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Abstract

Two of the most fundamental challenges in Nat-
ural Language Understanding (NLU) at present
are: (a) how to establish whether deep learning-
based models score highly on NLU bench-
marks for the ‘right’ reasons; and (b) to un-
derstand what those reasons would even be.
We investigate the behavior of reading compre-
hension models with respect to two linguistic
‘skills’: coreference resolution and compari-
son. We propose a definition for the reasoning
steps expected from a system that would be
‘reading slowly’, and compare that with the be-
havior of five models of the BERT family of
various sizes, observed through saliency scores
and counterfactual explanations. We find that
for comparison (but not coreference) the sys-
tems based on larger encoders are more likely
to rely on the ‘right’ information, but even they
struggle with generalization, suggesting that
they still learn specific lexical patterns rather
than the general principles of comparison.

1 Introduction

Generally, human decisions may be based on
deliberate, careful reasoning (‘slow thinking’)
or quick heuristics (‘fast thinking’) (Kahneman,
2011). These two processes have parallels in the
realm of reading comprehension (RC): a human
reader would ideally fully process the text to an-
swer questions, but in practice, we may deliberately
skim rather than read to save effort. Even capable
students may be misled by superficial cues (Acker-
man et al., 2013).

The previous generations of NLP models have
already achieved high performance on many RC
benchmarks, but they were found to often ‘read
fast’, i.e. rely on shallow patterns (Chen et al.,
2016; Jia and Liang, 2017; Rychalska et al.,
2018). Fine-tuned Transformer-based models (De-
vlin et al., 2019) still have similar shortcomings

* Work done while employed at the University of Copen-
hagen

Context: Leo Strauss was a political philosopher and
classicist. He was born in Germany ... Thoughts

on Machiavelli is a book by Leo Strauss ...
Question: Where was the author of Thoughts of
Machiavelli born ?
Answer: Germany

Figure 1: A sample question from the SQuAD (Rajpurkar
et al., 2016) dataset. green tokens are the words that a reader
relying on coreference resolution would take into account, and
red tokens are the words that could be used to answer the

question with entity type matching.

(Sugawara et al., 2020; Rogers et al., 2020; Sen
and Saffari, 2020; Kassner and Schütze, 2020, inter
alia) in RC, as well as other tasks (McCoy et al.,
2019; Jin et al., 2020).

Consider the example in Figure 1. A human
reader would ideally construct the coreference
chain resolving the pronoun ‘he’ to ‘Leo Strauss’.
A possible heuristic-based solution is entity type
matching (Jia and Liang, 2017): a model could
observe that a ‘where’ question can only be an-
swered by a ‘location’ and among two such entities
(‘Germany’ and ‘United States’) the correct answer
(‘Germany’) is closer to ‘born’. Such heuristic
reasoners will not generalize to unseen examples.
Thus a key challenge in building trustworthy and
explainable RC systems is to make sure their deci-
sions are based on valid reasoning steps. However,
it is difficult to establish: (a) what that reasoning
should be; and (b) whether a blackbox system ad-
heres to it.

The present study proposes a framework for the
analysis of RC models that includes: (a) defining
the expected reasoning; (b) analysing model perfor-
mance using explainability techniques. In partic-
ular, we contribute a case study for RC questions
involving coreference resolution and comparison:
we define the expected ‘reasoning’ for them (§2)
and use a combination of saliency-based and coun-
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terfactual explanations (§3) to analyze RC systems
based on BERT and RoBERTa encoders of various
sizes (§4). Overall, we find that the larger models
are more likely to rely on the ‘right’ information,
but even they seem to learn specific lexical patterns
rather than underlying linguistic phenomena.

2 When do RC Model ‘Understand’ A
Text?

2.1 Understanding in Humans
The phenomenon of ‘natural language understand-
ing’ is not yet sufficiently well defined even for
human speakers, although it is pursued by at least
three different fields: philosophy of mind (e.g.
Grimm, 2021; Dellsén, 2020), psychology (e.g.
Christianson, 2016; Zwaan, 2016), and pedagogy
(e.g. Lander, 2010; Duffin and Simpson, 2000). We
cannot do this topic justice within the scope of this
paper, but let us briefly outline the key premises
about human understanding that we rely on in our
work:

• Understanding is not truth-connected: it is “a
merely psychological state” (Grimm, 2012);

• Its objects are something like ‘connections’
or ‘relations’ of the phenomenon X to other
phenomena (Grimm, 2021);

• It is not binary: teachers routinely talk of ‘lev-
els of understanding’, ‘continuum of under-
standing’ or ‘partial understanding’ (Nurhuda
et al., 2017);

• It is different from ‘knowledge’, i.a. since
it is “not transmissible1 in the same sense as
knowledge is” (Burnyeat and Barnes, 1980).

If human understanding is about establishing
connections between new and existing conceptual-
izations, its success depends on the pre-existence
of a suitable set of conceptualizations, to which
the connections can be established (this is why e.g.
algebra is taught in schools before differential cal-
culus). The set of conceptualizations that each of
us possesses is unique, since it depends on our ex-
perience of the world (cf. Fillmore’s ‘semantics of
understanding’ (Fillmore, 1985)). This, together
with other factors like level of motivation, attention
etc., explains the variation in human understanding:
we may grasp different sets of possible connections

1This is why, as any teacher knows from practice, simply
presenting the students with definitions or principles does
not necessarily result in understanding of those principles or
definitions.

between different aspects of the new phenomenon
and our pre-existing worldview.

2.2 ‘Understanding’ in Machines

Much research on human understanding focuses on
mechanisms that fundamentally do not apply to cur-
rent NLP systems, such as the distinction between
‘knowledge’ and ‘understanding’ or the fact that
humans will fail to understand if they don’t have
suitable pre-existing conceptualizations (while an
encoder will encode text even if its weights are
random). Since the mechanism (and its results) is
so fundamentally different, terms like ‘natural lan-
guage understanding’ or ‘reading comprehension’2

for the current NLP systems are arguably mislead-
ing. It would be more accurate to talk instead of
‘natural language processing’ and ‘information re-
trieval’.

While terms like ‘understanding’ are widely
(mis)applied to models in AI research (Mitchell,
2021), their definitions are scarce. Turing famously
posited that the question “can machines think?” is
too ill-defined to deserve serious consideration, and
replaced it with a behavioral test (conversation with
a human judge) for when we would say that think-
ing occurs (Turing, 1950). Conceptually, this is
still the idea underlying the ‘NLU’ benchmarks
used today: we assume that for models to perform
well on collections of tests such as GLUE (Wang
et al., 2018, 2019), some capacity for language un-
derstanding is required, and hence if our systems
get increasingly higher scores on such behavioral
tests, this would mean progress on ‘NLU’. How-
ever, just like the Turing test itself turned out to be
“highly gameable” (Marcus et al., 2016), so are our
tests3 (Sugawara et al., 2020; Rogers et al., 2020;
Sen and Saffari, 2020; Kassner and Schütze, 2020;
McCoy et al., 2019; Jin et al., 2020, inter alia).

All this suggests that, at the very least, we need
a better specification for the success criteria for
such behavioral tests. Instead of asking “Does my
RC model “understand” language?” we could
ask: “Does my RC model produce its output based

2Marcus and Davis (2019) dispute even the applicability
of the term “reading”, declaring the current QA/RC systems
“functionally illiterate” since they cannot draw the implicit
inferences crucial for human reading.

3In fact, the larger the dataset, the more of likely spurious
patterns are to occur (Gardner et al., 2021). This presents a
fundamental problem for data-hungry deep learning systems:
“the models, unable to discern the intentions of the data set’s
designers, happily recapitulate any statistical patterns they find
in the training data” (Linzen, 2020).
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on valid information retrieval and inference strate-
gies?” Then the next question is to specify what
strategies would be valid and acceptable, which is
possible to do on case-by-case basis.

With respect to ‘machine reading comprehen-
sion’, a recent proposal by Dunietz et al. (2020) is
based on whether a model can extract certain infor-
mation that should be salient for a human reader
(e.g. spatial, temporal, causal relations in a story).
However, a model can extract such ‘right’ informa-
tion through a ‘wrong’ process, e.g. some shallow
heuristic. Hence the definition of ‘NLU’ needs at
least two components: (a) the specific information
that the model is expected to be ‘extract’ from the
text; and (b) a valid process with which such ‘ex-
traction’ is performed. And this would still not be
enough: the model could have simply memorized
both the right answer and the strategy to find it for
some limited set of examples. We argue that the
third key prerequisite is the ability to generalize:
to consistently use the ‘right’ information-seeking
strategy in novel contexts.4

Thus we propose the following general success
criteria for NLP systems:
Definition 1 A NLP system has human-level competence with
respect to its task X iff:

(a) it is able to correctly perform the task X (identify the tar-
get information in QA, correctly classify texts, generate
an appropriate translation etc.);

(b) it does so by relying predominantly on information that
a competent human speaker would also find relevant5;

(c) it does so consistently under distribution shifts that do
not pose challenges to competent human speakers.

2.3 Reasoning an RC Model should Perform
The second principle in our Def. 1 is that the model
should rely on the ‘right’ information. While mod-
els can discover patterns unknown to humans, a
competent human reader should at least find such
patterns relevant post-factum.

What information-seeking strategy is needed
depends on the type of question and the context.
Rogers et al. (2022) propose a classification of RC
‘skills’ into five main groups: situation/world mod-
eling, different types of inference/logical reasoning,

4This does not preclude errors (humans make them too).
5Note that this leaves room for NLP systems to rely on

patterns humans may not be even aware of, as long as such
patterns are valid. E.g. if a system learned to make health
outcome predictions based on latent information about un-
known drug interactions, that would be the discovery of new
knowledge that the experts would then accept – but not if its
predictions were based on a spurious correlation with Marvel
movie release dates.

the ability to combine information in multi-step
reasoning, knowing what kind of information is
needed and where to find it, and interpreting/ma-
nipulating linguistic input. A single question may
require the competency of several types of ‘skills’.

This study contributes an empirical investigation
on two RC ‘skills’ in the broad category of ‘inter-
preting/manipulating linguistic input’: coreference
resolution and comparison. Both of them rely on
the contextual information and linguistic compe-
tence. Assuming that a human reader would first
read the question and then read the context in or-
der to find the answer, they would need to perform
roughly three steps: (a) to interpret the ‘question’
(akin to its transformation to a formal semantic
representation or a query); (b) to identify the rele-
vant information in the context through establishing
the referential equality between expressions in the
question and in the context; (c) to use that infor-
mation to perform the operation of comparison or
coreference resolution (see Table 1).6

2.4 Reasoning an RC Model does Perform

Having established what reasoning steps an RC
model should perform, the next step would be to
ascertain whether that is the case for specific mod-
els. But generally, the interpretability of DL models
is an actively developed research area (Belinkov
and Glass, 2019; Molnar, 2022). In this study, we
rely on a combination of two popular post-hoc ex-
planation techniques, but we also discuss their lim-
itations, and expect that new methods could soon
be developed and used in the overall paradigm for
the analysis of RC models that we propose.

Attribution/saliency-based methods Li et al.
(2016); Sundararajan et al. (2017) provide a
saliency score for each token in the input, which
shows how ‘important’ a given token is for the
model decision in this instance. Figure 2 illustrates
that such scores may not necessarily map onto hu-
man rationales.

To establish whether a model performs a given
reasoning step (see Table 1), we define the follow-
ing partition of the token space: the tokens the
model should find important (positive) vs the ones
it should not (negative). For example, to know if
the model ‘attends’ to the entities being compared,
we can define the positive partition as {blind,

6This definition could be developed further for more com-
plex cases of coreference and comparison, or to model other
variations of the human reading process, but this approxima-
tion suffices for our purposes and our RC data (see §3.1).
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Example Step Relevant Spans
C

om
pa

ri
so

n

Context: Blind Shaft is a 2003
film about a pair of brutal con
artists operating in the illegal coal
mines of present day northern
China. The Mask Of Fu Manchu
is a 1932 pre-Code adventure film
directed by Charles Brabin.
Question: Which film came out
earlier, Blind Shaft or The Mask
Of Fu Manchu?
Answer: The Mask Of Fu
Manchu

Interpreting the
question

came out relation: <film, release date>
film entities: Blind Shaft, The Mask Of Fu Manchu
earlier: date comparison
target: min(release dateBlind Shaft, release
dateThe Mask of Fu Manchu)

Identifying relevant
information through
referential equality

Blind Shaftq := Blind Shaftc
The Mask Of Fu Manchuq := The Mask Of Fu
Manchuc.
came outq := <date, film> constructionc
release dates: <Blind Shaft, 2003>, <The Mask Of Fu
Manchu, 1932>

Value comparison solution: earlierq := minc
min(1932, 2003) = 1932

C
or

ef
er

en
ce

Context: Barack Obama was the
44th president of the US. He was
born in Hawaii.
Question: Who was born in
Hawaii?
Answer: Barack Obama.

Interpreting the
question

born relation: <person, location>
Hawaii: location
target: born: <Hawaii, UNK>

Identifying relevant
information through
referential equality

Hawaiiq := Hawaiic
born relation: <he, Hawaii>

Coref. resolution <Barack Obama, he>
solution: born <Barack Obama, Hawaii>

Table 1: The basic reasoning steps for answering comparison and coreference questions.

3/30/22, 11:33 PM bert_qa_viz.html

file:///home/sagnik/Dropbox/work/qaskills/bert_qa_viz.html 1/1

Legend:  Negative  Neutral  Positive
True
Label

Predicted
Label

Attribution
Label

Attribution
Score Word Importance

the
(42)

the mask
of fu
manchu
(6.98)

the
(42) 3.92

[CLS] which film came out earlier , blind shaft or the mask of

fu manchu ? [SEP] blind shaft is a 2003 film about a pair of

brutal con artists operating in the illegal coal mines of present

day northern china . the mask of fu manchu is a 1932 pre - code

adventure film directed by charles bra ##bin . [SEP]

manchu
(46)

the mask
of fu
manchu
(6.84)

manchu
(46) 3.43

[CLS] which film came out earlier , blind shaft or the mask of

fu manchu ? [SEP] blind shaft is a 2003 film about a pair of

brutal con artists operating in the illegal coal mines of present

day northern china . the mask of fu manchu is a 1932 pre - code

adventure film directed by charles bra ##bin . [SEP]

Figure 2: IG saliency scores example. Green/red denotes
positive/negative scores.

shaft, mask, of, fu, munchu} and the
negative partition as {northern, china}. If
the model consistently follows this strategy, the av-
erage score should be higher for the positive rather
than negative partition.

A limitation of saliency explanations is that
they are not always faithful, i.e., do not reflect a
model’s true decision process (Atanasova et al.,
2020, 2022a; Ye et al., 2021). Also, even when
they are faithful, i.e., when we can reliably say that
a model places more ‘importance’ on token i than
token j in an instance, this does not imply that a
set of tokens I is more salient than another set J .

Counterfactual explanations have the form:
“had X not occurred, Y would not have occurred”
(Molnar, 2022). In NLP, they are based on input
perturbations (Kaushik et al., 2020; Gardner et al.,
2020; Sen et al., 2021; Atanasova et al., 2022b). In
our case, it translates to “had the model not relied
on information X, it could not have answered both

the original and the perturbed instance correctly”.
Thus the perturbation has to change the correct la-
bel, unlike for contrast sets (Gardner et al., 2020).

Counterfactual (CF) explanations are considered
to be more faithful, since they identify input fea-
tures that impact predictions. However, they typi-
cally have to be manually generated (Kaushik et al.,
2020), which makes large-scale CF generation pro-
hibitively expensive (Khashabi et al., 2020).

We rely on both types of explanations as parallel
sources of evidence about RC model reasoning,
and define their alignment as follows:

Definition 2 Explanation Alignment. A CF and saliency-
based explanation align when: (a) both the original and the
counterfactually modified instance are answered correctly,7;
and (b) the positive partition has a statistical significantly
higher average saliency score than the negative partition.

We define the alignment score as follows:

Definition 3 Alignment Score: The Alignment Score for a
<dataset, model, reasoning step> triple is the proportion of
instances in that dataset for which different kinds of explana-
tions align (according to our Def. 2).

We interpret a high alignment score as evidence
that both kinds of explanations are faithful, and
the model indeed performs the expected reasoning
steps.

7i.e. there is an exact match between the predicted and the
correct answer.
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3 Methodology

3.1 Datasets and Models
For Coreference, we use the Quoref (Dasigi et al.,
2019) dataset (20K training and 2.4K validation in-
stances) where the annotators were asked to design
questions for a given text so that answering those
would require resolving anaphora. For Compari-
son, we sample questions from HotpotQA (Yang
et al., 2018) and 2WikiMultiHopQA (Ho et al.,
2020): two datasets with questions manually anno-
tated with their reasoning type (bridge or compar-
ison). We select the ‘comparison’ questions con-
taining comparative adjectives or adverbs in them
(23K training, 3K validation instances). These re-
sources are based on Wikipedia and have multiple
passages as contexts, but the sentences (typically
2-3) necessary to answer a question are marked as
‘supporting facts’. Since we are not focusing on the
multi-hop information retrieval skill, we limit the
contexts to these sentences.

We experiment with five pre-trained
Transformer-based encoders of the BERT family:
RoBERTalarge (Liu et al., 2019), BERTlarge-cased,
BERTbase-cased (Devlin et al., 2019), BERTmedium,
and BERTsmall (Turc et al., 2019; Bhargava et al.,
2021). These BERT models differ mainly in the
structure of architecture blocks and the number of
parameters, while RoBERTa also has a different
training corpus and optimization. Since larger
models were shown to generalize better for some
use cases (Hendrycks et al., 2020; Bhargava et al.,
2021), we investigate whether they also are more
likely to be right for the right reasons.

We fine-tune each encoder using the architecture
in Devlin et al. (2019) (see the appendix for de-
tails) and evaluate them on the validation set (as
the test sets are not public). We use the standard
evaluation metrics in extractive QA: F1-Score (the
percentage of token overlap between predicted and
‘gold’ answers, averaged over all data points), and
Exact-match (the number of data points where the
predicted answer matches the ‘gold’ answer).

3.2 Counterfactual Explanations
Our formulation of reasoning (Table 1) consists
of three basic steps for both coreference and com-
parison: interpreting the question, identifying the
relevant information through referential equality,
and the target operation on the identified informa-
tion (coreference resolution or value comparison).
We focus on the final step, since: (a) it implicitly

relies on correct semantic parsing of the question
and the context; (b) referential equality in our data
is in large part trivial: most entities have the same
surface form in the question and the text.

An obvious semantically valid perturbation that
should change the prediction (and thus test for the
model’s understanding of the comparison opera-
tion) is to replace the comparative adjectives with
their antonyms (Figure 3d). Since our sample only
contains 6 tokens used as comparison operators,
we define appropriate replacements manually.8

For coreference questions, a competent RC
model would at least resolve the coreference chain
for the target entity. A context can have many
coreference clusters, so we need to identify the
relevant one. In the Quoref dataset, we use the
instances where the relevant cluster itself contains
the answer entity9 (see Figure 3a), and therefore,
can be extracted automatically. This leaves us
with 55%(1329/2418) of the validation instances.
These are further subsampled to manually cre-
ate 100 CF instances by inserting a new sentence,
which includes the new and excludes the old an-
swer (see Figure 3b). Similarly to the comparison
questions, the original answer entity remains in the
context. If the model uses the ‘shortcut’ of choos-
ing the most frequent entity in the context (Wu
et al., 2021), it should not be able to answer both
the original and the perturbed instance correctly.

3.3 Saliency-based Explanations

We obtain token saliency scores from two families
of attribution/saliency methods: Occlusion (DeY-
oung et al., 2020), a method based on perturbations,
and Integrated Gradients (IG, Sundararajan et al.
(2017)), a method based on gradients.10

Design decisions: RC models typically predict
two scores (ts, te) for each token t: the probabil-
ity of t being the start and the end of the answer
span. Any attribution method produces two scores
(At

start, A
t
end) for each token t, indicating how ‘im-

8earlier↔later, first→later, more recently→earlier,
older↔younger.

9We extract the clusters using an off-the-shelf coreference
resolver (Clark and Manning, 2016) implemented in Spacy.

10Atanasova et al. (2020) shows that for Transformer based
architectures, Occlusion is the best perturbation method by
two evaluation criteria: agreement with human rationale and
faithfulness. A recent paper by Ye et al. (2021) finds IG
to be one of the most faithful gradient-based methods for
extractive QA, only outperformed by Layerwise Attention
Attribution (LAA), a method proposed in the paper itself. We
leave LAA and other popular explainability methods such as
LIME (Ribeiro et al., 2016) for future work.

https://spacy.io
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Context: Górecki said of the work, ... I had a grandfa-
ther who was in Dachau, an aunt in Auschwitz. ...
Question: What is the last name of the person who had
an aunt at Auschwitz?
Answer: Górecki

(a) A coreference question from Quoref (the relevant corefer-
ence cluster tokens in green )

Context: Górecki said of the work... I had a grand-
father who was in Dachau. I had a nephew named
Mike Wazowski . He had an aunt in Auschwith ...

Question: What is the last name of the person who had
an aunt at Auschwitz?
Answer: Wazowski

(b) CF perturbation for 3a (added tokens are bold-faced)

Context: Blind Shaft is a 2003 film... The Mask Of Fu
Manchu is a 1932 pre-Code adventure film...
Question: Which film came out earlier, Blind Shaft or
The Mask Of Fu Manchu?
Answer: The Mask Of Fu Manchu

(c) A comparison question from 2WikiMultiHopQA

Context: Blind Shaft is a 2003 film... The Mask Of Fu
Manchu is a 1932 pre-Code adventure film...
Question: Which film came out later , Blind Shaft or
The Mask Of Fu Manchu?
Answer: Blind Shaft

(d) CF perturbation for 3c

Figure 3: Examples of CF perturbations used in this study.

Comparison: Question: Which film came out
more recently , Blind Shaft or The Mask Of Fu

Manchu ?
Coreference: Context: Barack Obama was
the 44th president of the US . He was born in

Hawaii. Question: Who was born in Hawaii?

Figure 4: Positive and negative partitions for saliency
explanations.

portant’ t is for predicting the start/end of the an-
swer span. Following Kokhlikyan et al. (2020), we
use Astart in all our saliency experiments.11

For Occlusion, we calculate At
start by replacing

t in the input with a baseline token (MASK) and
measuring the change in ts. DNNs map an input
vector to a scalar value (loss/ class probability).
Gradient-based methods measure At

start using the
gradient of the token t w.r.t. this scalar function (we
use argmax(ts)). IG sums these gradient values
along a linear path from a baseline to the current
instance. Both Occlusion and IG need a baseline
token, which for us is the MASK token.

Gradient-based methods in NLP do not produce
a scalar saliency score, i.e., At

start is a vector be-
cause the input is an embedding matrix and not
a vector. Two common ways to summarize this
vector to a scalar are: (a) scalar product between
the input and the gradient vector (Han et al., 2020);
or (b) lp norm, where p ∈ 1, 2 (Atanasova et al.,
2020). We use l2 norm (see the discussion in §4.3).

Token partitions: Figure 4 shows the token

11We also briefly experimented with (Astart +Aend)/2 for
Occlusion but it yielded very similar saliency ranking of the
tokens on a 100 sample subset of the Comparison dataset.

partitions used for the same reasoning steps (com-
parison and coreference resolution) that we also
target with the CF perturbations. For comparison
the positive partition consists of the question to-
ken(s) expressing the comparison operation (e.g.
‘more recently’). The negative partition consists of
question tokens that are not in the set of entities
or values that need to be compared, or in the set
of verbs (which could capture the relation between
the entities and their values). For coreference reso-
lution, the positive partition is the context tokens
in the relevant coreference cluster (§3.2). The neg-
ative partition is the set of context tokens that are
not in: (a) the positive partition; and (b) match the
question tokens.

4 Results & Analysis

4.1 Base Model Performance

As a sanity check, we fine-tune all models on the
data described in §3.1 (Table 2). For coreference,
the F1-Score of our best model (RoBERTalarge) is
slightly better (82.10) than the previously reported
score (79.64, Wu et al. (2021)). The comparison
instances are sampled from parts of two datasets,
and so a direct comparison is not possible.12

The size and the model family matter: RoBERTa
performs better than BERT for two models of the
same size, and the larger models do better. Inter-
estingly, the difference is more pronounced for the
Quoref dataset, where the instances have longer
contexts and the questions are more complex.

12The best model (RoBERTalarge) has an F1-Score of 92%,
slightly better than the highest score reported on the HotpotQA
leaderboard (89.14%) and much better than the baseline model
for the 2WikiMultiHopQA dataset (65.02, (Ho et al., 2020)).

https://hotpotqa.github.io/
https://hotpotqa.github.io/
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Comparison Coreference

F1 EM F1 EM

RoBERTalarge 92.08 91.07 82.10 79.39
BERTlarge-cased 89.23 88.57 71.91 68.47
BERTbase-cased 89.38 88.37 64.62 59.38
BERTmedium 86.45 85.96 60.16 54.82
BERTsmall 71.44 69.87 50.94 43.39

Table 2: Average (3 runs) results of different models on Com-
parison and Coreference datasets. The STD varies between
0.01− 0.72%. Green indicates the best scores.

Coreference Comparison

og cf og cf
RoBERTalarge 92.0 70.7 99.4 98.9
BERTlarge-cased 86.2 50.8 98.9 93.1
BERTbase-cased 82.5 39.2 98.4 91.8
BERTmedium 74.0 35.8 97.4 96.5
BERTsmall 67.2 29.4 68.2 45.3

Table 3: F1-Score for the original and the CF perturbations.
Red denotes significant drop.

4.2 Counterfactual Explanations

Table 3 compares the F1-Score of the original
(‘og’) vs counterfactual (‘cf’) instances. For the
comparison questions, the performance on the orig-
inal and CF instances are very close for all models
except BERTsmall. Bigger models consistently per-
form better, but in most cases the difference with
the next larger model is relatively small.

For coreference questions, CF instances are
much more difficult for all models. Even the best
model RoBERTalarge experiences a 24% drop. All
BERT models perform poorly: even the larger ones
have a 40% performance drop (BERTlarge-cased).
Thus, the CF tests show that the models are more
likely to follow the expected reasoning strategy for
comparison, but not for the coreference questions.

4.3 Alignment Score

For statistical significance testing in ‘Expectation
Alignment’ (Def. 2), we use a one-tailed indepen-
dent t_test (p = 0.05) with the null hypothesis that
the positive partition does not have a higher aver-
age saliency score. Table 4 shows the ‘Alignment
Score’ (Def. 3) results for comparison and corefer-
ence resolution (§3.3), using saliency scores from
IG and Occlusion.

Ideally, for a random partition of tokens in any
instance, the positive and the negative partitions
should have similar saliency scores. For a dataset,
they should be significantly different in ≈ 0%

Coreference Comparison

IG Occ IG Occ

RoBERTalarge 33.3 69.7 33.8 67.0
BERTlarge-cased 12.5 58.3 34.1 65.9
BERTbase-cased 21.4 42.9 83.8 69.0
BERTmedium 81.8 36.4 82.2 42.0
BERTsmall 83.3 33.3 86.3 16.3

Table 4: Alignment score between counterfactual explana-
tions vs IG (Integrated Gradients) or Occ (Occlusion). Green
indicates methods with > 80% alignment.

cases.13 For Occlusion, the saliency scores are
significantly different in only 5.6− 8.2% instances
for a random partition. Recall that in §3.3 we dis-
cussed 3 summarizers for IG. Among all of them,
the l2 norm is the only one where this happens in
5.2 − 7.3% cases, for the other two the numbers
are between 11.3− 28.9%.

Table 4 shows that, counter-intuitively, for both
comparison and coreference questions the larger
models overall have lower IG alignment scores,
meaning that they do not pay as much ‘attention’
to the tokens we defined as important. This is de-
spite the fact that for comparison the above CF
experiment suggests that the models do perform
the expected reasoning operations. One possible
explanation is that IG simply does not reliably cap-
ture the model’s reasoning process, and Occlusion
does better at that because its trend in alignment
is the opposite of IG: bigger models tend to have
significantly higher alignment scores.14

Another possible explanation is that IG expla-
nations are in fact faithful, but, having more ‘at-
tention’ to the tokens we defined as important is
counter-productive. Consider that the BERTsmall
model achieves an Exact-match of 87% on the orig-
inal questions containing the comparative tokens
‘earlier’, ‘first’ and ‘older’ (which are 2.1 times
more frequent in the training data than all others),
and an Exact-match of 28% on the other original
questions. Yet overall the model performs poorly,
and thus the reliance on these highly frequent com-
parative adjectives could be a bug rather than a
feature. As this hypothesis brings into question the
overall utility of saliency-based explanations for
testing for the ‘correct’ reasoning steps, we hope it
will be investigated in more depth in future work.

13Aggregation of local explanations such as saliency scores
are not guaranteed to produce faithful global explanations
(Setzu et al., 2021), but this is a convincing evidence.

14The lack of alignment between the two techniques is
consistent with the findings of Atanasova et al. (2020).
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Supporting
Facts

Paragraphs

OG CF CF-
ood

OG CF CF-
ood

RoBERTalarge 99.4 98.9 77.2 98.7 96.4 74.8
BERTlarge-cased 98.9 93.1 68.7 98.0 90.8 67.5
BERTbase-cased 98.4 91.8 58.1 97.0 86.8 59.9
BERTmedium 97.4 96.5 64.4 96.2 86.3 66.3
BERTsmall 68.2 45.3 57.1 68.3 47.6 58.8

Table 5: F1-Score for the original (OG) comparison questions
and their counterfactual perturbations in (CF) and out (CF-
ood) of the training distribution. The models are provided
either a smaller context of supporting facts or full paragraphs.
Red indicates a significant drop in performance.

4.4 Generalization Tests

Table 3 shows that when measured with CF tests,
most models do not follow the expected corefer-
ence resolution strategy, but they do so for compar-
ison. Still, based on our success criteria (Def. 1),
we cannot yet conclude that they ‘understand’ com-
parison. A human would be able to disassociate the
logical operation of comparison from the surface
realizations, i.e., they would be able to answer a
question correctly with either of the surface forms
‘younger’ and ‘more junior’.

For the CF experiments reported up until this
point the perturbations were in-distribution, i.e., the
training data had both the original question “who
is younger” and the CF “who is older”. Now we
replace the comparative adjectives with antonyms
that are not in the training data (see the appendix
for details). We also increase the context size by
using full paragraphs instead of just the sentences
marked as ‘supporting facts’, to see if the models
would be ‘distracted’ by more information.

Table 5 shows a considerable drop in perfor-
mance for CF-ood condition for all models. The
larger models generalize better: RoBERTalarge and
BERTlarge-cased perform 2% and 8% worse for CF
questions, whereas BERTsmall exhibits a 29% re-
duction. The ‘supporting facts only’ condition is
overall easier than the ‘paragraphs’ condition.

4.5 Heuristics for Coreference Questions

Since the CF tests (§4.2) do not show that BERT
models can cope with the altered coreference
chains, we have to conclude that they do not follow
the expected reasoning steps. Though given the
above-chance performance they must follow some
other strategy. We test the hypothesis that many of

Coreference SQuAD

F1-Score EM F1-Score EM

Token
overlap 21.5 12.9 26.68 21.64

LCS 17.2 12.9 19.59 15.97
Position 12.3 7.9 21.62 16.32
Sentence
encoder 20.43 9.67 25.91 20.61

Table 6: Results for different heuristic methods on the coref-
erence and SQuAD datasets. Green indicates the best score.

the coreference questions can be answered by sim-
ple heuristics and that the models resort to those.
Specifically, we define an unsupervised dataset-
independent heuristic method consisting of two
steps: sentence selection and phrase extraction.

Sentence Selection: Among all the context sen-
tences {ci}, select the one that is the ‘closest’ to the
question q. We experiment with 4 options for simi-
larity: token-overlap (number of common tokens
in q and ci), sentence encoder (cosine similarity
between the sentence embeddings of q and ci cre-
ated by a sentence encoder (Reimers and Gurevych,
2019)), LCS (number of tokens in the Longest
Common Subsequence between q and ci), and posi-
tion (simply taking the first sentence in the context
following Ko et al. (2020)).

Phrase Extraction: We assume that the model
would also learn to look for a named entity in the
selected sentence. The question dictates the type
of this entity (e.g. ‘where’ → location, ‘who’ →
person name). The type could be determined by a
simple mapping between ‘wh’ question words and
entity types, but this can fail (e.g. for the question
“Who won the World Cup in 2002?” the expected
answer is a location, not a person). Therefore, we
fine-tune a Transformer model to predict the answer
type from the question.15

Table 6 shows the best heuristic has an F1-Score
of 21.5% on the coreference dataset, and 26.68%
on SQuAD (Rajpurkar et al., 2016), which we use
for validation. The SQuAD score is comparable to
the previously reported result of 26.7% in Sen and
Saffari (2020) for an algorithm predicting entity
types heuristically, and choosing the entity from
the whole context instead of the best possible sen-
tence. Ray Choudhury et al. (2022) uses a sim-
ilar approach to find Quoref questions that can
be answered heuristically, but our algorithm has

15The accuracy for this model is 85.7%. See the appendix
for results from multiple models and loss functions.
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more sentence selection strategies, and unlike ours,
Ray Choudhury et al. (2022) only uses one loss
function in the phrase extraction model.

Nevertheless, the best heuristic algorithm per-
forms considerably worse than the smallest
BERTsmall model (51%, Table 2). Performance
alone cannot reveal whether this strategy is used
in the instances where it would be sufficient, but
this result shows that even the smaller models must
either rely on a more successful (but still imperfect)
strategy, or at least rely on more than one heuristic.
The problem with discovering potential ‘shortcuts’
in low-performing models is complicated as these
strategies are not necessarily human-interpretable:
González et al. (2021) show that humans struggle
to predict the answer chosen by poorly performing
RC models, even when the saliency explanations
for that answer is shown, because these answers
simply do not align with human RC strategies.

5 Discussion and Related Work

Our work continues the emerging trend of research
on being ‘right for the right reasons’ (McCoy et al.,
2019; Chen and Durrett, 2019; Min et al., 2019;
Atanasova et al., 2022b, inter alia). We contribute
stricter success criteria for behavioral tests of NLP
models (Def. 1), and, for the RC task, develop
the methodology of: (a) defining what informa-
tion the model should rely on for a given linguistic,
logical, or world knowledge ‘skill’; (b) system-
atically testing the behavior of RC models with
interpretability techniques for whether they rely on
that information. This is most closely related to the
work on ‘defining comprehension’ by Dunietz et al.
(2020), though their testing is limited to probing
the models with RC questions. Another related
study is the QED framework (Lamm et al., 2021),
annotating Natural Questions (Kwiatkowski et al.,
2019) with ‘explanations’ of the expected reason-
ing process. Their expected reasoning process also
contains 3 steps, partly similar to ours: selecting a
relevant sentence, referential equality, and decid-
ing on whether this sentence entails the predicate
in the question. However, the goals of QED are
to: (a) predict both the answer and the explanation
for a question; and (b) understand if explanations
help QA models. Such explanation annotations are
unavailable for most datasets, and few QA models
produce explanations. Therefore, our approach of:
(a) defining expected reasoning steps; and (b) using
model interpretations to validate such steps applies

to a broader class of models.
This study is also related to the overall efforts

to define what kinds of ‘skills’ RC models can
be expected to exhibit (Sugawara et al., 2018;
Schlegel et al., 2020; Rogers et al., 2022). While
these works focus on the high-level taxonomies of
‘skills’, we contribute practical definitions for two
linguistic ‘skills’ (comparison and coreference res-
olution) which could be used for analyzing model
performance. Implicitly, research proposing RC
resources that target various specific ‘skills’ (e.g.
TempQuestions (Jia et al., 2018) for temporal or-
der, MathQA (Amini et al., 2019) for numerical
reasoning, etc.) also contributes to this area, but
they typically rely on broad linguistic definitions
rather than on steps for machine reasoning.

The saliency techniques we rely on have previ-
ously been used for extractive QA (Madsen et al.,
2021), but we are among the first (Ye et al., 2021)
to investigate their correlation with counterfac-
tual explanations. For counterfactual perturbations,
we also ensure that the perturbations are human-
interpretable and change the prediction, which
is not the case for adding incomprehensible text
(Kaushik and Lipton, 2018), removing words from
questions, shuffling the context (Sen and Saffari,
2020), or replacing context tokens with random
tokens (Sugawara et al., 2020).

6 Conclusion

Making progress towards trustworthy NLP mod-
els requires specific definitions for the behavior
expected of these models in different situations.
We propose a framework for RC model analysis
that involves: (a) the definition of the expected
‘reasoning’ steps; (b) analysis of model behavior.
We contribute such definitions for two linguistic
‘skills’ (comparison and coreference resolution),
and use parallel explainability techniques to inves-
tigate whether RC models based on BERT family
encoders answer such questions correctly for the
right reasons. We find that to be the case for com-
parison, but not for coreference. Moreover, we
find that, even for comparison, the models ‘break’
when encountering out-of-distribution counterfac-
tual perturbations, suggesting that they memorize
specific lexical patterns rather than learn more gen-
eral reasoning ‘skills’. As such, more research is
needed on developing definitions and tests for spe-
cific ‘skills’ expected of NLU models, as well as
on more faithful interpretability techniques.



87

7 Acknowledgements

We would like to thank Pepa Atanasova, Gary Mar-
cus, Mark Steedman, and Bonnie Webber for the
discussion of various aspects of this work. We also
thank the anonymous reviewers for their time and
insightful comments.

References
Rakefet Ackerman, David Leiser, and Maya Shpigel-

man. 2013. Is Comprehension of Problem Solutions
Resistant to Misleading Heuristic Cues? Acta Psy-
chologica, 143(1):105–112.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards Interpretable Math
Word Problem Solving with Operation-Based For-
malisms. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A Diagnostic
Study of Explainability Techniques for Text Classi-
fication. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
3256–3274. Association for Computational Linguis-
tics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2022a. Diagnostics-
Guided Explanation Generation. Proceedings of
the AAAI Conference on Artificial Intelligence,
36(10):10445–10453.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2022b. Fact Checking
with Insufficient Evidence. Transactions of the Asso-
ciation for Computational Linguistics, 10:746–763.

Yonatan Belinkov and James Glass. 2019. Analysis
Methods in Neural Language Processing: A Survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers.
2021. Generalization in NLI: Ways (Not) To Go
Beyond Simple Heuristics. In Proceedings of the
Second Workshop on Insights from Negative Results
in NLP, pages 125–135, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

M. F. Burnyeat and Jonathan Barnes. 1980. Socrates
and the Jury: Paradoxes in Plato’s Distinction be-
tween Knowledge and True Belief. Proceedings
of the Aristotelian Society, Supplementary Volumes,
54:173–206.

Danqi Chen, Jason Bolton, and Christopher D. Manning.
2016. A Thorough Examination of the CNN/Daily
Mail Reading Comprehension Task. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2358–2367. Association for Computational
Linguistics.

Jifan Chen and Greg Durrett. 2019. Understanding
Dataset Design Choices for Multi-hop Reasoning.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 4026–
4032. Association for Computational Linguistics.

Kiel Christianson. 2016. When Language Compre-
hension Goes Wrong for the Right Reasons: Good-
enough, Underspecified, or Shallow Language Pro-
cessing. Quarterly Journal of Experimental Psychol-
ogy, 69(5):817–828.

Kevin Clark and Christopher D. Manning. 2016. Deep
Reinforcement Learning for Mention-Ranking Coref-
erence Models. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 2256–2262. The Association for
Computational Linguistics.

Pradeep Dasigi, Nelson F. Liu, Ana Marasovic, Noah A.
Smith, and Matt Gardner. 2019. Quoref: A Read-
ing Comprehension Dataset with Questions Requir-
ing Coreferential Reasoning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5924–5931. Association for
Computational Linguistics.

Finnur Dellsén. 2020. Beyond Explanation: Under-
standing as Dependency Modelling. The British Jour-
nal for the Philosophy of Science, 71(4):1261–1286.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A Benchmark
to Evaluate Rationalized NLP Models. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 4443–4458. Association for
Computational Linguistics.

https://doi.org/10.1016/j.actpsy.2013.02.004
https://doi.org/10.1016/j.actpsy.2013.02.004
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.1609/aaai.v36i10.21287
https://doi.org/10.1609/aaai.v36i10.21287
https://doi.org/10.1162/tacl_a_00486
https://doi.org/10.1162/tacl_a_00486
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/2021.insights-1.18
https://doi.org/10.18653/v1/2021.insights-1.18
http://www.jstor.org/stable/4106783
http://www.jstor.org/stable/4106783
http://www.jstor.org/stable/4106783
https://doi.org/10.18653/v1/P16-1223
https://doi.org/10.18653/v1/P16-1223
https://doi.org/10.18653/v1/n19-1405
https://doi.org/10.18653/v1/n19-1405
https://doi.org/10.1080/17470218.2015.1134603
https://doi.org/10.1080/17470218.2015.1134603
https://doi.org/10.1080/17470218.2015.1134603
https://doi.org/10.1080/17470218.2015.1134603
https://doi.org/10.18653/v1/d16-1245
https://doi.org/10.18653/v1/d16-1245
https://doi.org/10.18653/v1/d16-1245
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.1093/bjps/axy058
https://doi.org/10.1093/bjps/axy058
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408


88

Janet M. Duffin and Adrian P. Simpson. 2000. A Search
for Understanding. The Journal of Mathematical
Behavior, 18(4):415–427.

Jesse Dunietz, Gregory Burnham, Akash Bharadwaj,
Owen Rambow, Jennifer Chu-Carroll, and David A.
Ferrucci. 2020. To Test Machine Comprehension,
Start by Defining Comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 7839–7859. Association for Com-
putational Linguistics.

Charles J Fillmore. 1985. Frames and the Semantics
of Understanding. Quaderni di Semantica, 6(2):222–
254.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating Models’ Local Decision Bound-
aries via Contrast Sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323, Online. Association for Computational
Linguistics.

Matt Gardner, William Merrill, Jesse Dodge, Matthew E.
Peters, Alexis Ross, Sameer Singh, and Noah A.
Smith. 2021. Competency Problems: On Finding
and Removing Artifacts in Language Data. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 1801–1813. Association
for Computational Linguistics.

Ana Valeria González, Anna Rogers, and Anders Sø-
gaard. 2021. On the Interaction of Belief Bias and Ex-
planations. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
2930–2942, Online. Association for Computational
Linguistics.

Stephen Grimm. 2012. The Value of Understanding.
Philosophy Compass, 7(2):103–117.

Stephen Grimm. 2021. Understanding. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philos-
ophy, summer 2021 edition. Metaphysics Research
Lab, Stanford University.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov.
2020. Explaining Black Box Predictions and Unveil-
ing Data Artifacts through Influence Functions. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 5553–5563. Associa-
tion for Computational Linguistics.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained Transformers Improve Out-of-Distribution
Robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751, Online. Association for Computa-
tional Linguistics.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing A Multi-
hop QA Dataset for Comprehensive Evaluation of
Reasoning Steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
COLING 2020, Barcelona, Spain (Online), Decem-
ber 8-13, 2020, pages 6609–6625. International Com-
mittee on Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial Examples
for Evaluating Reading Comprehension Systems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017,
pages 2021–2031. Association for Computational
Linguistics.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jan-
nik Strötgen, and Gerhard Weikum. 2018. Tem-
pQuestions: A Benchmark for Temporal Question
Answering. In Companion of the The Web Confer-
ence 2018 on The Web Conference 2018 - WWW ’18,
pages 1057–1062, Lyon, France. ACM Press.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT Really Robust? A Strong
Baseline for Natural Language Attack on Text Classi-
fication and Entailment. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8018–8025. AAAI Press.

Daniel Kahneman. 2011. Thinking, Fast and Slow. Far-
rar, Straus and Giroux, New York.

Nora Kassner and Hinrich Schütze. 2020. Negated and
Misprimed Probes for Pretrained Language Models:
Birds Can Talk, But Cannot Fly. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 7811–7818. Association for Computa-
tional Linguistics.

Divyansh Kaushik, Eduard H. Hovy, and Zachary Chase
Lipton. 2020. Learning The Difference That Makes
A Difference With Counterfactually-Augmented
Data. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Divyansh Kaushik and Zachary C. Lipton. 2018. How
Much Reading Does Reading Comprehension Re-
quire? A Critical Investigation of Popular Bench-
marks. In Proceedings of the 2018 Conference on

https://doi.org/10.1016/S0732-3123(00)00028-6
https://doi.org/10.1016/S0732-3123(00)00028-6
https://doi.org/10.18653/v1/2020.acl-main.701
https://doi.org/10.18653/v1/2020.acl-main.701
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://doi.org/10.18653/v1/2021.emnlp-main.135
https://aclanthology.org/2021.findings-acl.259
https://aclanthology.org/2021.findings-acl.259
https://doi.org/https://doi.org/10.1111/j.1747-9991.2011.00460.x
https://plato.stanford.edu/archives/sum2021/entries/understanding/
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.1145/3184558.3191536
https://doi.org/10.1145/3184558.3191536
https://doi.org/10.1145/3184558.3191536
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://aclanthology.org/D18-1546/
https://aclanthology.org/D18-1546/
https://aclanthology.org/D18-1546/
https://aclanthology.org/D18-1546/


89

Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 5010–5015. Association for Computational
Linguistics.

Daniel Khashabi, Tushar Khot, and Ashish Sabharwal.
2020. More Bang for Your Buck: Natural Perturba-
tion for Robust Question Answering. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 163–170. Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional Neural Networks
for Sentence Classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo
Kim, and Jaewoo Kang. 2020. Look at the First
Sentence: Position Bias in Question Answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 1109–
1121. Association for Computational Linguistics.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.
Captum: A unified and generic model interpretability
library for PyTorch. CoRR, abs/2009.07896.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Matthew Lamm, Jennimaria Palomaki, Chris Alberti,
Daniel Andor, Eunsol Choi, Livio Baldini Soares,
and Michael Collins. 2021. QED: A Framework
and Dataset for Explanations in Question Answering.
Trans. Assoc. Comput. Linguistics, 9:790–806.

Arthur D. Lander. 2010. The Edges of Understanding.
BMC Biology, 8(1):40.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Under-
standing Neural Networks through Representation
Erasure. CoRR, abs/1612.08220.

Tal Linzen. 2020. How Can We Accelerate Progress
Towards Human-like Linguistic Generalization? In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 5210–5217. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. CoRR, abs/1907.11692.

Andreas Madsen, Nicholas Meade, Vaibhav Adlakha,
and Siva Reddy. 2021. Evaluating the Faithful-
ness of Importance Measures in NLP by Recursively
Masking Allegedly Important Tokens and Retraining.
CoRR, abs/2110.08412.

Gary Marcus and Ernest Davis. 2019. Rebooting AI:
Building Artificial Intelligence We Can Trust. Knopf
Doubleday Publishing Group.

Gary Marcus, Francesca Rossi, and Manuela Veloso.
2016. Beyond the Turing Test. AI Magazine, 37(1):3–
4.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the Wrong Reasons: Diagnosing Syntactic Heuris-
tics in Natural Language Inference. In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
3428–3448. Association for Computational Linguis-
tics.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner,
Hannaneh Hajishirzi, and Luke Zettlemoyer. 2019.
Compositional Questions Do Not Necessitate Multi-
hop Reasoning. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 4249–4257.
Association for Computational Linguistics.

Melanie Mitchell. 2021. Why AI is Harder than We
Think. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’21, page 3,
New York, NY, USA. Association for Computing
Machinery.

Christoph Molnar. 2022. Interpretable Machine Learn-
ing, 2 edition. LeanPub.

T Nurhuda, D Rusdiana, and W Setiawan. 2017. Ana-
lyzing Students’ Level of Understanding on Kinetic
Theory of Gases. Journal of Physics: Conference
Series, 812:012105.

https://doi.org/10.18653/v1/2020.emnlp-main.12
https://doi.org/10.18653/v1/2020.emnlp-main.12
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.84
https://doi.org/10.18653/v1/2020.emnlp-main.84
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://transacl.org/ojs/index.php/tacl/article/view/2797
https://transacl.org/ojs/index.php/tacl/article/view/2797
https://doi.org/10.1186/1741-7007-8-40
http://arxiv.org/abs/1612.08220
http://arxiv.org/abs/1612.08220
http://arxiv.org/abs/1612.08220
https://doi.org/10.18653/v1/2020.acl-main.465
https://doi.org/10.18653/v1/2020.acl-main.465
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2110.08412
http://arxiv.org/abs/2110.08412
http://arxiv.org/abs/2110.08412
https://doi.org/10.1609/aimag.v37i1.2650
https://doi.org/10.18653/v1/p19-1334
https://doi.org/10.18653/v1/p19-1334
https://doi.org/10.18653/v1/p19-1334
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/p19-1416
https://doi.org/10.18653/v1/p19-1416
https://doi.org/10.1145/3449639.3465421
https://doi.org/10.1145/3449639.3465421
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1088/1742-6596/812/1/012105
https://doi.org/10.1088/1742-6596/812/1/012105
https://doi.org/10.1088/1742-6596/812/1/012105


90

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards Ro-
bust Linguistic Analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Compu-
tational Natural Language Learning, CoNLL 2013,
Sofia, Bulgaria, August 8-9, 2013, pages 143–152.
ACL.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R. Bowman. 2020. jiant: A Software Toolkit
for Research on General-Purpose Text Understand-
ing Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 109–117, Online. As-
sociation for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100, 000+ Questions
for Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Sagnik Ray Choudhury, Nikita Bhutani, and Isabelle
Augenstein. 2022. Can Edge Probing Tests Reveal
Linguistic Knowledge in QA Models? In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics. International Committee on
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "Why Should I Trust You?": Ex-
plaining the Predictions of Any Classifier. In Pro-
ceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, USA, August 13-17, 2016,
pages 1135–1144. ACM.

Anna Rogers, Matt Gardner, and Isabelle Augenstein.
2022. QA Dataset Explosion: A Taxonomy of
NLP Resources for Question Answering and Read-
ing Comprehension. Computing Surveys (CSUR), to
appear.

Anna Rogers, Olga Kovaleva, Matthew Downey, and
Anna Rumshisky. 2020. Getting Closer to AI Com-
plete Question Answering: A Set of Prerequisite Real
Tasks. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 8722–8731. AAAI Press.

Barbara Rychalska, Dominika Basaj, Anna
Wróblewska, and Przemyslaw Biecek. 2018.
Does It Care What You Asked? Understanding
Importance of Verbs in Deep Learning QA System.
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 322–324. Association for
Computational Linguistics.

Viktor Schlegel, Marco Valentino, André Freitas, Goran
Nenadic, and Riza Batista-Navarro. 2020. A Frame-
work for Evaluation of Machine Reading Comprehen-
sion Gold Standards. In Proceedings of The 12th Lan-
guage Resources and Evaluation Conference, LREC
2020, Marseille, France, May 11-16, 2020, pages
5359–5369. European Language Resources Associa-
tion.

Indira Sen, Mattia Samory, Fabian Flöck, Claudia Wag-
ner, and Isabelle Augenstein. 2021. How Does Coun-
terfactually Augmented Data Impact Models for So-
cial Computing Constructs? In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 325–344, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Priyanka Sen and Amir Saffari. 2020. What do Mod-
els Learn from Question Answering Datasets? In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 2429–
2438. Association for Computational Linguistics.

Mattia Setzu, Riccardo Guidotti, Anna Monreale,
Franco Turini, Dino Pedreschi, and Fosca Giannotti.
2021. GLocalX - From Local to Global Explanations
of Black Box AI Models. Artif. Intell., 294:103457.

Saku Sugawara, Kentaro Inui, Satoshi Sekine, and
Akiko Aizawa. 2018. What Makes Reading Com-
prehension Questions Easier? In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31
- November 4, 2018, pages 4208–4219. Association
for Computational Linguistics.

Saku Sugawara, Pontus Stenetorp, Kentaro Inui, and
Akiko Aizawa. 2020. Assessing the Benchmark-
ing Capacity of Machine Reading Comprehension
Datasets. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 8918–8927. AAAI Press.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic Attribution for Deep Networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 3319–3328.
PMLR.

https://aclanthology.org/W13-3516/
https://aclanthology.org/W13-3516/
https://doi.org/10.18653/v1/2020.acl-demos.15
https://doi.org/10.18653/v1/2020.acl-demos.15
https://doi.org/10.18653/v1/2020.acl-demos.15
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://arxiv.org/abs/2109.07102
https://arxiv.org/abs/2109.07102
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/2107.12708
http://arxiv.org/abs/2107.12708
http://arxiv.org/abs/2107.12708
https://aaai.org/ojs/index.php/AAAI/article/view/6398
https://aaai.org/ojs/index.php/AAAI/article/view/6398
https://aaai.org/ojs/index.php/AAAI/article/view/6398
http://aclweb.org/anthology/W18-5436
http://aclweb.org/anthology/W18-5436
https://aclanthology.org/2020.lrec-1.660/
https://aclanthology.org/2020.lrec-1.660/
https://aclanthology.org/2020.lrec-1.660/
https://doi.org/10.18653/v1/2021.emnlp-main.28
https://doi.org/10.18653/v1/2021.emnlp-main.28
https://doi.org/10.18653/v1/2021.emnlp-main.28
https://doi.org/10.18653/v1/2020.emnlp-main.190
https://doi.org/10.18653/v1/2020.emnlp-main.190
https://doi.org/10.1016/j.artint.2021.103457
https://doi.org/10.1016/j.artint.2021.103457
https://doi.org/10.18653/v1/d18-1453
https://doi.org/10.18653/v1/d18-1453
https://ojs.aaai.org/index.php/AAAI/article/view/6422
https://ojs.aaai.org/index.php/AAAI/article/view/6422
https://ojs.aaai.org/index.php/AAAI/article/view/6422
http://proceedings.mlr.press/v70/sundararajan17a.html


91

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-Read Students Learn Better:
The Impact of Student Initialization on Knowledge
Distillation. CoRR, abs/1908.08962.

A. M. Turing. 1950. Computing Machinery and Intelli-
gence. Mind, 59(236):433–460.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. SuperGLUE: A
Stickier Benchmark for General-Purpose Language
Understanding Systems. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 3261–3275.

Alex Wang, Amapreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Mingzhu Wu, Nafise Sadat Moosavi, Dan Roth, and
Iryna Gurevych. 2021. Coreference Reasoning in
Machine Reading Comprehension. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 5768–5781. Associa-
tion for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
Dataset for Diverse, Explainable Multi-hop Question
Answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 2369–2380. Association for Computa-
tional Linguistics.

Xi Ye, Rohan Nair, and Greg Durrett. 2021. Connecting
Attributions and QA Model Behavior on Realistic
Counterfactuals. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
5496–5512. Association for Computational Linguis-
tics.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR, abs/1212.5701.

Rolf A. Zwaan. 2016. Situation Models, Mental
Simulations, and Abstract Concepts in Discourse
Comprehension. Psychonomic Bulletin & Review,
23(4):1028–1034.

http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://www.jstor.org/stable/2251299
https://www.jstor.org/stable/2251299
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/2021.acl-long.448
https://doi.org/10.18653/v1/2021.acl-long.448
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259
https://aclanthology.org/2021.emnlp-main.447
https://aclanthology.org/2021.emnlp-main.447
https://aclanthology.org/2021.emnlp-main.447
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://doi.org/10.3758/s13423-015-0864-x
https://doi.org/10.3758/s13423-015-0864-x
https://doi.org/10.3758/s13423-015-0864-x


92

A Appendix

A.1 QA Model Training

For training the QA models in §3.1 The questions
and contexts are concatenated, and a linear layer on
top of the encoder is used to predict the probability
of a context token i being the start (Pi,s) or end
(Pi,e) of an answer. The score (Si,j) for a span
with start token i and end token j is computed as
Pi,s + Pj,e. For all valid combination of i and j,
the span with the highest score is chosen as the
answer. A cross entropy loss between the actual
and predicted start/end positions is minimized.

The models were trained for 10 epochs with a
batch size of 16 using the Adam optimizer (Kingma
and Ba, 2015) (β1 = 0.9, β2 = 0.99, ϵ = 1e-8,
weight_decay = 0.01) and gradient clipping.
The learning rate (LR) was kept at 1e-05 with
a linear warm-up schedule (staring LR=0). The
models were evaluated on a subset of the validation
data every 500 mini-batches with early stopping on
100 evaluations (Pruksachatkun et al., 2020). The
LR and batch size was determined by a small grid
search on the coreference dataset: LR={1e-05,
1e-04, 1e-03}, batch size = {8, 16, 32}.

A.2 Antonym Replacements for CF
Generation

The antonym replacements for the generalization
test (§4.4) are described below:

• first → less recently

• older → less old, more junior, less mature,
less grown-up

• earlier → subsequently, thereafter, less re-
cently

• later → less recently

• younger → more old, less junior, more mature,
more grown-up

• more recently → less recently, longer ago

A.3 Supervised Entity Type Predictor

Our goal is to build a classifier to predict the an-
swer entity type from the question (§4.5). A sample
data point is shown in Figure 5. The entity types
are defined in the Ontonotes-5 dataset (Pradhan
et al., 2013). The answer entity type is detected

Text: What is the full name of the person who is the
television reporter that brings in a priest versed in
Catholic exorcism rites?
Label: PER

Figure 5: A sample instance for answer entity type classifier.

from the context using an off-the-shelf entity de-
tector implemented in Spacy.16 When the answer
is not a named entity, or the entity detector fails to
determine its type, that question is discarded.

The classification models are trained on the
training portion of Quoref and SQuAD which is
further divided into train/dev/test (70/20/10) split
for training and evaluation. The distribution of the
class labels is very skewed.

Models: We use two types of models: 1) a
fine-tuned 12 layer 768 dimensional BERTbase-cased
model; and 2) a popular word convolutional model
for sentence classification (Kim, 2014) using three
parallel filters (size 3, 4, and 5) and 300 dimen-
sional Google News Word2Vec representations
(Mikolov et al., 2013).

BERT model: This model is trained for 5
epochs, with Adam optimizer (Kingma and Ba,
2015) with a weight decay of 1.0e-08 and a
learning rate of 1.0e-05. The sequence max
length is kept at 128. We search for two hyper-
parameters: 1) number of epochs: 3-7, increasing
by 1; and 2) learning rate: 1.0e-05, 5.0e-05,
1.0e-04.

WordConv model: This model is trained for
40 epochs, with Adadelta optimizer (Zeiler, 2012)
with a learning rate of 1.0e-05. The sequence
max length is again kept at 128.

For both models, accuracy was used as the early
stopping metric. We minimized the cross entropy
(CE) loss in general, but for the WordConv model, a
weighted CE loss was also implemented to account
for the training data class-imbalance in Quoref.
That did not improve the results significantly and
was not used in the BERTbase-cased model. Table 7
shows the detailed results. Finally, we choose the
fine-tuned BERTbase-cased model as the entity de-
tector as it performs the best. Ray Choudhury
et al. (2022) also proposes a model to determine
the answer entity type from a question, but the
major difference is the label space. The model in
Ray Choudhury et al. (2022) is trained to predict
a label of “UNKNOWN_ENTITY" when the an-

16https://spacy.io

https://spacy.io
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Dataset Model Accuracy Macro
F1

SQuAD BERTbase-cased 76.4 56.2
WordConv 72.4 44.9

Coref
BERTbase-cased 85.7 73.9
WordConv 85.0 67.6
WordConv
Weighted BCE 85.3 69.7

Table 7: Models for supervised entity type selection. Green
indicates the best results.

swer span is a) not a named entity or b) the entity
detector can not find its type. However, an “UN-
KNOWN_ENTITY" label does not help the final
algorithm (heuristic answer selection) to find the
correct answer span. Therefore, our model never
predicts this label, and consequently, has a better
accuracy than Ray Choudhury et al. (2022). It po-
tentially makes a mistake on the test data points
that fall in the previous two categories, but the final
algorithm is no worse than Ray Choudhury et al.
(2022).


