.

5.2 Ablation study

A set of exploratory experiments is conducted to
study the relative contribution of MCMs in our
model. To this end, we generate a variation of
MDL, called Implicit Twitter Depression Data
(IMDL), by removing explicit linguistic cues for
depression (i.e., “I’m/I was/I am/I’ve been diag-
nosed depression” and words containing “depress”,
“anxiety”, “bipolar” and “disorder”) from all tweets.
We evaluate our full model (HAN) and HAN with-
out the MCM encoder, called HAN-MCM, using
both MDL and IMDL. Table 3 shows average F1
scores achieved with the validation sets. Overall,
HAN and HAN-MCM achieve higher performance
on MDL than on IMDL in terms of F1 score. This
verifies our hypothesis that the removal of explicit
linguistic cues for depression from tweets makes
the task more difficult. The ablation study of the
internal baseline model (i.e., HAN-MCM) proves
that MCMs can provide additional information ef-
fective in identifying depressive users.

For MDL, HAN outperforms HAN-MCM by
1.1%. It is worth noting that the performance dif-
ference is slightly larger for IMDL (1.9%), which
indicates that MCMs can provide effective com-
plementary evidence when no explicit cues for de-
pression exist in tweets. The above experiments on
both datasets demonstrate the usefulness of under-
standing MCMs in identifying depressive users.

# of HAN layers 1 2 4 8
MDL D1 validation 0.542 0.985 0.983 0.979

Table 4: F1 scores for different numbers of encoder
layers.

5.3 Hyperparameter analysis

The major hyperparameter of HAN is the number
of encoder layers (i.e., l). We experiment with
different values (i.e., 1, 2, 4 and 8) for the MDL D1
validation set. Table 4 shows that the best F1 score
is achieved when l is set to 2. Using more than
two layers does not reap benefits of an increase in
model performance.

5.4 Encoder benchmarking

To prove the effectiveness of our HAN encoder, we
compare it with six widely used encoders: LSTM,
BiLSTM, GRU, BiGRU, TF-first and HAN-TF.
HAN encoders are replaced with each of them in
our framework. For LSTM and GRU, the final
representation of input features is the hidden state
of the last token. For BiLSTM and BiGRU, the
concatenation of the forward and backward hidden
states of the last and first tokens is used. TF-first
and HAN-TF are encoders based on Transformer.
In TF-first, Transformer is used as an encoder.

The hidden state of the first input instance4 (a
tweet or an MCM) of each user is used by Eq. 5. In
HAN-TF, we use Transformer to replace the input
matrix projection layer (i.e., FNN in Eq. 15) of
HAN encoders. The size of the input and output
hidden states of each encoder is set to 768, which is
in line with that of BERT-base-uncased. The size of
FNNs and the number of heads in Transformer are
768 and 8, respectively. The other hyperparameters
remain the same. CNNs are not used as a baseline
because they need to be used with other encoders
to learn context dependencies (Wang et al., 2016;
Rhanoui et al., 2019).

4We experimented with different fusion methods (e.g.,
summation, average and linear transformation of concatenated
representations) and found that using the hidden state of the
first input instance works best.
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LSTM BiLSTM GRU BiGRU TF-first HAN-TF HAN
F1 on MDL D1 val. ↑ 0.966 0.965 0.961 0.959 0.898 0.976 0.985
# of param. per layer ↓ 4.72M 9.45M 3.54M 7.09M 3.55M 4.14M 1.18M

Table 5: Comparison results of different encoder layers. ↑ denotes that the higher the value is, the better the model
is. ↓ denotes that the lower the value is, the better the model is.

1 2 3 4 5 6 7 8 9 10
Epoch

0.2

0.4

0.6

0.8

Lo
ss

HAN-TF
BiLSTM
GRU
HAN
TF-first
BiGRU
LSTM

Figure 2: Training loss curves for different encoders
obtained using the MDL D1.

Table 5 shows F1 scores achieved with the MDL
D1 validation set and the number of parameters per
encoder layer. HAN encoder achieves better results
than all the baseline encoders on our task in terms
of F1 score. HAN and HAN-TF outperform LSTM
by 1.9% and 1.0%, respectively. Although HAN
and HAN-TF achieve comparable performance, it
is worth noting that using Transformer instead of
FNNs in the HAN encoder significantly increases
the number of parameters (+2.96M). The number
of parameters of the HAN encoder is the smallest
among all the encoders. The parameter size of
HAN is just a third of that of the second smallest
encoder (GRU).

Figure 2 shows training loss curves for differ-
ent encoders plotted using the MDL D1. HAN
(the red line) converges faster than the other en-
coders. Overall, the experiments on different en-
coders prove that HAN has advantages over the
others in terms of effectiveness and efficiency.

5.5 Explainability demonstration

Figure 3 visualizes the attention weights (wl given
by Eq. 13) for tweets posted by two users with de-
pression and MCMs in their tweets. As shown in
the figure, HAN can selectively focus on the most
important and useful tweets and metaphors by pro-
gressively refining feature maps. Attention weights
are useful for justifying the decision-making mech-
anism of HAN because they quantitatively describe
how much each tweet and MCM contributes to

(a) User 1

(b) User 2

Figure 3: Visualization of attention weights for two
depressed users. The lighter the color bar of an instance
(tweet or MCM) is, the higher its attention weight is.

User Tweet Metaphor

1

1. I hate how I can’t tell if I have
allergies or I’m getting sick.

1. LEVEL IS IMPORTANCE

2. get better, I love you 2. PERSON IS EXTREMITY
3. I’m slightly allergic to cats
but I still have them and I don’t
CARE IF I SNEEZE

3. SITUATION IS HAPPENING

4. I’m having a bad night 4. ATHLETE IS AREA
5. So I’m so nervous for my
MAC interview tomorrow but I
know I’ll do great. Everything
will be okay

5. MORPHEME IS EXTREMITY

2

1. Today is not a good day:
Driver, teen shot to death after
vehicle hits and kills -year-old

1. CONCERN IS STATE

2. Autistic th Grader Assaulted
by School Cop, Now He is a
Convicted Felon

2. POSITION IS DISAPPEAR-
ANCE

3. Thank you Father, GM FB!
I gotta start taking My butt to
bed at night, woke late again

3. LEVEL IS IMPORTANCE

4. Cellphone Video Surfaces
Showing Moments After Police
Shot -Year-Old Boy in the Back

4. FEELING IS ILL_HEALTH

5. Freddie Gray dies one week
after Baltimore arrest

5. ARTIFACT IS SUPPORT

Table 6: The top 5 tweets and metaphors, selected based
on attention weights, for two sample users.

a predicted label (see Eq. 14). Higher attention
weights denote greater utility of tweets and MCMs
in detecting depression. Table 6 shows the top 5
tweets and MCMs, ranked according to the atten-
tion weights learned during training, for two sam-
ple users. User 1 tends to use negative expressions
to describe personal feelings, state and emotions
such as “bad”, “sick”, “hate” and “nervous”.

The user also uses positive expressions, such as
“I’ll do great” and “everything will be ok”. Such
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tweets, however, tend to express self-soothing for
negative events. User 2 tends to repost tragic news
and add personal comments. The two depressed
users show different behaviors on social media, e.g.,
self-soothing and quoting tragic news. The listed
MCMs in Table 6 show that both sample users
have the same MCM in their tweets, i.e., LEVEL

IS IMPORTANCE. The conceptual projection from
LEVEL to IMPORTANCE may exacerbate depression
because LEVEL simply refers to “a position on a
scale of intensity or amount or quality”, whereas
IMPORTANCE normally refers to a subjective feel-
ing about “the worthy of note” (Fellbaum, 1998).

The imageability of IMPORTANCE may increase
stress and anxiety, and thus arouse more depressive
feelings (Vedhara et al., 2003). For example, there
is a tweet saying that “If a transgender student is
bullied, they are put at a greater risk of suicide”
posted by a depressed user in the dataset (Shen
et al., 2017). In this tweet, “greater” is metaphori-
cal. Its contextual meaning refers to a higher risk.
“High” is one of the manifestations of the target
concept LEVEL. However, the literal imageability
of “great” likely refers to the source concept IM-
PORTANCE, e.g., “a great work of art” (Fellbaum,
1998). Thus, the metaphorical expression in the
sample tweet also implies that the “risk of suicide”
is high and important, which probably increases the
subject’s nervousness because of their perception
about the importance of the risk. We also find that
a metaphoric term “great” is common in the MCM
LEVEL IS IMPORTANCE and its associated tweets
posted by depressed users.

This case study demonstrates that we can fur-
ther discover common MCMs and metaphorical
language patterns among depressed individuals us-
ing our proposed model. In general, we argue that
HAN is potentially useful for identifying depressed
individuals and analyzing different types of such
individuals, their cognition and risk factors.

6 Ethical Considerations

This research work was conducted based on a pub-
lic dataset published by Shen et al. (2017). We
solely used textual content for concept mapping
acquisition, training, and evaluating the model. We
did not leverage any information related to user pro-
files. We oppose the use of our model in any breach
of data security, privacy protection, and ethics.

7 Conclusion

While most deep learning architectures for depres-
sion detection left the impact of different input
features on model performance inexplicable, our
work attempted to interpret what was going on
in the model and justify model predictions. We
proposed an attention-based encoder to better un-
derstand decision-making process for depression
detection. We introduced novel metaphor concept
mapping features into our model to investigate how
depressed people describe their emotions and ex-
periences. Our extensive experiments and com-
parative evaluations showed that our model could
achieve SOTA performance. An ablation study
proved the advantage of utilizing metaphors in de-
pression detection. We argue that a better under-
standing of metaphors associated with depression
can enhance interpretability and help health profes-
sionals provide tailored, timely therapy to patients.
In future research, we plan to conduct a large-scale
study to categorize different characteristics of de-
pression using users’ metaphorical and cognitive
expressions.
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