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Abstract

This paper seeks to improve the performance
of automatic speech recognition (ASR) sys-
tems operating on code-switched speech. Code-
switching refers to the alternation of languages
within a conversation, a phenomenon that is
of increasing importance considering the rapid
rise in the number of bilingual speakers in the
world. It is particularly challenging for ASR
owing to the relative scarcity of code-switching
speech and text data, even when the individual
languages are themselves well-resourced. This
paper proposes to overcome this challenge by
applying linguistic theories in order to gener-
ate more realistic code-switching text, neces-
sary for language modelling in ASR. Working
with English-Spanish code-switching, we find
that Equivalence Constraint theory and part-of-
speech labelling are particularly helpful for text
generation, and bring 2% improvement to ASR
performance.

1 Introduction

Although accurate statistics on the number of
worldwide bilingual speakers are hard to determine,
it has been generally believed that more than half
of the population can communicate in more than
one language (Ansaldo et al., 2008; Bialystok et al.,
2012; Grosjean, 2010). With the rising popularity
of voice assistant and translation applications, auto-
matic speech recognition (ASR) systems have been
increasingly integrated into people’s lives. Consid-
ering the abundance of bilingual countries 1, and
code-switching 2 is common in everyday conversa-
tions, there has been great interest into developing
such system in the corresponding setting.

The most widely accepted definition of code-
switching is the phenomenon whereby a speaker

1https://www.uottawa.ca/clmc/55-bilingual-countries-
world

2Code-switching can also be found in text, such as social
media or news paper headlines, but in this paper we are only
focus only on the spoken form

shifts from one language to another within a single
utterance, especially in an environment in which
both languages are being used (Heredia and Al-
tarriba, 2001). Some previous work make a dis-
tinction between code-switching and code-mixing,
where the former occurs at sentence-level while the
latter occurs at word-level (Myers-Scotton, 1997;
Gumperz, 1982). However, in recent years, this dis-
tinction has becomes unclear (Bali et al., 2014).
To avoid confusion, we will only use the term
code-switching in this work, and denote the dif-
ferences in switching position as sub-types of it
(Myers-Scotton, 1989; Muysken et al., 2000; Ma-
jor, 2002; Winford, 2003). Although different lan-
guage pairs may present varying extents or types of
code-switching, they can generally be categorised
as inter-sentential, intra-sentential, and tag switch-
ing, where respectively the language switches at
sentence or clause boundary; within the sentence
or clause; or by inserting a tag phrase 3. In this pa-
per, we focus only intra-sentential switching, which
is a much harder task compared with other types,
because the acoustic variance of mixed languages
within the sentence can be larger than across sen-
tence (Li et al., 2019).

The challenge of developing a code-switched
ASR system comes from both linguistic and com-
putational perspectives. On the one hand, code-
switching can be driven by multiple factors, which
makes it flexible but hard to predict. Linguists
have studied the phenomenon for decades, and
the main views held are that people tend to code-
switch to compensate for lack of language profi-
ciency, express solidarity or certain feelings, dis-
cuss some particular topic, and distinguish them-
selves from other classes to imply a certain social
status (Grosjean, 1982; Holmes and Wilson, 2017;
Leung, 2006). ASR systems generally require a

3Intra-word switching can be arguably considered as a
type of code-switching (Myers-Scotton, 1989), but a complete
discussion is out of the scope of this paper.
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large amount of transcribed data in a monolingual
setting. However, a relatively small number of the
approximately 7000 existing languages have large
readily corpora, and the data scarcity is more se-
vere for code-switching problems, which – to make
matters worse – usually involve one or more low-
resourced languages (Austin and Sallabank, 2011).

Motivated by the these considerations, we pro-
pose a novel code-switched ASR framework with
the aid of established linguistic theories. We
demonstrate the effectiveness of the approach
on Spanish-English conversational code-switching
data from the Bangor-Miami corpus (Deuchar,
2011). In doing so, we prove both phonological and
syntactic information can improve the performance
of language modelling and ASR.

2 Related work

There have been many attempts to approach the
problem of modelling code-switched speech from
acoustic, pronunciation and language modeling per-
spectives for conventional hybrid ASR systems. In
early work a language identification (LID) system
was combined to determine which hypothesis from
multiple monolingual decoders should be chosen
(Lyu et al., 2006; Wu et al., 2006; Bhuvanagiri and
Kopparapu, 2010). However, the drawback of this
approach is a strong assumption that the speech
segments are independent from each other and a
heavy dependency on the accuracy of LID module
(Weiner et al., 2012). The choice of phone invento-
ries is important, and many studies have been con-
ducted to merge phone sets of different language
pairs manually or automatically, which improves
the performance of ASR systems by effectively
yielding more training data for each phone, and
enabling the pronunciation influence between lan-
guages to be learnt (Kohler, 1998; Lyudovyk and
Pylypenko, 2014; Sivasankaran et al., 2018). Con-
sidering that there is a much larger amount of mono-
lingual text than code-switched text, code-switched
text generation by imposing language theories to
parallel monolingual texts has been a popular re-
search direction (Li and Fung, 2014; Winata et al.,
2019; Pratapa et al., 2018). From this, language
models can be improved by training them on the
generated text or can also be achieved by apply the
theories directly to restrict the search paths in a
WFST framework(Li and Fung, 2013).

In recent years, end-to-end (E2E) models have
also been explored to handle the problem. To ad-

dress the issue that E2E models usually require a
large amount of data, transfer learning from mono-
lingual models has been used (Luo et al., 2018;
Shan et al., 2019; Mary N J et al., 2020; Winata
et al., 2020). However, when the models are fine-
tuned on code-switched data, the performance on
monolingual speech is degraded. To improve the ro-
bustness of the model, techniques such as Learning
Without Forgetting and adversarial training have
been proposed (Shah et al., 2020; Madhumani et al.,
2020).

3 Methodology

3.1 Phoneme mapping

We use the standard International Phonetic Alpha-
bet (IPA) as the basis for our acoustic modelling
units. As English and Spanish have partly differ-
ent inventories (Edwards, 1992; Goldstein, 2000),
instead of treating them as completely two phone
sets, we merge them according to their phonologi-
cal features (Mortensen et al., 2016). The features
are a set of global attributes, which describes the
characteristic of sound, such as whether it is pro-
duced with nasal airflow. After representing the
feature with vectors, where each attribute can be
negative or positive, we compute the hamming edit
distance between each pair of phonemes. In this
way, we map each Spanish phoneme to its nearest
English equivalent.

3.2 CS text generation

3.2.1 Parallel text generation
We use the Google translate API to generate paral-
lel English and Spanish text. The API is not only
capable of translating from one to the other, but also
can translate code-switched sentences to one of the
language while keeping the segment in the target
language unchanged. We receive one translated
sentence for each monolingual text in the corpus,
while for each code-switched sentence, we obtain
translations in both languages. As the translation
quality varies across the sentences under manual in-
spection, we use Pseudo Fuzzy-match Score (PFS)
shown in Equation 1 to filter any translation pairs
whose PFS is less than 0.6 (He et al., 2010; Prat-
apa et al., 2018). s here is the monolingual source
sentence, we forward translate s to target t, then
reverse translate the target t into pseudo source s′.

PFS =
EditDistance(s, s′)

max(|s|, |s′|)
(1)
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3.2.2 Constituency parse generation
To generate word level alignments between paral-
lel sentences we use fast_align toolkit, which is
a unsupervised aligner (Dyer et al., 2013). Then
following (Pratapa et al., 2018), we generate the
parse tree for English text with Berkeley neural
parser (Kitaev and Klein, 2018) and then use the
alignments to generate the equivalent parse for the
Spanish sentence.

3.2.3 Equivalence Constraint theory
The Equivalence Constraint (EC) theory claims
that, in general, “Codes will switch at points
where the surface structures of the languages
map onto each other” (Sankoff and Poplack,
1981). For example, in English and Spanish, code-
switching cannot happen within possessive phrases
or noun/adjective clauses because the grammatical
structures are different and thus reject the transfer.

EC has been successfully applied to code-
switched text data and approved crucial for lan-
guage modelling task (Pratapa et al., 2018), which
is our implementation inspired from. However, it
should be noted that even though text data can be
in the form of informal conversation on Twitter or
other Internet platforms, they may still not follow
the same patterns as speech (Sitaram et al., 2019).

We apply EC to generate CS text over permuta-
tion. To improve the naturalness, we rank generated
texts for each pair by following metrics and select
at most top 10 for each sentence pair.
Switch-points are points within a sentence where
the languages of the words on the two sides are dif-
ferent (Pratapa et al., 2018). The metric SP Fraction
(SPF) is defined as the number of SP in a sentence
divided by the total number of word boundaries in
the sentence. We set it to 0.1 for all experiments.
CMI counts the number of switches in the utter-
ance (Gambäck and Das). It can be computed at
the utterance level by finding the most frequent
language in the utterance and then counting the
frequency of the words belonging to all other lan-
guages present. The computation is shown in Equa-
tion 2, where W denotes the utterance and N(W )
denotes the number of words in W . l_max means
the count of words in the most frequent language
in that utterance, and P (W ) is the number of SP.
We set it to 0.3 for all experiments.

CMI(W ) =
N(W )− l_max+ P (W )

N(W )
(2)

POS tags As we have translate code-switched text
to parallel sentences, with monolingual words re-
mained, we can find the POS tags of the switched
words in both languages. Therefore, by calculat-
ing the frequency of the POS tags of the preced-
ing/current/following words, we give the sentence
higher ranking if proper nouns, nouns, determiners
or interjections precede switched words, and nouns
or subordinating conjunctions are switched, which
is consistent with (Soto et al., 2018)

4 Experimental setup

4.1 Data

Although the corpus is public, there has been no
standard preprocessing procedures for it. In this
paper, we first classified all utterances into Spanish,
English and Code-switched sets. If there are both
English and Spanish exclusive words in the utter-
ance, we consider it as code-switched case, but if
there are words which exist both in the English and
Spanish lexicon, the category depends on the rest of
the sentence 4. After cleaning, we retain 44971 ut-
terances, splitting them into training, development
and test by 7:1:2. To better illustrate the distribu-
tion of the dataset, the statistics are presented in
Table 1.

4.2 Training

4.2.1 Acoustic models
We used the Kaldi TDNN recipe 5 to develop the
hybrid systems. 40 dimensional MFCC features
are extracted first to train a GMM-HMM model.
Before training the neural network, we apply speed
perturbation to augment data. The TDNN-HMM
training is identical for all systems: We use 40
dimensional high resolution MFCC with 100 di-
mensional i-vector features as input. The network
consists of 7 TDNN hidden layers which contain
758 hidden units per layer. The start and final learn-
ing rates are 0.00015 and 0.000015 respectively
and we train the model for 4 epochs with a mini-
batch size of 128.

4.2.2 Language models
We use SRILM toolkit to train n-gram models for
comparison. For each setting, we trained a 3-gram
model for decoding and a 4-gram for rescoring.
The lexicon is identical to all experiments. We

4The processing script will be released after acceptance.
5https://github.com/kaldi-

asr/kaldi/blob/master/egs/librispeech/s5
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Table 1: The statistics of the processed Miami corpus, where the duration unit is hour.

English Spanish CS
Number Duration Number Duration Number Duration

Training 20813 10.9 7789 4.3 1879 1.6
Dev 3000 1.6 1250 0.6 250 0.2
Test 6000 3.1 2500 1.2 500 0.5

Table 2: WER and PPL on testset, where the top block shares the same language model which is trained only on the
original transcript, and the bottom block shares the acoustic model with phoneme mapping.

Test WER Test PPL
English Spanish CS total English Spanish CS

baseline 44.0 56.8 49.3 47.8 109.7 144.8 152.8
mapping base 43.6 56.4 49.1 47.5 109.7 144.8 152.8

translation 43.4 56.0 49.0 47.2 90.3 126.4 134.9
+ external 43.4 56.0 49.0 47.3 92.3 128.4 149.6
+ random 43.4 55.9 49.1 47.2 89.1 127.8 145.2

+ POS 43.3 55.6 48.7 47.0 88.7 126.0 130.1
+ EC 43.3 55.6 48.6 47.0 87.2 122.8 125.7

+ EC + POS 43.2 55.3 48.4 46.9 87.1 120.2 123.8

used the CMUDict for English and Santiago Span-
ish Lexicon for Spanish. There are in total 206500
English words and 91121 Spanish words, any un-
covered words are treated as UNK.

5 Results and discussion

Table 2 presents the word error rate (WER) and
perplexity (PPL) on the test set for all experiments.
Our baseline model uses the union of English and
Spanish phoneme sets while mapping base maps
the Spanish phoneme set to English phoneme set.
Their language models are identical which are
trained only on the transcripts of Bangor-Miami
corpus. It can be observed from the result that
phoneme mapping can improve the performance
by 0.3 absolute WER, so we fix it as our acous-
tic model and the only difference among the ex-
periments on the bottom block is that they have
different synthetic texts for language modelling.
translation model denotes that the language model
is trained on the transcripts as well as the transla-
tion of them and + symbol describes with what
techniques, code-switched text have been gener-
ated and added to the training text. We interpo-
late the LM with models trained on external text
data 6 to show that simply using larger but out-of-
domain text data doesn’t help improve the perfor-

6Here, we use TED talk subtitles to train the LMs for
English and Spanish (Tiedemann, 2012).

mance. After obtaining the word alignments of
parallel sentences, we compare the results of gen-
erating the code-switched text by simply random
replacement of the aligned words, or ranking the
possible replacements with the POS tags of the pre-
ceding/current/following words or the acceptance
under EC theory.

We can find that POS and EC have similar im-
provement on WER, while the combination of them
shows their advantages cannot directly add up. One
possible explanation can be that the implemen-
tation of EC is based on the constituency parse,
which is also heavily related to the POS tags. There-
fore, the linguistic information implied by them are
overlapped with each other and only little improve-
ment can be achieved when combined. Our model
with the best performance uses all of linguistic in-
formation we discussed before, with approximately
2% improvement on both WER and PPL.

6 Conclusions

In this paper, we present a framework for code-
switched ASR task. By using phonological fea-
tures for phoneme mapping, and POS tags and
EC theory for more more natural code-switched
text generation, we eventually achieve 2% improve-
ment on PPL as well as WER. It should be noted
that although the experiments are conducted on
Bangor-Miami corpus, there are no language spe-
cific constraints with this approach, which shows
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a potential to be extended to cover more language
pairs. As a future work, we would like to compare
the performances of different linguistic theories in
our proposed framework, which can serve as an
indirect validation of their influence on different
language pairs. Also, motivated by natural distri-
butions of linguistic structures, exploring different
sampling techniques can also be promising.
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