
Proceedings of the 29th International Conference on Computational Linguistics, pages 7124–7135
October 12–17, 2022.

7124

Modeling Intra- and Inter-Modal Relations: Hierarchical Graph
Contrastive Learning for Multimodal Sentiment Analysis

Zijie Lin 1, Bin Liang 1∗, Yunfei Long 2, Yixue Dang 3, Min Yang 4,
Min Zhang 1, Ruifeng Xu 1, 5, 6∗

1 Harbin Institute of Technology, Shenzhen, China
2 University of Essex, Colchester, UK 3 China Merchants Securities Co ., Ltd.
4 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

5 Peng Cheng Laboratory, Shenzhen, China
6 Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies

lzjjeffery@163.com, 18B951033@stu.hit.edu.cn
xuruifeng@hit.edu.cn

Abstract

The existing research efforts in Multimodal
Sentiment Analysis (MSA) have focused on
developing the expressive ability of neural
networks to fuse information from different
modalities. However, these approaches lack
a mechanism to understand the complex re-
lations within and across different modalities,
since some sentiments may be scattered in dif-
ferent modalities. To this end, in this paper, we
propose a novel hierarchical graph contrastive
learning (HGraph-CL) framework for MSA,
aiming to explore the intricate relations of intra-
and inter-modal representations for sentiment
extraction. Specifically, regarding the intra-
modal level, we build a unimodal graph for
each modality representation to account for
the modality-specific sentiment implications.
Based on it, a graph contrastive learning strat-
egy is adopted to explore the potential relations
based on unimodal graph augmentations. Fur-
thermore, we construct a multimodal graph of
each instance based on the unimodal graphs to
grasp the sentiment relations between different
modalities. Then, in light of the multimodal
augmentation graphs, a graph contrastive learn-
ing strategy over the inter-modal level is pro-
posed to ulteriorly seek the possible graph struc-
tures for precisely learning sentiment relations.
This essentially allows the framework to under-
stand the appropriate graph structures for learn-
ing intricate relations among different modal-
ities. Experimental results on two benchmark
datasets show that the proposed framework out-
performs the state-of-the-art baselines in MSA.

1 Introduction

Multimodal Sentiment Analysis (MSA) has re-
ceived increasing research attention in recent years.
Different from textual sentiment analysis, MSA
generally contains three modalities: text (caption),
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Figure 1: An example of intricate relations among dif-
ferent modalities in MSA.

visual and acoustic, in which the visual and acous-
tic information can complement the text for iden-
tifying the sentiment score and thus preferably de-
tecting the sentiment polarity (e.g. positive, neg-
ative, etc.). As shown in Figure 1, although the
text modality expresses the positive sentiment, we
can infer that the correct sentiment of this exam-
ple is negative in the light of the study of visual
and acoustic information. Therefore, dealing with
MSA needs to consider learning and fusing the
information from different modalities.

Early MSA work attempted to fuse the infor-
mation from different modalities by tensor-based
features fusion (Snoek et al., 2005; Zadeh et al.,
2017; Liu et al., 2018) or attention-based features
fusion (Zadeh et al., 2018b,a; Tsai et al., 2019a).
Furthermore, some representation learning-based
approaches (Tsai et al., 2019b; Hazarika et al.,
2020) aim to model the consistency and the vari-
ability between modalities for extracting the senti-
ment cues among modalities or consider both fu-
sion and alignment of multimodal sequential data
with a graph model (Yang et al., 2021). Despite
the promising progress made by current work, they
generally focus on fusing multimodal representa-
tions via class-driven supervised learning or multi-
task learning, which fails to understand the intricate
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relations within and across modalities for better
sentiment extraction. As shown in Figure 1, the
sentiment is scattered within each modality and
across different modalities.

In this paper, we study how to understand repre-
sentations within and across modalities, enabling
the highly correlated modal representations to be
explicitly linked for learning the multimodal senti-
ment information. To reach this goal, in the light
of developing the merit of graph structure for mod-
eling intricate relations of representations, we first
build a unimodal graph for each modality and fur-
ther build a multimodal graph for each instance
based on the unimodal graphs. Concretely, for
the intra-modal graphs, to account for the under-
lying relations within each modality, we construct
a syntax-aware graph for the text modality based
on the dependency tree of the sentence and build
sequential connection graphs for visual and acous-
tic modality. For the inter-modal graph, we build
a fully-connected inter-modal graph based on the
modality-specific graphs to capture the potential
relations across different modalities. Then, we ap-
ply a graph attention networks (Veličković et al.,
2018) architecture to model the semantic relations
by means of specifying different weights to dif-
ferent nodes in a neighborhood, without requiring
any costly matrix operation (such as inversion) or
depending on knowing the graph structure upfront.

Following that, we propose a hierarchical graph
contrastive learning (HGraph-CL) framework to
model the correlation and difference of graph in-
formation within a specific modality and further
across different modalities. Specifically, for the
intra-modal level, inspired by You et al. (2020),
we first devise a self-supervised graph contrastive
learning strategy based on the graph augmentations,
aiming to explore more appropriate graph struc-
tures and derive robust graph representations for
each modality. In addition, inspired by Khosla et al.
(2020); Gunel et al. (2021), we employ a super-
vised contrastive learning strategy to make sense
of the correlation and difference between differ-
ent classes, so as to capture the similarity between
examples in one class and contrast them with exam-
ples in other classes. Moreover, for the inter-modal
level, we also perform these two contrastive learn-
ing strategies to learn the graph representations for
better generalizability, transferability, and robust-
ness in learning sentiment cues compared with pure
class-driven methods.

The main contributions of our work can be sum-
marized as follows:

(1) The MSA task is approached from a novel
perspective that explores intra- and inter-modality
graph construction to leverage the potential senti-
ment relations within and across modalities.

(2) A novel hierarchical graph contrastive learn-
ing (HGraph-CL) framework is devised for bet-
ter sentiment relations extraction at an intra-modal
level and further at an inter-modal level.

(3) Performance evaluation on two benchmark
datasets shows the superiority and robustness of
the proposed framework compared to several com-
petitive baselines.

2 Related Work

2.1 Multimodal Sentiment Analysis

The MSA task aims to predict sentiment polarity
by aiding text with visual and acoustic information.
Since the raw visual and acoustic data is in frames
and the text is in words, MSA can be broadly classi-
fied into word-level and utterance-level depending
on the granularity of the data used. Among them,
utterance-level approaches (Zadeh et al., 2017; Liu
et al., 2018; Yu et al., 2021) perform modal fu-
sion in global representation, while word-level ap-
proaches (Tsai et al., 2019b; Wang et al., 2019; Tsai
et al., 2019a; Rahman et al., 2020; Hazarika et al.,
2020; Wu et al., 2021) are more concerned with lo-
cal modal interactions. Furthermore, Rahman et al.
(2020) proposes a Multimodal Adaptation Gate
(MAG) mechanism to perform modal fusion at
word-level, which does not rely on complex struc-
ture and can be embedded in pre-trained attention
models. Hazarika et al. (2020) proposes a multi-
modal representation learning framework to model
modality-invariant and modality-specific informa-
tion within the example by projecting each modal-
ity to two distinct subspaces. Besides, Yu et al.
(2021) trains MSA together with three unimodal
sentiment analysis tasks, and proposes a heuris-
tic approach to generate unimodal labels. Yang
et al. (2021) proposes a novel graph-based neural
network to analyze multimodal sequential data for
MSA. We propose a novel graph-based approach
to address MSA’s modal interactions and fusion
problem. In contrast to the existing graph works in
MSA, our proposed method constructs intra-modal
graphs based on prior knowledge of the modalities
(e.g., textual dependencies). Furthermore, we cre-
ate edges between any two nodes from different
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Figure 2: The architecture of the proposed HGraph-CL framework.

intra-model graphs for more complex inter-modal
relationships to preserve any possible association.

2.2 Contrastive Learning

Our work also relates to contrastive learning. Con-
trastive learning (CL) is originally proposed as a
self-supervised learning method for solving the
lack of supervised signals (Chen et al., 2020; Liu
et al., 2021). However, CL often requires effec-
tive data augmentation as a foundation. Recent
work (Khosla et al., 2020) proposes supervised
contrastive learning methods in combination with
class information, which is capable of learning the
class distribution of examples and without data
augmentation. Mai et al. (2022) proposes a hybrid
contrastive learning strategy for MSA, but lacks ex-
ploring the potential relationship within and among
modalities. The combination with graph networks
is another new application of contrastive learning
(You et al., 2020; Zhu et al., 2020). The graph net-
works can model the association between nodes,
and data augmentation on graph structures is feasi-
ble and operable. Common augmentation methods
include additions and deletions of nodes or edges,
masking of the representations of nodes or edges,

etc. Therefore, to explore more appropriate graph
structures, inspired by You et al. (2020), we apply
the graph augmentations by deleting and adding
edges in graphs, and thus derive multifarious but
similar graph structures with respect to the source.

3 Method

In this section, we describe the proposed HGraph-
CL framework in detail. As illustrated in Figure 2,
the framework mainly consists of four components:

1) Feature extraction, which applies BERT (De-
vlin et al., 2019) and BiLSTMs (Hochreiter and
Schmidhuber, 1997) to extract features from the
three modalities of text, images and audio.

2) Building intra- and inter-modal graphs,
which constructs intra- and inter-modal graphs
based on the hidden vectors learned from the text,
images, and audio.

3) Learning graph representations, which
learns intra- and inter-modal graph representations
and leverages the potential sentiment relations
within and across modalities. We believe a graph
network can model the complex relationship be-
tween different modalities while updating the node
representations.
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4) Hierarchical graph contrastive learning,
which performs contrastive learning based on het-
erogeneous graphs at the intra-modal level and
inter-modal level. Contrastive learning can help
the model understand the similarity and differences
of the data across different modalities. Moreover,
subtle differences in the graphs may also affect
the learning of models on samples. Therefore, we
propose the hierarchical graph contrastive learning
strategy to augment the learning of the graph repre-
sentations at both the data level and label level.

3.1 Task Definition

Formally, supposing there is an example consisting
of a text t and the corresponding image frames v
and audio a from a video, the goal of multimodal
sentiment analysis (MSA) is to predict a sentiment
score y, which is a constant from -3.0 to 3.0, for
each example. Additionally, according to the senti-
ment score y, we thus identify the sentiment polar-
ity (i.e. positive if y > 0 or negative if y < 0).

3.2 Feature Extraction

Given an input example with L tokens for each
modality x = (xt,xv,xa), where t,v, and a de-
note the text, visual, and acoustic modalities re-
spectively. Then, three encoders are used to ex-
tract features from the three modality data. Among
them, the encoder of text modality is BERT (Devlin
et al., 2019), which takes the text representation
xt as input to derive the hidden representations
et ∈ RL×dt of all the tokens of the text modality:

et = BERT([CLS]xt[SEP ])1:L (1)

where dt is the dimension of text hidden vectors.
We use Facet (Zhu et al., 2006) to extract a set

of visual features, including facial markers, facial
action units, head pose, visual trajectory, and HOG
features. And we use COVAREP (Degottex et al.,
2014) to extract a set of low-level acoustic features,
including 12 mel cepstral coefficients (MFCCs),
pitch tracking and turbid/clear segmentation fea-
tures, gating source parameters, peak slope param-
eters, and maximum dispersion quotient. The vi-
sual/acoustic features are aligned with the text at
token level by averaging the frames of video/audio
recording over the time interval align to a token.
The lengths of obtained sequences xv and xa are
the same as the text sequences xt.

Owing to the sequential structure of visual and
acoustic modalities, we adopt BiLSTM (Hochreiter

and Schmidhuber, 1997) as visual and acoustic en-
coders to embed each token into a dv-dimensional
vector and a da-dimensional vector respectively.
Here, the encoded visual representations ev ∈
RL×dv and acoustic representations ea ∈ RL×da

are computed as follow:

ev = BiLSTM(xv) (2)

ea = BiLSTM(xa) (3)

Then, the representations of the three modal-
ities are mapped to the same dh-dimensional
hidden vector space using three projection lay-
ers pt(·), pv(·), pa(·), which are presented as
ht,hv,ha ∈ RL×dh . A projection layer is a dense
layer with a ReLU activation function.

3.3 Building Intra- and Inter-Modal Graphs
This section describes how to construct the intra-
modal and inter-modal graphs for each multimodal
instance. Inspired by Kipf and Welling (2017), for
both intra- and inter-modal graphs, we build the
graphs to be undirected and set a self-loop for each
node, to make use of more sufficient relations of
the sentiment expression of nodes.

Intra-Modal Graph To leverage the intricate
sentiment implications within each modality, we
first build three intra-modal graphs to explicitly
account for the modality-specific relations of the
representations towards the three modalities of a
multimodal instance.

To be specific, for the text-modality graph, to
leverage the syntax-aware relations of the textual
information, inspired by Zhang et al. (2019); Liang
et al. (2020, 2022), we construct the text modality
graph Gt ∈ RL×L based on the dependency tree
of the sentence*. That is, we link the context to-
kens if there is a relation between these two tokens
in the dependency tree. For visual and acoustic
modalities, the nodes are averaged video/audio to-
kens alighed to textual tokens, described in Sec-
tion 3.2. Since the input representations of these
two modalities are sequential, we connect the adja-
cent nodes in the sequences for the visual modality
graph Gv ∈ RL×L and the acoustic modality graph
Ga ∈ RL×L to capture the sequence relations of
these two modalities.

Inter-Modal Graph To fuse the multimodal rep-
resentations for extracting the sentiment implica-

*We use the spaCy toolkit to obtain the dependency tree
of a sentence: https://spacy.io/.

https://spacy.io/
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tions produced by multiple modalities, we con-
struct an inter-modal graph Gm ∈ R3L×3L for
each multimodal instance based on the derived
intra-modal graphs. Specifically, we first combine
the three intra-modal graphs and then employ a
fully connected solution to link the cross-modal
tokens among the intra-modal graphs of the three
modalities, to capture the potentially scattered rela-
tions of the multimodal instance.

3.4 Learning Graph Representations
Based on the intra- and inter-modal graphs derived
in Section 3.3, we employ Graph Attention Net-
work (Veličković et al., 2018) to update the nodes
in the graphs by aggregating the information from
the neighborhoods with varying weights. Specifi-
cally, in a GAT layer, for each neighbor, the repre-
sentations of the current node i and the neighbor j
are concatenated and then mapped to a scalar sij
as the attention coefficient. Then normalizing the
attention coefficients of all neighbors by softmax.

sij = LeakyReLU(a[Whi∥Whj ]) (4)

αij = softmaxj(sij) =
exp(sij)∑
k∈Ni

sik
(5)

where a is a weight vector, W is a weight matrix,
and || is the concatenation operation. Ni denotes
the set of node i and its neighbors. Finally, the
representation of node i is updated with a weighted
sum of the representations of neighbors and itself,
and multi-head attention mechanism is applied to
stabilize the learning process of self-attention.

h̃i =∥Kk=1σ

∑
j∈Ni

αk
ijW

khj

 (6)

where k denotes the k-th attention head and σ is a
sigmoid function to provide non-linearity.

This mechanism essentially allows the model
to make sense of the intra- and inter-modal senti-
ment associations by modeling the relations in the
graphs with the GAT operation. For example, the
edge weight between a "smile"(visual) node and
a "happy"(textual) node should be higher than the
edge weight between a "frown"(visual) node and
the "happy"(textual) node.

For intra-modal graphs, the hidden representa-
tions ht, hv, and ha of the three modalities and
the corresponding graphs Gt, Gv, and Ga are fed

as inputs into the GAT layers (GATs) to derive the
unimodal graph representations rt, rv, ra ∈ Rdh :

rt = READOUTt(GATs(ht,Gt)) (7)

rv = READOUTv(GATs(hv,Gv)) (8)

ra = READOUTa(GATs(ha,Ga)) (9)

where GATs(·) denotes the operation of GAT lay-
ers. Note that following You et al. (2020), we use
a READOUT(·) function to aggregate the node
representations to derive the graph representation.

On the other hand, for an inter-modal graph, we
also apply GATs to model the relations in the graph,
aiming to extract the relations between modalities
for better learning sentiment cues. Given the inter-
model graph Gm of a multimodal instance, the
corresponding nodes are represented as all nodes
from ht, hv and ha, and the multimodal graph
representation rm ∈ Rdh is derived as follow:

rm = READOUTm(GAT([ht∥hv∥ha],Gm))
(10)

To this end, owing to the merit of graph attention
networks that the weights of associated edges can
be adjusted according to the attention mechanism
during the training process, the degree of associ-
ation of nodes on a fully connected graph can be
quantified by the weights of the edges, and thus
deriving appropriate graph representation.

3.5 Hierarchical Graph Contrastive Learning
In this section, we detail the proposed hierarchical
graph contrastive learning strategy in our HGraph-
CL framework. As shown in Figure 2, our hier-
archical graph contrastive learning strategy first
performs at the intra-modal level, and further per-
forms at the inter-modal level. Here for each level,
we devise a fully-supervised contrastive loss based
on the sentiment labels to improve the graph rep-
resentation for better sentiment learning and a self-
supervised contrastive loss based on the graph aug-
mentations to explore more appropriate graph struc-
tures for deriving precise graph representation.

3.5.1 Graph Contrastive Learning at
Intra-Modal Level

Fully-Supervised Contrastive Loss Based on
Sentiment Labels Inspired by the work on fully-
supervised contrastive learning (Khosla et al., 2020;
Gunel et al., 2021), for a mini-batch, we adopt sen-
timent labels as the supervised signal to perform
fully-supervised loss for capturing the similarity be-
tween examples in one class and contrasting them



7129

with examples in other classes. Specifically, given
N examples in a mini-batch, the examples can be
divided into S1, S2, ... according to sentiment po-
larity. Considering the binary classification, then
|S1| = M, |S2| = N − M, | · | is the cardinality
of the set. For the anchor example si ∈ S1, a
positive pair can be represented as (si, sj), here
sj ∈ S1, j ̸= i. While the rest N −M samples are
regarded as negative examples. The pairwise ob-
jective ℓ1(r

M
i , rMj ) between the unimodal graph

representation rMi of si and the graph representa-
tion rMj of sj ∈ S1 are defined as:

ℓ1(r
M
i , rMj ) = − log

esim(rM
i ,rM

j )/τ

Σsup
(11)

Σsup =
∑

k,sk∈S1,k ̸=i

esim(rM
i ,rM

k )/τ

+
∑

l,sl∈S2

esim(rM
i ,rM

l )/τ
(12)

where M ∈ {t, v, a}, sim(·) is the similarity func-
tion, sim(u, r) = uTr/∥u∥∥v∥, and τ is the tem-
perature parameter. We use the multimodal sen-
timent polarity labels as the unimodal sentiment
polarity labels, and calculate the supervised con-
trastive loss on the unimodal graph representations
and the multimodal graph representation, respec-
tively. Finally, we sum the two losses to obtain
the overall supervised contrastive loss. Follow-
ing Khosla et al. (2020), the computation of intra-
modal supervised contrastive loss Lintra

sup is:

Lintra
sup =

∑
M

[
∑

si∈S1

1

|S1 − 1|
∑

j,sj∈S1,j ̸=i

ℓ1(r
M
i , rM

j )

+
∑

sk∈S2

1

|S2 − 1|
∑

l,sl∈S2,l ̸=k

ℓ1(r
M
k , rM

l )]

(13)

If more labels are correctly predicted, the value
of the loss function will be lower until it converges.
On the other hand, if the model cannot predict most
of the labels, the loss function will fail to converge.

Self-Supervised Contrastive Loss Based on
Graph Augmentations To apply the self-
supervised contrastive learning, we implement aug-
mentation data by supplementary and corrupting
graphs. The augmented graphs U, V are obtained
by randomly deleting or adding a certain ratio of
edges, aiming at the exploration of more appropri-
ate graph structures.

Based on the graph augmentation, for an anchor
graph representation rMi , we regard the represen-
tation derived by the corresponding augmented

graph uM
i as the positive sample, while others

are regarded as negative samples. For the N
examples in a mini-batch, the pairwise objective
ℓ2(r

M
i ,uM

i ) between rMi and uM
i is defined as:

ℓ2(r
M
i ,uM

i ) = − log
esim(rM

i ,uM
i )/τ

Σself
(14)

Σself = esim(rM
i ,uM

i )/τ

+
N∑
j=1

1[j ̸=i][e
sim(rM

i ,rM
j )/τ

+ esim(rM
i ,uM

j )/τ ]

(15)

where 1[j ̸=i] ∈ {0, 1} is the indicator function and
equals 1 iff j ̸= i. The intra-modal self-supervised
contrastive loss Lintra

self is as follow:

Lintra
self =

1

2N

∑
M

N∑
i=1

[
ℓ2(u

M
i , rM

i ) + ℓ2(r
M
i ,uM

i )
]
(16)

3.5.2 Graph Contrastive Learning at
Inter-Modal Level

Corresponding to Section 3.5.1, we perform the
fully-supervised contrastive loss and the self-
supervised contrastive loss on the multimodal
graph representations rm, and obtain the inter-
modal supervised and self-supervised contrastive
loss Linter

sup and Linter
self , which are defined as:

Linter
sup =

∑
si∈S1

1

|S1 − 1|
∑

j∈S1,j ̸=i

ℓ1(r
m
i , rmj )

+
∑
sk∈S2

1

|S2 − 1|
∑

l∈S2,l ̸=k

ℓ1(r
m
k , rml )

(17)

Linter
self =

1

2N

N∑
i=1

[ℓ2(u
m
i , rmi ) + ℓ2(r

m
i ,um

i )]

(18)

3.6 Sentiment Prediction
The multimodal graph representation rm is fed into
a fully-connected layer to predict the sentiment
score y:

y = W p · rm + bp (19)

where W p and bp are the weight matrix and bias.
Then, the output yi of the prediction layer for the
i-th example is compared with the ground truth y∗i
to calculate the loss of the MSA task Lmsa:

Lmsa =
1

N

N∑
i

|yi − y∗i | (20)
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The overall loss of our framework is defined as:

L =Lmsa + w1 ∗ (Lintra
sup + Linter

sup )

+ w2 ∗ (Lintra
self + Linter

self )
(21)

where w1, w2 are hyperparameters, controlling the
effect of different losses.

4 Experiments

4.1 Datasets and Metrics
We evaluate our approach on two benchmarks,
MOSI (Zadeh et al., 2016) and MOSEI (Zadeh
et al., 2018c). Table 1 shows the basic statistics
of the two datasets. Each example of MOSI or
MOSEI contains a continuous sentiment score in
the interval [−3, 3] and three modal data. Image
frames and audio frames are aligned to text content
at the word level.

Following Zadeh et al. (2018b), binary accuracy
(Acc-2) and weighted F1 score (F1-Score) are se-
lected as classification metrics, mean absolute error
(MAE) and Pearson correlation coefficient (Corr)
are selected as regression metrics.

4.2 Training Setting
We take mean absolute error as the loss function.
For contrastive learning, N-pairs loss (Sohn, 2016)
and SupCon loss (Khosla et al., 2020) are naturally
suitable for this scenario. For the textual encoder,
we use a pre-trained BERT (bert-base-uncased) and
finetune it when training. For visual and acoustic
encoders, we train BiLSTMs from scratch. The
optimizer chosen is Adam (Kingma and Ba, 2015)
and the parameters of BERT and other model pa-
rameters are optimized separately. We use a lower
learning rate {5e-6, 1e-5} and warm-up strategy for
the BERT and a larger learning rate {1e-3, 1e-3}
for the other parts. The hyperparameters w1 and w2

are selected from {0.1, 0.2, 0.3, 0.4, 0.5}. The re-
sults of our model and the reproduced models take
the average results obtained from five runs with
different random seeds for obtaining stable results.
More training settings are presented in Table 2. In
addition, we use a learning rate adjustment strategy
to update the learning rate when training.

4.3 Baselines and Performance
To verify the effectiveness of our approach, we
compare it with the following BERT-based meth-
ods: TFN (Zadeh et al., 2017), LMF (Liu et al.,
2018), MFM (Tsai et al., 2019b), MulT (Tsai et al.,

train valid test total
MOSI 1283 229 686 2198
MOSEI 16326 1871 4659 22856

Table 1: The example size of MOSI and MOSEI.

Parameter MOSI MOSEI
epoch 20 6
batch size 4 24
max length 50 128
hidden size 128 128
LSTM layers 1 1
GAT layers 2 1
GAT attention heads 1 1
dropout 0.2 0.1
augmentation ratio 0.2 0.2
BERT learning rate 5e-6 1e-5
other learning rate 1e-3 1e-3
Lsup weight w1 0.1 0.1
Lself weight w2 0.1 0.1

Table 2: Training setting details

2019a), MAG-BERT (Rahman et al., 2020), MISA
(Hazarika et al., 2020), Self-MM (Yu et al., 2021),
HyCon-BERT (Mai et al., 2022). The details of the
introduction are presented in Appendix A.

The comparison results of our HGraph-CL
framework and the baseline models are presented in
Table 3. We observe that our proposed HGraph-CL
consistently outperforms all the baseline models
on the two datasets, which verifies the effective-
ness of our approach in the MSA task. Moreover,
compared with the intra-example representation
learning approaches (MFM, MISA), our HGraph-
CL achieves outstanding improvement on the two
datasets. This indicates that exploring the senti-
ment implications from both intra- and inter-modal
levels is significant for improving the performance
of MSA. Furthermore, the significance tests of
our HGraph-CL over Self-MM‡ and MAG-BERT‡

present a statistically significant improvement in
Acc-2 and F1-Score on MOSI and Acc-2, F1-Score
and Corr on MOSEI (with p < 0.05).

5 Analysis

5.1 Ablation Study

To verify the impact of the hierarchical graph con-
trastive learning on performance, we conduct ab-
lation experiments on the two datasets and show
the results in Table 4. We can observe that the
class distribution is useful for the classification of
MOSI and MOSEI datasets, and slightly improve
regression. In contrast, the representation distri-
bution learning improves regression significantly
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Model MOSI MOSEIModel Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑
TFN† -/80.8 -/80.7 0.901 0.698 -/82.5 -/82.1 0.593 0.700
LMF† -/82.5 -/82.4 0.917 0.695 -/82.0 -/82.1 0.623 0.677
MFM† -/81.7 -/81.6 0.877 0.706 -/84.4 -/84.3 0.568 0.717
MulT† 81.5/84.1 80.6/83.9 0.861 0.711 -/82.5 -/82.3 0.580 0.703
MISA† 81.8/83.4 81.7/83.6 0.783 0.761 83.6/85.5 83.8/85.3 0.555 0.756

MAG-BERT 84.2/86.1 84.1/86.0 0.712 0.796 84.7/- 84.5/- - -
Self-MM 84.0/86.0 84.4/86.0 0.713 0.798 82.8/85.2 82.5/85.3 0.530 0.765

HyCon-BERT -/85.2 -/85.1 0.713 0.790 -/85.4 -/85.6 0.601 0.776
MAG-BERT‡ 81.5/83.1 81.5/83.1 0.808 0.761 81.4/84.6 81.9/84.6 0.552 0.756

Self-MM‡ 83.1/84.9 83.1/84.9 0.736 0.791 80.5/84.2 80.0/84.2 0.531 0.764
HGraph-CL (ours) 84.3/86.2 * 84.6/86.2 * 0.717 0.799 84.5/85.9 * 84.5/85.8 * 0.527 0.769 *

Table 3: Main results on MOSI and MOSEI. ↑ denotes the higher the evaluation metric the better, and ↓ denotes
the lower the evaluation metric the better. Results with † are retrieved from (Hazarika et al., 2020) , with ‡ are
reproduced using the source code released by the authors, and with * indicate the significance test over Self-MM‡

and MAG-BERT‡ presents a statistically significant improvement. For Acc-2 and F1-Score, the left side of / is the
result of dividing examples by positive/non-positive following (Zadeh et al., 2018b), and the right side is the result
of dividing examples by positive/negative following (Tsai et al., 2019a).

Graph CL MOSI MOSEIGraph CL Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑

Intra, Inter
Sup, Self 84.3/86.2 84.6/86.2 0.717 0.799 84.5/85.9 84.5/85.8 0.527 0.769

Sup 84.0/85.9 84.2/85.8 0.733 0.788 84.3/86.0 84.3/86.0 0.535 0.766
Self 83.8/85.8 84.0/85.7 0.718 0.793 84.1/85.4 84.1/85.3 0.533 0.766

Intra
Sup, Self 83.9/85.9 84.1/85.8 0.729 0.790 84.2/85.6 84.2/85.4 0.531 0.765

Sup 83.6/85.8 83.8/85.7 0.731 0.788 83.9/85.9 83.9/85.6 0.539 0.767
Self 83.6/85.5 83.8/85.4 0.726 0.789 83.9/85.3 84.0/85.1 0.533 0.764

Inter
Sup, Self 84.1/86.2 84.3/86.2 0.723 0.792 84.0/85.7 84.0/85.6 0.529 0.767

Sup 83.7/86.0 83.8/85.9 0.733 0.789 84.1/85.7 84.1/85.3 0.539 0.763
Self 83.6/85.9 83.8/85.8 0.722 0.793 83.9/85.3 83.9/85.0 0.531 0.766

None None 83.0/85.1 83.1/85.0 0.756 0.784 82.8/85.1 83.1/85.0 0.539 0.763

Table 4: The performance with different contrastive learning strategies on MOSI and MOSEI. We conduct an
ablation study to analyze the impact of graph structure and contrastive learning strategy. {Intra, Inter} denotes
performing graph contrastive learning at both intra- and inter-modal levels, {Intra} denotes at the intra-modal level
only, while {Inter} denotes at the inter-modal level only. {Sup, Self } denotes the result with class distribution
learning and representation distribution learning, {Sup} denotes the result with class distribution learning only,
{Self } denotes the result with representation distribution learning only. {None} denotes without any strategy.

on MOSI and MOSEI, and makes sense for clas-
sification. On the other hand, performing graph
contrastive learning at the intra-modal level only or
at the inter-modal level only can improve both clas-
sification and regression on two datasets. Addition-
ally, our model with complete hierarchical graph
contrastive learning can achieve the best overall
performance, with a significant improvement over
the model without it. The results suggest that hi-
erarchical graph contrastive learning has a great
positive impact on the classification and the regres-
sion of HGraph-CL.

5.2 Effect of GAT Layers

We convert the measurement of the relations be-
tween different modalities into learning the edges
of a multimodal graph by GATs. Furthermore,

we want to explore the effect of the number of
GAT layers on performance. Thus we evaluate our
model with different layers of GATs from 1 to 5
on both two datasets to quantify the effect. The
experimental results are shown in Figure 3. We
can observe that our model achieves the best per-
formance with a small number of layers. Another
observation is that the volatility of the classifica-
tion performance is greater when choosing a big
number of layers. The possible reason is that the
deep GAT layer will learn similar representations
of different nodes, which is called over-smoothing
(Li et al., 2018). Over-smoothing may result in
the modality-specific information being discarded,
and the results suggest that too many layers make
a negative effect.
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Figure 3: Results with different numbers of GAT layers
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Figure 4: Results of different deleting/adding ratios

5.3 Effect of Deleting/Adding Ratio

To investigate the effect of different ratios of delet-
ing/adding edges in deriving graph augmentations
on the performance, we conduct experiments with
different values of ratio and report the results in
Figure 4. From the experimental results, we can
observe that different ratios introduce a consider-
able impact on performance. When the delete ra-
tio is small (0.1), the possibility of exploration of
graph structures is limited, thus leading to a poorer
performance. In addition, noticeable performance
degradation is also shown when the ratio is greater
than 0.2. This indicates that excessively exploring
the possible relations may weaken the learning abil-
ity of graph contrastive learning. Therefore, we set
the ratio to 0.2 in our experiments.

5.4 Case Study

To show the relationship strength between different
representations, we select an example from the
MOSI dataset and visualize the weights of edges
between text and visual nodes and present them in
Figure 5. We can observe that the negative word
nodes jack ass have a stronger relationship with the
visual nodes representing frowning faces, and are
weakly related to these visual nodes representing

um he ##s just a jack ass

high

low

Figure 5: A case of the weights of edges between text
and visual nodes

normal faces. It shows that the proposed model can
understand the relations of representations across
modalities, enabling the highly correlated modal
representations to be explicitly linked for learning
the multimodal sentiment information.

6 Conclusion

This paper proposes a novel hierarchical graph con-
trastive learning (HGraph-CL) framework for mul-
timodal sentiment analysis (MSA), in which graph
contrastive learning is performed at intra-modal
and inter-modal levels. For the graph contrastive
learning strategy performed at each level, we de-
vise a fully-supervised contrastive loss and a self-
supervised contrastive loss. The fully-supervised
contrastive loss is devised to improve the learn-
ing of sentiment cues by capturing the similarity
between examples in one class and the contrast
among different classes. And the self-supervised
contrastive loss is devised to explore a more appro-
priate graph structure based on the graph augmenta-
tions for making use of sentiment relations within
each modality and across different modalities. Ex-
perimental results on two benchmark datasets show
that our method outperforms the state-of-the-art
baselines in MSA.
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A Introduction of Baselines

Since our HGraph-CL framework is designed based
on BERT, to verify the validity of our approach, we
select the following state-of-the-art models with a
BERT-based version for comparison:
TFN (Zadeh et al., 2017): The tensor fusion net-
work performs outer product on three modal rep-
resentations, then the multimodal representation
vector fused with uni-, bi-, and tri- modalities will
be obtained.
LMF (Liu et al., 2018): The low-rank multimodal
fusion network is based on TFN and gets some
improvement. It uses tensor decomposition to de-
compose the parameter tensor of the outer product
layer.
MFM (Tsai et al., 2019b): The multimodal fac-
torization model factorizes representations into
two sets of independent factors, and optimizes for
a joint generative-discriminative objective across
multimodal data and labels.
MulT (Tsai et al., 2019a): With a slight modifi-
cation in the structure of the transformer encoder,
MulT proposes a cross-modal transformer network
to align information from one mode to another.
MAG-BERT (Rahman et al., 2020): A variant of
BERT, adding a multimodal shifting gate unit be-
hind the input layer. By fusing with visual and
acoustic information, the word embeddings can be
shifted in a direction that can express sentiment
polarity better in the feature space.
MISA (Hazarika et al., 2020): proposes a multi-
task framework for intra-example representation
learning. It projects each modality to two dis-
tinct subspaces to model modality-specific and -
invariant information.
Self-MM (Yu et al., 2021): designs a label genera-
tion module based on the self-supervised learning
strategy to acquire independent unimodal super-
vision. Jointly training uni- and multimodal sen-
timent analysis tasks have got the state-of-the-art
performance on MOSI and MOSEI.
HyCon-BERT (Mai et al., 2022): proposes hybrid
contrastive learning of tri-modal representations to
explore cross-modal interaction and reduce the gap
among modal representations.


