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Abstract

The joint multiple Intent Detection (ID) and
Slot Filling (SF) is a significant challenge in
spoken language understanding. Because the
slots in an utterance may relate to multi-intents,
most existing approaches focus on utilizing
task-specific components to capture the re-
lations between intents and slots. The cus-
tomized networks restrict models from mod-
eling commonalities between tasks and gen-
eralization for broader applications. To ad-
dress the above issue, we propose a Unified
Generative framework (UGEN) based on a
prompt-based paradigm, and formulate the task
as a question-answering problem. Specifically,
we design 5-type templates as instructional
prompts, and each template includes a ques-
tion that acts as the driver to teach UGEN
to grasp the paradigm, options that list the
candidate intents or slots to reduce the an-
swer search space, and the context denotes
original utterance. Through the instructional
prompts, UGEN is guided to understand in-
tents, slots, and their implicit correlations. On
two popular multi-intent benchmark datasets,
experimental results demonstrate that UGEN
achieves new SOTA performances on full-data
and surpasses the baselines by a large margin
on 5-shot (28.1%) and 10-shot (23%) scenarios,
which verify that UGEN is robust and effective.
Our code will be publicly available at https:
//github.com/Youngl993/UGEN

1 Introduction

In task-oriented dialogue systems, spoken language
understanding (SLU) is a crucial component that
aims to understand users’ queries and use a seman-
tic frame to represent users’ requirements. The
semantic frame usually contains intents and slot
names (Tur and De Mori, 2011). Recently, multi-
ple intent SLU has attracted lots of attention (Liu
and Lane, 2016; E et al., 2019; Weld et al., 2021;
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Utterance add song to siesta ... at five stars

T

Slot O  B-music_item O B-playlist ... O B-rating value B-rating unit

Intent AddToPlayList and RateBook

Figure 1: The semantic frame. An example from MixS-
NIPS dataset(Coucke et al., 2018; Qin et al., 2020).

Gangadharaiah and Narayanaswamy, 2019) due to
the wide variety of practical application scenarios.

Considering the example shown in Figure 1, the
models are expected to identify the intents (AddTo-
PlayList and RateBook) and the slot values with
tags for the utterance. Current works (Qin et al.,
2019, 2020; Ding et al., 2021; Qin et al., 2021;
Chen et al., 2021a) usually treat Intent Detection
(ID) as a classification task and Slot Filling (SF)
as a sequence labeling task. The task-specific com-
ponents are employed by current works to capture
the connection or interaction between ID and SF,
which achieve fine-grained multi-intent informa-
tion integration for slot filling and obtain remark-
able success.

In this paper, we’re interested in exploiting a
united paradigm to handle the task instead of cus-
tomized networks. Prompt-learning (Liu et al.,
2021; Jin et al., 2022) is a novel paradigm, which
replaces the "pre-train, fine-tune" procedure with
"pre-train, prompt, and predict" analogous to origi-
nal pre-training language models (PLMs). With the
help of a prompt template, prompt-learning benefits
from fully exploiting the latent knowledge in PLMs
while relieving the dependency on annotated data.
Thus, prompt-based PLMs perform excellently in
different tasks (classification, NER, summarization,
etc.) and the few-shot setting.

To this end, we treat the joint multiple ID_SF as
a question-answering problem and present a sim-
ple unified generative framework (UGEN) based
on instructional prompts. Briefly, we first define
5-type descriptive templates (shown in Figure 2)
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as inputs. Per template contains one context that
refers to the original utterance, one question (e.g.,
"what are the intents of the sentence according to
options?") as the driver to direct UGEN to real-
ize the paradigm, and the corresponding options
(e.g., play music, rate book) to restraint the answer
search space. Through these instructional prompts,
UGEN is directed to acquire the ability to capture
the relationship between intents and slots. Then the
correct intents and slots are predicted as the final
answer (e.g., "add to playlist, rate book").
Experiments on two multi-intent benchmarks
show that UGEN outperforms the baselines and
achieves new SOTA performances. Remarkably,
UGEN exceeds the comparison models by a large
margin (28.1%, 23%, and 5.1%) in the 5/10-shot
settings and 10% training data. The further analy-
ses demonstrate that our approach has a strong abil-
ity of robustness and generalization. Meanwhile,
it has the advantage of fast adaptation to practi-
cal scenario with limited annotation data and easy
reproduction without task-specific components.

2 Related Work

Prompt-based Learning. With the release of
GPT-3 (Brown et al., 2020), prompt-based learn-
ing methods have attracted more and more atten-
tion (Gu et al., 2021; Jin et al., 2022). The new
paradigm can utilize the pre-trained language mod-
els with the form of cloze-style template, such as "I
love this movie. It was a [Z] movie", and the model
generates the probability of the [Z] in (good/bad).
Hence, it directly models the probability of text
P(z]0) itself and uses the probability to predict
y instead of the P(y|z;0) ! like traditional meth-
ods, which can narrow down the gap between pre-
training and fine-tuning.

Few-shot Learning (FSL) with PLMs. FSL
aims to absorb experience from only a few sam-
ples and make a great adaptation to the new prob-
lem(Wang et al., 2019). Usually, the models for
FSL are trained on one accessible set of source
domains and then evaluated on another set of un-
seen target domains. As the pre-trained models be-
come more and more powerful, prompt-based meth-
ods with PLMs have achieved substantial improve-
ments compared to those fine-tuned in low-resource
settings, which displays promising prospects for

"Here, we take the input x, learn the model parameters 6 ,
and predict the output y.

few-shot learning in natural language tasks (Han
et al., 2021; Li et al., 2021; Chen et al., 2021b).

3 Methodology

In this section, we briefly illustrate the problem
definition of multiple ID_SF and main architecture.
Then, we discuss the design of instruction-based
templates and how to convert the ID_SF to the
generation task.

3.1 Problem definition

The task of multiple ID_SF aims to classify all the
possible intents and identify the slot values with
the corresponding slot names in a given sentence.
Given the input sentence X = {wq,wa, ..., wy},
n is the length of X. The candidate intents I =
{i1,12, ..., 7m }, and m is the number of categories.
The slot names S = {s1, $2, ..., Sk}, and k is the
number of slot types.

To pursue simple model architecture (shown in
Figure 2), in this work, we employ T5 (Raffel et al.,
2020) as our backbone to model the probability
of text P(X|#). The answers Y are generated by
UGEN, which contain intents (e.g., i1, ¢;) or slots
(e.g., {wi,wsy} is one s3), split by comma.

3.2 Instructional templates

To formulate the joint ID_SF as a question-
answering problem and better exploit the knowl-
edge learned in the PLMs, we design 5-type tem-
plates in line with QA and the pre-training-style
tasks. Specifically, each template is defined to com-
prise three units: (1) Context, the original sentence
X to express users’ queries. (2) Question, the role
of question @ is to guide the model to understand
the paradigm and then generate the correspond-
ing answer for the given Context X. In this study,
the questions involve 5 types (shown in Figure 2):
Question-1 is about the intents classification while
the others are slot-related. For instance, question-1,
"What are the intents of the sentence according to
options?" is directed to intents labels. (3) Options
O list all the intents labels or slot names as the
candidate choices, and they act as a constraint to
teach the model to select words in limited space
(template’s content).

Since the number of slot types are usually far
larger than intents’, we introduce 4-type questions
to enhance the attention for slots. Specifically,
Question-2 (e.g. Which words are the slot values
in the sentence? for the context "Add this track to
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Figure 2: UGEN architecture with 5-type prompt templates based on combination of context, question, and options.
For the Question-4, those words marked in red are negative samples.

my dinnertime acoustics playlist.") leads UGEN to
extract the words that are exactly the slot values.
Question-3 lists the slot values in X and steers the
UGEN to select their slot names from options. To
recognize the connection between slot values and
their names, Question-4 is synthesized through a
slot value with its slot name (positive) or random
span in X with a slot name (negative). Question-5
is the most challenging, requiring UGEN to induce
all the slot values and their names by the given
question and options. Here, Questions 2-4 act as
the auxiliary drivers and encourage the model to
capture the links between slot names and their men-
tions in the Context X.

To simulate the pre-training manner, the input X
is converted to "<s> Context: X </s> Question:()
</s> Options: O </s>". Here, the special tokens
<s> and </s> are used to separate context, question
and options. For the intents, the output Y is "iy, i",
i, 1s one of the intent labels and generally, i, < 3.
On the slots side, the output Y (e.g., "{wy, wa}" is
one "s9") consists of slot values {w, w2} or slot
values with slot names ss, such as "track is one
music item".

At the training stage, we first pre-process the
original utterances with all the 5-type templates
and shuffle the processed samples, then feed them
into the UGEN to direct the model to understand
the implicit correlations between intents and slots.

The questions 2 to 4 are only used in the training
phase and act more like auxiliary tasks. In the
evaluation phase, only question-1 and question-5
are used to generate the intents and slot values with
slot names, respectively.

4 Experiments

4.1 Experiment Setup

Dataset We compare our method with the base-
lines on two popular multi-intent SLU datasets,
MixSNIPS and MixATIS. MixSNIPS is constructed
from SNIPS dataset (Coucke et al., 2018) which
comprises 39,776/2,198/2,199 utterances for train-
ing, validation and testing, separately. MixATIS is
collected from ATIS (Hemphill et al., 1990), which
contains 13,161/759/828 utterances for training,
validation and testing, respectively. In addition,
both of datasets are the cleaned version, and the
proportion of sentences with 1 ~ 3 intentions is
[0.3,0.5, 0.2].

We train and test all the models on the 32GB
Tesla V100. For full-volume data, we set batch size
to 20. The learning rate with Adam optimizer is
set to 3e — 5, and beam search size is set to 3. In
the few shot setting (5/10, and 10% training data),
we set batch size to 16. In addition, we exploit the
T5-base ? as the backbone model.

https://huggingface.co/t5-base
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Baselines We compare UGEN with existing top-
performing multi-intent approaches:

Joint Multiple ID-SF (JM) (Gangadharaiah and
Narayanaswamy, 2019) proposes a multi-task
framework and utilizes an attention-based model
to identify intents and produce slot labels at the
token-level.

Stack-Propagation (SP) (Qin et al., 2019)
adopts a joint model with Stack-Propagation to
use the intent information as input for slot filling
and performs the token-level intent detection to
alleviate the error propagation.

AGIF (Qin et al., 2020) presents an Adaptive
Graph-Interactive Framework for joint multiple in-
tent detection and slot filling, and it extracts the
intents information for token-level slot prediction.

GL-GIN (Qin et al., 2021) proposes a Global-
Locally Graph Interaction Network which explores
a non-autoregressive model for joint multiple intent
detection and slot filling.

SDJN (Chen et al., 2021a) introduces a novel
self-distillation model which formulates multiple
intent detection as a weakly supervised problem
and designs an auxiliary loop to decode the intents
and slots.

Model MixSNIPS MixATIS
S-F1 I-Acc O-Acc|S-F1 I-Acc O-Acc
M 90.6 95.1 629|846 734 36.1
SP 942 960 729|87.8 72.1 40.1
AGIF 942 951 742|867 744 40.8
GL-GIN| 949 956 754|883 763 435
SDIN |944 96,5 75.7/88.2 77.1 44.6
UGEN |95.0 969 78.8|89.2 83.0 55.3

Table 1: Overall results on the MixSNIPS and MixATIS
sets with full-data. S-F1, I-Acc,0O-Acc refer to the slot
F1, intent-accuracy, and overall accuracy (both intents
and slots need to be right), respectively. The highest
numbers are in bold.

4.2 Overall Results

Table 1 reports the test results of UGEN compared
to existing top-performing models on MixSNIPS
and MixATIS. To the time of writing, UGEN out-
performs the comparison models in all the metrics
and obtains the new SOTA. For slot F1, our method

leads to slight improvements (0.1% and 0.9%) com-
pared to the GL-GIN, which validates that UGEN is
more effective while extracting the slot values with
their names. Turning to intent accuracy, UGEN
exceeds SDJN (the previous SOTA) by 0.4% and
5.9%, respectively. It proves that UGEN has a
strong ability to identify intents. Moreover, UGEN
surpasses SDIN by 3.1% and 10.7% on overall ac-
curacy (the more tough metric), which confirms
that UGEN is more powerful in understanding the
implicit correlations between intents and slots. The
improvements align with our design and verify that
the question-driven instructions are effective.

4.3 Few shot setting

Table 2 reports the results in the setting of 5/10-
shot and 10% training data. We find that UGEN
can consistently exceed the comparison models by
a large margin in all the metrics. For instance, not
only can UGEN increase by 23.5, 13.8, and 1.5
points in slot F1, but it leads to 28.1, 23.0, and 5.1
improvements in overall accuracy. The remarkable
results validate that UGEN is more robust and can
effectively exploit the implicit intent-slot correla-
tions even with limited samples.

4.4 Ablation study

To explore the contribution of instructional
prompts, we first remove the auxiliary instruc-
tions (Questions 2-4). The results drop a lot (e.g.,
42.2% and 49.0% for overall accuracy) in the 5/10-
shot, which demonstrates the auxiliary questions-
driven templates are absolutely significant. Second,
we only remove options in templates but keep all
the questions. Every result under 5/10-shot and
10% training data is extremely low, sharply falling
34.7%, 31.2%, and 1.6%. The results confirm that
options can effectively restrain the search space
while predicting the answers. All the results are
reported in Table 2.

5 Conclusion

In this work, we present a novel unified generative
framework (UGEN) to treat the joint multiple intent
detection and slot filling as a question-answering
problem. To leverage the knowledge learned in the
PLMs, we define 5-type prompt templates as the
drivers to lead UGEN to grasp the prompt paradigm
and capture the implicit correlations between in-
tents and slots. On two multi-intent benchmark
datasets, our approach accomplishes the new state-
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Model 5-shot 10-shot 10%

S-F1 I-Acc O-Acc | S-F1 I-Acc O-Acc | S-F1 I-Acc O-Acc
SP 58.7 78.2 11.9| 71.5 883 2481 903 935 58.4
AGIF 60.7 77.8 144 73.6 86.3 2751 912 930 62.8
GL-GIN 543 86.1 10.1 | 69.5 90.2 2391921 953 66.6
UGEN - auxiliary instructions | 32.3 184 03] 372 346 151926 954 67.5
UGEN - options 61.9 493 7.8 727 71.2 193] 93.1 955 70.1
UGEN 842 924 425 874 933 50.5| 93.6 96.0 71.7

Table 2: Results on the MixSNIPS set in the few shot settings. Because Joint Multiple ID-SF (JM) and SDJN are not
publicly available, we can only compare the other baselines. S-F1, I-Acc,0-Acc refer to the slot F1, intent-accuracy,
and overall accuracy (both intents and slots need to be right), respectively.

of-the-art performances in all the metrics, which
validates that our design is effective. Meanwhile,
UGEN leads to 28.1%, 23.0%, and 5.1% improve-
ments in the 5/10-shot and 10% training data set-
tings, which verify that UGEN is robust with lim-
ited annotation data.
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