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Abstract

Speech information in a pretrained wav2vec2.0
model is usually leveraged through its encoder,
which has at least 95M parameters, being not
so suitable for small footprint Keyword Spot-
ting. In this work, we show an efficient way of
profiting from wav2vec2.0’s linguistic knowl-
edge, by recycling the phonetic information
encoded in its latent codebook, which has been
typically thrown away after pretraining. We
do so by transferring the codebook as weights
for the latent bottleneck of a Keyword Spot-
ting Perceiver, thus initializing such model with
phonetic embeddings already. The Perceiver
design relies on cross-attention between these
embeddings and input data to generate better
representations. Our method delivers accuracy
gains compared to random initialization, at no
latency costs. Plus, we show that the phonetic
embeddings can easily be downsampled with
k-means clustering, speeding up inference in
3.5 times at only slight accuracy penalties.

1 Introduction

Keyword Spotting (KWS) has benefited recently
from the adoption of the Transformer architecture
(Vaswani et al., 2017), as well as from recent ad-
vances in self-supervised learning proposals like
wav2vec2.0 (Baevski et al., 2020).

Transformers are capable of capturing informa-
tion from broader contexts, going beyond the lo-
cality of convolutional neural networks (CNN)
(LeCun et al., 1989) and avoiding the vanish-
ing/exploding gradients from recurrent neural net-
works (RNN) (Rumelhart et al., 1985). However,
this comes at the quadratic cost of the self-attention
mechanism (Bahdanau et al., 2014), which is even
more pronounced in high-dimensional modalities
like speech or vision. KWS models like the Key-
word Spotting Transformer (KWT) (Berg et al.,
2021) and the Audio Spectrogram Transformer
(AST) (Gong et al., 2021), minimize such cost by
downsampling the spectrogram space into patches,

inspired by the Vision Transformer (ViT) (Dosovit-
skiy et al., 2020) proposal from computer vision.

In parallel, approaches like Wav2KWS (Seo
et al., 2021) or the model from SUPERB (Yang
et al., 2021) have successfully applied wav2vec2.0
to KWS. During training, wav2vec2.0 learns a la-
tent codebook that codifies phonetic information,
using each code as a target for training a feature en-
coder. This codebook is typically thrown away after
training, only keeping the encoder for downstream
tasks like automatic speech recognition (ASR) or
KWS. Even though the encoder is capable of ex-
tracting rich features from raw waveforms, the
size of it (at least 95M parameters for the BASE
model) and its added latency time might discour-
age straightforward use for small footprint KWS
classifiers.

In this short paper, we focus on exploring meth-
ods for recycling the phonetic information from the
wav2vec2.0 latent codebook, showing that such in-
formation kickstarts the accuracy of a KWS model
at initialization and leads to a better convergence,
at virtually no cost in terms of inference time or
model size.

The cornerstone of our proposal is a natural syn-
ergy that we have spotted between wav2vec2.0 and
the recently proposed Perceiver (Jaegle et al., 2021)
model. The latter’s design relies on cross-attention
between input data and a smaller latent bottleneck
array, achieving smaller computational costs than
pure self-attention over input data. We find that a
pretrained wav2vec2.0 latent codebook can be used
as an initialization for the Perceiver’s latent bottle-
neck array, which boosts the model’s accuracy with
respect to random weight initialization. Further-
more, since many vectors from the wav2vec2.0
codebook contain similar phonetic information, we
apply k-means clustering and average vectors be-
longing to the same clusters, yielding downsampled
latent bottlenecks that provide faster inference at
only slight accuracy costs.
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Figure 1: The Keyword Spotting Perceiver (KWP) model.

The focused contribution of this paper provides
insight on efficient wav2vec2.0 transfer learning by
latent codebook recycling, as well as showing the
first application of the Perceiver model to a specific
speech task like KWS, up to our knowledge.

2 Keyword Spotting Perceiver

Our Keyword Spotting Perceiver (KWP) is de-
signed to take 1-second waveforms as inputs, con-
verting these into log-mel spectrograms of M =
100 time steps and F = 64 frequency bins, which
are linearly projected to a dimension of C = 192,
resulting in a MxC data array. Fourier positional
encodings are concatenated to the data array along
the C dimension, using 64 frequency bands and a
maximum resolution of 224, the best performing
choice in the Perceiver paper. Cross-attention be-
tween such data array and a latent bottleneck array
of NxD dimensions is done with a single head,
whose output is further refined through a Trans-
former block containing self-attention with 8 heads
and a multilayer perceptron (MLP) of hidden size
1024. The dimension for both self and cross atten-
tion heads is set to 64. Since the output is another
latent array of NxD dimensions, we repeat cross-
attention with the data array and the Transformer
blocks for L = 6 layers, sharing the weights of
cross-attends and Transformer across layers, in the
style of a RNN. In earlier explorations we tried
not sharing the weights but this led to performance
degradation caused by overfitting. Finally, we av-
erage the latents in the D dimension, apply layer
normalization and do a linear projection to get the
class logits for prediction. A model depiction can
be seen in Figure 1.

The latent array can be initialized randomly

(KWP-BASE), or by transferring the weights from
the latent codebook of a pretrained wav2vec2.0
model (KWP-W2V2). In this work, we recycle
the latent weights of the wav2vec2.0 BASE model
from the HuggingFace repo 1. Such codebook con-
sists of N = 640 vectors of dimension D = 128.

Since the complexity of cross-attention be-
tween latent and data arrays is O(MN), we
lose the efficiency gains from it with respect
to self-attention over data array O(N2), since
O(MN) = O(100x640) = (6.4x104) >
O(N2) = O(1002) = (104). To address this, we
study three ways to downsample this latent space to
lower dimensions N = [320, 160, 80, 40, 20], by
(1) sampling vectors randomly, (2) average pooling
contiguous vectors and (3) clustering with k-means
method and averaging vectors from the same clus-
ter. According to the wav2vec2.0 paper, most of the
codebook latents model specific English phonemes,
being some phonemes represented by many latents.
For instance, the silence phoneme is represented by
22% of the codebook. Being so, we expect k-means
clustering to be the best downsampling method
from the proposed ones, by clustering latents repre-
senting same or similar phonemes. Simple average
pooling without k-means clustering might conserve
phonetic information, although we expect it to be
suboptimal given that we cannot guarantee that
contiguous vectors in the codebook correspond to
similar phonetics, thus potentially mixing informa-
tion from different phonemes. Oppositely, random
sampling guarantees that the individual informa-
tion of each vector in the codebook is preserved,
but as N gets lower many information is potentially
lost, since most vectors are being dropped out.

1https://huggingface.co/facebook/wav2vec2-base
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Figure 2: Test accuracy after a single training epoch, for a randomly initialized model (BASE), and another
initialized with a wav2vec2.0 latent codebook weights (W2V2), with learnable or frozen weights (left). We also
report the results of downsampling the bottleneck latents with k-means clustering (KM), averaging pooling (AVG)
and random sampling (RAND) (right).

3 Experiments

We describe here the evaluations made for our Key-
word Spotting Perceiver proposal. First, we assess
the effects of transferring the wav2vec2.0 latent
codebook to the Perceiver bottleneck at initializa-
tion. We also try different ways of downsampling
this latent space, reporting accuracy comparisons
between the baseline KWP-BASE model and the
wav2vec2.0-initialized KWP-W2V2 model. Af-
terwards, we keep the best performing downsam-
pling algorithm for the following round of exper-
iments, where we let the system train until con-
vergence. We report accuracy, model size and in-
ference time metrics for KWP-BASE and KWP-
W2V2 models with different latent number variants
N = [320, 160, 80, 40, 20].

Training, validation and testing phases are done
with the standard partitions from the Google
Speech Commands V2 dataset (Warden, 2018),
obtaining the accuracy metrics from the 35-
commands task. All timing metrics are obtained
by doing inference over 1-second waveforms on
CPU, warming up for 10 forward passes and aver-
aging the time for 150 forward passes. We use the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a step learning rate scheduler, decreasing the
learning each epoch by a gamma factor of 0.98,
starting with an initial learning rate of 1e−4. Batch
size is set to 32, training for a single epoch in the
initialization experiments and for 400 epochs in the
convergence experiments. For the latter ones, we
pick the top-10 checkpoints with the highest valida-
tion accuracy, averaging their weights to obtain the
final checkpoint, which we use for test accuracy

measurements. We open-source the PyTorch code
2 used for our experiments to the community.

Regarding data augmentation, we apply time
shifting of ±0.1 seconds with a probability of 60%.
We also do resampling of the waveform signal be-
tween a [0.85, 1.15] fraction of the input sampling
rate, which is set to 16 kHz, with a probability of
100%. Background noise is also added in a range
of [5.0, 30.0] dBs and SpecAugment (Park et al.,
2019) is done with 2 time masks of 25 frame size
and 2 frequency masks of 7 frames each. The latter
both data augmentation methods are also applied
with a 100% probability during training. Even
though, we relax the augmentation conditions for
the shorter initialization experiments of a single
epoch, to let the system learn a bit more in the early
stages. Time shifting and resampling probabilities
are lowered to a 30%, SpecAugment to a 70% and
background noise addition to an 80%.

3.1 Initialization with Wav2vec2.0 Codebook
We check the impact of transferring the wav2vec2.0
codebook to KWP at initialization, by measuring
the test accuracy after a single epoch, repeating
training and test with 10 different seeds. Thus, we
compare between KWP-BASE and KWP-W2V2
with all the N = 640 latent vectors, by making
the latent bottleneck weights learnable (BASE and
W2V2) and also freezing them (BASE-Frozen and
W2V2-Frozen).

Figure 2(a) shows that both W2V2 and W2V2-
Frozen have a significant performance advantage
against BASE and BASE-Frozen. This suggests
that the phonetic information transferred from the

2https://github.com/gcambara/speech-commands
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wav2vec2.0 latent codebook kickstarts training, ini-
tializing the model already with useful information
that the cross-attention mechanism can leverage.
Furthermore, it is interesting to see how there is
barely no performance differences between BASE
and BASE-Frozen. We hypothesize that during the
first epoch the randomly initialized BASE model
has not learned enough phonetic information in its
latent bottleneck, giving fewer chances for cross-
attention to exploit relations with input data. The
W2V2 model, oppositely, is able to leverage cross-
attention early on, generating feedback between the
phonetic information in the latent codebook and
the cross-attention weights that are linked to input
data.

To continue with, we repeat the same 10-seed
experiment for N = [320, 160, 80, 40, 20] latent
vectors in the bottleneck. Different downsampling
methods are tried: k-means clustering (W2V2-
KM), average pooling (W2V2-AVG) and random
sampling (W2V2-RAND). The results, as seen in
Figure 2(b), highlight that the three latent down-
sampling methods are effective for boosting the per-
formance with respect to the BASE model. W2V2-
KM is the best performing model, confirming that
averaging latents belonging to the same phonetic
clusters is preferable, rather than simply averaging
contiguous latents like in W2V2-AVG, or randomly
sampling latent vectors like W2V2-RAND does,
which loses representation power as N decreases.

3.2 Assessment at Convergence

To evaluate the accuracy of KWP-BASE and KWP-
W2V2 models after convergence, we let the models
train again for 400 epochs. This time, we only ex-
periment with learnable latent weights and k-means
clustering downsampling, given that the latter has
reported the best initialization results. Training
and test is done now with 3 seeds, varying the
number of latents again with the same selection,
N = [640, 320, 160, 80, 40, 20], and comparing
between BASE and W2V2 variants.

As Figure 3 depicts, W2V2 maintains significant
advantage for all the numbers of latents, with a peak
mean accuracy of 96.26 ± 0.04% at 640 latents,
higher than BASE’s top accuracy of 95.6±0.2% at
80 latents. The W2V2 variant seems to scale well
with the number of latents, as opposite to the BASE
model, which might struggle to clusterize phonetic
information in the latent space as it grows bigger.
Still, KWP (1.5M parameters) is slightly behind to

Figure 3: KWP-BASE (orange) and KWP-W2V2 (blue)
test accuracies after convergence, for different numbers
of bottleneck latents, with CPU inference time (red).

its self-attention counterparts, as the lightest KWT
(0.6M parameters) scored a 96.8% accuracy, and
AST scored 98.1%. Nevertheless, note that AST is
pretrained with ImageNet (Deng et al., 2009), and
is much larger (87M parameters). Even though,
we motivate further research on fine-tuning KWP
towards state-of-the-art performance.

The inference time of the 640 latent model is
49± 5 ms, and 14± 2 ms for the smaller 20 latent
model. Given that the accuracy is 95.3± 0.1% for
the latter, only a 1% relative accuracy is lost with
k-mean clustering downsampling, while increasing
inference speed in 3.5 times. The accuracy of the
BASE model at 20 latents is 94.6 ± 0.3%, which
is significantly below W2V2’s. This confirms that
even a hard downsampling of 640 to 20 latents
of wav2vec2.0 information is still preferable to
randomly initializing the latent space in KWP.

4 Conclusion

In this work, we have shown that phonetic informa-
tion from the wav2vec2.0 latent codebook can be
recycled, by transferring it to the latent bottleneck
weights of a Keyword Spotting Perceiver. Accu-
racy gains are consistently significant with respect
to random initialization of the latent bottleneck,
both at early and late stages of training for the
KWS task. Furthermore, we have studied easy-to-
apply downsampling techniques for compressing
the latent codebook, like averaging k-means clus-
ters, having sped up the inference time of the model
up to 3.5 times, at only a 1% accuracy drop.

We believe that our work motivates further re-
search on efficient ways of profiting from the
information in big self-supervised models like
wav2vec2.0, as well as on applications for other
tasks like ASR, for instance.
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