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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
aims at extracting triplets from a given sen-
tence, where each triplet includes an aspect, its
sentiment polarity, and a corresponding opin-
ion explaining the polarity. Existing methods
are poor at detecting complicated relations be-
tween aspects and opinions as well as classify-
ing multiple sentiment polarities in a sentence.
Detecting unclear boundaries of multi-word as-
pects and opinions is also a challenge. In this
paper, we propose a Multi-Task Dual-Tree Net-
work (MTDTN) to address these issues. We
employ a constituency tree and a modified de-
pendency tree in two sub-tasks of Aspect Opin-
ion Co-Extraction (AOCE) and ASTE, respec-
tively. To enhance the information interaction
between the two sub-tasks, we further design
a Transition-Based Inference Strategy (TBIS)
that transfers the boundary information from
tags of AOCE to ASTE through a transition
matrix. Extensive experiments are conducted
on four popular datasets, and the results show
the effectiveness of our model.

1 Introduction

Aspect Based Sentiment Analysis (ABSA), also
known as Target Based Sentiment Analysis, has
received widespread attention in both academia
and industry in recent years. ABSA allows a sen-
timent analysis of different aspects in a given sen-
tence, which can be applied in many areas, such
as social media and E-commerce reviews. Com-
pared with sentence sentiment analysis, ABSA is
more fine-grained and more in line with reality.
ABSA contains many sub-tasks, such as Aspect
Term Extraction (ATE) (Xu et al., 2018; Yang et al.,
2020), Opinion Term Extraction (OTE) (Fan et al.,
2019; Wu et al., 2020b), Aspect Level Sentiment
Classification (ALSC) (Xiao et al., 2021; Li et al.,
2021), Aspect Sentiment Pair Extraction (ASPE)
(Li et al., 2019; Ji et al., 2020; Chen and Qian, 2020;
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Luo et al., 2020), Aspect Opinion Co-Extraction
(AOCE) (Dai and Song, 2019), Aspect Opinion
Pair Extraction (AOPE) (Chen et al., 2020; Zhao
et al., 2020) and Aspect Sentiment Triplet Extrac-
tion (ASTE) (Wu et al., 2020a; Chen et al., 2021a).

Table 1: An example of different ABSA sub-tasks. As-
pects, opinions and sentiment polarities are in blue, red
and green respectively.

Sentence: Good service but poor taste
Aspect Term Extration: {service, taste}
Opinion Term Extraction: {Good, poor}
Aspect Sentiment Pair Extraction: {(service, pos), (taste, neg)}
Aspect Opinion Co-Extraction: {service, Good, taste, poor}
Aspect Opinion Pair Extraction: {(service, Good), (taste, poor)}

Aspect Sentiment Triplet Extraction:
{(service, Good, pos), (taste,
poor, neg)}

Table 1 gives an example of different ABSA sub-
tasks for the sentence ’Good service but poor taste’.
This paper mainly concentrate on ASTE, which
extracts triplets of all aspects in a sentence with the
corresponding opinion and the sentiment polarity
for each aspect simultaneously.

Although researches have been conducted in the
area, ASTE still faces many challenges:

• Complicated relations. The corresponding
relations between aspects and opinions can be
one-to-one, one-to-many, many-to-one, and
even many-to-many. It is hard to detect these
relations accurately and unambiguously.

• Multiple sentiment polarities. Each sen-
tence may contain multiple sentiment polar-
ities, which are usually influenced by corre-
sponding relations between aspects and opin-
ions. Therefore, relations need to be inte-
grated into the sentiment classification task
in a proper way.

• Unclear boundaries. Aspects and opinions
often contain multiple successive words, mak-
ing their boundaries difficult to be detected.
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To address the above challenges, we propose a
Multi-Task Dual-Tree Network for ASTE, namely
MTDTN. The constituency tree and dependency
tree are two parsing methods of a sentence in Natu-
ral Language Processing (NLP), and the latter has
been widely used in ABSA tasks (Wang et al., 2020;
Pereg et al., 2020). Although the two trees of one
sentence can be transformed into each other, it may
require hops over the structure in graph neural net-
works or self-attentions. Thus our model employs
both types of trees for AOCE and ASTE, respec-
tively. The constituency tree is applied in the co-
extraction module to detect constituent boundaries,
and the dependency tree is applied in the triplet
extraction module to capture relations between as-
pects and opinions. Moreover, for the reason that
different layers of BERT (Devlin et al., 2019) cap-
ture hierarchical features, with surface features in
lower layers, syntactic features in middle layers
and semantic features in higher layers (Jawahar
et al., 2019), we employ self-attention weights of
the middle layer to modify the dependency graph.
The modified graph can reduce inevitable parsing
errors and imply more accurate relations between
words. Finally, we use a similar tagging scheme
as the Grid Tagging Scheme (Wu et al., 2020a) for
triplet extraction and design a Transition-Based In-
ference Strategy (TBIS) to transfer the boundary
information from the co-extraction module to the
triplet extraction module.

The contributions of our work can be summa-
rized as follows:

• We propose a Multi-Task Dual-Tree Network
for ASTE, employing a constituency tree and
a modified dependency tree in two sub-tasks
of AOCE and ASTE, respectively.

• We design a Transition-Based Inference Strat-
egy that transfers the boundary information
from tags of AOCE to ASTE through a transi-
tion matrix.

• We conduct extensive experiments on four
popular datasets, and the results show that our
model outperforms state-of-the-art models.

2 Related work

Aspect-Opinion Co-Extraction (AOCE) has been
focused on in recent years, aiming to explore the in-
teractions between Aspect Term Extraction (ATE)
and Opinion Term Extraction (OTE). Initially, mod-
els have been proposed to co-extract aspects and

opinions in a sentence, treating the task as a se-
quence labeling problem (Wang et al., 2017; Dai
and Song, 2019; He et al., 2019). However, they
do not consider the relations between correspond-
ing aspects and opinions. Then (Zhao et al., 2020)
define the Aspect Opinion Pair Extraction (AOPE)
task and propose a span-based multi-task learn-
ing framework. (Chen et al., 2020) propose a syn-
chronous double-channel recurrent network to ob-
tain aspect-opinion pairs and achieve great perfor-
mance. To further explore the interactions between
paired terms and sentiment polarity, (Peng et al.,
2020) first define the task of Aspect-Sentiment
Triplet Extraction (ASTE) and propose a two-stage
model to address it. Following this work, a position-
aware tagging scheme (Xu et al., 2020) and a grid
tagging scheme (Wu et al., 2020a) are designed to
jointly extract the triplets in an end-to-end man-
ner. (Chen et al., 2021b) further represent the se-
mantic and syntactic relations between word pairs
by a graph to enhance the vanilla grid tagging
scheme. Interactions between aspect spans and
opinion spans are also studied to not only consider
word-to-word interactions (Xu et al., 2021). (Chen
et al., 2021a) transform the triplet extraction task
into a machine reading comprehension (MRC) task
with well-designed queries.

3 Task Definition

Given an input sentence X = {x1, x2, · · · , xn} of
length n, we then formulate two sub-tasks as two
different sequence labeling problems.

3.1 Aspect-Opinion Co-Extraction

AOCE aims to extract all aspect terms and opinion
terms appearing in a sentence. We use 5 tags in
Y = {BA, IA,BO, IO,OT} to label each word
xi. BA and BO denote the beginning of an aspect
term or an opinion term, IA and IO denote the
inside of an aspect term or an opinion term, OT
denotes the outside of both kinds of terms.

3.2 Aspect-Sentiment Triplet Extraction

ASTE aims to extract triplets of all aspect terms
in a sentence with the corresponding opinion term
and the sentiment polarity for each aspect term
simultaneously. We employ the Grid Tagging
Schema (Wu et al., 2020a), which uses 6 tags in
G = {A,O,NEG,NEU,POS,N} to label the
relation between two words xi and xj . A and O
denote xi and xj are in the same aspect term or
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opinion term, NEG, NEU and POS denote xi
and xj are separately in an aspect term and another
opinion term with the corresponding sentiment po-
larity, N denotes xi and xj have no above relations.

4 Proposed Model

4.1 Model Overview
The overview of our model is shown in Figure 1. It
first accepts a sentence X as the input into a shared
BERT encoder, then different layers of BERT are
sent to different downstream modules. For the co-
extraction module, we employ the consistency tree
to construct a heterogeneous graph and apply multi-
layers of Graph Convolution Networks over it to
generate the final representation. For the triplet
extraction module, we propose a Dep-Enhanced
Transformer Decoder (DETD), which receives a
modified dependency graph constructed from the
dependency tree to incorporate the syntactic in-
formation. Finally, a Transition-Based Inference
Strategy (TBIS) is designed, transferring the bound-
ary information from the co-extraction module to
the triplet extraction module through a transition
matrix.

4.2 Shared BERT Encoder
Since pre-trained models show powerful perfor-
mance in Natural Language Understanding (NLU)
tasks, we choose BERT (Devlin et al., 2019) as the
text encoder of our model. For a given sentence X ,
the following representations can be generated on
the pre-trained BERT:

H [1:L] = BERT (X) (1)

where H [1:L] denote hidden states of all layers of
BERT and L is the max layer.

For the reason that BERT is proven to capture a
rich hierarchy of linguistic information, different
layers are selected for two sub-tasks:

Hce = HL

Hte = H l
(2)

where Hce and Hte are inputs for the co-extraction
module and the triplet extraction module respec-
tively, HL denotes hidden states of the highest
BERT layer which contains more semantic infor-
mation, H l denotes hidden states of the lth BERT
layer which contains more syntactic information.
We assume that the co-extraction pays more atten-
tion to semantic features and the triplet extraction

pays more attention to syntactic features because
the latter needs to describe word-to-word relations.

4.3 Co-Extraction Module

The constituency tree is based on the formalism
of context-free grammars. In this type of tree, a
sentence is divided into constituents which are sub-
phrases that belong to specific categories in the
grammar. For instance, a verb phrase (VP) can be
formed of a verb (V) and a noun phrase (NP).

For a given sentence, we employ CoreNLP to
generate a constituency tree and then construct an
undirected heterogeneous graph based on the tree.
The graph contains n + m nodes, where n leaf
nodes are tokens in the sentence, and m internal
nodes are constituents in the tree. There are two
types of edges in the graph: self-loop edges of
leaf nodes and edges between each node and its
parent node in the tree. In the forward process, leaf
nodes are initialized with Hce and internal nodes
are randomly initialized embeddings that can be
updated among training.

Then we apply Graph Convolution Networks
(GCN) (Kipf and Welling, 2016) over the gener-
ated graph, concatenating the representation of leaf
nodes and internal nodes as the initial input:

H0 = [Hce; e(c)] (3)

where c denotes the list of constituents in the tree
and e denotes the lookup table of constituent em-
beddings.

The GCN operation can be written as:

hk+1
i = ReLU(

n+m∑
j=1

(AijW
k+1hkj )) (4)

where k is the number of the current layer, A ∈
R(n+m)×(n+m) denotes the adjacency matrix of the
graph, W ∈ Rd×d is trainable weight, d denotes
the hidden size of BERT.

After K layers of GCNs, the final representation
of each token is then fed into a fully-connected
layer followed by a softmax layer to yield a proba-
bility distribution over Y:

pcei = softmax(Wch
K
i + bc) (5)

where Wc ∈ Rd×|Y| and bc ∈ R|Y| are trainable
weight and bias.
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Figure 1: The overall architecture of our proposed MTDTN.

4.4 Triplet Extraction Module
The dependency tree of a sentence is a directed
acyclic graph with words as nodes and relations as
edges. The relation between any two words in the
tree can be described as a "head-dependent" pair.
For the same sentence as in the co-extraction mod-
ule, we employ CoreNLP to generate a dependency
tree and then construct an undirected isomorphic
dependency graph based on the tree without rela-
tions .

The dependency graph generated by tools may
have inevitable parsing errors. Different from
(Xiao et al., 2021) which employs self-attention
weights of layers all over BERT to supply the de-
pendency graph, we only make use of the middle
layer which contains more syntactic information to
modify it:

Aatt = softmax(
QattW

Q
att(KattW

K
att)

T

√
d

)

Amodi
i,j =


1, α ≤ Aatt

i,j

Adep
i,j , β < Aatt

i,j < α

0, Aatt
i,j ≤ β

(6)

where Qatt and Katt are both equal to Hte, W
Q
att

and WK
att denote trainable weights, Adep ∈ Rn×n

and Amodi ∈ Rn×n denote adjacency matrices of
the original dependency graph and the modified
graph respectively, α and β are hyper-parameters.

In order to receive the modified dependency

Figure 2: Dep-Enhanced Transformer Decoder.

graph, we design a Dep-Enhanced Transformer
Decoder (DETD) as shown in Figure 2, which uses
Hce as input to the first sub-layer and Hte as key
and value to the second sub-layer:

T = DETD(Hte, Hce, A
modi) (7)

where T = {t1, t2, · · · , tn} denotes the output of
DETD.

Unlike the vanilla transformer decoder, we use
multi-head attention instead of masked multi-head
attention in the first sub-layer. Since the vanilla
transformer does not explicitly encode syntactic
features, in the second sub-layer, we incorporate
the modified dependency graph into multi-head
cross-attention by changing the calculation method
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of the attention coefficients:

A =softmax(
(QWQ(KWK)T ) ∗Amodi

√
d

)

CAdep =FF (AV )

O =LN(I + CA(I) + CAdep(I))
(8)

where I denotes the input of and O denotes the out-
put of multi-head cross-attention, Q is equal to I ,
K and V are both equal to Hte, WQ and WK de-
note trainable weights, ∗ denotes an element-wise
multiplication between Amodi and the dot product
of Q and K, FF and LN are feed-forward net-
work and layer normalization in transformer, CA
and CAdep denote the vanilla and the dep-enhanced
cross-attention respectively.

Finally, we concatenate the DETD representa-
tions of word xi and xj to represent the word-pair
(xi, xj), i.e., rij = [ti; tj ], where [; ] is the con-
catenation operation. Then rij is sent to a fully-
connected layer to calculate the temporary triplet
tag probability:

zij = W srij + bs (9)

where Ws ∈ Rd×|G| and bs ∈ R|G| are trainable
weight and bias.

4.5 Transition-Based Inference Strategy

The inference strategy of the original Grid Tagging
Schema (GTS) (Wu et al., 2020a) requires indef-
inite iterations to capture word-to-word relations,
which will increase the time complexity. Inspired
by boundary guidance in E2E-ABSA (Li et al.,
2019), we further propose a Transition-Based Infer-
ence Strategy (TBIS) to accelerate the convergence.

Firstly, we use a similar approach to the original
GTS, leveraging features of distributions of the
temporary triplet tag probability and capturing the
associated features between xi/xj and others to
obtain more accurate results. The new probability
qij can be calculated as follows:

zi = maxpooling(zi,:)

zj = maxpooling(zj,:)

r̃ij = [rij ; zi; zj ; zij ]

oij = W or̃ij + bo

qij = W soij + bs

(10)

where zi,: = (z1:i,i, zi,i:n) according to the upper
triangular grid in GTS, W o and bo are trainable

Figure 3: Constraints between co-extraction tags and
triplet extraction tags.

weight and bias, W s and bs share the same param-
eters as above.

Secondly, we encode the constraints between
co-extraction tags and triplet extraction tags into
a transition matrix W g ∈ R|Y|×|G| as shown in
Figure 3. The matrix is initialized as follows and
updated as a linear layer during training:

W g
ij =

{ 1
|Ti| if j ∈ Ti
0, Otherwise

(11)

where Ti is the set of valid triplet extraction tags
in G corresponding to the ith co-extraction tag in
Y . We transfer boundary information of aspects
and opinions by mapping the probability scores of
the co-extraction tag space to the triplet tag space.
The transition-based score of xi is calculated as
follows:

gi = (W g)T pcei (12)

A gating mechanism is applied to fuse the
transition-based score with the triplet extraction
tag probability. We calculate a gating score αi ∈ R
based on the confidence score ci:

ci = (pcei )T pcei

αi = ϵci
(13)

where ci represents co-extraction module’s con-
fidence in the predicted result pcei , ϵ is a hyper-
parameter to control the contribution of the
transition-based score gi in the final result.

Finally, qij is fused with gi by the gating score
αi and the result is fed into a softmax layer to yield
a probability distribution over G:

pteij = softmax(αigi + (1− αi)qij) (14)

4.6 Joint Training Loss
Training losses for two sub-tasks are both defined
as cross-entropy loss:

Lce = −
n∑

i=1

∑
k∈Y

I(ycei = k)log(pcei|k) (15)
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Lte = −
n∑

i=1

n∑
j=i

∑
k∈G

I(yteij = k)log(pteij|k) (16)

where ycei denotes the ground truth tag of word xi
in co-extraction, yteij denotes the ground truth tag
of the relation between word xi and xj in triplet
extraction, pcei and ptei,j denote predicted tagging
distributions, I(·) is the indicator function, Y and
G denote two label sets.

To jointly train two sub-tasks and make them
mutually beneficial, we combine the above loss
functions to form the final objective, where the
hyper-parameter γ denotes their ratio.

L = γLce + Lte (17)

5 Experiments

5.1 Datasets and Metrics
Experiments are conducted on datasets created by
Wu (Wu et al., 2020a). There are four datasets,
among which 14res, 15res and 16res are in the
restaurant domain, and 14lap is in the laptop do-
main. The statistics of all datasets are listed in
Table 2.

Following previous works, we employ precision,
recall and micro F1-score as metrics. During train-
ing, we use the model that performed best on the
development set for testing. For reproducibility, on
each dataset we train the model 5 times with differ-
ent random seeds and report the averaged results.

Table 2: Statistics of datasets (#S, #P, #neg, #neu, and
#pos denote the number of sentences, pairs, negative
triplets, neutral triplets, and positive triplets, respec-
tively.)

Datasets #S #P #neg #neu #pos

14res
Train 1,259 2,356 491 172 1693
Dev 315 580 107 46 427
Test 493 1008 156 427 784

14lap
Train 899 1452 533 111 808
Dev 225 383 136 48 199
Test 332 547 116 67 364

15res
Train 603 1038 210 29 799
Dev 151 239 49 9 181
Test 325 493 144 25 324

16res
Train 863 1421 330 55 1036
Dev 216 348 77 8 263
Test 328 525 79 30 416

5.2 Baselines

We compare our model with the following base-
lines to evaluate the performance of MTDTN,
where part of them are pipeline models and oth-
ers are end-to-end models.

• Peng-unified-R+PD (Peng et al., 2020) pro-
pose a two-stage framework to address the
ASTE task. In the first stage, Peng-unified-R
extracts aspects with sentiment and opinions
by utilizing mutual influence between aspects
and opinions. In the second stage, an MLP-
based classifier (PD) is applied to all possible
triplets to determine whether each triplet is
valid or not.

• Li-unified-R+PD is a pipeline model com-
bined by (Peng et al., 2020), which first em-
ploys a modified model Li-unified-R (Li et al.,
2019) to extract aspects with sentiment and
opinions and then applies PD to obtain all the
valid triplets.

• Peng-unified-R+IOG is a pipeline model
combined by (Wu et al., 2020a), which first
uses Peng-unified-R (Peng et al., 2020) to ex-
tract aspects with sentiment and then employ
IOG (Fan et al., 2019) to generate triplets.
IOG can effectively encode aspect informa-
tion to extract the corresponding opinion.

• IMN+IOG is another pipeline model com-
bined by (Wu et al., 2020a), which first uses
IMN (He et al., 2019) to extract aspects with
sentiment and then employ IOG (Fan et al.,
2019) to generate triplets.

• GTS (Wu et al., 2020a) propose a unified grid
tagging scheme to address the ASTE task and
design an inference strategy to exploit mutual
indications between different opinion factors.

• S3E2 (Chen et al., 2021b) further represent the
semantic and syntactic relations between word
pairs by a graph neural network to enhance
the vanilla GTS.

• BMRC (Chen et al., 2021a) convert the ASTE
task into a multi-turn machine reading com-
prehension (MRC) task with well-designed
queries.
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Table 3: Main results of triplet extraction (%). All methods’ results are from original papers or the paper of GTS.
The mark ’-’ means that the paper of BMRC does not release the precision and the recall on each dataset.

Methods 14res 14lap 15res 16res
P R F1 P R F1 P R F1 P R F1

Li-unified-R+PD 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51
Peng-unified-R+PD 44.18 62.99 51.89 40.40 47.24 43.50 40.97 54.68 46.79 46.76 62.97 53.62
Peng-unified-R+IOG 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67

IMN+IOG 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 - - -
GTS-CNN 70.79 61.71 65.94 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
S3E2 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87

GTS-BERT 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58
BMRC-BERT - - 70.01 - - 57.83 - - 58.74 - - 67.49

Ours 70.00 71.78 70.88 61.98 54.71 58.12 59.03 62.68 60.80 69.04 69.98 69.51

5.3 Implementation Details

For the shared BERT encoder, we choose the un-
cased version of BERT-base (Devlin et al., 2019)
with 12 stacked Transformer blocks, 12 attention
heads and the hidden size of 768, which is imple-
mented based on HuggingFace’s Transformers
(Wolf et al., 2020) library. While training the joint
model, we employ AdamW (Loshchilov and Hut-
ter, 2018) as the optimizer with the weight decay
of 0.01 and the warmup rate of 0.1. The learning
rate is set to 2e-5 for the BERT parameter group
and 1e-3 for other parameter groups. The batch
size is set to 32 with a max sequence length of 128.
When constructing graphs for constituency trees
and dependency trees, we only keep edges associ-
ated with the first sub-word of each word tokenized
by BERT. We set the middle layer l to 8 for 14res,
14lap and 9 for 15res, 16res respectively. We set
the thresholds α and β to 0.1 and 0.9 to generate
the modified graph. For the joint training loss, the
ratio γ is set to 1. All experiments are conducted
on two Nvidia RTX 3080 GPUs.

5.4 Main Results

The main results of baselines and our MTDTN
model are shown in Table 3. According to the
results, MTDTN outperforms all baselines and
achieves state-of-the-art performances on four pop-
ular datasets, which proving our model’s effective-
ness.

In general, due to the strong text expression abil-
ity of pre-trained models, the BERT-based models
like GTS-BERT, BMRC-BERT and MTDTN sur-
pass other models which do not employ BERT as
the text encoder layer significantly.

More importantly, MTDTN achieves 0.68%,
3.54%, 2.13% and 1.93% absolute F1 scores

gain over GTS-BERT, which is the state-of-the-art
method we followed on four datasets. We think it
is because our model can accurately locate aspects
and opinions and capture the relation between them
by introducing syntactic information and internal
interaction of multiple tasks.

Then, compared with BMRC-BERT, which is an-
other state-of-the-art model, MTDTN achieves an
absolute F1 score increase of 0.87%, 0.29%, 2.06%,
2.02% on four datasets. BMRC-BERT converts the
ASTE task into a machine reading comprehension
task, while the restrictive query may not correctly
capture the relation between aspects and opinions.
This may be the actual cause of the performance
difference.

5.5 Ablation Study

To verify the validity of different modules in our
MTDTN, we further carry out an ablation study as
shown in Table 4.

Table 4: Results of ablation study for ASTE task (F1%).

Methods 14res 14lap 15res 16res

MTDTN 70.88 58.12 60.80 69.51
MTDTN w/o CE 70.13 56.98 58.61 67.28

MTDTN w/o TBIS 70.33 57.39 59.51 67.69
MTDTN w/o DETD 68.81 54.56 58.11 67.03

MTDTN w/o MG 69.80 56.32 59.83 68.94

Firstly, we verify the effectiveness of the multi-
task framework by removing the co-extraction mod-
ule, which is ’MTDTN w/o CE’ in the table. It can
be observed that there is a certain decline in perfor-
mance, which shows that the auxiliary task is fully
effective in extracting triplets from sentences.

After that, we replace TBIS with the original in-
ference strategy in GTS, which refers to ’MTDTN
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w/o TBIS’. We can see the performance drops,
which shows that the designed inference strategy
can utilize the boundary information of aspects and
opinions in the AOCE task to promote the ASTE
task.

Then, we remove DETD and replace it with a
vanilla transformer decoder without masked multi-
head attention. It can be seen from ’MTDTN w/o
DETD’ that the model’s performance is signifi-
cantly declined, showing that the syntactic informa-
tion can help the model better capture the relations
between words.

More detailed, ’MTDTN w/o MG’ means di-
rectly replacing the modified graph with the depen-
dency graph generated by the parser. The dropping
in performance shows that the modified graph can
reduce parsing errors and is more suitable for the
specific task.

5.6 Analysis of Graph Type

(a) Heterogeneous graph with nodes of constituent and
word.

(b) Isomorphic graph with nodes of constituent.

(c) Isomorphic graph with nodes of word.

Figure 4: Different types of graph.

In this section, we compare three graphs as in
Figure 4 on four datasets, the results are shown in
Table 5, where ’POS sequence’ denotes simple ad-
dition of POS embeddings to Hce, ’None’ denotes
Hce directly being sent to the tag decoder. In ’Iso-

morphic graph (constituent)’ and ’POS sequence’,
embeddings of constituents and POS are randomly
initialized and updated during training. In ’Iso-
morphic graph (word)’, embeddings of phrases are
calculated from the average of word embeddings it
contains.

Table 5: Results of graph analysis for AOCE task (F1%).

Methods 14res 14lap 15res 16res

Heterogeneous graph 87.37 86.07 81.67 81.79
Isomorphic graph (constituent) 86.22 85.07 81.39 81.42

Isomorphic graph (word) 85.06 84.23 80.28 82.15
POS sequence 85.14 83.72 80.12 82.69

None 84.77 84.02 79.22 82.44

We observe that the model using a heterogeneous
graph obtains better AOCE performance than other
methods on all datasets except 16res. This may be
because the fact that the node interaction of het-
erogeneous graphs is more explainable compared
to isomorphic graphs. On the one hand, embed-
dings of constituents can obtain information from
the fully trained hidden states of words. On the
other hand, the word representation can also get
boundary information and constituent information
from the graph of the constituency tree.

5.7 Analysis of BERT Layer
To investigate the effect of different BERT layers
modifying the dependency graph and being the
key and value of DETD, we evaluate our MTDTN
model with each layer of BERT on four datasets.
As shown in Figure 5, MTDTN with the 8th or 9th
layer of BERT performs the best. The results are

Figure 5: Impact of different BERT layers

consistent with the hierarchical characteristics of
BERT (Jawahar et al., 2019) that middle layers cap-
ture rich syntactic features. Therefore, employing
self-attention weights of the middle layer to mod-
ify the dependency graph can reduce parsing errors
and make it suit the specific task better.
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6 Conclusions

In this paper, we propose a multi-task framework
for Aspect Sentiment Triplet Extraction (ASTE)
with Aspect Opinion Co-Extraction (AOCE) as an
auxiliary task. The two sub-tasks utilize two types
of trees to capture different information of the text.
For a given sentence, a constituency tree is em-
ployed by a graph convolution network for AOCE,
and a modified dependency tree is employed by
a special transformer decoder for ASTE. We fur-
ther designed a Transition-Based Inference Strat-
egy (TBIS) to enhance information interaction be-
tween sub-tasks by transferring the boundary in-
formation from AOCE to ASTE through a transi-
tion matrix. The whole model is called Multi-Task
Dual-Tree Network (MTDTN) and extensive exper-
iments demonstrate that our model achieves state-
of-the-art performance on four popular datasets.
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