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Abstract

We address contextualized code retrieval, the
search for code snippets, helpful to fill gaps in a
partial input program. Our approach facilitates
a large-scale self-supervised contrastive train-
ing by splitting source code randomly into con-
texts and targets. To combat leakage between
the two, we suggest a novel approach based on
mutual identifier masking, dedentation, and the
selection of syntax-aligned targets. Our second
contribution is a new dataset for direct evalu-
ation of contextualized code retrieval, based
on a dataset of manually aligned subpassages
of code clones. Our experiments demonstrate
that the proposed approach improves retrieval
substantially, and yields new state-of-the-art
results for code clone and defect detection.

1 Introduction

Al-supported software development has recently
experienced growing interest (Lu et al., 2021), ad-
dressing various code understanding tasks such as
code auto-completion (Svyatkovskiy et al., 2020),
natural language code search (Husain et al., 2019),
and code clone detection (Svajlenko and Roy,
2015). Our focus is on a related task called con-
textualized code search (Mukherjee et al., 2020;
Dahal et al., 2022): Given an incomplete piece of
code and a certain position of interest (e.g., the cur-
rent cursor position), a retriever searches for code
fragments that are relevant for filling in the missing
piece. This setting aligns well with programmers’
workflow, and differs substantially from the three
tasks mentioned above as follows: (1) In contrast to
natural language code search, contextualized code
search can exploit local code context. (2) While
code generated by autocompletion systems such
as GitHub’s CodEx (Chen et al., 2021) is prone to
subtle programming errors, contextualized search
leaves the developer in charge, and the origin of
a solution remains transparent. (3) In contrast to
clone detection, contextualized code search is not

targeted at semantically similar code but code that
complements the query.

A key challenge with contextualized code search
is that supervised labels for relevant code pas-
sages are missing. Therefore, we bootstrap a self-
supervised learning process by drawing inspira-
tion from Cloze Tasks in natural language process-
ing (Lee et al., 2019): Given a large-scale dataset
containing pieces of code in 16 programming lan-
guages, we erase random blocks. We refer to these
blocks as fargets, and to their surrounding as con-
texts. Together, these pairs form samples for con-
trastive learning.

Unfortunately, as Figure 1 shows, this approach
suffers from leakage between context and target, as
the two share (1) common identifiers, (2) a match-
ing indentation level, and (3) in some languages —
if dividing a syntactic primitive such as for-loops —
matching brackets. Retrievers might exploit these
effects and bypass semantic similarity. To this end,
our first contribution is a novel approach towards
self-supervised code retrieval, which avoids the
above bias through de-leaking steps such as mutual
identifier masking and dedentation.

The second challenge we address is evaluation:
So far, the focus of evaluating code retrieval sys-
tems has been on natural language queries (which
can be bootstrapped from docstrings) (Husain et al.,
2019). Contextualized code retrieval has been eval-
uated only indirectly via infilling quality (Lu et al.,
2022; Parvez et al., 2021), which reflects the ac-
tual retrieval quality poorly. Therefore, our sec-
ond contribution is a rigorous evaluation of con-
textualized code retrieval on a manually curated
dataset based on aligned code clones. We call this
dataset COCOS and make it available for future re-
search. On COCOS, we demonstrate that retrieval
quality benefits substantially from our de-leaking
approach. Also, we achieve state-of-the-art results
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Figure 1: Our approach bootstraps code pairs for contrastive learning by removing target passages (green) from
random code contexts (gray). To address leakage between the two — which can be due to matching identifiers,
indentation, and brackets — we (a) select the target using the code’s syntactic structure, (b) dedent the target (orange
arrow), and (c) mutually mask identifiers. Finally, we apply contrastive learning on the resulting code pairs (d).

on the related tasks code clone and defect detection
on CodeXGLUE (Lu et al., 2021).!

2 Approach

Given a piece of code as a token sequence

X=x1,...,xy, our goal is to boostrap a context-
target pair for contrastive learning. The tar-
get is a subsequence Y =x;,...,z;11 Wwith

1<i<i+L<m. By replacing this subsequence
with a special mask token, we obtain the context
X/:l'la---axi—I,fUMASK,fUi-i-L—f—la---axm- To
X’ and Y we prepend a programming-language-
specific CLS token.

To address the above leakages, we suggest three
steps called tree-based span selection (TS), mutual
identifier masking (IM) and dedenting (DE).

Tree-based span selection (TS) To select the tar-
get Y, we utilize X’s concrete syntax tree?, whose
leaves consist of all code tokens. We define the
target Y by masking a random subtree, which en-
sures Y to be a syntactically complete piece and
avoids leakage due to brackets. Specifically, we
first sample the target’s length L from a normal
distribution with =150 and 0=90. We then select
a node n covering at most L leaves/tokens and iter-
atively expand the selection, either to n’s parent, or
by adding n’s direct siblings, until reaching the de-
sired size L. Adding siblings allows for multiline
targets spanning several statements.

'We release dataset, code and checkpoints to our experi-
ments under github.com/villmow/coling-cocos
2We use the tree-sitter library for parsing.

Mutual Identifier Masking (IM) Next, we ran-
domly replace identifiers® in X’ and Y with special
tokens (VARI, VAR2, ...), to minimize leakage be-
tween identifiers. To preserve as much lexical infor-
mation as possible, we mask only mutual identifiers
present in both context and target. We hide 90%
of those mutual identifiers randomly either in the
context or in target code. For 5% of context-target
pairs, we omit identifier masking altogether.

Dedenting (DE) Finally, in 90% of the training
samples, we determine the indentation level of the
target Y and dedent it, so that it has indentation
level zero and the retriever cannot bypass seman-
tic similarity by focusing on targets at the same
indentation level.

2.1 Contrastive Training

We encode context code X’ and target Y with the
same transformer encoder and obtain sequence em-
beddings q, k € R?, using the encoding of the CLS
token. Following Wang et al. (2021b), we pretrain
the transformer with alternating generation tasks
identifier masking and span prediction* and use the
pre-trained encoder.

The retriever is then trained by optimizing the
following contrastive InfoNCE loss (van den Oord
et al., 2018) with in-batch negative samples, where

3What is considered an identifier is defined in the grammar
of a tree-sitter parser and varies between programming lan-
guages, i.e. we do not differentiate between variables, method
names or method calls.

*Contrary to Wang et al. (2021b) we omit identifier detec-
tion and instead use our tree-based span selection to generate
large and small spans.
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f 1is the cosine similarity, K the amount of se-
quences in our batch, and 7=0.1 the temperature.

+

Lo = —log ;fg(f(q,k /7)) 0
>i—o exp(f(a, k;)/7))

To obtain harder negative samples — which have

been found crucial for good retriever training (Ren

et al., 2021) — we form batches only with samples

from the same programming language.

3 Dataset

In this section, we first describe the large-scale
data which our retriever is trained on. Second, we
outline COCOS, a new bechmark we propose for
contextualized code retrieval.

Pre-training Dataset Our self-supervised code
retrieval model is pre-trained on 33M files in 16 pro-
gramming languages (see Appendix A). As code
files tend to be large, we truncate them using tree-
based span selection (cmp. Section 2): Starting
from a whole file, we randomly select sufficiently
large spans of code (length between 150 and 800
tokens). We remove those segments from the orig-
inal file and feed the shortened file as well as all
individual segments as inputs X into the learning
process described in Section 2. A special identifier
(similar to code folding in an IDE) marks those
positions in the original file where segments have
been removed.

COCOS Evaluating contextualized code re-
trieval models is hard because little or no suitable
evaluation data is available to indicate which sub-
blocks in the code implement the same function-
ality. To address this gap, we have created a new
dataset based on BigCloneBench (Svajlenko and
Roy, 2015), a Java code clone dataset that provides
pairs of semantically similar functions. Given a
function in BigCloneBench, we manually select a
sub-passage modeling a particular target functional-
ity (e.g. extracting a zip file). We then label which
lines in the function’s clones match this function-
ality (see Listings 1 - 3 in the appendix). Based
on these targets and their surrounding contexts, we
evaluate how well a model retrieves targets im-
plementing the same functionality in code clones.
We manually gather 606 context-target pairs imple-
menting 31 randomly selected functionalities. Fi-
nally, we add 10k non-relevant disctractor snippets
by randomly sampling top-level statements from
method bodies in CodeSearchNet (Husain et al.,

Model Features MAP NDCG P@1 P@3 P@10
BM25 standard 12.36 43.8 27.89 2492 17.13
BM25 camel 27.95 57.11 39.44 37.07 33.17
None 15.65 49.85 45.87 37.95 24.77
TS 26.47 59.64 58.09 50.77 36.96
TS, IM 33.78 66.03 69.80 60.95 45.33
TS, DE 3632 6594 5941 54.57 44.39
TS, IM, DE 50.87 76.28 73.60 70.30 59.70

Table 1

Zeroshot code retrieval results for different de-leaking steps

as described in Section 2: Tree-based span selection (TS);

mutual identifier masking (IM); dedenting (DE). We report

non-neural results for BM25 (Jones et al., 2000) using the

Elasticsearch standard tokenizer (standard) and a tokenizer
that splits on camel case (camel).

2019). We call the dataset COCOS (Contextualized
Code Search).

4 Evaluation

We report results for zero-shot code retrieval on
COCOS and for two similar code understanding
tasks from CodeXGlue (Lu et al., 2021), namely
code clone detection and code defect detection. For
all experiments, we report test results of the model
with the highest mean reciprocal rank (MRR) on
30K held-out validation samples of the pre-training
dataset.

4.1 Zero-shot Code Retrieval

We evaluate our models in a zero-shot setting, i.e.
no fine-tuning on COCOS was applied. For each
context all possible targets and the 10k distractor
snippets are ranked, excluding the original target.
To assess the proposed approaches, we compare
variants of our model trained with different de-
leaking steps and Okapi BM25 (Jones et al., 2000)
as non-neural baseline. BM25 is evaluated using
the standard Elasticsearch tokenization and a tok-
enizer splitting on camel case which is more suit-
able for source code. Table 1 reports our ablation
studies showing mean average precision (MAP),
normalized discounted cumulative gain (NDCGQG)
and precision at k. We found the baseline trained
without de-leaking to retrieve only samples with
similar identifiers but to fail to consistently retrieve
all relevant targets. Using all de-leaking steps sig-
nificantly outperforms all ablations. Figure 2 also
illustrates for a random selection of samples that
our approach forms better clusters for both contexts
and targets in embedding space.
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Figure 2: t-SNE comparison between the embeddings
of the baseline model with leakage (top) and our model
with leakage reduction steps applied (bottom). It can be
seen that our approach forms better clusters.

4.2 Clone Detection and Defect Detection

We evaluate our model on clone detection on the
P0OJ-104 dataset (Mou et al., 2016), which con-
sists of C and C++ programs for 104 problems from
an open programming platform (OJ). We follow
the evaluation procedure of CodeXGlue and report
mean average precision (MAP@R) with R=499.

Finally for defect detection we evaluate on the
Devign dataset (Zhou et al., 2019), which con-
sists of vulnerable C functions manually collected
from open source projects. The task is to pre-
dict whether the function is vulnerable. Following
CodeXGlue we report accuracy. Baseline results
for RoBERTa (Liu et al., 2019), CodeBERT (Feng
et al., 2020), code2vec (Alon et al., 2019) and
CoTexT (Phan et al., 2021) are reported in Lu
et al. (2021), results for PLBART (Ahmad et al.,
2021), GraphCodeBERT (Guo et al., 2021), Syn-
CoBERT (Wang et al., 2021a) and CodeT5 (Wang
et al., 2021b) are reproduced from Wang et al.
(2021a) and Wang et al. (2021b). We find that our

Model Clone Defect
MAP@R Accuracy
RoBERTa (code) 76.67 61.05
CodeBERT 82.67 62.08
code2vec 1.98 62.48
PLBART - 63.18
GraphCodeBERT 85.16 63.21
SynCoBERT 88.24 64.50
CodeT5 - 65.78
CoTexT - 66.62
Ours 91.34 69.33
Table 2

Results on code clone and defect detection (POJ-104 and
Devign dataset). We report results from Wang et al. (2021a)
and Wang et al. (2021b).

model outperforms state-of-the-art on both tasks
by a large margin.

5 Related Work

Code Representation Learning Given the suc-
cess of pre-trained language models in NLP, re-
cent work has extended pre-training to program
syntax. Kanade et al. (2020) and Feng et al.
(2020) train a BERT encoder on source code us-
ing masked language modeling. Guo et al. (2021)
propose GraphCodeBERT to incorporate struc-
tural information such as data flow. Besides these
encoder models, other work has pre-trained de-
coders (CodeGPT (Svyatkovskiy et al., 2020),
CugLM (Liu et al., 2020)) or encoder-decoders
(PLBART (Ahmad et al., 2021), CodeT5 (Wang
et al., 2021b)) on pairs of natural language and
program code. SynCoBERT (Wang et al., 2021a)
is trained on various pre-training tasks on multi-
modal data, including code, comment and Abstract
Syntax Tree (AST) representations. Guo et al.
(2022) propose UniXcoder, which takes a similar
approach but employs an encoder-decoder architec-
ture instead of a single encoder.

In most of the above work, multiple modalities
have been applied, e.g. code and natural language
comments. In contrast to contextual code search,
this setup does not come with leakage, which is the
main concern of our work.

Contextualized Code Search retrieves comple-
mentary code, given a code context and some-
times an additional natural language query. Non-
neural approaches include FaCoY (Kim et al.,
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2018), which extends the query with related code
from StackOverFlow, and Siamese (Ragkhitwet-
sagul and Krinke, 2019), which combines mul-
tiple code representations for pure code-to-code
search. Aroma (Luan et al., 2019) clusters can-
didate code and intersects the snippets in each
cluster to recommend likely subsequent code for
a given snippet. Mukherjee et al. (2020) address
the task by decompiling code fragments into a sim-
pler representation called SKETCH (Murali et al.,
2018) to learn a statistical model. The neural ap-
proach SCOTCH (Dahal et al., 2022) finetunes a
CodeBERT model to discover relevant methods for
queries combined with surrounding source code.
None of the above approaches address the issue of
leakage, either because they are non-neural (FaCoY,
Siamese, Aroma), or leakage is neglected because
the respective approach operates on method level
(SCOTCH).

The issue of leakage in code search has only
been scarcely studied before: Jain et al. (2021) pro-
pose ContraCode, a contrastive neural model that
allows to retrieve code clones. To generate sam-
ples for contrastive learning, they augment code
snippets using compiler-based semantic-preserving
code transformations. Lu et al. (2022) propose
ReACC, which uses partial code as search query
in the context of retrieval-augmented code comple-
tion. To combat leakage, they insert dead code and
rename variables. Compared to these approaches,
our steps towards leakage reduction are much sim-
pler. UniXcoder (Guo et al., 2022) pre-trains code
representations using a variety of tasks, including
contrastive learning. A positive sample pair is gen-
erated by running the same code piece through a
transformer under dropout, which is a known trick
for natural language (Gao et al., 2021) and can be
seen as a simple form of de-leaking. Note that —
since all our transformer encoders apply dropout
during training — this mechanism applies for all
models in our study too.

6 Conclusion

We have proposed a new approach towards unsu-
pervised code retrieval, which reduces leakage be-
tween randomly drawn targets and their contexts.
We also contribute a dataset COCOS, on which we
demonstrate via ablations that leakage reduction is
crucial for an efficient training. Our approach also
yields competitive representations for related tasks,
as demonstrated by new state-of-the-art results on

clone and defect detection. An interesting future
direction will be to combine our retriever with gen-
erators for a combined, unsupervised training.
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A Pre-training Dataset Details

We crawl 237k active GitHub repositories with
more than 10 stars® and perform per file dedupli-
cation. We keep files in programming languages
for which a tree-sitter parser is available (16 lan-
guages). The resulting dataset is shown in Table 3
and consists of ~ 33M code files in 16 program-
ming languages. We select 570 repositories for
validation.

Language Training Valid Total
Java 7,345,753 8,434 7,354,187
JavaScript 4,471,689 14,134 4,485,823
C++ 3,734,357 1,698 3,736,055
Python 3,016,545 4,718 3,021,263
C# 2,843,642 570 2,844,212
TypeScript 2,299,964 2,392 2,302,356
C 2,242,379 781 2,243,160
PHP 2,206,063 4,648 2,210,711
Go 1,759,600 129 1,759,729
Ruby 1,068,668 3,397 1,072,065
Rust 366,891 54 366,945
CSS 349,525 2,579 352,104
Scala 273,822 1,198 275,020
Haskell 114,311 177 114,488
OCaml 55,838 0 55,838
Julia 34,403 29 34,432

Table 3

Number of files in unsupervised pre-training dataset.

B Training Details

On all models and tasks we use the AdamW op-
timizer and linearly increase the learning rate for
10% of the training steps, along with a polynomial
decay for the remaining steps. We train our unsu-
pervised models for 500k steps on a single A6000
GPU, with a peak learning rate of 0.0001 and use a
dynamic batch size so that batches contain around
7000 tokens.

For clone and defect detection we fine-tune our
model on the respective training set. Following
Wang et al. (2021b) we run a brief sweep over
learning rate, batch size and number of epochs and
report results of the model with highest validation
score, using the published evaluation code. We
release our code including precise hyperparameter
configs under github.com/villmow/coling-cocos.

SWe consider a repository as active if there has been a pull
request between 04/21 and 09/21.
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public boolean extract (File f, String folder) {

Enumeration entries;
ZipFile zipFile;

try {
zipFile = new ZipFile (f);
entries = zipFile.getEntries();
[MASK

zipFile.close();
} catch (IOException ioce) {
this.err =i
Log (
"{Zip.unzip} " + ioe.getMessage ()

)i
return false;
}

return true;

Listing 1: Incomplete and masked query X’ from our
COCOS dataset. The [MASK] token denotes the current
position of interest (cursor). Code that extracts elements

from a zip file needs to be found.

while (entries.hasMoreElements()) |
ZipArchiveEntry entry =

(ZipArchiveEntry) entries.nextElement ();
if (entry == null) continue;
String path = folder + "/"

+ entry.getName () .replace ('\\', '/');

if (!entry.isDirectory()) {
File destFile = new File (path);
String parent = destFile.getParent();
if (parent != null) {
File parentFile = new File (parent);
if (!parentFile.c¢ s(0)) |
parentFile.mkdirs

}

}

copyInputStream(
zipFile.getInputStream(entry),
new BufferedOutputStream (

new FileOutputStream(destFile)

)

)i

Listing 2: The masked section Y manually selected
from X (Listing 1). It has been re-formatted for better
readability. Note that we omit Y from the result list for

query X during evaluation.

ArchiveEntry ae = zis.getNextEntry();
while(ae != null) {

File newFile = new File(

outputdir + File.separator + ae.getName (

)i

if (ae.isDirectory()) { "reate if nc exi

if (!newFile.exists())
newFile.mkdir ();

} else { , W t -
FileOutputStream fos = new FileOutputStream(
newFile);
int len;

while((len = zis.read(buffer)) > 0) {
fos.write (buffer, , len);
}

fos.close();

ae = zis.getNextEntry();

Listing 3: Possible solution, that implements the same

functionality as target in Listing 2.

1013



	Introduction
	Approach
	Contrastive Training

	Dataset
	Evaluation
	Zero-shot Code Retrieval
	Clone Detection and Defect Detection

	Related Work
	Conclusion
	Pre-training Dataset Details
	Training Details

