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Abstract

Text classification is a primary task in nat-
ural language processing (NLP). Recently,
graph neural networks (GNNs) have developed
rapidly and been applied to text classification
tasks. As a special kind of graph data, the tree
has a simpler data structure and can provide
rich hierarchical information for text classifica-
tion. Inspired by the structural entropy, we con-
struct the coding tree of the graph by minimiz-
ing the structural entropy and propose HINT,
which aims to make full use of the hierarchical
information contained in the text for the task
of text classification. Specifically, we first es-
tablish a dependency parsing graph for each
text. Then we designed a structural entropy
minimization algorithm to decode the key in-
formation in the graph and convert each graph
to its corresponding coding tree. Based on the
hierarchical structure of the coding tree, the rep-
resentation of the entire graph is obtained by
updating the representation of non-leaf nodes
in the coding tree layer by layer. Finally, we
present the effectiveness of hierarchical infor-
mation in text classification. Experimental re-
sults show that HINT outperforms the state-of-
the-art methods on popular benchmarks while
having a simple structure and few parameters.

1 Introduction

Text classification is an essential problem in NLP.
There are numerous applications of text classifi-
cation, such as news filtering, opinion analysis,
spam detection, and document organization (Ag-
garwal and Zhai, 2012). Recently, GNNs have
developed rapidly. GNNs learn the representation
of each node by aggregating the information of
neighboring nodes and can retain structural infor-
mation in the graph embedding. Therefore, many
graph-based methods are applied to text classifi-
cation and achieve good performance. (Yao et al.,
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2019) proposed TextGCN, which is the first method
to employ a Graph Convolutional Network (GCN)
in the text classification task. They built a het-
erogeneous graph containing word nodes and doc-
ument nodes for the corpus and transformed the
text classification task into a node classification
task. TextGCN outperformed other traditional
methods and attracted much attention, which has
led to increasingly more applications of graph-
based methods in text classification. In Huang
et al. (2019); Zhang et al. (2020), the text clas-
sification task was converted into the graph classi-
fication task. They built text-level co-occurrence
graphs for each data. Huang et al. (2019) employed
a Message Passing Mechanism (MPM) and outper-
formed TextGCN. A Gated Graph Neural Network
(GGNN) was employed in (Zhang et al., 2020) and
achieved state-of-the-art performance.

Different from normal graph data, tree-
structured data is a simpler data structure with rich
hierarchical information. In the text classification
task, despite plenty of efforts that have been de-
voted to the adoption of GNNs, none of them has
realized the rich hierarchical information in text,
which has already been employed in other NLP
tasks. TrDec was proposed for the NMT task to
generate a target-side tree topology and uses the
tree to help the translation process (Wang et al.,
2018). In knowledge-based question answering
tasks, Zhu et al. (2020) treated the query as a tree
and used the tree-based LSTM to model the context
of the entities or relationships in the query. You
et al. (2019) clustered the labels in the extreme
multi-label text classification task and built a label
tree. Lyu et al. (2020) proposed a rumor detection
model based on tree transformer to better exploit
user interactions in the dialogues. Hierarchical in-
formation in text is likely to be helpful for text
classification tasks, so it should be better utilized.

Inspired by structural entropy (Li and Pan,
2016; Wu et al., 2022b,a), we propose a novel
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Figure 1: The architecture of HINT. wi nodes represent the word nodes, others are non-leaf nodes in the coding tree.

model based on tree structure for text classifica-
tion, named HINT. Structural entropy can measure
the complexity of the hierarchical information of
the graph, and decode its key structure. As shown
in Figure 1, we first build individual graph for each
document through dependency parsing. Then the
graphs are transformed into their corresponding
coding trees by a structural entropy minimization
algorithm. The coding tree not only retains the
crucial features of data but also excludes many
other features that worsen the model. The model
classifies the entire document by learning the rep-
resentation of the coding tree. So far, we not only
make better use of the hierarchical information in
the text data but also represent text with a simpler
data structure (i.e., tree). We conduct several exper-
iments to verify the advantages of our method over
the baselines. To sum up, our contributions are as
follows:

• For the first time, we explore the effectiveness
of hierarchical information of documents in
text classification.

• We propose a novel method, HINT, which
aims to parse and represent the hierarchical
information of documents.

• The results demonstrate that our method not
only outperforms several text classification
baselines but is also much simpler in structure
than other graph-based models.

2 Related Work

In recent years, the graph-based text classification
method transforms the text classification task into

a graph classification task or a node classification
task and has achieved good performance in the
text classification task. Different from traditional
deep learning models (Kim, 2014; Liu et al., 2016),
the graph-based text classification methods usually
capture the rich relationships between nodes in the
graph by constructing document graphs or corpus
graphs, then apply GNN to learn the embedding
of the document, and finally input the embedding
to the classification layer. For graph construction,
one is to construct a static graph for text or corpus.
Some methods are to construct a single heteroge-
neous graph for the entire corpus (Yao et al., 2019;
Liu et al., 2020). Other studies construct a separate
graph for each document to handle the inductive
learning setting (Huang et al., 2019; Zhang et al.,
2020). Except for static graphs, the construction of
dynamic graphs does not rely on prior knowledge
and can be jointly learned with the model (Chen
et al., 2020). For the learning of graph representa-
tion, various GNN models are used in text classi-
fication, such as GCN (Yao et al., 2019; Liu et al.,
2020), GGNN (Zhang et al., 2020), MPM (Huang
et al., 2019), and GAT-based model (Linmei et al.,
2019).

Tree structure data is a special kind of graph data
with a simple structure and rich hierarchical infor-
mation. With the development of deep learning,
many models use trees to help solve NLP tasks.
Some methods process the data to get the tree struc-
ture data and use it to help the model. (Wang et al.,
2018) utilized the strong correlation between gram-
matical information and tree structure, and a tree-
based decoder TrDec is proposed for the NMT task.
TrDec generates a target-side tree topology and
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uses the tree to guide the translation process. (You
et al., 2019) proposed a model based on label tree
and attention mechanism for extreme multi-label
text classification. The label tree is constructed
by clustering the labels and the model is trained
from top to bottom. In addition to using the gen-
erated tree, the deep learning model of the tree
structure is also widely used. Tree-structured multi-
linear principal component analysis (TMPCA) used
the PCA of each layer to transfer the representa-
tion of two adjacent words to the next layer un-
til the entire text is reduced to a single-word vec-
tor (Su et al., 2018). (Zhu et al., 2020) treated the
query as a tree and proposed a tree-based LSTM in
the Knowledge-based question answering task to
model the context of entities or relationships in the
query.

The tree structure can provide hierarchical in-
formation for the model, and the tree based deep
learning model can make better use of the grammat-
ical information through the hierarchy of the model.
However, hierarchical information is not well stud-
ied in graph-based text classification methods. In
this work, we aim to fill the gap in GNN-based text
classification.

3 Method

In this section, we will introduce HINT in detail.
First, we will explain the method of constructing a
graph for each text. Then, we introduce the coding
tree construction algorithm that can decode the
hierarchical information in text data. Finally, we
will show how the model learns the hierarchical
information and text representation based on tree-
structured data and how to predict the label for a
given text based on the learned representations.

3.1 Graph Construction

In previous graph-based text classification mod-
els, there are two ways to construct a graph for
text. In (Yao et al., 2019), the corpus is constructed
into a heterogeneous graph containing word nodes
and document nodes. The weight of the edge be-
tween nodes is the point-wise mutual information
(PMI) of the words or the TF-IDF value. This
method can explicitly model the global word co-
occurrence and can easily adapt to graph convo-
lution. The other method is to construct a graph
for each text. Huang et al. (2019); Zhang et al.
(2020) construct a graph for a textual document
by representing unique words as vertices and co-

occurrences between words as edges. This method
reduces memory consumption and is friendly to
new text.

However, the graphs constructed by the above
methods do not contain rich syntax and semantics
information. In addition, the method based on co-
occurrence treats the words at different positions
equally, which causes a lack of position informa-
tion in the representations of graph nodes. To retain
more features in the constructed graphs, we use de-
pendency parsing to construct a graph in HINT. We
perform dependency parsing on each sentence in
the document to obtain the dependencies between
words. In addition, the dependency parsing result
of each sentence contains a root word. We con-
nect the root words of adjacent sentences to form a
complete dependency parsing graph.

Take a document with l words D =
{w1, . . . , wi, . . . , wl}, where wi is the ith word of
document. The set of dependencies between words
is DP = {drij |i ̸= j; i, j ≤ l}, where drij de-
notes the dependency relation of words i and j.
The edges between pairs of words with dependen-
cies is Ew = {eij |drij ∈ DP}. The root word set
of each sentence is DR = {ri|i ≤ n}, where n rep-
resents the number of sentences in the document.
Er = {eij |ri, rj ∈ DR∧ j = i+1} represents the
set of edges between the root words of adjacent sen-
tences. The dependency parsing graph G = (V,E)
for a text is defined as:

V = {wi|i ∈ [1, l]}, (1)

E = {Ew ∪ Er}, (2)

where V and E are the node set and edge set of
the graph respectively. Dependency parsing can
analyze the semantic associations between words.
Using words as nodes and dependency relation-
ships as edges, the graph has rich semantic and
structural information.

3.2 Coding Tree Construction
After the text is transformed into graph structure
data through dependency analysis, each graph has
rich structural information. In this subsection, we
introduce our method to decode the hierarchical
information in text data from constructed graphs.

In (Li and Pan, 2016), the structural entropy of
the graph is defined as the average amount of in-
formation of the codewords obtained by a random
walk in a specific coding pattern. According to
the different coding patterns, structural entropy
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can measure the dynamic information of the graph.
Given a graph G = (V,E), the structural entropy
of G on partitioning tree Tp is defined as:

HTp(G) = −
∑
α∈Tp

gα
2m

log
Vα

Vα−
, (3)

where m = |E|, α is the non-root node of Tg and
represents a subset of V , α− is the parent of α,
gα represents the number of edges with only one
end point in α and the other end outside α, Vα

and Vα− is the sum of the degree of nodes in α
and α−. The structural entropy of G is defined
by H(G) = minTpH

Tp(G). Tp is also called the
coding tree. Coding tree is simpler form of data,
while retaining key features of the original graph.
For a certain coding mode, the height of the coding
tree should be fixed. Therefore, the h-dimensional
structural entropy of the graph G determined by
the coding tree T with a certain height h can be
computed as:

Hh(G) = min
{T |h(T )≤h}

HT (G). (4)

We designed a graph coding algorithm based
on minimizing structural entropy to transform the
graph to its coding tree. The coding tree construc-
tion algorithm shown in Algorithm 1 is based on
the principle of minimizing structural entropy to
construct a h-dimensional coding tree with a certain
height h. So the coding tree T with given height
h is computed by T = SEMA(G, h), where
T = (VT ), VT = (V 0

T , . . . , V
h
T ) and V 0

T = V .
SEMA refers to the structural entropy minimiza-
tion algorithm. In SEMA, the graph is first trans-
formed into a full-height binary coding tree, and
then the tree is folded into a coding tree with certain
height h.

Tom lives in a big tent with Jerry

with inTom lives Jerry big tenta

Figure 2: A text and its corresponding coding tree with
a height of 3. The green node represents the root node
of the coding tree, and other points refer to other inner
nodes with various hierarchical information.

Algorithm 1 Structural Entropy Minimization Al-
gorithm
Input: Adjacency matrix Am∗m of the graph G =
{V,E}
Parameter: The height h of the coding tree
Output: The coding tree T = {VT , ET } of the
graph G

1: Let heap = [], VT = V, unmerge = m,M =
∅.

2: for ni, nj in V and Eij ∈ E do
3: T

′
= T.Combine(ni, nj)

4: ∆e = entropy(T )− entropy(T
′
)

5: heap.push(∆e, ni, nj)
6: end for
7: while unmerge > 1 do
8: n1, n2 = heap.pop(min∆e)
9: if n1 /∈ M and n2 /∈ M then

10: nnew = merge(n1, n2)
11: update VT ,M, unmerge
12: update heap like line 4 to 6
13: end if
14: end while
15: root = nnew

16: update heap like line 4 to 6
17: while the height of the tree > h do
18: np, nc = heap.pop(min∆e)
19: np = compress(np, nc)
20: VT .del(nc)
21: end while
22: return T

For a text and its corresponding coding tree, all
words in the text are the leaf nodes, and the hier-
archical information in text are decoded into the
hierarchical structure of the coding tree. Figure 2
shows an example of a text and its corresponding
coding tree. We can see that the coding tree di-
vides the words of the text into four parts. The
information contained in each non-leaf node can
be interpreted as the semantic information of all its
child nodes, so non-leaf nodes at different levels
contain semantic information with different gran-
ularities. In addition, the two words "Tom" and
"Jerry" that are farther apart in the original text are
closer in the coding tree while retaining the correct
semantic information.

3.3 Text representation learning

Based on the decoded hierarchical structure of cod-
ing trees, we aim to learning the text representation
with this hierarchical information. Specifically, fol-
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lowing the message passing mechanism in GNNs,
we intend to iteratively update the node representa-
tion of coding tree from leaves to root node. Finally,
model can obtain a representation of the text by us-
ing the structure of the coding tree and the features
of the leaf nodes. The number of layers of the
model is the same as the height of the coding tree.
The ith layer on coding tree T = (VT , ET ) can be
expressed as:

xiv = MLP i(
∑

n∈C(v)
xi−1
n ), (5)

where v ∈ VT , xiv is the feature vector of node v
with height i, x0 is the word embeddings, and C(v)
is the child nodes of v. The coding tree learning
model starts from the leaf node layer and learns
the representation of each node layer by layer until
reaching the root node. Finally, all feature vectors
of the nodes are used to compute a representation
of the entire coding tree xT :

xT = Concat(Pool({xiv|v ∈ V i
T })

|i = 0, 1, 2, . . . , h)),
(6)

where xiv is the feature vector of node v with height
i in T , and h is the height of T . Pool in Equation 6
can be replaced with a summation or averaging
function. In the beginning, the non-leaf nodes have
no representation, and the representation of the non-
leaf nodes is updated as the information is prop-
agated from the lower layers to the upper layers
along the edges of the coding tree. In the process of
propagation, the textual information from the leaf
nodes interacts with the hierarchical information
abstracted by the coding tree, so that the representa-
tion of the final document can contain more useful
information. Existing methods have fully exploited
the local information of text, and our model takes
the global information of text into consideration by
combining the hierarchical structure of text.

By converting the graph into a coding tree, the
data structure becomes simpler, and the hierarchi-
cal information and main features of the graph are
retained in the coding tree. In HINT, the node
feature vector is aggregated in one direction ow-
ing to the hierarchical structure of the coding tree,
which suggests that our learning model is simple
and its convergence is strong. We take the coding
trees T = (T1, T2, . . . , Tn) and their feature ma-
trices as inputs. Each word is represented by the
GloVe (Pennington et al., 2014) vector and one-hot
position encoding vector, and we concatenate these

two vectors as feature matrix F . The representation
of the entire graph can be obtained from Equation 6,
and then the predicted label of the original text is
computed as:

yi = softmax(WxTi + b), (7)

where Ti ∈ T, xTi is the representation of coding
tree Ti; and W and b are the weight and bias, re-
spectively. The goal of training is to minimize the
cross-entropy between the ground truth label and
predicted label:

loss = −
∑
i

gi log(yi), (8)

where gi is the one-hot vector of the ground truth
label.

4 Experiments

In this section, we evaluate the effectiveness of
HINT1 and report the experimental results.

Datasets. We utilize datasets including R8, R52,
MR, and Ohsumed. R8 and R52 are subsets of
the Reuters 21578 dataset. MR is a movie review
dataset used for sentiment classification in which
each review is a single sentence. The Ohsumed
corpus, which is designed for multilabel classifica-
tion, is from the MEDLINE database. In this pa-
per, we only use single-label data like other GNN-
based text classification models (Yao et al., 2019;
Huang et al., 2019). We employ StanfordNLP (Qi
et al., 2018) to build the dependency graphs for all
datasets. The statistics of our datasets are summa-
rized in Table 1.

Datasets # Training # Test Categories Avg. Length
MR 7108 3554 2 20.39
Ohsumed 3357 4043 23 193.79
R52 6532 2568 52 106.29
R8 5485 2189 8 98.87

Table 1: Summary statistics of datasets.

Baselines. In this paper, we aim to address the
utilization of hierarchical information in text clas-
sification with GNNs; thus, besides a bunch of
popular baselines, we mainly select the compari-
son methods based on GNNs. We divide the base-
line models into three categories: (i) traditional
deep learning methods, including the CNN and

1The code of HINT can be found at https://github.
com/Daisean/HINT.

https://github.com/Daisean/HINT
https://github.com/Daisean/HINT
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Model MR R8 R52 Ohsumed
CNN(Non-static) 77.75± 0.72 95.71± 0.52 87.59± 0.48 58.44± 1.06
RNN(Bi-LSTM) 77.68± 0.86 96.31± 0.33 90.54± 0.91 49.27± 1.07
fastText 75.14± 0.20 96.13± 0.21 92.81± 0.09 57.70± 0.49
SWEM 76.65± 0.63 95.32± 0.26 92.94± 0.24 63.12± 0.55
TextGCN 76.74± 0.20 97.07± 0.10 93.56± 0.18 68.36± 0.56
Huang et al. (2019) - 97.80± 0.20 94.60± 0.30 69.40± 0.60
S2GC 76.70± 0.00 97.40± 0.10 94.50± 0.20 68.50± 0.10
HINT 77.03± 0.12 98.12± 0.09 95.02± 0.18 68.79± 0.12

Table 2: Test accuracy(%) of models on text classification datasets. The average standard deviation of our model is
reported based on ten runs.

LSTM; (ii) word embedding methods, including
fastText (Joulin et al., 2017) and SWEM (Shen
et al., 2018); and (iii) graph-based methods for
text classification, including the spectral approach-
based TextGCN , S2GC (Zhu and Koniusz, 2021),
and nonspectral method-based (Huang et al., 2019).

Settings. We randomly divide the training set
into the training set and the validation set at a ratio
of 9:1. We use the Adam optimizer with an initial
learning rate of 10−3 and set the dropout rate to
0.5. The height of the coding tree is between 2
and 12. We set the sum or average function as the
initial function of Pool in Equation 6. For word
embedding, we use pretrained GloVe with the di-
mension of 300, and the out-of-vocabulary (OOV)
words are randomly initialized from the uniform
distribution [-0.01, 0.01]. For each position, we set
this position in the vector to 1 and the rest to 0 to
get the position encoding vector. We concatenate
the GloVe vector and position encoding vector as
the initial representation of graph nodes.

4.1 Experimental Results

Table 2 presents the performance of our model and
baselines. Graph network-based methods generally
outperform other types of methods because of the
inclusion of structural information. We can observe
that the performance of our model is generally bet-
ter than those of other graph network-based meth-
ods. Traditional deep learning methods (CNN and
RNN) perform well on MR dataset with relatively
short text lengths but are not as good at processing
long text. The word embedding-based methods
(fastText and SWEM) use word embedding with
contextual information and perform better on the
R52 and Ohsumed datasets than traditional deep
learning methods.

TextGCN is the first method to apply a graph neu-

ral network method in text classification. TextGCN
learns the representation of nodes through corpus-
level co-occurrence graphs. Huang et al. (2019)
uses the co-occurrence window and message pass-
ing mechanism to learn the representation of nodes.
S2GC is an extension of the Markov Diffusion Ker-
nel used to make the information aggregation in
graphs more efficient. The graph learning methods
enable each node to learn a better representation
by using the information of its farther neighbors
and accordingly performs well on all datasets. The
HINT model encodes the graph and extracts the key
structure through the structure entropy minimiza-
tion algorithm, and learns on the coding tree to use
the hierarchical information to update the node rep-
resentation. The representations of non-leaf nodes
in the coding tree are obtained by a facile method
of layer-by-layer updating from the leaf nodes of
the coding tree to the root node. The results show
that HINT performs better on the MR, R8, and
R52 datasets than other graph-based methods and
achieves competitive performance on the Ohsumed
dataset. Notably, HINT does not have a compli-
cated structure and numerous parameters, but it
still generally outperforms other baselines. Next,
we will further analyze the height of the coding
tree, the coding tree construction algorithm, the
comparison with the state-of-the-art methods and
the efficiency of the model.

4.2 Height of the coding tree

The height of the coding tree plays an important
role in HINT. Different height coding trees reflect
divergent hierarchical information, and the utiliza-
tion of leaf node information is also disparate. Fig-
ure 3 shows the test performance of different height
coding trees on the 4 datasets. For datasets with
different average lengths, the optimal height of the
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Figure 3: The influence of height on the performance of
the model on 4 datasets.

coding tree is different. Longer texts have more
complex structural information, so a higher coding
tree is needed to retain this information. In text rep-
resentation learning, a deeper level is also needed
to utilize hierarchical information. For the MR
dataset, a height of 2 is the best. For the Ohsumed
dataset with an average length of nearly 200, the
best performance occurs when the height is 11.
Therefore, an appropriate height will improve the
quality of the representations and make better use
of the original text and hierarchical information.

4.3 Validity of coding tree construction
algorithm

In this subsection, we compare different coding
tree construction methods to illustrate the effective-
ness of the coding tree construction algorithm. For
a tree of height h, we take all nodes of the text
dependency analysis graph as leaf nodes of the tree.
For each layer of the coding tree, we randomly se-
lect two nodes, use a new node as their parent node,
and connect all nodes in the h− 1th layer to a root
node (RT). The results are shown in Table 3.

Model MR R8 R52 Ohsumed
HINT(RT) 75.85 95.84 85.86 14.84
HINT 77.03 98.12 95.02 68.79

Table 3: Test accuracy(%) of models on text classifi-
cation datasets with different coding tree construction
method. For both construction methods, we use trees of
the same height on the same dataset

The results point out that constructing a coding
tree by randomly selecting nodes has a negative ef-

fect on the model. The difference between the two
methods is small on the data set with the shortest
average length, but becomes more pronounced as
the data set becomes more complex, especially in
the Ohsumed dataset. Random selection of nodes
destroys the original semantic information, so it
is difficult for the model to learn useful features.
The coding tree constructed by the minimization
structure entropy algorithm can retain the key in-
formation in the graph and abstract the hierarchical
information of the text. The results demonstrate
the effectiveness of minimizing structural entropy
for text graphs.

4.4 Comparison with state-of-the-art method

With the development of pre-trained language mod-
els (PLMs), graph methods based on PLMs have
also been applied to text classification tasks. Bert-
GCN(Lin et al., 2021) achieves state-of-the-art per-
formance by combining BERT(Devlin et al., 2019)
with GCN(Kipf and Welling, 2017). For a fair com-
parison, we employ the BERT model (BERTbase)
trained in BertGCN, freeze its parameters and input
the text into BERT to get the initial node represen-
tation. Other experimental settings are consistent
with BertGCN. Moreover, because BERT word em-
beddings contain positional information, we use the
text co-occurrence graph like Huang et al. (2019).
The result is shown in Table 4.

Model MR R8 R52 Ohsumed
BERT 85.7 97.8 96.4 70.5
BertGCN 86.0 98.1 96.6 72.8
HINT(BERT) 86.4 98.1 96.8 71.2

Table 4: Test accuracy(%) of models on text classifica-
tion datasets with different position encodings.

The results point out that our model outperforms
BertGCN on three out of four benchmarks. Be-
cause of BertGCN’s settings, we truncate some
long texts during preprocessing. Our model can
decode the hierarchical information of the whole
text, but the operation of truncating the text affects
the integrity of the text. Ohsumed suffers the most
as the dataset with the longest average length, yet
we achieve competitive performance nonetheless.
BertGCN is based on BERT and GCN, which pay
more attention to local information, so incomplete
text does not affect performance. On the remain-
ing three datasets with occasional truncation, our
model obtains outperformance, indicating that our
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model can decode hierarchical information and fo-
cus on global features, further demonstrating the
positive effect of hierarchical information on text
classification tasks.

In general, our model achieves superior perfor-
mance. With the more informative BERT word
embeddings, HINT propagates the information in
a bottom-up manner and obtains a better text rep-
resentation. In the light of the accuracies achieved
with BERT, our method shows excellent collabo-
ration ability with large-scale pre-trained language
models.

4.5 The Efficiency of HINT
In the graph-based baseline models, the computa-
tional complexity of TextGCN, S2GC and Huang
et al. (2019) is O(hm), where h is the number
of diffusion steps and m is the number of edges.
The computational complexity of learning model
in HINT is O(n), where n is the number of nodes,
which is much smaller than that of graph-based
baseline models. In addition, we also compare
the parameters and floating-point operations per
second (FLOPs) of the models. Since S2GC
and Huang et al. (2019) do not have a complete
model code implementation, we only compare the
proposed model with TextGCN. Figure 4 shows
the comparison of the parameters of HINT and
TextGCN. We set the height of the coding tree
∈ [2, 12] and use 2 as the step size and then run
HINT and TextGCN on the same dataset. We can
observe that the parameters of HINT gradually in-
crease as the height increases, but the model with
the most parameters is still dozens of times smaller
than TextGCN.
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Figure 4: Comparison of the parameters of HINT and
TextGCN on the Ohsumed dataset.

Moreover, we further compare the number of

FLOPs of HINT and TextGCN on the same param-
eter settings. We set the hidden size of HINT to 96
and the batch size to 4. We calculate the FLOPs of
the HINT and TextGCN models on four datasets.
The results are shown in Figure 5. We can see that
the calculation amount of HINT is also less than
that of TextGCN. The performance of our model is
not only better than those of other models, but the
numbers of parameters and calculations are also
very small, which further proves that our model is
simple and effective.
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Figure 5: Comparison of the FLOPs of HINT and
TextGCN.

For text classification or other NLP tasks, in-
creasing the complexity of the neural network
model and the number of network parameters can
often achieve better performance. Therefore, the
problem is that the development of NLP tasks
highly depends on computing power. Our model
achieves the improvement of model performance
while reducing the complexity of the model. HINT
makes the extraction of features not completely de-
pendent on the deep learning network and greatly
reduces the requirements for the computing power
of the neural network.

5 Conclusion

In this paper, we proposed a novel method to ad-
dress the limitation of previous works in text hi-
erarchical information utilization. We build a de-
pendency parsing graph for each text and construct
a coding tree for each graph by structural entropy



958

minimization algorithm. Our model uses the hier-
archy of the coding tree to learn the representation
of each text. Experimental results demonstrate the
ability of HINT to decode hierarchical information
in text and show the positive effect of hierarchical
information on text classification tasks. Our model
achieves state-of-the-art performance with a simple
structure and few parameters.
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