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Abstract

Cross-domain sentiment analysis aims to pre-
dict the sentiment of texts in the target domain
using the model trained on the source domain
to cope with the scarcity of labeled data. Pre-
vious studies are mostly cross-entropy-based
methods for the task, which suffer from insta-
bility and poor generalization. In this paper,
we explore contrastive learning on the cross-
domain sentiment analysis task. We propose
a modified contrastive objective with in-batch
negative samples so that the sentence repre-
sentations from the same class can be pushed
close while those from the different classes be-
come further apart in the latent space. Experi-
ments on two widely used datasets show that
our model can achieve state-of-the-art perfor-
mance in both cross-domain and multi-domain
sentiment analysis tasks. Meanwhile, visualiza-
tions demonstrate the effectiveness of transfer-
ring knowledge learned in the source domain
to the target domain and the adversarial test
verifies the robustness of our model.

1 Introduction

Sentiment classification (Liu, 2012) has been
widely studied by both industry and academia
(Blitzer et al., 2007; Li et al., 2013; Yu and
Jiang, 2016). For example, the sentiment is posi-
tive towards the text ‘The book is exactly as pic-
tured/described. Cute design and good quality’.
Early methods rely on labeled data to train models
on a specific domain (e.g. DVD reviews, book re-
views, and so on), which are labor-intensive and
time-consuming (Socher et al., 2013). To address
this issue, cross-domain sentiment analysis attracts
increasing attention.

Various neural models have been proposed for
cross-domain sentiment analysis in recent years
(Blitzer et al., 2007; Li et al., 2013; Yu and Jiang,
2016; Zhang et al., 2019; Zhou et al., 2020a). Most
methods focus on making the model unable to dis-
tinguish the data from which domain by adversarial
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training or data argumentation, in order to trans-
fer knowledge from source domains to target do-
mains (Du et al., 2020; Liu et al., 2017; Qu et al.,
2019; Yang et al., 2022) and some attempt to learn
domain-specific knowledge (Zhou et al., 2020a;
Liu et al., 2018; Wang et al., 2019). Pre-trained lan-
guage models (Kenton et al., 2019; Radford et al.,
2019; Lewis et al., 2020) have achieved stronger
performance compared with previous random ini-
tialized models such as LSTM (Long Short-term
Memory) in cross-domain tasks. The state-of-the-
art models on cross-domain sentiment analysis,
such as BERT-DAAT (Du et al., 2020), use un-
labeled data to continually train the pre-trained
model BERT to transfer knowledge besides adver-
sarial training.

In the representation aspect for the cross-domain
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sentiment analysis, there are two key requirements
for the representations of sentences: (1) sentence
representations in the same domain with the differ-
ent/the same sentiments should be far from/close to
each other; (2) sentence representations of different
domains with the same labels should be close. Ex-
isting methods are mostly softmax-based method
by optimizing cross-entropy loss to achieve the re-
quirements (illustrate in Figure 1 (a)), which suffers
from instability across different runs (Zhang et al.,
2020; Dodge et al., 2020), poor generalization per-
formance (Liu et al., 2016; Cao et al., 2019), reduc-
tion of prediction diversity (Cui et al., 2020), lack
of robustness to noisy labels (Zhang and Sabuncu,
2018; Sukhbaatar et al., 2015), or adversarial ex-
amples (Elsayed et al., 2018; Nar et al., 2019), es-
pecially when supervised data are limited in the
cross-domain settings.

To address the above shortcomings, we explore
the effectiveness of contrastive learning on the task.
Contrastive learning is a similarity-based training
strategy, which aims to push the representations
from the same class close and those from the dif-
ferent class further apart (Chen et al., 2020; Gao
et al., 2021; Neelakantan et al., 2022; Gao et al.,
2021). Contrastive learning has been shown effec-
tive in solving the problem of anisotropy (Gao et al.,
2019), and it has good generalization and robust-
ness (Li et al., 2021; Gao et al., 2021; Gunel et al.,
2020; Khosla et al., 2020). Previous work relies
mostly on pre-training for representations (Chen
et al., 2020; Neelakantan et al., 2022) or multi-task
training for semantic textual similarity (Gao et al.,
2021), classification (Li et al., 2021; Gunel et al.,
2020) and so on, but little work uses mere con-
trastive learning for supervised tasks. Intuitively,
the optimization of contrastive learning is effec-
tive in satisfying the requirements of cross-domain
sentiment analysis.

We explore COntrastive learning on BERT
(COBE) by a modified contrastive loss function
with the in-batch negative method on cross-domain
sentiment analysis tasks. In the mini-batch, the
samples with the same labels are treated as positive
pairs, and those with different labels are treated
as negative pairs. As shown in Figure 1, the op-
timization procedure aims to tighten the cluster
of samples with the same labels, and push away
samples with different labels. After training, the
representations of training data and their labels are
saved offline as a knowledge base for classifica-

tion. When evaluating the model, a kNN (k-Nearest
Neighbors) predictor is used to predict the senti-
ment of test data, i.e. we search for the k data with
the largest cosine similarity in the knowledge base
and vote for the final prediction using their labels.

Experiments on two widely used datasets (the
cross-domain Amazon dataset (Blitzer et al., 2007)
and FDU-MTL (Liu et al., 2017)) show that our
model can achieve the state-of-the-art performance
in both the cross-domain setting and the multi-
domain setting sentiment classification. Visual-
izations also demonstrate the effectiveness of trans-
ferring knowledge learned in the source domain
to the target domain. To our knowledge, we
are the first to show that contrastive learning out-
performs cross-entropy-based models on cross-
domain sentiment analysis for both performance
and robustness. The code has been released in
https://github.com/LuoXiaoHeics/COBE.

2 Related Work

Cross-domain sentiment analysis. Due to the
heavy cost of obtaining large quantities of la-
beled data for each domain, many approaches have
been proposed for cross-domain sentiment analysis
(Blitzer et al., 2007; Li et al., 2013; Yu and Jiang,
2016; Zhang et al., 2019; Zhou et al., 2020a). Ziser
and Reichart (2018) and Li et al. (2018a) propose
to capture the pivots that are useful for both source
domains and target domains. Ganin et al. (2016)
propose to use adversarial training with a domain
discriminator to learn domain-invariant informa-
tion, which is one type of solutions for the cross-
domain sentiment analysis task (Du et al., 2020;
Liu et al., 2017; Qu et al., 2019; Zhou et al., 2020a).
These adversarial training methods try to confuse
the model unable to classify the data from which
domain, transferring the knowledge from source do-
mains to target domains. Besides, Liu et al. (2018)
and Cai and Wan (2019) attempt to learn domain-
specific information for the different sentiment ex-
pressions on different domains. However, these
studies rely on minimizing the cross-entropy loss,
resulting in the issue of unstable fine-tuning and
poor generalization (Gunel et al., 2020; Li et al.,
2021; Zhang et al., 2020; Dodge et al., 2020).

Contrastive Learning. Contrastive learning has
been widely used in unsupervised learning (Chen
et al., 2020; Jing et al., 2021; Wang and Isola, 2020;
Khosla et al., 2020; Gao et al., 2021; Neelakan-
tan et al., 2022). Radford et al. (2019) propose

https://github.com/LuoXiaoHeics/COBE
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Figure 2: The framework of our contrastive learning for cross-domain sentiment analysis.

to use contrastive learning to learn the represen-
tations of both text and images through raw data
in unsupervised method, which achieves strong
performance on zero-shot task. Neelakantan et al.
(2022) propose to use contrastive learning to ob-
tain sentence and code representations and achieve
strong performance on downstream tasks such as
sentence classification and text search. Wang and
Isola (2020) further identify the key properties for
contrastive learning as (1) alignment (closeness)
of features from positive pairs and (2) uniformity
of induced distribution of representations. Gao
et al. (2021) uses contrastive learning to learn the
sentence representations and theoretically prove
that contrastive learning can solve the anisotropy
problem (the learned embeddings occupy a narrow
cone in the vector space), which limits the expres-
siveness of representations. It also achieves better
results for the semantic textual similarity task using
a supervised dataset of natural language inference.
Our model differs from the above studies in that we
consider contrastive learning in supervised tasks,
which uses golden labels to obtain positive/negative
pairs for training.

Recently, some studies attempt to incorporate
contrastive learning into cross-entropy-based meth-
ods by adding InfoNCE loss (Gunel et al., 2020; Li
et al., 2021), which aims to solve the shortcomings
of cross-entropy loss. Gunel et al. (2020) propose a
new SCL loss based on InfoNCE loss to boost the
stability and robustness of fine-tuning pre-trained
language models. Subsequently, Li et al. (2021) at-
tempt to incorporate kNN predictors to enhance the
generalization of prediction in few-shot tasks, using
both cross-entropy loss and SCL loss. The above
work is similar to ours in making use of contrastive

loss for classification. However, the difference is
that we do not use a standard cross-entropy loss,
but rely solely on vector space similarity losses
for achieving cross-domain classification. To our
knowledge, we are the first to conduct sentiment
classification without using a cross-entropy loss in
natural language processing.

3 Method

Formally, the training data consists of
{(Si, Yi)}Ni=1, where Si = [s1, s2, ..., sl] is a
set of review text, and Yi ∈ {0, 1} are the corre-
sponding sentiment labels. The model framework
is shown in Figure 2. To present our model –
COntrastive learning on BERT (COBE), We first
introduce the prediction of sentiment labels using
representations based on kNN (Section 3.1), and
then describe the training objective to obtain
effective representations using contrastive learning
(Section 3.2). For comparison, we also describe the
standard cross-entropy baseline, named BERT-CE,
and a version that adopts adversarial training,
named BERT-adv.

3.1 Model
We concatenate the review text Si with special to-
kens [CLS] and [SEP ] as our model input Xi =
[CLS] Si [SEP ], which is fed into BERT model
to obtain the hidden states. The hidden state of
[CLS] from the last layer of BERT is considered
as the representation of the input sequence:

hCLS
i = BERT (Xi)[CLS] (1)

BERT-CE and BERT-adv baselines: After ob-
taining the sentence representation hCLS

i of input
Xi, an MLP (Multi Layer Perceptron) layer project
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it to the label space and a softmax layer is adopted
to calculate the probability distribution on the la-
bels:

pce = Softmax(MLP (hCLS
i )). (2)

The label with the largest probability is adopted
as the prediction result.

COBE: Our model uses the same representation
of Eq(1), but adopts a kNN predictor to classify
the labels. An MLP layer is then adopted for the
dimension reduction:

hi = MLP (hCLS
i ). (3)

To predict the sentiment label of a review text Su,
we calculate the cosine similarity of the sentence
representation hu with the sentence representations
of the training data:

sim(hu,hi) =
hu · hi

||hu|| · ||hi||
, (4)

where hi is the sentence representation of training
data Xi.

We retrieve the k training data whose cosine
similarity with hu are the largest. We denote the k
nearest neighbors as (hi, Yi) ∈ Ku. The retrieved
set is converted to a probability distribution over
the labels by applying a softmax with temperature
T to the similarity. Using the temperature T > 1
can flatten the distribution, and prevent over-fitting
to the most similar searches (Khandelwal et al.,
2020). The probability distribution on the labels
can be expressed as follows:

pk(Y
′
u) ∝

∑
(hi,Yi)∈Ku

1Y ′
u=Yi

· exp(sim(hu,hi)

T
).

(5)
The label with the largest probability is regarded

as the prediction result.

3.2 Training Objective

BERT-CE baseline: For the cross-entropy-based
model, multi-label cross-entropy loss is adopted to
optimize the model, which is formulated as follows:

Lcls = − 1

M

∑
(Xi,Yi)

Yilog pce(Yi), (6)

BERT-adv baseline: Besides the cross-entropy
loss, BERT-adv adds a domain discriminator (Du
et al., 2020; Ganin et al., 2016) to the standard

model and adopts adversarial training to transfer
knowledge from source domains to target domains.

Given the sentence and its domain label
(Xi, Di), the representation hCLS

i obtained in
Eq(1) goes through an additional gradient rever-
sal layer (GRL) (Ganin et al., 2016), which can be
denoted as a ‘pseudo-function’ Dλ(x). The GRL
reverses the gradient by applying a negative scalar
λ. The forward- and backward- behaviors can be
described:

Dλ(x) = x,
∂Dλ(x)

∂x
= −λI, (7)

where λ is a hyper-paramter and I is the gradients
calculated on hCLS

i (but it is multiplied with −λ to
back-propagate). Then a linear layer project hCLS

i

to the label space and a softmax layer is adopted to
calculate the distribution on domain labels:

pd = Softmax(WdhCLS
i + bd), (8)

where Wd and bd are the learnable parameters. The
training target is to minimize the cross-entropy for
all data from the source and target domains (note
that the data from target domains are unlabeled on
sentiment) in order to make the model unable to
predict the domain labels:

Ldom = − 1

M

∑
(Xi,Di)

Dilog pd(Di). (9)

For BERT-adv, the training loss of sentiment clas-
sification (Eq.7) and domain classification (Eq.10)
are jointly optimized:

Ladv = Lcls + Ldom (10)

COBE: The baselines adopt Lcls to tighten the
representations of the same/different labels close
(apart), and adopt Ldom to mix up the represen-
tations of different domains with the same label.
However, COBE uses a single training objective of
contrastive learning to achieve the both goals. We
apply in-batch negatives (Yih et al., 2011; Sohn,
2016) to learn sentence representations through
contrastive learning, which has been widely used
in unsupervised representation learning (Radford
et al., 2021; Jia et al., 2021). For each example in
the mini-batch of M samples, we treat the other
samples with different golden labels as negative
pairs, and the samples with the same golden labels
as positive pairs. For example in Figure 2, the sen-
tence pair (1,2) is positive pairs, and the sentence
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S → T B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Avg
DANN 82.30 77.60 76.10 81.70 79.70 77.35 78.55 79.70 83.95 79.25 80.45 86.65 80.29
PBLM 84.20 77.60 82.50 82.50 79.60 83.20 71.40 75.00 87.80 74.20 79.80 87.10 80.40
HATN 86.10 85.70 85.20 86.30 85.60 86.20 81.00 84.00 87.90 83.30 84.50 87.00 85.10
ACAN 83.45 81.20 83.05 82.35 82.80 78.60 79.75 81.75 83.35 80.80 82.10 86.60 82.15
IATN 86.80 86.50 85.90 87.00 86.90 85.80 81.80 84.10 88.70 84.70 84.10 87.60 85.90
BERT-CE 88.96 86.15 89.05 89.40 86.55 87.53 86.50 87.95 91.60 87.55 87.95 90.45 88.25
BERT-CE∗ 55.40 56.55 54.05 55.10 57.25 53.75 55.50 56.00 55.55 52.30 52.75 54.15 54.86
BERT-adv 89.70 87.30 89.55 89.55 86.05 87.69 87.15 86.05 91.91 87.65 87.72 86.05 88.56
DAAT 89.70 89.57 90.75 90.86 89.30 87.53 88.91 90.13 93.18 87.98 88.81 91.72 90.12
COBE∗ 82.17 83.65 83.12 79.82 78.87 82.58 75.95 79.53 86.10 78.55 76.95 85.17 80.95
COBE (proposed) 90.05 90.45 92.90 90.98 90.67 92.00 87.90 87.87 93.33 88.38 87.43 92.58 90.39

Table 1: Results on the cross-domain Amazon dataset. BERT-CE∗ and COBE∗ refer to the models fixing the
parameters of BERT, and only tuning the parameters of MLP layer. (B for the Books domain, D for the DVD
domain, E for the Electronics domain, and K for the Kitchen domain, respectively.)

pairs (1,3) and (2,3) are negative pairs. For each
review Xi we denote N+

i as the set of reviews with
the same label of Xi in the mini-batch. Then the
contrastive loss function can be defined as follows:

LCon =
M∑
i

− 1

M
log

∑
k∈N+

i
exp(sim(hi,hk)/τ)∑M

i ̸=j exp(sim(hi,hj)/τ)
(11)

where τ is a temperature hyper-parameter. The
loss function can alleviate the negative effect of the
situations where there is no positive pairs for any
training instance in the batch.

The usage of in-batch negatives enables re-use
of computation both in the forward and backward
pass making training highly efficient.

4 Experiments

We conduct experiments on both the cross-domain
settings (train models on source domains and test
on another one) and the multi-domain settings
(train and test models on the same domains). To
verify the effectiveness of our model, we also visu-
alize the representations (Section 4.3) and carry out
further analysis such as model robustness (Section
4.4).

4.1 Settings

Datasets. We test our contrastive learning method
on two widely used datasets, the cross-domain
Amazon dataset, and the FDU-MTL dataset. The
cross-domain Amazon dataset (Blitzer et al., 2007)
contains 4 domains: Books (B), DVD (D), Elec-
tronics (E) and Kitchen (K). Each domain contains
2000 Amazon review samples. Following the set-
ting of previous work (Ganin et al., 2016; Ziser and
Reichart, 2018; Du et al., 2020), we test the model

on 12 tasks. The model is trained on the source
domain data and tested on the target domain data.

Furthermore, we also evaluate our model on
FDU-MTL, which is an Amazon reviews dataset
with data on 16 domains (Liu et al., 2017). The
training set, development set, and test set are split
in the original dataset, (the statistics are shown
in Appendix A). We carry out experiments on the
multi-domain setting, (i.e. train the model on the
whole 16 domains, and evaluate the model on the
test on the whole 16 domains), and on the 15-1
cross-domain setting (i.e. train the model on 15
domains, and test the model on the 1 domain left).

Baselines. For the cross-domain Amazon
dataset, we compare our model with several
strong baselines in cross-domain sentiment analy-
sis: DANN (Ganin et al., 2016), PBLM (Ziser and
Reichart, 2018), HATN (Li et al., 2018b), IATN
(Qu et al., 2019), DAAT (Du et al., 2020), BERT-
CE and BERT-CE∗ (∗ for fixing the BERT param-
eters). We adopt the results of baselines reported
in Zhou et al. (2020b) and Du et al. (2020). We
also adopt BERT-adv as our baselines introduced
in Section 3.2.

On FDU-MTL, we compare our model with ASP
(Liu et al., 2017), DSR-at (Zheng et al., 2018),
DAEA and DAEA-B (DAEA-BERT) (Cai and Wan,
2019). The DAEA-B is regarded as the state-of-
the-art model on FDU-MTL (excluding the model
SentiX (Zhou et al., 2020b), which uses a large cor-
pus (about 241 million reviews) to continually train
BERT for sentiment tasks). Note that, it is unfair
that previous studies do not adopt the BERT-CE
model for multi-domain experiments for compari-
son. In this study, we also consider BERT-CE, and
BERT-CE∗ on the multi-domain setting as base-
lines. For the multi-domain task, the objective of
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adversarial training is redundant, thus we mainly
compare COBE with baselines BERT-CE.

Implementation Details. We perform experi-
ments using the official pre-trained BERT model
provided by Huggingface1. We train our model
on 1 GPU (Nvidia GTX2080Ti) using the Adam
optimizer (Kingma and Ba, 2014). For the cross-
domain Amazon dataset (FDU-MTL), the max se-
quence length for BERT is 256 (128), and the
batch size M is 8 (32). The max sequence lengths
are set in such values for comparison with previ-
ous models. The initial learning rate is 2e-5 (1e-
4) for BERT-unfixed (BERT-fixed) models, and
each model is trained for 20 epochs. The hyper-
parameters of temperatures τ is 0.05, T is 5, and
the number of nearest neighbors k is 3 (without
losing generality, we do not search for the best
hyper-parameters through grid-search). Through
the training of our model, no development set is
applied to find the best checkpoints, but stop until
the training step is reached. During the test proce-
dure, we adopt FAISS IndexFlat Index (Johnson
and Guestrin, 2018) to accelerate the speed to find
the k nearest neighbors. We average the results
with 3 different random seeds.

4.2 Results

Results on the Cross-Domain Amazon Dataset.
The results are shown in Table 1. Overall,
our model COBE achieves state-of-the-art perfor-
mances with an accuracy of 90.39% on average
for the 12 cross-domain tasks. It achieves state-of-
the-art performance in 9 of 12 tasks. The result
is 2.14% higher than that of BERT-CE (88.25%),
which indicates that our proposed contrastive learn-
ing method can be more effective and generalized
than methods based on cross-entropy loss. COBE
is also 1.83% higher than BERT-adv (88.56%),
which implies that directly pushing the representa-
tions of different domains with the same (different)
labels close (apart) results in a strong performance
on the cross-domain sentiment classification.

DAAT uses the unlabeled data from the source
domain and the target domain to continually train
BERT to mix the information of the source domain
and target domain. Then the training objective
of cross-entropy and the domain discriminator are
jointly optimized to obtain the sentiment classifi-
cation model. The average accuracy of our model
is 0.27% higher than that of DAAT, which uses ad-

1https://huggingface.co/

ditional data to continually train BERT to transfer
knowledge in the source domain to the target do-
main. Although DAAT achieves great performance,
it is more time-consuming and resource-wasting
compared with solely using contrastive learning. In
the tasks of E→ B, E → D, and K → D, the accura-
cies of our model are smaller compared with DAAT,
and the possible reason can be that the source do-
mains’ data have less shared information with the
target domains. But with unlabeled data for contin-
ual training, some domain-specific information is
extracted in DAAT and further results in a better
performance.

Moreover, the average accuracy of the model
COBE∗ (82.05%) outperforms that of BERT-CE∗

(54.86%) with a large margin, where the parame-
ters of BERT are fixed (corresponding to the sce-
nario that pre-trained models are too large for fine-
tuning). The model BERT-CE∗ fails to predict
the sentiments of the target domain using cross-
entropy-based methods, but with contrastive learn-
ing, it can obtain strong results (similar perfor-
mance to BERT-CE). But the performance of mod-
els fixing BERT parameters is still largely worse
than that of unfixed models.

Results on FDU-MTL. First, we test our model
in the multi-domain setting, training the model on
the data of 16 domains and evaluating it on the
whole test data. The results are shown in Table
2. Our model achieves the state-of-the-art perfor-
mance with an accuracy of 91.49% on average, and
in the 12 of 16 domains, it achieves the state-of-
the-art performance. The accuracy is 0.67% higher
than that of BERT-CE, and 0.99% higher than that
of DAEA-B. In particular, using BERT-CE solely
in the multi-domain setting can achieve competi-
tive performance (90.82%), which is neglected by
previous studies. The accuracy of our model COBE
on the IMDB data is lower than DSA with a large
margin, which may result from the max sequence
length for BERT being 128, much smaller than
the average sequence length in IMDB (128 to 256).
Our model COBE∗ achieves an accuracy of 83.35%
in the multi-domain setting, which is also higher
than that of BERT-CE∗ with a margin of 3.14%.

Then we also evaluate our model in the 15-1 set-
tings, referring to that we train the model on 15
domains and test it on the domain left (shown in
Table 3. Our model achieves state-of-the-art perfor-
mance with an accuracy of 90.03%. The accuracies
in 14 of 16 tasks are larger than that in previous
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Domain ASP DA DSA DAEA DAEA-B BERT-CE∗ BERT-CE COBE∗ COBE
Books 84.00 88.50 89.10 89.00 N/A 81.33 90.67 85.17 90.17
Electronics 86.80 89.00 87.90 91.80 N/A 82.17 91.92 82.92 93.58
DVD 85.50 88.00 88.10 88.30 N/A 78.83 89.00 79.42 89.67
Kitchen 86.20 89.00 85.90 90.30 N/A 79.92 91.17 81.33 91.50
Apparel 87.00 88.80 87.80 89.00 N/A 83.33 92.08 87.25 92.33
Camera 89.20 91.80 90.00 92.00 N/A 81.83 93.25 87.50 93.58
Health 88.20 90.30 92.90 89.80 N/A 81.25 93.33 85.00 93.92
Music 82.50 85.00 84.10 88.00 N/A 79.42 88.92 80.33 90.33
Toys 88.00 89.50 85.90 91.80 N/A 78.25 92.41 83.75 93.42
Video 84.50 89.50 90.30 92.30 N/A 78.17 90.33 83.67 89.91
Baby 88.20 90.50 91.70 92.30 N/A 82.33 93.00 84.42 93.92
Magazines 92.20 92.00 92.10 96.50 N/A 83.41 93.75 89.67 94.08
Software 87.20 90.80 87.00 92.80 N/A 83.42 92.42 85.33 93.42
Sports 85.70 89.80 85.80 90.80 N/A 78.50 91.50 84.50 92.83
IMDB 85.50 89.80 93.80 90.80 N/A 76.43 86.33 76.50 86.91
MR 76.70 75.50 73.30 77.00 N/A 74.75 83.00 76.83 84.33
Avg 86.09 88.61 87.86 90.16 90.50 80.21 90.82 83.35 91.49

Table 2: Results on FDU-MTL in the multi-domain setting. BERT-CE∗ and COBE∗ refer to the models fixing the
parameters of BERT, and only tuning the parameters of MLP layer.

ASP DSR-at DAEA COBE
Books 81.50 85.80 87.30 90.67
Electronics 83.80 89.50 85.80 92.33
DVD 84.50 86.30 88.80 87.50
Kitchen 87.50 88.30 88.00 90.75
Apparel 85.30 85.80 88.00 91.16
Camera 85.30 88.80 90.00 91.67
Health 86.00 90.50 91.00 94.33
Music 81.30 84.80 86.50 89.17
Toys 88.00 90.30 90.30 92.33
Video 86.80 85.30 91.30 88.50
Baby 86.50 84.80 90.30 93.17
Magazines 87.00 84.00 88.50 90.50
Software 87.00 90.80 89.80 90.82
Sports 87.00 87.00 90.50 92.15
IMDB 84.00 83.30 85.80 86.58
MR 72.00 76.30 75.50 78.91
Avg 84.59 86.35 87.96 90.03

Table 3: Results on FDU-MTL in the 15-1 setting.

studies. It is 2.07% higher than the average ac-
curacy of DAEA. The experimental results also
show that contrastive learning can perform better
than cross-entropy-based models with adversarial
training for cross-domain sentiment analysis.

4.3 Visualization

The visualization of the sentence representations
hi in COBE is shown in Figure 3. For the B->K
(Books->Kitchen) task in Figure 3 (a), first, the
representations of positive and negative data are
separated acutely with a large margin between each
other. Second, representations of source and tar-
get domains with the same labels are close to each
other, which means the knowledge learned from the
source domain is transferred to the target domain
effectively. For the multi-domain setting in Figure

3 (b) (left), we can observe that the representations
with the same labels are separated into different
clusters w.r.t the labels, and in the sentence rep-
resentations with the same label but different do-
mains mix up well, which satisfy the requirements
of the cross-domain sentiment analysis.

To further compare the contrastive learning
method with cross-entropy-based methods, we il-
lustrate the representations of the source domain
and the target domain in COBE, BERT-CE in Fig-
ure 3 (c)(d), respectively (visualizations of COBE∗

and BERT-CE∗ are shown in Appendix). Obvi-
ously, the sentence representations are separated in
the target domain in BERT-CE less effective than
that in COBE. The visualizations show the effec-
tiveness of contrastive learning in transferring the
learned knowledge in the source domain to the tar-
get domain. Meanwhile, it demonstrates operating
the sentence representations in the feature space has
a strong generalization ability in the cross-domain
sentiment analysis tasks.

4.4 Robustness Analysis
We evaluate our model on adversarial samples gen-
erated by using the well-known substitution-based
adversarial attack method–Textfooler (Jin et al.,
2020). Given an input Xi and a pre-trained classi-
fication model F , a valid adversarial sample Xadv

i

should conform the following requirements:

F (Xi) ̸= F (Xadv
i ), Sim(Xi, X

adv
i ) ≥ ϵ. (12)

where Sim is a similarity function and ϵ is the
minimum similarity between the original input and
the adversarial sample, which is often a semantic
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Text Gold Label Output
Test Data. This story is true to life living in south west and west phila. It brought back
many memories and changing the names did not bother me. I really enjoyed reading about
life the way it was back in the 55 to 70 era.

Positive Positive

k nearest neighbors.
(1) Have to be honest and say that I haven’t seen many independent films, but I thought
this one was very well done. The direction and cinematography were engaging without
becoming a distraction.

Positive

(2) I bought this wireless weather station as a gift. The recipient loves it. For the price, he
is really enjoying it.

Positive

(3) I think j-14 is a really good magazine if u like to hear the latest gossip about all your
favourite celebrity ’s, or if u like to get nice posters of all the hot celebrity ’s.

Positive

Table 4: Case Study on FDU-MTL.

Original Text: DEF. NOT A GOOD TANK. You look at
them in a picture frame, the fish are crammed in there.
Adversarial Text: DEF. Not a alright tank. you look
at them in a photography sashes, the fish are teeming in
there.

Table 5: Adversarial example based on TextFooler.

BERT-CE∗ BERT-CE COBE∗ COBE
Books 42.50 71.50 69.00 78.00
Multi- 49.50 73.50 72.50 81.00

Table 6: Results on the adversarial samples. Books for
the trained model using the data of Books domain in
the cross-domain Amazon dataset, and Multi- for the
trained model using multi-domain data in FDU-MTL.

and syntactic similarity function. The details for
generation refer to Jin et al. (2020). An adversarial
sample is shown in Table 5, where the sentence
semantic information is not corrupted, but some
words are replaced.

We test our model (trained using Books data in
the cross-domain Amazon dataset) with 200 adver-
sarial samples from the Kitchen domain, and our
model (trained using multi-domain data in FDU-
MTL) with 200 adversarial samples randomly se-
lected from the multi-domain test data. The results
are shown in Table 6. Our model COBE achieves
78.00% and 81.00% accuracies for the two kind of
adversarial data, which are 6.5% and 7.5% higher
than BERT-CE. Meanwhile, the model COBE∗ out-
performs BERT-CE∗ with a large margin (26.5%
and 23%). The results demonstrate that contrastive-
learning based models have better robustness than
cross-entropy-based models.

4.5 Case Study

The case study is shown in Table 4. As can be
observed, the k nearest neighbors of the test data
(Books) are reviews from different domains (Video,
Electronics and Magazines) with positive labels,

and it outputs the correct label for the test data.
Note that the key sentiment information is similar
for the original text and neighbors in the case such
as ‘enjoy’, ‘engaging’, ‘enjoying’ and ‘favorite’.
It shows that our model can learn effective infor-
mation from multi-domain data for the sentiment
classification task, and the representations of differ-
ent domains mix up well, which serve as a strong
sentiment knowledge base for the classification.

5 Conclusion

We explored the contrastive learning method in
the cross-domain sentiment analysis task. We pro-
posed a suitable contrastive loss for the supervised
sentiment analysis task with the in-batch negatives
method. Experiments on two standard datasets
showed the effectiveness of our model. Visualiza-
tions also demonstrated the effectiveness of trans-
ferring knowledge learned in the source domain to
the target domain. We also showed that our model
has stronger robustness than cross-entropy-based
models through the adversarial test.
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A Statistics for FDU-MTL.

Domain Train Dev Test Avg. Length
Books 1400 200 400 159
Electronics 1398 200 400 101
DVD 1400 200 400 173
Kitchen 1400 200 400 89
Apparel 1400 200 400 57
Camera 1397 200 400 130
Health 1400 200 400 81
Music 1400 200 400 136
Toys 1400 200 400 90
Video 1400 200 400 156
Baby 1300 200 400 104
Magazines 1370 200 400 117
Software 1315 200 400 129
Sports 1400 200 400 94
IMDB 1400 200 400 269
MR 1400 200 400 21

Table 7: Statistics of FDU-MTL.

B Reconstruction Loss

We attempt to reconstruct the representations of
BERT which means another MLP layer is applied
by hrec

i = MLP (hi). Then a reconstruction loss
of MSE (mean-squared loss) is added to retain the
semantic information, Lrec = ||hrec

i − hCLS
i || as

(Zhao et al., 2021). But little improvement (an av-
erage accuracy of 90.81% on the FDU-MTL multi-
domain setting and 90.13% on the cross-domain
Amazon dataset) is obtained, which is 0.68% and
0.26% lower than COBE, respectively. It indicates
that the reconstruction loss is not suitable for the
task of cross-domain sentiment analysis.

C SCL Loss

To verify the effectiveness of our propose loss func-
tion, we compare our contrastive learning loss with
the SCL loss (Gunel et al., 2020), which can be
formulated as follows:

LSCL = −
M∑
i

1

|N+
i |

∑
k∈N+

i

log
exp(sim(hi, hk)/τ)∑M
i ̸=j exp(sim(hi, hj)/τ)

(13)

In fairness, we use the kNN predictor the same
as our proposed model. The model with SCL
loss achieves an average accuracy of 91.13% on
the FDU-MTL multi-domain setting and 90.05%
on the cross-domain Amazon dataset (0.36% and
0.34% lower than COBE, respectively). The exper-
iments prove the effectiveness of our proposed loss
function with the in-batch negative samples, which
aims to tighten all the samples of the same labels
as positive pairs. The conclusion is different from
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Figure 4: Evaluation with respect to different numbers
of k for one random seed.

that in Khosla et al. (2020), whose experiments
demonstrate that the separately calculating each
positive pair separately (SCL loss) achieves better
results for image classification. It may results from
the reason that the batch size influences the results
of the two methods, and our batch sizes (8 and
32) are comparatively smaller compared with their
study (6144), which may motivate further theoreti-
cal analysis.

D Influence of k

In order to discover the sensitivity of our model to
the influence of k for the kNN predictor (shown in
Figure 4), we evaluate our model with respect to
the different numbers of k. As observed, the accu-
racies of COBE stop to increase and keep stable
when k >= 5, which indicates that the model is
little sensitive with the hyper-parameter k. The phe-
nomenon demonstrates that the sentence represen-
tations learned by COBE are effectively separated
and stable for classification.
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Original Text Adversarial Text
Very nice iron!. This is a great iron. It’s quite heavy, but I like
that. It really gets out the wrinkles. I don’t even mind ironing
any more.

Awfully sweet iron! This is a whopping iron it ’s quite heavy,
but I like that it really gets out the wrinkles I don’t even mind
ironing any more.

A good idea, disappointing in use. These silicone pot holders
are indeed brightly colored, easy to wash in the dishwasher, and
protective even when wet. They are also clumsily stiff at the
same time as they are slippery, the net result being a miserable
failure in the kitchen. They are useful for protecting a counter
from a hot pot, but not for picking the hot pot up.

A good ideas, agonizing in use these silicon pot holders are
indeed brightly colour, easy to wash in the dishwasher, and
protective even when clammy they are also clumsily painstaking
at the same time as they are slippery, the net raison being a
miserable failure in the kitchen they are useful for protecting a
counter from a hot pot, but not for picking the hot pot up.

Love this piece. I just bought this piece and tried it out. I love
the size and no drip mouth.The color is beautiful and its so pretty
on my buffet.

Like this pieces I just obtained this pieces and attempts it out. I
luv the size and no drip mouths the colorful is beautiful and its
however rather on my buffet.

Table 8: Adversarial Samples.

Figure 5: Visualization of sentence representation obtained from BERT and COBE. We use t-SNE to transfer the
feature space into two-dimensional space for the B→K task.
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