
Proceedings of the 29th International Conference on Computational Linguistics, pages 766–778
October 12–17, 2022.

766

End-to-End Neural Bridging Resolution

Hideo Kobayashi1, Yufang Hou2 and Vincent Ng1

1 Human Language Technology Research Institute, University of Texas at Dallas, USA
2 IBM Research Europe, Ireland

{hideo,vince}@hlt.utdallas.edu
yhou@ie.ibm.com

Abstract

The state of bridging resolution research is
rather unsatisfactory: not only are state-of-
the-art resolvers evaluated in unrealistic set-
tings, but the neural models underlying these
resolvers are weaker than those used for en-
tity coreference resolution. In light of these
problems, we evaluate bridging resolvers in an
end-to-end setting, strengthen them with better
encoders, and attempt to gain a better under-
standing of them via perturbation experiments
and a manual analysis of their outputs.

1 Introduction

Bridging was used by Clark (1975) to refer to non-
identity relations between anaphoric noun phrases
(i.e., bridging anaphors) and their antecedents.
In Example 1, “ruling – party members” is a
bridging anaphor and its antecedent is “Japan”.

(1) Yet another political scandal is racking Japan.
But this time it’s hurting opposition as well as
ruling - party members.

Bridging resolution is the task of identifying bridg-
ing anaphors and linking them to their antecedents.
Many tasks can benefit from bridging resolution,
such as textual entailment (Mirkin et al., 2010) and
question answering (Tseng et al., 2021).

Bridging resolution is arguably less studied but
more challenging that entity coreference resolu-
tion, the task of determining which entity mentions
refer to the same entity in the real world. Specif-
ically, while linguistic constraints on coreference
exist at the grammatical (e.g., gender and number
agreement), syntactic (e.g., c-command), and se-
mantic (e.g., semantic type agreement) levels that
can be used to filter candidate antecedents, such
constraints are largely absent for bridging resolu-
tion. For instance, a singular bridging anaphor (e.g.,
"the book") can refer to a plural antecedent (e.g.,
"books"), and bridging relations can be formed
from mentions with different entity types (e.g.,

"the house" and "the window"). In fact, while
many coreference relations can be identified via
string matching facilities, it is not uncommon for
bridging relations to be identified using background
knowledge and/or sophisticated inference mech-
anisms. The complexity of bridging resolution
is further complicated by the lack of a large cor-
pus annotated with bridging relations: while the
most extensively-used coreference-annotated cor-
pus, OntoNotes, contain more than 2000 docu-
ments, two of the most commonly-used corpora
for bridging resolution, ISNotes and BASHI, each
contains only 50 documents taken from OntoNotes.

The current state of bridging resolution research
is rather unsatisfactory. State-of-the-art bridging
resolvers are typically evaluated in unrealistic set-
tings: in the bridging anaphora resolution task,
the goal is to identify the antecedent of a given
bridging anaphor; and in the full bridging resolu-
tion task, the goal is to first identify the bridging
anaphors given a set of gold mentions and then
resolve each anaphor to its antecedent (Yu and Poe-
sio, 2020). While such unrealistic settings have
been considered unacceptable for evaluating entity
coreference resolvers for more than a decade, they
are still extensively used to evaluate bridging re-
solvers nowadays simply because the end-to-end
setting, where a resolver needs to identify bridg-
ing relations given a raw document, is perceived
to be overly challenging. Worse still, while bridg-
ing resolution is more challenging than coreference
resolution, models for bridging resolution are less
sophisticated than those for coreference resolution.
For instance, while SpanBERT, a version of BERT
specifically pre-trained to identify text spans (Joshi
et al., 2020), has been used successfully as an en-
coder in span-based entity coreference models, the
state-of-the-art neural bridging resolver developed
by Yu and Poesio (2020) simply uses a bidirectional
LSTM to encode the input document.

Our goal in this paper is to gain a better un-
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derstanding of the state of the art in bridging res-
olution. First, we conduct a systematic evalua-
tion of bridging resolvers in an end-to-end setting.
In particular, we focus on evaluating three state-
of-the-art approaches, including a rule-based ap-
proach by Rösiger et al. (2018), a neural approach
by Yu and Poesio (2020), and a hybrid rule-based
and learning-based approach by Kobayashi and Ng
(2021), showing how each of them can be extended
so that they can be applied in an end-to-end set-
ting. Next, we strengthen Yu and Poesio’s (2020)
neural model by replacing the biLSTM encoder it
uses with stronger encoders such as BERT (Devlin
et al., 2019) and SpanBERT (Joshi et al., 2020).
These experiments can help us determine whether
the commonsense knowledge encoded in these pre-
trained language models can be profitably exploited
for bridging resolution, which could be important
given that state-of-the-art bridging resolvers are
trained on small annotated corpora. Further, to
better understand the extent to which a bridging
resolver relies on certain words/phrases in the in-
put, we conduct perturbation experiments. Finally,
to complement the quantitative analysis in our ex-
periments, we conduct a qualitative analysis of the
outputs produced by our best-performing resolver.

Our contributions in this paper are three-fold.
First, our experiments reveal that end-to-end bridg-
ing resolution is not as challenging as typically
perceived: for the most part, end-to-end bridging
resolution lags behind its "gold mention" counter-
part by less than 3 points in absolute F-score. These
results provide suggestive evidence that time is ripe
for abandoning unrealistic evaluations of bridging
resolvers. Second, we establish baseline results for
end-to-end bridging resolution against which fu-
ture work can be compared on two commonly-used
referential bridging corpora, ISNotes and BASHI.
While our evaluations have largely focused on the
end-to-end setting, for comparison purposes we
also present evaluation results in the "gold men-
tion" setting, in which our strongest models achieve
state-of-the-art results on ISNotes and BASHI.

2 Related Work

Many previous computational studies on bridg-
ing have focused on one of the two sub-tasks of
bridging resolution, namely bridging anaphora
recognition and bridging anaphora resolution (see
Kobayashi and Ng (2020) for a comprehensive
overview of this area of research). Bridging

anaphora recognition has been tackled as part of
the information status (IS) classification problem
(Rahman and Ng, 2011, 2012; Hou et al., 2013;
Hou, 2020b). Recall that the goal of IS classifica-
tion is to assign an IS to each discourse entity that
indicates how these entities are referred to in a text
(Prince, 1981; Nissim et al., 2004; Markert et al.,
2012): an entity is old if it is coreferent with an
entity that has been mentioned before, new if it is
introduced into the discourse for the first time and
is not known to the hearer before, and mediated if it
has not been introduced in the discourse but can be
inferred from previously mentioned entities. Bridg-
ing anaphors are a type of mediated entities that are
discourse-new but hearer-old. Bridging anaphora
resolution, on the other hand, focuses on selecting
antecedents for bridging anaphors (Poesio et al.,
2004; Pandit et al., 2020; Hou, 2020a). There are
a few works tackling full bridging resolution (i.e.,
recognizing bridging anaphors and linking them
to the antecedents), ranging from rule-based ap-
proaches (Hou et al., 2014; Rösiger et al., 2018),
to machine learning-based approaches (Hou et al.,
2018; Yu and Poesio, 2020) and hybrid methods
(Kobayashi and Ng, 2021; Kobayashi et al., 2022).
However, these resolvers all assume that gold men-
tions are given, which hinders the application of
bridging resolution in downstream tasks.

In contrast, we focus on end-to-end bridging res-
olution. Note that some recent attempts have been
made in this direction. For example, Hou’s (2020a)
approach to bridging anaphora resolution does not
require gold mentions when constructing the list of
antecedent candidates; nevertheless, it still needs
gold bridging anaphora information. In addition,
while Hou (2021) proposes an end-to-end neural
approach to the related tasks of IS classification
and bridging anaphora recognition, it has not been
extended to bridging resolution. More recently, in
the Bridging track of the CODI-CRAC shared task
on Anaphora, Bridging, and Discourse Deixis in
Dialogue in 2021 (Khosla et al., 2021) and 2022
(Yu et al., 2022), the participants built resolvers
for performing end-to-end bridging resolution in
dialogue in the "Predicted" phase (Kim et al., 2021;
Kobayashi et al., 2021; Li et al., 2022).

3 State-of-the-Art Approaches

Existing approaches to bridging resolution can
be broadly divided into rule-based approaches,
learning-based approaches, and hybrid approaches.
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Figure 1: The MTL framework for bridging resolution.

In this section, we overview the state-of-the-art ap-
proach in each of these three categories, as we will
extend them to the end-to-end setting in Section 4.

3.1 Yu and Poesio’s (2020) Model

Yu and Poesio’s (Y&P) approach is a state-of-the-
art learning-based approach to bridging resolution.
Their model is a span-based neural model that takes
as input a document D represented as a sequence
of word tokens and the associated set of gold men-
tions, and performs joint bridging resolution and
coreference resolution, which we define below, in
a multi-task learning (MTL) framework.

The bridging resolution task aims to find a bridg-
ing antecedent bi for each span i in D. The set of
possible values for bi is B(i) = {1, ..., i − 1, ϵ},
the preceding spans or a dummy antecedent (if the
mention underlying i is not a bridging anaphor).
Y&P define the following scoring function:

sb(i, j) =

{
0 j = ϵ

sa(i, j) j ̸= ϵ
(1)

where sa(i, j) is a pairwise score computed over i
and a preceding span j suggesting their likelihood
of having a bridging link. The antecedent of i is
predicted to be y∗b = argmaxyb∈B(i) sb(i, yb).

The entity coreference task aims to find a coref-
erence antecedent ci for each span i based on a
scoring function sc that is defined analogously as
the sb function in the bridging resolution task.

Figure 1 illustrates the structure of MTL frame-
work, which we describe in detail below.
Span Representation Layer To encode the to-
kens and the surrounding contexts of a gold men-
tion, Y&P use a bidirectional LSTM (Hochre-

iter and Schmidhuber, 1997) that takes as in-
put BERT and GloVe embeddings. They
define gi, the representation of span i, as
[xstart(i); xend(i); xhead(i);ϕi], where xstart(i) and
xend(i) are the hidden vectors of the start and end
tokens of i, xhead(i) is an attention-based head vec-
tor and ϕi is a span width feature embedding.

Bridging Prediction Layer To predict bridging
links, Y&P first calculate the pairwise score be-
tween spans i and j as follows:

sa(i, j) = FFNNb([gi; gj ; gi ◦ gj ;ψij ]) (2)

where FFNNb(·) represents a standard feedforward
neural network, and ◦ denotes element-wise mul-
tiplication. This pairwise score includes gi ◦ gj ,
which encodes the similarity of i and j, and ψij ,
which denotes the distance between them.

Coreference Prediction Layer To predict coref-
erence links, Y&P calculate the pairwise score that
is defined analogously as in Equation 2 using an-
other FFNN, FFNNc. The model shares the first
few hidden layers of FFNNb and FFNNc as well as
the span representations.

The loss function is the weighted sum of the
losses of the bridging task (Lb) and the coreference
task (Lc). Lb and Lc are defined as the negative
marginal log-likelihood of all correct bridging an-
tecedents and coreference antecedents, respectively.
The weights associated with the losses are tuned
using grid search to maximize the average bridging
resolution F-scores on development data.

3.2 Rösiger et al.’s (2018) Approach

Rösiger et al.’s approach, which builds upon the
rules designed by Hou et al. (2014), is by far the
best-performing rule-based approach to bridging
resolution. These rules are shown in Appendix A.
When evaluating on BASHI, all nine rules are ap-
plied, but when evaluating on ISNotes, only the
first eight are used. The reason is that the last rule
aims to resolve comparative anaphors, which are
not annotated in ISNotes. Each rule is composed of
an "anaphor" condition and an "antecedent" condi-
tion. When two mentions satisfy the two conditions
of a rule, they will be extracted as a bridging pair.

3.3 Kobayashi and Ng’s (2021) Approach

Motivated by the observation that Rösiger et al.’s
rule-based approach and Y&P’s MTL approach are
complementary rather than competing, Kobayashi
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and Ng (K&N) propose a hybrid approach to bridg-
ing resolution that combines these two approaches
in a pipeline fashion. Given a document, they first
use the rules to extract the bridging pairs and then
use Y&P’s neural model to resolve all and only
those mentions that are not resolved by the rules.

From a modeling perspective, however, K&N’s
approach is not particularly elegant, as there are
two models (i.e., the rules and the neural models
are still separate). Consequently, we propose a
variant of the hybrid approach where we integrate
the rules into the MTL model. Recall that each
rule posits a bridging link when the anaphor and
antecedent conditions are both satisfied. To incor-
porate these predictions into the MTL model, we
first define a rule score function r(i, j) whose value
is the precision of the rule that posits a bridging
link between spans i and j. This rule score function
is incorporated into Equation 1 as follows:

sb′(i, j) =

{
0 j = ϵ

sb(i, j) + αr(i, j) j ̸= ϵ
(3)

where α is a positive constant that controls the
impact of the rule information on s′b. The smaller
α is, the less impact rule information has on s′b. sb′
is then used as the bridging score function when
ranking the candidate antecedents of span i. Note
that (1) if no rule posits i and j as bridging, r(i, j)
is 0; (2) rule precision is computed on the training
set; and (3) α is tuned on the development set.

We will henceforth refer to the original K&N
approach as H1 and our proposed variant as H2.

4 End-to-End Models

Next, we show how to create end-to-end versions
of the three approaches described in Section 3.

4.1 Yu and Poesio’s (2020) Model

We present two approaches to create end-to-end
versions of Y&P’s model.

Joint approach. The first approach learns men-
tion boundaries jointly with bridging and corefer-
ence resolution. Specifically, following Joshi et al.
(2019), for each document, we enumerate all pos-
sible intra-sentence spans of up to length Lm. We
compute a score sm for each span i that indicates
i’s likelihood of being a mention.

sm(i) = FFNNm(gi) (4)

where FFNNm is a feedforward neural network
used to calculate mention scores. Using these
scores, the model prunes candidate spans and re-
tains only the top N spans for further processing in
order to maintain computational tractability. These
scores are then incorporated into the bridging score
function in Equation 1 as additional terms:

sb(i, j) =

{
0 j = ϵ

sm(i) + sm(j) + sa(i, j) j ̸= ϵ
(5)

We incorporate these scores into the coreference
score function sc(i, j) in a similar manner.
Pipeline approach. In this approach, we do not
make any changes to Y&P’s model. Rather, dur-
ing testing, we first apply a mention extractor to
extract mentions and then employ Y&P’s model
from Section 3 to resolve mentions.

Next, we describe our mention extractor. For
ISNotes, we use Hou’s (2021) mention extraction
model, which has achieved state-of-the-art results
on ISNotes and outperformed Yu et al.’s (2020) neu-
ral mention extractor. For BASHI, we use all the
noun phrases extracted from the automatic parse
trees that are obtained using Stanford CoreNLP
(Manning et al., 2014).1 The reason is that in
BASHI gold mentions are not annotated, and bridg-
ing links are annotated over the noun phrases ex-
tracted from gold parse trees.2

Using BERT and SpanBERT as encoders. We
strengthen Y&P’s model by replacing its biLSTM
encoder with Transformer-based encoders, includ-
ing BERT and SpanBERT, the latter of which has
been successfully applied to entity coreference res-
olution. To do so, we follow Joshi et al. (2019) and
replace the LSTM-based encoder in Y&P’s model,
which takes frozen BERT and Glove embeddings
as input, with BERT or SpanBERT, which corre-
sponds to the “Encoder” component in Figure 1.
We adopt the independent version of Joshi et al.
(2019), where an input document is split into non-
overlapping segments of up to length Ls.

4.2 Rösiger et al.’s (2018) Approach
While the rules were designed to operate on gold
mentions, they can be applied to mentions extracted

1These mention extractors achieve F-scores of 92.1 (when
extracting gold mentions in ISNotes) and 92.0 (when extract-
ing gold noun phrases in BASHI).

2In preliminary experiments, we applied Hou’s (2021)
mention extractor to extract mentions in BASHI, but the results
were poorer than those obtained using noun phrases extracted
from automatic parse trees.
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Corpora Docs Tokens Mentions Anaphors
ISNotes 50 40,292 10,980 663
BASHI 50 57,709 18,561 452

Table 1: Statistics on ISNotes and BASHI.

using one of the mention extractors described in
Section 4.1 (i.e., Hou’s (2021) mention extractor
for ISNotes and the noun phrases extracted from
system parse trees for BASHI) with just one caveat.
Specifically, Rösiger et al. use gold annotations
(i.e., gold POS tags, gold parse trees, and gold en-
tity types) when computing the information needed
by the rules. To make the rules applicable in an end-
to-end setting, we use Stanford CoreNLP to pro-
vide automatic constituency and dependency parse
trees and spaCy (Honnibal and Montani, 2017) to
provide automatic POS tags and entity types.

4.3 Kobayashi and Ng’s (2021) Approach

Now that we have end-to-end versions of Rösiger
et al.’s rule-based approach and Y&P’s MTL ap-
proach, we can simply use them to create an end-
to-end version of K&N’s hybrid approach.

5 Evaluation

5.1 Experimental Setup

Corpora. Since we focus on anaphoric referen-
tial bridging resolution, which corresponds to “ref-
erential bridging” in Rösiger et al. (2018) where
bridging anaphors are truly anaphoric and bridg-
ing relations are context-dependent3, we employ
two widely used English referential bridging cor-
pora: ISNotes (Markert et al., 2012) and BASHI
(The Bridging Anaphors Hand-annotated Inven-
tory) (Rösiger, 2018), both of which are composed
of different sets of 50 WSJ articles in OntoNotes
with anaphoric referential bridging annotations. Ta-
ble 1 shows statistics on these corpora. We perform
5-fold cross validation (70% for model training,
10% for development, and 20% for testing).
Evaluation setting. We evaluate bridging re-
solvers in the end-to-end setting, meaning that they
extract bridging relations given a raw document.
Evaluation metrics. Bridging results are re-
ported in terms of precision (P), recall (R), and
F-score (F) for recognition and resolution. For com-
pleteness we also report the results of entity coref-

3We excluded ARRAU (Uryupina et al., 2020) from our
evaluation because most bridging links in ARRAU are non-
anaphoric referential bridging pairs (e.g., Europe-Spain),
which Rösiger et al. (2018) refer to as lexical bridging.

Model Bridging
Recognition Resolution

ISNotes
Rösiger et al. (2018) 25.6 17.5

Our re-implementation 28.1 18.1
BASHI

Rösiger et al. (2018) 27.2 14
Our re-implementation 28.5 14.1

Table 2: Comparison of Rösiger et al’s (2018) resolver
and our re-implementation on ISNotes and BASHI.

erence. Entity coreference results are expressed in
terms of the CoNLL score (Pradhan et al., 2014),
which is the unweighted average of the F-scores
provided by three coreference evaluation metrics,
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), and CEAFe (Luo, 2005).
Implementation details. For the MTL model,
we extend a publicly-available implementation of
Y&P’s resolver4 so that it can operate in an end-to-
end setting. The BERT and SpanBERT encoders
we use are BERTLARGE and SpanBERTLARGE ,
and BERTLARGE is used to obtain BERT embed-
dings with segment length 512. We set all parame-
ters to the ones reported in Yu and Poesio (2020)
except (1) the task learning rate, which is searched
out of {1× 10−4, 2× 10−4, 3× 10−4, 4× 10−4}
and is decayed linearly; and (2) the learning rates
for BERT and SpanBERT, which are searched out
of {1×10−5, 2×10−5, 3×10−5} and are decayed
linearly. Each document is split into segments of
length 384. We generate all spans of length up to
15 and prune these candidate spans by retaining the
top 30%. For training, we use document-sized mini-
batches and train models for up to 1600 epochs for
both ISNotes and BASHI. α, the weight parameter
associated with the rule score, is searched out of
{0.1, 0.5, 1.0, 10, 100, 200, 300}.

For the rule resolver, while conceptually we can
extend Rösiger et al.’s resolver so that it can operate
in an end-to-end setting, the way they structured
their code has made it non-trivial to do so. Conse-
quently, we (1) re-implement their resolver, which
operates on gold mentions; (2) extend it so that it
operates on automatically extracted mentions, as
described in Section 4.2; and (3) report rule-based
results using this duplicated resolver. As we can
see in Table 2, our re-implementation outperforms
the original resolver in terms of recognition and res-
olution F-scores when evaluated on both ISNotes
and BASHI in the gold-mention setting.

4https://github.com/juntaoy/
dali-bridging

https://github.com/juntaoy/dali-bridging
https://github.com/juntaoy/dali-bridging
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Model
Bridging Coref. Bridging Coref.

Recognition Resolution Res. Recognition Resolution Res.
P R F P R F CoNLL P R F P R F CoNLL

ISNotes BASHI
MTL

1 Rules 49.4 17.4 25.7 31.8 11.2 16.5 - 33.1 22.5 26.8 15.2 10.3 12.3 -
2 LSTMJ 49.6 19.1 29.3 26.0 9.7 14 59.1 40.5 9.3 15.1 19.8 4.5 7.3 58.1
3 LSTMP 50.0 24.0 32.4 25.4 12.2 16.5 61.1 37.3 16.0 22.4 16.3 7.0 9.8 48.6
4 H1(LSTMP ) 45.8 32.4 37.9 25.9 18.3 21.5 61.1 33.6 32.3 33.0 16.4 15.8 16.1 48.6
5 H2(LSTMP ) 53.3 26.5 35.4 32.6 16.2 21.6 60.6 41.2 22.8 29.3 22.6 12.5 16.1 47.1
6 BERTJ 72.1 7.8 14.1 45.7 5.0 9.0 61.9 68.7 3.1 5.9 53.6 2.4 4.6 60.3
7 BERTP 33.3 32.0 32.5 19.0 18.2 18.5 56.9 37.1 23.4 28.7 15.0 9.4 11.6 43.8
8 H1(BERTP ) 33.8 39.5 36.4 20.1 23.5 21.7 56.9 32.4 36.5 34.3 15.1 17.0 16.0 43.8
9 H2(BERTP ) 33.7 32.7 33.2 22.4 21.8 22.1 55.1 45.8 23.7 31.2 23.9 12.4 16.3 48.2

10 SBERTJ 79.0 15.6 26.1 52.7 10.4 17.4 68.8 64.5 9.0 15.8 40.1 5.6 9.8 66.5
11 SBERTP 34.4 30.9 32.6 22.3 20.1 21.1 59.5 34.7 29.4 31.8 15.3 12.9 14.0 47.5
12 H1(SBERTP ) 35.1 38.8 36.8 22.2 24.6 23.4 59.5 31.3 41.6 35.7 14.8 19.6 16.9 47.5
13 H2(SBERTP ) 39.7 31.6 35.1 27.0 21.5 23.9 59.2 36.0 27.5 31.2 19.7 15.0 17.0 45.4

STL
14 LSTMJ 57.4 11.6 19.3 20.4 4.2 6.9 - 59.5 8.6 14.9 15.9 2.3 4.0 -
15 LSTMP 54.5 15.4 24.0 22.7 6.3 9.9 - 41.7 11.3 17.7 14.6 4.0 6.2 -
16 BERTJ 66.5 4.9 9.1 47.6 3.5 6.5 - 86.7 2.3 4.5 63.3 1.6 3.2 -
17 BERTP 24.5 36.5 29.2 12.5 18.6 14.9 - 30.8 19.0 23.5 8.9 5.5 6.8 -
18 SBERTJ 67.9 16.7 26.6 38.2 9.1 14.6 - 61.7 5.9 10.8 36.0 3.4 6.2 -
19 SBERTP 35.2 32.9 33.9 17.9 16.7 17.3 - 26.5 26.8 26.6 11.0 11.1 11.0 -

Table 3: Results of different MTL and STL resolvers in the end-to-end setting. Each result is the average of two
runs. The highest recognition and resolution F-scores are bolded for each encoder in MTL.

Finally, for the hybrid approach, we employ our
extension of the publicly-available implementation
of Y&P’s resolver and our re-implementation of
Rösiger et al.’s resolver, as described above.

5.2 Results and Discussion

Baselines. Strictly speaking, there are no base-
lines, as no one has reported results on ISNotes
and BASHI in the end-to-end setting. Neverthe-
less, we will use the three approaches described in
Section 4, namely our end-to-end versions of the
state-of-the-art approaches to bridging resolution
in the gold mention setting, as our baselines.

Results of bridging recognition and resolution in
the end-to-end setting for both ISNotes and BASHI
are shown in Table 3. For bookkeeping purposes,
we also report results on entity coreference reso-
lution. Rules (row 1) corresponds to our duplica-
tion of Rösiger et al.’s rule-based approach (Sec-
tion 4.2). LSTMJ (row 2) and LSTMP (row 3)
are the joint and pipeline versions of Y&P’s MTL
approach using LSTM as the encoder (Section 4.1).
H1(LSTMP ) (row 4) and H2(LSTMP ) (row 5) are
the original version and our proposed variant of
K&N’s hybrid approach, respectively.

Several points deserve mention. First, LSTMJ

underperforms LSTMP . This is somewhat unex-
pected since pipeline models are prone to error
propagation and have been shown to underperform

their joint counterparts in many NLP tasks. A
closer examination of the output reveals the rea-
son: since the mention extraction F-scores on both
datasets are above 90%, error propagation is by
no means serious. In contrast, LSTMJ has par-
ticularly poor anaphor recognition recall, which
translates to poor resolution recall and F-score. Sec-
ond, LSTMP does not perform better than Rules.
While LSTMP achieves considerably higher recog-
nition recall than Rules, it does not perform better
than Rules w.r.t. resolution. For BASHI, LSTMP

underperforms Rules w.r.t. both recognition and
resolution. H1(LSTMP ) outperforms both Rules
and LSTMP . This is perhaps not surprising: this
hybrid variant has achieved the best results on
ISNotes and BASHI in the gold mention setting
and represents the prior state of the art. Our re-
sults suggest that the success of this hybrid variant
can be extended to the end-to-end setting. Like
in the gold setting, recognition and resolution F-
scores are both better than other baselines in the
end-to-end setting. Finally, consider H2(LSTMP ).
While H2(LSTMP ) achieves lower recognition F-
scores than H1(LSTMP ), the resolution F-scores
achieved by the two models are comparable, with
H2(LSTMP ) having higher resolution precision
and lower resolution recall than H1(LSTMP ). This
suggests that H2 could be more valuable than H1

for downstream applications, as these applications
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Model
Bridging Coref. Bridging Coref.

Recognition Resolution Res. Recognition Resolution Res.
P R F P R F CoNLL P R F P R F CoNLL

ISNotes BASHI
MTL

1 Rules 52.7 19.2 28.1 34.0 12.4 18.1 - 35.8 23.6 28.5 17.8 11.7 14.1 -
2 LSTM 53.0 25.6 34.5 24.2 11.7 17.2 64.0 38.2 16.5 23.0 17.3 7.5 10.4 57.4
3 H1(LSTM) 48.1 34.6 40.3 27.2 19.6 22.8 64.0 34.7 33.7 34.2 18.1 17.5 17.8 57.4
4 H2(LSTM) 56.5 28.8 38.1 34.0 17.3 22.9 63.8 45.4 22.8 30.4 26.6 13.4 17.8 57.4
5 BERT 34.9 33.2 33.9 20.3 19.3 19.7 60.2 37.6 23.4 28.8 15.2 9.4 11.6 52.1
6 H1(BERT) 35.6 42.2 38.6 21.1 25.0 22.8 60.2 33.6 37.8 35.6 16.4 18.5 17.4 52.1
7 H2(BERT) 36.3 35.7 36.0 23.7 23.3 23.5 58.3 46.3 24.8 32.3 25.8 13.8 18.0 50.7
8 SBERT 37.1 33.1 35.0 24.5 21.9 23.1 62.9 35.0 29.7 32.1 16.1 13.7 14.8 54.9
9 H1(SBERT) 37.6 42.4 39.8 23.6 26.6 25.0 59.5 32.2 43.0 36.8 16.3 21.7 18.6 54.9

10 H2(SBERT) 43.8 34.6 38.6 30.4 24.1 26.8 62.6 37.6 28.8 32.6 21.6 16.6 18.7 55.1
STL

11 LSTM 57.4 16.4 25.4 25.1 11.0 15.2 - 42.8 11.5 18.1 15.5 4.2 6.5 -
12 BERT 26.0 38.2 30.8 13.1 19.2 15.5 - 28.9 20.5 24.0 9.1 6.5 7.6 -
13 SBERT 37.7 34.4 35.9 19.9 18.1 18.9 - 27.8 26.8 27.3 12.2 11.7 12.0 -

Table 4: Results of different MTL and STL resolvers in the gold mention setting. Each result is the average of two
runs. The highest recognition and resolution F-scores are bolded for each encoder in MTL.

typically cannot benefit from bridging information
if many links are erroneous.5

LSTM vs. BERT/SpanBERT. Results for BERT
and SpanBERT (SBERT) are shown in rows 6–9
and rows 10–13 respectively. Comparing the BERT
results with the corresponding LSTM results, we
see that the two achieve comparable F-scores w.r.t.
resolution except for three cases (BERTP outper-
forms LSTMP on both datasets, and H2(BERTP )
outperforms H2(LSTMP ) on ISNotes). In terms
of recognition, the results are mixed: on BASHI
the BERT models outperform their LSTM counter-
parts, while the reverse is true on ISNotes. Next,
consider the SBERT results. Each SBERT model
considerably outperforms the corresponding BERT
and LSTM models. Generally, the higher resolu-
tion F-scores achieved by SBERT can be attributed
to its higher recall on BASHI and its higher preci-
sion on ISNotes. These results show the usefulness
of SBERT for bridging resolution.

MTL vs. STL. Y&P show that multi-task learn-
ing for entity coreference and bridging outperforms
single-task learning (i.e., learning bridging resolu-
tion without coreference). The question is: would
MTL still outperform STL in the end-to-end set-
ting? To answer this question, we obtain STL re-
sults by removing the coreference prediction layer
in Y&P’s model and retraining it. Results of this
experiment using different encoders in the Y&P
model are shown in rows 11–13. As can be seen,

5We use the pipeline version rather than the joint version
of Y&P’s MTL model in the hybrid variants because of our
desire to create stronger baselines.

regardless of which encoder is used, the resolu-
tion F-scores achieved by STL are lower than those
achieved by MTL for both datasets.

End-to-end vs. gold settings. Will the trends we
have observed so far generalize to the gold mention
setting? To answer this question, we repeat the
experiments in Table 3 on gold mentions. There is
a caveat involved in evaluating on gold mentions,
however. In ISNotes and BASHI, some bridging
anaphors have clausal antecedents that correspond
to events. While clausal antecedents are annotated,
they are not annotated as gold mentions, and previ-
ous studies differ in terms of how they should be
handled. Specifically, some previous work (e.g.,
Hou et al. (2014), Hou et al. (2018)) chose not to
include these clausal antecedents in the list of can-
didate antecedents and others (e.g., Rösiger et al.
(2018), Yu and Poesio (2020)) did. Obviously, the
setting in which gold clausal antecedents are not
included in training/evaluation is harsher because
it implies that anaphors with clausal antecedents
will always be resolved incorrectly. We believe that
including gold clausal antecedents during evalua-
tion does not represent a realistic setting, and will
therefore report results using the "harsh" setting
when evaluating on gold mentions.

Results of the gold mention setting are shown in
Table 4.6 Recall that the distinction between joint

6The baseline results in Table 4 are lower than those re-
ported in the original papers because (1) we report results us-
ing the "harsh" setting; (2) Rösiger et al. (2018) and Kobayashi
and Ng (2021) postprocess the system output with gold corefer-
ence information, and (3) Yu and Poesio (2020) and Kobayashi
and Ng (2021) use additional labeled data for model training.
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Perturbation Type Example
Seen adj/adv strategically → slightly

Nonexistent adj/adv skeptical → lacitpeks
Seen verbs start → reply

Nonexistent verbs possess → ssessop
Seen nouns honesty → wall

Nonexistent nouns example → elpmaxe
Seen words particularly → firmly

Nonexistent words begun → nugeb

Table 5: Perturbation examples.

and pipeline approaches is no longer applicable in
the gold mention setting. As can be seen, the con-
clusions we drew based on the end-to-end results
are also applicable to the gold mention results.

One of the questions we aim to answer is:
how much worse would the end-to-end results be
compared to the corresponding gold mention re-
sults? We see that the end-to-end LSTM-based
(LSTMP , H1(LSTMP ), H2(LSTMP )) and BERT-
based (BERTP , H1(BERTP ), H2(BERTP )) re-
solvers underperform their counterparts in the gold
setting by up to 2.8% F-score in recognition and up
to 1.7% F-score in resolution. This performance
gap widens with SBERT (SBERTP , H1(SBERTP ),
H1(SBERTP )), having a difference of up to 3.5%
F-score in recognition and up to 2.9% F-score in
resolution. Overall, while the gold results are better
than the corresponding end-to-end results, the dif-
ference between them is less than 1.8% for LSTM
and BERT and less than 3.0% for SBERT. These
results are encouraging considering that the end-to-
end evaluation setting is very challenging.

H1 vs. H2. While the performance difference
between H1 and H2 tends to be small w.r.t. reso-
lution in the end-to-end setting, there are cases in
the gold mention setting in which this difference in
resolution F-score is comparatively larger. Specifi-
cally, when BERT is used, H2 outperforms H1 by
0.6–0.7% points in F-score on the two corpora, and
when SBERT is used, H2 outperforms H1 by 1.8%
points in F-score on ISNotes.

5.3 Sensitivity to Perturbed Inputs

Next, we conduct experiments that involve perturb-
ing the input. For each experiment, we replace a
certain type of words with other words in all train-
ing documents, retrain our best-performing model,
H2(SBERTP ), on these perturbed training docu-
ments, and evaluate it on the (unperturbed) test
set. The goal is to gain insights into the behavior
of the best model by assessing how sensitive its
performance is when training inputs are perturbed.

Pertutbation Type
ISNotes BASHI

Rec. Res. Rec. Res.
1 No perturbation 35.1 23.9 31.2 17.0
2 Seen adj/adv 33.0 22.5 29.0 12.7
3 Nonexistent adj/adv 34.9 23.4 28.8 12.9
4 Seen verbs 35.0 23.2 28.9 13.3
5 Nonexistent verbs 35.0 23.5 30.4 13.4
6 Seen nouns 32.9 22.1 30.1 12.5
7 Nonexistent nouns 31.8 22.2 29.6 12.7
8 Seen words 33.2 20.6 30.4 12.2
9 Nonexistent words 32.3 21.3 25.4 12.7

Table 6: Perturbation results of the best model.

If performance drops a lot when a certain type of
word is replaced, then it means that that type of
words is important in the learning process. Note
that we consider only mention-external perturba-
tions, meaning that we only replace words that are
not part of a bridging anaphor or its antecedent(s).

Specifically, we replace words from the follow-
ing categories: adjectives and adverbs only, verbs
only, nouns only, and all categories combined. For
each category, we consider two replacement meth-
ods. One is to replace each word with another word
of the same POS tag that is taken from the training
documents but which has never appeared within a
mention in the training set (Seen). This replace-
ment is deterministic: all occurrences of a given
word will be replaced with the same word. The
other method involves replacing each word with a
nonexistent word (Nonexistent), which we create
by reversing the order of the characters of the word
to be replaced. This latter method tests the impact
of nonexistent words has on the model.

Results of these experiments are reported in Ta-
ble 6 in terms of recognition and resolution F-
scores. To facilitate comparison, we show in row
1 the results of the resolver when the input is not
perturbed. Several points deserve mention. First,
all results obtained via perturbations are lower than
the "No perturbation" results in row 1. This implies
that each kind of perturbation we considered affects
the model learning process and negatively impacts
bridging recognition and resolution performances.
Second, Seen words appear to confuse the model
more than Nonexistent words. This is perhaps not
surprising: in the Nonexistent setting the model
will not be confused by those Seen replacements
that could cause a sentence to become unsensible.
Finally, we see from rows 4 and 5 that verbs have
the least impact on resolution F-scores, suggest-
ing that adj/adv and nouns play more important
roles than verbs in learning span-based models for
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bridging resolution.

5.4 Analysis of Results

Error analysis of the best end-to-end model.
To gain additional insights into our best end-to-
end model (H2(SBERTP )), we conduct an error
analysis of this resolver. First, the system is still
struggling to detect the majority of the bridging
anaphors and find their antecedents, having recall
scores of 31.6% and 27.5% for bridging anaphora
recognition on ISNotes and BASHI, respectively.
Only a very small portion of the recall errors are
from mention prediction errors: 3% and 1.3% of
the gold bridging anaphors are misclassified as non-
mentions in ISNotes and BASHI, respectively. The
system makes more recall errors at predicting defi-
nite bridging anaphors (i.e., NPs modified by the
definite article “the”) than other bridging anaphors.
For instance, on ISNotes, the recall scores of identi-
fying definite bridging anaphors and other bridging
anaphors are 20% and 25%, respectively.

Next we analyze the precision errors on ISNotes
because BASHI does not annotate mentions and
their information status. We find that mention pre-
diction errors (i.e., predicted bridging anaphors are
not mentions) account for 8.7% of the precision
errors for bridging anaphora recognition. In ad-
dition, 16.7% of the wrongly predicted bridging
pairs contain correct bridging anaphors but wrong
antecedents. The majority of the precision errors
can be attributed to the fact that the system pre-
dicts new and old mentions as bridging anaphors,
which account for 31% and 21% of the precision er-
rors, respectively. This is in line with the previous
studies on bridging recognition that suggest that
systems often fail to distinguish bridging anaphors
from generic new mentions with simple syntactic
structures (Hou et al., 2018; Hou, 2021).

Comparison of different encoders and embed-
dings. We analyze the results from three end-
to-end systems: H2(LSTMP ), H2(BERTP ), and
H2(SBERTP ). which correspond to rows 5, 9,
and 13 in Table 3, respectively. As noted be-
fore, the LSTM encoder with BERT embeddings
(i.e., H2(LSTMP )) is more conservative in link
prediction, having higher precision but lower re-
call than the other two systems. In fact, on IS-
Notes, H2(LSTMP ) only predicts half of the num-
ber of bridging pairs predicted by the other two sys-
tems. Interestingly, although bothH2(BERTP ) and
H2(SBERTP ) achieve higher recall scores on full

bridging resolution compared toH2(LSTMP ), they
both make a relatively large portion of precision er-
rors that involve linking a mediated/syntactic men-
tion m to a previous mention that is often related to
the premodification of m, such as {Britain’s voters
– Britains’s} or {Some Mobil executives – Mobil
Corp.}. On the contrary, this kind of error is rare
in H2(LSTMP ).

Finally, we analyze the recall scores based on the
determiners of bridging anaphors. We divide bridg-
ing anaphors into three categories: (1) the NPs
correspond to bridging anaphors that are modified
by the definite article “the”; (2) other determiner
NPs contain bridging anaphors that are modified
by the indefinite articles “a/an” as well as other
determiners (e.g., demonstratives or possessives);
and (3) bare NPs are bridging anaphors that are not
modified by any determiners, such as “subsidies”
and “overseas operations”. The majority of
the correctly predicted bridging links from the
above three models are bare NPs. H2(BERTP )
is better at predicting bridging anaphors for
all three categories compared to H2(LSTMP ).
The performance of H2(SBERTP ) on other
determiner NPs and bare NPs is on par with that of
H2(BERTP ), but the former achieves higher recall
at identifying definite bridging anaphors than the
latter (i.e., 20% vs. 14% on ISNotes).

6 Conclusion

We conducted a pioneering study on end-to-end
neural bridging resolution in which we adapted
three state-of-the-art bridging resolvers that were
originally developed to operate on gold men-
tions, namely Rösiger et al.’s (2018) resolver, Yu
and Poesio’s (2020) resolver, and Kobayashi and
Ng’s (2021) resolver, to the end-to-end setting. To
strengthen the resolvers, we replaced the LSTM
encoders they use with BERT- and SpanBERT-
based encoders. In an evaluation on ISNotes and
BASHI, end-to-end bridging resolvers lagged be-
hind their gold-mention counterparts by only 2-3%
absolute F-score. These results suggested that time
is ripe for researchers to focus on evaluating bridg-
ing resolvers in the end-to-end setting. In addition,
our work suggested that H2(SBERTP ), the hybrid
score-based pipeline bridging resolver trained us-
ing SBERT (1) achieves better performance than
other model variants; (2) is sensitive to all kinds of
perturbations we considered; and (3) will likely be
improved by improving mediated/syntactic errors.
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Rule Description (anaphor) Description
(antecedent) Motivation Res. Precision (%)

Set:
Percentage

Percentage NPs in
subject position

Closest NP modifying
another percentage NP
via the preposition “of”
(e.g. 22% of the firms)

Percentage expressions
can indicate set bridging

I: 100.0 B: 0.0

Building
part

Common NPs whose
head is a building part

without nominal
pre-modifications

NP with the strongest
semantic connectivity to

anaphor

A typical case (building
part) of meronym

bridging
I: 62.5 B: 0.0

Set:
Number or
indefinite
pronoun

Number expressions (e.g.
two dogs) or indefinite
pronouns (e.g. some ...)

Closest plural NP in
subject position. If not

found, closest plural NP
in object position

Numbers or indefinite
pronouns can indicate set

bridging
I: 80.0 B: 33.3

Argument-
taking NPs

1

NPs with high argument
ratio and without
nominal/adjective

pre-modifications or
indefinite determiners

1. take all nominal
modifiers of NPs whose

head is same as anaphor’s
head. 2. closest NP that
is a realization of these

modification

Different instances of the
same noun predicate

likely maintain the same
argument fillers indicated

by nominal modifiers
(extended claim from

Laparra’13)

I: 40.0 B: 18.5

Relative
person

Non-generic NPs whose
head is a relative without

no nominal/adjective
pre-modifications

Closest non-relative
person NP

Handles relative nouns,
which tend to be bridging

I: 50.0 B: 42.9

GPE job
title

Job titles with country
pre-modifications (e.g.,

Italian mayor)

Most salient GPE (e.g.,
Italy)

Some job title NPs
implicitly refer to the
globally salient GPE

I: 45.0 B: 14.3

Professional
role

Professional role NPs
(e.g. professor)

Most salient organization
name

A more general rule than
"Relative person" and

"GPE job title"
I: 62.0 B: 21.2

Argument-
taking NPs

2

NPs in subject position
with high argument ratio

and without
nominal/adjective
pre-modifications

NP with the strongest
semantic connectivity to

the anaphor

An NP in subject position
that is likely to take

arguments tends to be
bridging anaphor

I: 28.1 B: 0.0

Meronym
relation

Unmodified definite NPs

NP classified as
meronym with anaphor
according to a relation
classifier trained using

WordNet

Handles meronym
bridging

I: 11.8 B: 11.3

Comparative
anaphora

NPs with comparative
markers

Closest NP with same
head and semantic

category

Comparative anaphors
are typically indicated by

certain markers
B: 45.5

Table 7: Rules used by Rösiger et al. (2018) for resolving bridging anaphors in ISNotes and BASHI. ’I’ and ’B’
refer to ISNotes and BASHI, respectively.


