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Abstract

Implicit Discourse Relation Recognition
(IDRR) is to detect and classify relation sense
between two text segments without an explicit
connective. Vanilla pre-train and fine-tuning
paradigm builds upon a Pre-trained Language
Model (PLM) with a task-specific neural net-
work. However, the task objective functions
are often not in accordance with that of the
PLM. Furthermore, this paradigm cannot well
exploit some linguistic evidence embedded in
the pre-training process. The recent pre-train,
prompt, and predict paradigm selects appropri-
ate prompts to reformulate downstream tasks,
so as to utilizing the PLM itself for prediction.
However, for its success applications, prompts,
verbalizer as well as model training should
still be carefully designed for different tasks.
As the first trial of using this new paradigm
for IDRR, this paper develops a Connective-
cloze Prompt (ConnPrompt) to transform the
relation prediction task as a connective-cloze
task. Specifically, we design two styles of
ConnPrompt template: Insert-cloze Prompt
(ICP) and Prefix-cloze Prompt (PCP) and
construct an answer space mapping to the
relation senses based on the hierarchy sense
tags and implicit connectives. Furthermore,
we use a multi-prompt ensemble to fuse
predictions from different prompting results.
Experiments on the PDTB corpus show that
our method significantly outperforms the
state-of-the-art algorithms, even with fewer
training data.

1 Introduction

Implicit Discourse Relation Recognition (IDRR)
aims at detecting and classifying some latent re-
lation in between a pair of text segments (called
arguments) without an explicit connective word.
As illustrated in Fig. 1, an implicit discourse rela-
tion of "Contingency" is held between Argument-1
and Argument-2, and the implicit connective ’so’
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is inserted by annotators in the PDTB corpus. It
is of great importance for many downstream Natu-
ral Language Processing (NLP) applications, such
as question answering (Liakata et al., 2013), ma-
chine translation evaluation (Guzmán et al., 2014),
information extraction (Xiang and Wang, 2019),
sentiment analysis (Wang and Wang, 2020), and
etc. However, due to the absence of an explicit con-
nective word, inferring discourse relations from the
contextual semantics of arguments is still a chal-
lenging task.

Existing pre-train and fine-tuning paradigm (Liu
et al., 2021) builds upon a Pre-trained Language
Model (PLM) with a well-designed sophisticated
neural network to encode the semantic content and
interactive evidence of argument pairs (Liu and
Li, 2016; Lei et al., 2017; Bai and Zhao, 2018;
Ruan et al., 2020; Li et al., 2020; Liu et al., 2020;
Wu et al., 2022). Although the PLMs are adapted
to these task-specific neural networks that can ef-
fectively learn a kind of contextual semantics of
arguments, they introduce some additional param-
eters that need to be trained by a large amount of
labelled data. Moreover, the task objective function
is often not in accordance with that of the PLM. As
such, the PLM needs to be fine-tuned for solving
downstream tasks, resulting in poor utilization of
the encyclopedic linguistic evidence embedded in
the pre-training process.

On the one hand, we notice that the pre-training
process of a PLM often uses a kind of cloze task,
called Masked Language Model (MLM), to predict
a piece of masked text from context. On the other
hand, it has been reported that an explicit connec-
tive of an argument pair can greatly improve the
relation classification performance in the explicit
discourse relation recognition task (Pitler et al.,
2008). Although explicit connectives are not avail-
able in the IDRR task, it is of great interests to
explore whether we can transform the relation pre-
diction task as a connective-cloze task, such that we
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Figure 1: An example of implicit discourse relation annotation with manually inserted connective.

can exploit a pre-trained masked language model
to predict a missing (yet possibly latent) connective
for implicit relation classification. This is actually
in accordance with the philosophy of the prompt
learning paradigm, that is, predicting a connective
as an answer word in some predefined template
and then mapping the answer word to one relation
sense.

The recent pre-train, prompt, and predict
paradigm models the probability of text directly
based on PLMs to perform prediction task. Specifi-
cally, it selects appropriate prompts to reformulate
downstream task, so as to utilizing the PLM itself to
predict the desired output (Liu et al., 2021). More-
over, the prompt paradigm is capable of performing
few shot even zero-shot learning, as the PLM is
sufficiently pre-trained and no external parameters
need to be trained. However, for its successful ap-
plications in many downstream NLP tasks (Ding
et al., 2021; Wang et al., 2021; Seoh et al., 2021),
prompts engineering, verbalizer as well as train-
ing strategies should still be carefully designed for
different tasks. In this paper, we explore how to
transform the IDRR task against the prompt learn-
ing paradigm. To the best of our knowledge, this is
the first paper for such explorations.

In this paper, we develop a Connective-cloze
Prompt (ConnPrompt) framework to transform
the relation prediction task as a connective-cloze
task for the IDRR task. Specifically, we design
two styles of ConnPrompt template: Insert-cloze
Prompt (ICP) and Prefix-cloze Prompt (PCP), in
which the [MASK] token is added for connective
answer prediction. The ICP template concate-
nates two arguments as an entire word sequence,
and the [MASK] token is inserted in between two
arguments; The PCP template uses a [SEP] to-
ken to mark the boundary of two arguments, and
the [MASK] token is added at the beginning of
argument-1 or argument-2 as a prefix. Besides,
we construct an answer space mapping an answer
word to relation senses according to the hierarchy
sense tags and implicit connectives in the training
dataset. Furthermore, in order to leverage the com-

plementary advantages of different prompt tem-
plates, we use a multi-prompt ensemble to fuse
predictions from different prompting results.

We conduct the experiments on the PDTB cor-
pus with four advanced masked language models:
BERT, RoBERTa, ERNIE and DeBERTa. Exper-
iment results show that our ConnPrompt signifi-
cantly outperforms the state-of-the-art algorithms
with full training data. Furthermore, our Con-
nPrompt can also achieve comparable performance
even with fewer training data.

2 Method

In this section, we first introduce the overall frame-
work of our ConnPrompt, then explain the details
of connective-cloze prompt templates, verbalizer
construction, multi-prompt ensembling, and model
training strategies.

2.1 Overview
As illustrated in Fig. 2, our ConnPrompt has three
main processes, including prompt templatize, an-
swer prediction and verbalizer.

Prompt templatize: an input argument pair
x = (Arg1;Arg2) is reformulated into a prompt
template T (x) by concatenating two arguments
and inserting some PLM-specific tokens such as
[MASK], [CLS], [SEP], as the input of a PLM. The
[MASK] token is added for PLM to predict an an-
swer word v; While the [CLS] and [SEP] tokens
are used to indicate the beginning and ending of
an input word sequence, respectively. Note that
some PLMs use other tokens like <mask>, <s>,
and </s>, but they have the same meaning as de-
scribed above.

Answer prediction: the pre-trained masked lan-
guage model estimates the probability of each word
in its vocabulary V for the [MASK] token as fol-
lows:

Pv([MASK] = v ∈ V | T (x)). (1)

We define a discrete answer space Va =
{v1, v2, . . . , vn} containing the words manually se-
lected according to the hierarchy sense tags and



904

Figure 2: Illustration of our ConnPrompt framework.

implicit connectives, which is a subset of PLM’s
vocabulary, Va ⊂ V . Then, a softmax layer is ap-
plied on the prediction scores of our answer words
to normalize them into probabilities:

Pa(vi ∈ Va | T (x)) =
epvi∑n
j=1 e

pvj
, (2)

Verbalizer: the predicted answer word is pro-
jected to a unique discourse relation sense based
on our pre-defined connection regulation.

2.2 Connective-cloze prompts

Motivated by the fact that connective words can
effectively indicate the relation sense between two
arguments, we design a kind of connective-cloze
prompt template to predict a connective-bearing an-
swer word for IDRR. In English syntax and gram-
mar, connective words are usually located at the
begining of a sentence or between two adjacent
clauses. Thus we design two styles of prompt tem-
plates for connective-cloze prompts: Prefix Cloze
Prompt (PCP) and Insertion Cloze Prompt (ICP),
as shown in Fig. 3:
T1(x) is an ICP template, in which Arg1 and

Arg2 are concatenated as an entire word sequence,

and the [MASK] token is inserted between two ar-
guments. T2(x) and T3(x) are PCP templates, in
which the [SEP] token is also used to mark the
boundary betweenArg1 andArg2, and the [MASK]
token can be either added at the front of Arg1
(T3(x) ) or Arg2 (T2(x)).

Relation Sense Answer words

Comparison similarly, but, however, although
Contingency for, if, because, so
Expansion instead, by, thereby, specifically, and
Temporal simultaneously, previously, then

Table 1: Answer space of our ConnPrompt and their
connection to the top-level class discourse relation
sense tags in the PDTB.

2.3 Verbalizer Construction
Table 1 presents our verbalizer connection from
the answer space to discourse relation sense labels.
Note that the answer space is a small subset of the
vocabulary in a PLM. We select sixteen answer
words from nearly two hundred connectives in the
PDTB corpus. In our verbalizer construction, the
following four design issues are considered to sat-
isfy the representative of each relation sense.
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Figure 3: Illustration of our ConnPrompt Templates.

• Answer Shape: Only individual word con-
nectives are selected as answer words, as most
masked PLMs predicts only a single word.

• Ambiguity: Each answer word has one unam-
biguous connection with one discourse rela-
tion sense. Those words that can be used for
multiple senses are not selected.

• Frequency: High frequency appearance con-
nectives are prior to be selected as the answer
words.

• Semantic: For those words with similar se-
mantics in the same relation sense, we select
a representative one to alleviate the answer
confusion issue.

Specifically, we first eliminate those ambiguous
connectives each for multiple senses, so that each
answer word corresponds to only one discourse
relation sense. We next rank the rest connectives
according to their appearance frequencies in PDTB
corpus to obtain a candidate set of answer words
from the top of connective ranking. Finally, we
select a representative word for those words with
similar semantics in the same relation sense to al-
leviate the answer confusion issue and construct
an answer space with sixteen words Va as in Ta-
ble 1. Each of them has a unique connection to
one of the four top-level classes of relation sense
Y = {Comparison, Contingency, Expansion,
Temporal}.

2.4 Training Strategies

In model training, we tune the parameters of PLM
using the IDRR training dataset based on our cre-
ated prompt templates and answer space. Note
that the final verbalizer layer is a projection and
has no parameters to train. For model training, we
assign an answer word for each instance of an ar-
gument pair as its ground truth label according to
its manually annotated implicit connectives and the

hierarchical sense tags in the PDTB. Specifically,
if the implicit connective of an argument pair in-
stance is in our answer space, we directly use it as
the answer label; Otherwise, we take the most fre-
quent answer word that has the same subtype-level
sense tag as its label.

We adopt the cross entropy loss as the cost func-
tion:

J(θ) = − 1

K

K∑
k=1

y(k) log(ŷ(k)) + λ‖θ‖2, (3)

where y(k) and ŷ(k) are the gold label and predicted
label of the k-th training instance respectively. λ
and θ are the regularization hyper-parameters. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with L2 regularization for model training.

2.5 Multi-prompt Ensembling
Multi-prompt learning uses multiple unanswered
prompts for an input at inference time to make pre-
diction (Lester et al., 2021). In accordance with
English convention, we have designed three prompt
templates. As each of them can output prediction
probabilities for answer words, we make a decision
fusion of majority voting as multi-prompt ensem-
bling for final relation sense prediction. After each
prompt predicting a specific relation sense, if two or
more prompts have the same prediction, then their
predicted relation sense is used as the final output.
In a case that each prompt predicts differently, we
choose the prediction from the prompt template
with the highest F1 in the validation dataset.

3 Experiment Settings

In this section, we present our experimental set-
tings, including dataset, PLMs, parameter settings
and competitor models.

3.1 The PDTB Dataset
We conduct our experiments on the Penn Discourse
TreeBank (PDTB) 3.0 corpus (Webber et al., 2019),
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which contains more than one million words of
English texts from Wall Street Journal. Following
the conventional data splitting, we use sections 2-
20 as the full training set, sections 21-22 as the
testing set and 0-1 as the development set (Ji and
Eisenstein, 2015). Our experiments are conducted
on the four top-level classes of relation sense, in-
cluding Comparison, Contingency, Expansion,
Temporal.

For few shot learning, we randomly down-
sample the full training set to construct some sub-
sets containing {Full, 50%, 30%, 20%, 10%} in-
stances of the full training set. Table 2 summarizes
the statistics of training instances in the training set
and subsets.

Relation Expa. Comp. Cont. Temp. Total

Train-Full 8645 1937 5916 1447 17945
Train-50% 2794 1937 2794 1447 8972
Train-30% 1346 1346 1346 1346 5384
Train-20% 898 898 898 898 3592
Train-10% 449 449 449 449 1796

Dev. 748 190 579 136 1653
Test 643 154 529 148 1474

Table 2: Statistics of the PDTB training set and down-
sampling sets with four top-level relation senses.

3.2 Pre-trained Language Models

We use four masked pre-trained language models
(PLM) for comparision:

• BERT (Devlin et al., 2019): The most rep-
resentive PLM proposed by Google 1, which
is pre-trained using a cloze task and a next
sentence prediction task.

• RoBERTa (Liu et al., 2019): A BERT-
enhanced PLM proposed by Facebook 2,
which removes the next sentence predic-
tion objective and is pre-trained on a much
larger dataset with some modified key hyper-
parameters.

• ERNIE (Sun et al., 2019): A knowledge-
enhaced PLM proposed by Baidu 3, which
uses some knowledgeable masking strategies
in pre-training.

1https://github.com/google-research/bert
2https://github.com/pytorch/fairseq/
3https://github.com/PaddlePaddle/ERNIE

• DeBERTa (He et al., 2021): The latest
masked PLM proposed by Microsoft 4, which
improves BERT and RoBERTa models using
a disentangled attention mechanism and an
enhanced mask decoder.

3.3 Parameter Setting

Table 3 presents the configuration of each English
masked pre-trained language model. All these
PLM models are implemented in PyTorch 5 frame-
work by HuggingFace transformers 6 (Wolf et al.,
2020), and run with CUDA on NVIDIA GTX 1080
Ti GPUs. From our statistics, 99.46% of argu-
ments do not exceed 50 words in PDTB. So we
set the maximum length of each prompt template
to 100 tokens, in which the maximum length of
argument-1 is 50 tokens, and the rest 50 tokens
are for argument-2 and [MASK], [CLS] and [SEP]
tokens. We train all the four masked PLMs with
the same mini-batch of 16 and learning rates of
5e-6, 1e-5, 2e-5 and 5e-5. We release the code at:
https://github.com/HustMinsLab/ConnPrompt.

PLM Model Vocab. size Layer Dim.

BERT bert-base-uncased 30522 12 768
RoBERTa roberta-base 50265 12 768

ERNIE ernie-2.0-en 30522 12 768
DeBERTa deberta-base 50265 12 768

Table 3: Configuration of four pre-trained masked lan-
guage models.

3.4 Competitors

We compare our ConnPrompt with the following
advanced models:

• DAGRN (Chen et al., 2016) encodes word-
pair interactions by a neural tensor network.

• NNMA (Liu and Li, 2016) combines two ar-
guments’ representations for stacked interac-
tive attentions.

• IPAL (Ruan et al., 2020) propagates self-
attention into interactive attention by a cross-
coupled network.

• PLR (Li et al., 2020) uses a penalty-based loss
re-estimation method to regulate the attention
learning.

4https://github.com/microsoft/DeBERTa
5pytorch.org
6https://github.com/huggingface/transformers
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• BMGF (Liu et al., 2020) combines bilateral
multi-perspective matching and global infor-
mation fusion to learn a deep contextualized
representation.

Model PLM Acc F1

DAGRN (ACL, 2016) Word2vec 57.33% 45.11%
NNMA (EMNLP, 2016) Glove 57.67% 46.13%
IPAL (COLING, 2020) BERT 57.33% 51.69%
PLR (COLING, 2020) BERT 63.84% 55.74%
BMGF (IJCAI, 2020) RoBERTa 69.95% 62.31%

Our ConnPrompt

BERT 69.67% 64.00%
RoBERTa 75.17% 70.88%

ERNIE 72.93% 68.37%
DeBERTa 74.63% 70.19%

Table 4: Overall results of comparison models on the
PDTB corpus.

4 Result and Analysis

4.1 Overall Result

We implement a four-way classification on the top-
level relation sense of the PDTB, in which macro
F1 score and accuracy (Acc) are used for evalu-
ation. Table 4 compares the overall performance
between our ConnPrompt and the state-of-the-art
models with pre-train and fine-tuning paradigm.
We note that the first two competitors both use a
kind of distributed representation based static word
embeddings: Word2vec and Glove, provided by
Google 7 and Stanford NLP Group 8. While the
others use Transformers based pre-trained masked
language model BERT and RoBERTa, which are
dynamic and contextual. We also compare the per-
formance of our ConnPrompt with different PLMs.

The first observation is that the IPAL, PLR and
BMGF model can obviously outperform the first
two competitors, viz., the DAGRN and NNMA
model. This might be attributed to the use of
more advanced dynamic PLMs which are pre-
trained with deeper neural networks and larger
scale of parameters based on Transformers. In-
deed, transformer-based PLMs have been proven
to be more effective for many downstream NLP
tasks (Devlin et al., 2019; Liu et al., 2019).
Although these competitors’ well-designed task-
specific neural networks also have a certain impact
on the performance, the gaps between dynamic

7code.google.com/archive/p/word2vec
8https://nlp.stanford.edu/projects/glove/

PLMs and static word embeddings are still appar-
ent in the IDRR task.

The second observation is that in our
ConnPrompt employing different PLMs, the
ConnPrompt-BERT performs the worst. We note
that although they all employ Transformer based
model in pre-training, the RoBERTa, ERNIE
and DeBERTa have applied some adjusted and
optimized pre-training processes. Specifically, the
RoBERTa removes the next sentence prediction
task and uses a much larger dataset for training;
While the ERNIE uses some knowledgeable
masking strategies; and the DeBERTa applies
a disentangled attention mechanism to encode
context and position information separately. This
suggests that the improvements and optimization
in the pre-training process can effectively improve
the performance of prompt learning.

Finally, our ConnPrompt with all four PLMs
have achieved better performance than all con-
ventional pre-train and fine-tuning paradigm mod-
els in macro F1 score, even some of the com-
petitors have used advanced PLMs like RoBERTa
and BERT, to train an elaborate downstream task
model. Besides, the ConnPrompt-RoBERTa and
ConnPrompt-DeBERTa model have achieved sig-
nificant improvements over all competitors and
PLMs in terms of much higher macro F1 score
and Acc. We attribute its outstanding performance
to our task transformation of connective-cloze pre-
diction into the training of PLMs, other than using
task-specific model built-upon a PLM, by which
our ConnPrompt can better enjoy the encyclopedic
linguistic evidence embedded in a PLM during the
model training process.

4.2 Prompt Template Effections

In the prompt paradigm, using different templates
may impact on the task performance. Table 5 com-
pares the results of our designed single-prompt
templates and multi-prompt ensembling of Con-
nPrompt.

It can be first observed that using different
prompt templates do result in some performance
disparity, even though the gaps are not obvious. For
single-prompt learning, the BERT and RoBERTa
have achieved the best performance in Prompt-1,
while the ERNIE and DeBERTa have achieved
the best performance in Prompt-2. This suggests
that the semantic encoding might play the central
role in BERT and RoBERTa, as the Prompt-1 does
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PLM
BERT RoBERTa ERNIE DeBERTa

Acc F1 Acc F1 Acc F1 Acc F1

Prompt-1 69.74% 63.95% 74.36% 69.91% 72.05% 67.25% 72.32% 67.74%
Prompt-2 69.34% 63.69% 73.61% 69.63% 72.25% 67.59% 72.66% 67.98%
Prompt-3 67.64% 62.65% 73.54% 69.00% 70.15% 66.21% 72.66% 67.92%

Multi-Prompt 69.67% 64.00% 75.17% 70.88% 72.93% 68.37% 74.63% 70.19%

Table 5: Results of single-prompt templates and multi-prompt ensembling with different PLMs on the PDTB
corpus.

not mark the boundary of two arguments, and the
[MASK] token is inserted between them to form an
entire word sequence.

By contrast, ERNIE and DeBERTa might have
more consideration on position encoding, as the
Prompt-2 uses a [SEP] token to distinguish two
input arguments and the [MASK] token is added at
the front of argument-2. They have shown more
powerful ability with these position information.
We also observe that Prompt-3 cannot outperform
the other two prompts. This may be attributed to
its infrequent grammar structure that places the
connective at the beginning of the first argument.

Our multi-prompt model achieves performance
improvements over the single-prompt models for
almost all PLMs. This indicates that our multi-
prompt ensembling is effective for fusing multiple
single-prompts for discourse relation classification.

4.3 Few Shot Learning

Some researchers have reported that the prompt
paradigm is of some robustness to using fewer
training data in other NLP tasks, like text classifi-
cation (Wang et al., 2021) and entity typing (Ding
et al., 2021). We would also like to examine the
performance of ConnPrompt and competitors with
few shot learning. We adopt down-sampling to
construct smaller training datasets; While the de-
velopment set and test set remain unchanged.

Fig. 4 summarizes the few short learning results.
It is not unexpected that both our ConnPrompt and
competitors suffer from the reduction of training
data. The left column presents the ConnPrompt
results when using different PLMs. It is again
observed that the RoBERTa is still the best PLM
choice for the ConnPrompt with fewer training data.
The center column compares the ConnPrompt built
upon BERT with two competitors, viz., IPAL and
PLR, also employing BERT as their PLM. We se-
lect the single-prompt with the best performance
in the validation dataset for comparison. It is ob-

served that the performance improvements of Con-
nPrompt are quite significant in few short learning.
In particular, when using 10% training data, the
ConnPrompt (F1 48.32% and Acc 50.41%) out-
performs the IPAL and PLR using 50% training
data, (IPAL: F1 45.53% and Acc 50.00%; PLR: F1
47.13% and Acc 50.07%). Similar results can also
be observed for ConnPrompt built upon RoBERTa
(right column). These results validate the effec-
tiveness of ConnPromt even with fewer training
data.

5 Related Work

5.1 Implicit Discourse Relation Recognition

The pre-train and fine-tuning paradigm for the
IDRR task is usually approached as a classification
problem, and the key is to construct a downstream
task model built-upon some PLM for the argument
representation learning.

Deep learning models have prevailed for their
capabilities of automatic learning argument repre-
sentation upon PLM (Zhang et al., 2015; Ruther-
ford et al., 2017). For example, the SCNN
model (Zhang et al., 2015) obtains each argument
representation via a single convolution layer, and
the concatenation of two arguments’ representa-
tions is used for relation classification. Rutherford
et al. (2017) employ a LSTM network to capture
word contextual semantics for argument represen-
tation. Some hybrid models have attempted to com-
bine CNN, LSTM, graph convolutional networks
and etc., for more sophisticated argument repre-
sentation (Zhang et al., 2021; Shi and Demberg,
2019; Jiang et al., 2021). These approaches, how-
ever, have ignored the fact that different words may
contribute differently in argument representation
learning.

Attention mechanisms can guide a neural model
to unequally encode each word according to its
contextual importance for argument representa-



909

(a) F1 of multi-prompt with differnet PLMs (b) F1 of BERT models (c) F1 of RoBERTa models

(d) Acc of multi-prompt with differnet
PLMs

(e) Acc of BERT models (f) Acc of RoBERTa models

Figure 4: Performance comparison of few shot learning on the PDTB corpus.

tion (Zhou et al., 2016; Liu and Li, 2016; Lan
et al., 2017; Guo et al., 2020; Ruan et al., 2020;
Li et al., 2020). For example, Zhou et al. (2016)
apply self-attention to weight a word according to
its similarity to its belonging argument. Guo et
al. (2020) and Liu et al. (2020) adopt an interactive
attention to differentiate words in one argument,
where a word is weighted according to the simi-
larity between its encoding and another argument
representation. Liu and Li (2016) design a multi-
level attention to repeatedly compute word impor-
tance in a hierarchical way. Ruan et al. (2020)
propose a pipeline workflow to apply interactive
attention after self-attention. Li et al. (2020) use a
penalty-based loss re-estimation method to regulate
the attention learning.

5.2 Prompt Learning for NLPs

After the emergence of large-scale PLMs like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ERNIE (Sun et al., 2019) and etc., the
prompt learning has become a new paradigm for
some NLP tasks, which use the probability of text
in PLMs to perform a prediction task (Seoh et al.,
2021; Wang et al., 2021; Ding et al., 2021). For ex-
ample, Seoh et al. (2021) propose a cloze question
prompt and a natural language inference prompt for

aspect-based sentiment analysis. Wang et al. (2021)
propose a transferable prompting framework to cap-
ture cross-task knowledge for few-shot text clas-
sification. Ding et al. (2021) apply a cloze-style
prompt learning on fine-grained entity typing in
fully supervised, few-shot and zero-shot scenarios.
Up to now, prompt learning has achieved promis-
ing results on some NLP tasks, but has not been
reported for the IDRR task to the best of our knowl-
edge.

The proposed ConnPrompt transforms the re-
lation prediction task as a connective-cloze task
against the prompt learning paradigm.

6 Conclusion

This is the first paper on examining the pre-
trained, prompt, predict paradigm for the IDRR
task. We have developed a Connective-cloze
Prompt (ConnPrompt) to transform the IDRR task
as a connective-cloze prediction task based on a
pre-trained language model (PLM). Two styles
of manually designed prompt template: Insertion
Connective Prompt and Prefix Connective Prompt,
have been designed to convert input argument pairs
into the prompt formulation, and a discrete answer
space is constructed with sixteen answer words
for verbalizer. Experiments on the PDTB corpus
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have validated that our ConnPrompt can signifi-
cantly outperform the state-of-the-art algorithms,
even with fewer training data.

This paper has applied the basic techniques of
prompt learning for the IDRR task. In the last
year, the prompt paradigm has achieved some new
interesting advances, covering the techniques for
choosing pre-trained models, designing continuous
prompt templates, constructing answer space as
well as training and tuning strategies. We note that
some of these new techniques shall also be exam-
ined and improved for the IDRR task. Besides, the
excellent performance of the prompt learning in
this paper also motivates us to further investigate
its applications in other NLP tasks.
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