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Abstract
Recently, some span-based methods have
achieved encouraging performances for joint
aspect-sentiment analysis, which first extract
aspects (aspect extraction) by detecting aspect
boundaries and then classify the span-level sen-
timents (sentiment classification). However,
most existing approaches either sequentially
extract task-specific features, leading to insuf-
ficient feature interactions, or they encode as-
pect features and sentiment features in a par-
allel manner, implying that feature represen-
tation in each task is largely independent of
each other except for input sharing. Both of
them ignore the internal correlations between
the aspect extraction and sentiment classifica-
tion. To solve this problem, we novelly propose
a hierarchical interactive network (HI-ASA)
to model two-way interactions between two
tasks appropriately, where the hierarchical in-
teractions involve two steps: shallow-level in-
teraction and deep-level interaction. First, we
utilize cross-stitch mechanism to combine the
different task-specific features selectively as
the input to ensure proper two-way interactions.
Second, the mutual information technique is
applied to mutually constrain learning between
two tasks in the output layer, thus the aspect
input and the sentiment input are capable of
encoding features of the other task via back-
propagation. Extensive experiments on three
real-world datasets demonstrate HI-ASA’s su-
periority over baselines1.

1 Introduction

Aspect-sentiment analysis (ASA) (Yan et al., 2021;
Birjali et al., 2021) aims at extracting all the as-
pects and their corresponding sentiments within
the text simultaneously. And it can be divided into
two tasks, i.e., aspect extraction (AE) and senti-
ment classification (SC). AE is to extract the as-
pects (Jakob and Gurevych, 2010; Poria et al., 2016;

∗Corresponding authors.
1The source codes are released in https://github.

com/cwei01/HI-ASA.

Karimi et al., 2021) in the sentence, and SC aims
to predict the sentiments (Jiang et al., 2011; Lin
et al., 2019; Karimi et al., 2021) for the extracted
aspects.

In recent years, the span-based models (Hu et al.,
2019; Zhou et al., 2019; Lin and Yang, 2020; Lv
et al., 2021) are increasingly becoming an alterna-
tive for ASA because of their inherent advantages
(e.g., they can avoid sentiment inconsistency and
huge search space problems in tagging-based mod-
els (Luo et al., 2019; Wang et al., 2021)), where
the aspects are extracted by directly predicting the
boundary distributions, and the sentiment polarities
are classified based on the aspect-level words. For
example, in the sentence “The screen size is satis-
factory but the phone battery capacity is limited.",
the aspect spans are “screen size” and “the phone
battery”, and span-level sentiments are positive and
negative, respectively. Formally, most of the exist-
ing methods can be divided into two types: sequen-
tial encoding (Jebbara and Cimiano, 2016; Zhou
et al., 2019) and parallel encoding (Hu et al., 2019;
Lv et al., 2021) due to different ways in encoding
task-specific features. In sequential encoding, the
task-specific features are extracted sequentially, i.e.,
features extracted later have no direct associations
with previous ones, which is a unidirectional inter-
action strategy. In parallel encoding, task-specific
features are extracted independently except for us-
ing shared input, i.e., the interaction is only present
in input sharing. Hence, both encoding methods
above fail to model two-way interactions between
AE and SC appropriately.

In practice, the learning of the AE and SC may
mutually influence each other. On the one hand,
sentiment words can be understood better if given
the desired aspects. For example, in the two sen-
tences: “The battery has a large capacity.” and
“The computer case is too large to carry.”, we can
find that the sentiment word “large” expresses posi-
tive sentiment when describing the aspect “hard

https://github.com/cwei01/HI-ASA
https://github.com/cwei01/HI-ASA
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drive” while negative sentiment towards “com-
puter”. This actually shows that incorporating the
aspect features is conducive to SC. On the other
hand, since sentimental expressions are usually
close to aspects, the potential sentiment features
may provide useful signals for AE. For example, if
we observe the word “spicy” appears in a restau-
rant review, it is likely to exist an aspect related
to food. Thus, incorporating the sentiment fea-
ture also facilitates aspect detection. These two
examples illustrate that it is essential to reasonably
establish the two-way associations between two
tasks.

Inspired by the above analysis, in this work, we
propose a novel Hierarchical Interactive model for
joint span-based Aspect-Sentiment Analysis (HI-
ASA). Specifically, the hierarchical interactions are
achieved in two steps: shallow-level interaction and
deep-level interaction. The former learns semantic-
level interactive features to facilitate information
sharing between two tasks in encoding layer. And
the latter takes advantage of the technique of mu-
tual information maximization to ensure two-way
interaction between the two tasks. Extensive exper-
imental comparisons against state-of-the-art solu-
tions demonstrate the effectiveness of our proposed
methods.

2 Model

In this section, we formally define the prob-
lem of joint span-based aspect-sentiment analysis.
Giving a training set {(xi, {(sji , e

j
i , p

j
i )}

li
j=1)}Ni=1,

in each sample (xi, {(sji , e
j
i , p

j
i )}

li
j=1), xi =

{xi,1, xi,2, . . . , xi,ni} is a ni-length sentence, and
(sji , e

j
i , p

j
i ) identifies an aspect with sji and eji as

the start and end boundaries, and pji as sentiment
polarity. li is the number of aspects in the sentence.

The overall architecture is illustrated in Figure 1,
which mainly consists of two parts: AE and SC.
We model the hierarchical interactions between two
tasks appropriately to enhance the correlations. For
the input section, firstly, we leverage BERT (Devlin
et al., 2018) to extract the semantic information for
input sentence. The output through the transformer
layers isB = {b1, b2, . . . , bn} ∈ Rn×d, where d is
the BERT’s embedding size, n is the length of sen-
tence. Then, we stack GRUs uponB for different
tasks, here, we define the outputs of AE and SC as
H0
a ∈ Rn×d̂ andH0

s ∈ Rn×d̂, respectively, where
d̂ is the dimension size of GRU.

2.1 Shallow-Level Interaction

In previous models (Hu et al., 2019; Lin and Yang,
2020; Lv et al., 2021), the feature representations
are extracted independently except for using shared
input. In other words, two tasks have no associa-
tions with each other, which is not in line with
human ituition. Intuitively, the features of SC are
not only derived from its own features of previous
layers, but also come from the features of AE, and
vice versa. Therefore, we design a shallow-level
interaction strategy inspired by the idea of cross-
stitch mechanism (Misra et al., 2016). Its core is
to selectively combine the different features to rea-
sonably model two-way interactions. Specifically,
the calculation is as follows:[

H1
a

Ha
s

]
=

[
γaa αsa

αas γss

] [
H0

a

H0
s

]
(1)

where γaa, γss are the task-specific parameters,
and αsa, αas are task-sharing parameters. H1

a and
H1
s are the output features of AE and SC in the last

encoding layer, respectively. We can observe that
the cross-stitch unit is beneficial for the interaction
between AE and SC features. To speed up the train-
ing process, we define the following constraints,
(1): γaa = γss , αsa = αas (2): γaa + αsa = 1.
Thus, the Eq.1 is simplified to:

H1
a = α ·H0

s + (1− α) ·H0
a

H0
s = α ·H0

a + (1− α) ·H0
s

(2)

where α controls information transferred from the
other task.

2.2 Deep-Level Interaction

In the last section, we model the two-way inter-
actions from the encoding layer. Although some
semantic-level associations can be captured, we
believe that task-level associations cannot be ad-
equately modeled. To better understand our pro-
posed method, we give an intuitive explanation
in Figure 2. We observe the span-based aspect
extracion models put higher scores on the entity
words (e.g., “Windows” ,“7” ). But with aspect-
level sentiment learning, higher attention weights
are not only put on some polarity words (e.g.,
“love”), but also on the entity words. There-
fore, it would be interesting if we perform aspect-
sentiment mutual learning on both tasks. Thus, we
propose the deep-level interactive strategy based
on mutual information maximization (Kong et al.,
2019), where the task-level information is shared
by the two tasks in the output layer. We will explain
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Figure 1: The architecture of our HI-ASA.
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0.2 0.5 0.90.7 0.1

0.1 1.0 0.70.5 0.1

Aspect	Scores:

Attention	Scores:

Mutual
Learning

Figure 2: The example of our mutual information maxi-
mization strategy in sentence “I love Windows 7.”.

in detail how to obtain the aspect scores (i.e., the
more a word acts like an aspect word, the higher
its score) and attention scores for these two tasks.

Aspect Extraction (E). We extract the as-
pects by predicting the boundaries, i.e., start po-
sition and end position. Specifically, we employ
a linear classifier to predict the start scores gs =
sigmoid(VsH

1
a), i.e., Vs is a trainable vector, and

end scores ge can be derived in a similar manner.
During training phase, we define the learning ob-
ject: Jae=−

∑n
i=1 p

i
s log (g

i
s)−

∑n
i=1 p

i
e log (g

i
e),

where pis and pie are the ground truths of the bound-
aries. gis and gie are the predicted distributions.

For the aspect score E , we cannot use the bound-
ary distributions of aspect (i.e., gs and ge) directly
due to their different meanings. In fact, the span of
aspect is relatively short, we can use the average
boundary distributions to approximate the aspect
scores, so we have: E = pooling(gs)+pooling(ge)

2 ,
where pooling(·) is the mean-pooling function, in
our work, our set window size as 1× 3. Therefore,
suppose the start score gs is [0.2,0.3,0.7,0.9,0.1],
the first item of pooling (gs) is 0+0.2+0.3

3 = 0.17,
and the pooling (gs) is [0.17,0.4,0.63,0.57,0.33],
such strategy can guarantee that the aspect distri-
bution approximates the boundary distributions as
much as possible.

Sentiment Classification (A). In aspect-level

sentiment classification, the attention weights of
words produced during the training towards the
specific aspects could reveal word-polarity infor-
mation. Thus, we can leverage the attention dis-
tribution as the sentiment features to help detect
the boundaries of aspects. To this end, we choose
the over-and-over attention model (Huang et al.,
2018) to implement the sentiment classification.
Here, we directly define the attention distribution
as A, (i.e., A is attention scores in Figure 2). Dur-
ing training phase, the optimization goal for SC
is: Jsc = −

∑N
i=1 y

T
i log ŷi, where ŷi is the pre-

dicted sentiment distribution, and yTi is the corre-
sponding ground truth,N is the number of samples.

Mutual Information Maximization. After get-
ting the aspect distribution E and sentiment atten-
tion distribution A. As discussed above, it should
be interesting if we perform aspect-sentiment mu-
tual learning on both tasks. In Figure 2, we can find
that the aspect scores and attention weights are both
improved after applying the mutual learning tech-
nique. We need to maximize the similarity between
two distributions during the training. An intuitive
idea is to use Kullback Leibler (KL) divergence to
measure the distance between distributions, consid-
ering the correlations are bidirectional, we define
the following similarity measurement metrics using
Jenson Shannon (JS) divergence:

JS(E‖A) = 1

2
KL

(
E‖E +A

2

)
+

1

2
KL

(
A‖E +A

2

)
(3)

where the JS divergence is symmetric, thus we can
leverage it to constrain two tasks to learn from each
other, resulting in balanced interaction between AE
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Dataset #Sentences #Aspects #+ #- #0
Restaurant 3900 6603 4134 1538 931

Laptop 1869 2936 1326 900 620
Tweets 2350 3243 703 274 2266

Table 1: Statistics of the datasets. “+/-/0” refer to the
positive, negative, and neutral sentiment classes.

Span-based Models Laptop Res Tweets
Zhou (Zhou et al., 2019) 59.76 71.98 51.44

Hu-pipeline (Hu et al., 2019) 68.06 74.92 57.69
Hu-joint (Hu et al., 2019) 64.59 72.47 54.55

Hu-collapsed(Hu et al., 2019) 48.66 57.85 48.11
SPRM (Lin and Yang, 2020) 68.72 79.17 59.45

S-AESC (Lv et al., 2021) 65.88 74.18 54.73
HI-ASA 70.39 79.90 60.36

- w/o SI 68.05 79.10 60.04
- w/o DI 67.45 79.50 60.13

Table 2: The performance (F1-score) comparisons with
different methods. Baseline results are retrieved from
published papers.

and SC. Whereas in sequential and parallel encod-
ing, sentiment features have no direct impact on the
information of aspect features. Finally, considering
the mutual information maximization between two
tasks, HI-ASA is optimaled by combining three
sections:

argmin
θ

(Jae + Jsc + β · JS(E‖A)) (4)

where θ is the set of model’s parameters, Jae and
Jsc are the optimization goals of AE and SC re-
spectively. β is a balanced parameter. During the
test phase, HI-ASA outputs two parts, one is the
scores of boundaries, based on which we leverage
the heuristic algorithm (Lin and Yang, 2020) to ex-
tract all the aspects; the other one is corresponding
sentiment polarities of extracted aspects.

3 Experiments

3.1 Datasets and Settings

Datasets. In our experiments, we use three public
datasets, including Laptop (Pontiki et al., 2014),
Restaurant (Pontiki et al., 2014, 2015, 2016) and
Tweets (Mitchell et al., 2013), which have been
widely used in previous works (Lv et al., 2021).
The statistic details of experimental dataset are
refer to Table 1. For each sentence in datasets,
the gold span boundaries and sentiment polarity
labels are available. Specifically, Restaurant is
the union set of the restaurant domain from Se-
mEval2014, SemEval2015 and SemEval2016. Lap-
top contains costumer reviews in the electronic
product domain, which is collected from SemEval

Challenge. Tweets is composed of twitter posts
from different users.

Settings. In the experiments, the commonly
used metric F1-score (F1) is selected to evaluate
for aspect-sentiment analysis, accuracy is applied
to sentiment classification. A correct predicted
aspect only when it matches the gold aspect and
the corresponding polarity. We utilize the BERT-
Large model as the backbone network,where the
number of transformers is 24 and the hidden size
is 784. In addition, we use Adam optimizer with a
learning rate of 3e-5, the batch size is 32 and the
dropout probability of 0.1 is used.

3.2 Main Results
The comparisons between HI-ASA and the base-
lines are presented in Table 2. Specifically, “- w/o
SI” means we remove the shallow-interaction layer,
“- w/o DI” denotes removing the deep-interaction
layer. We can observe: (1) Overall, our proposed
HI-ASA consistently achieves the best F1 scores
across all the baselines. More specifically, com-
pared to the state-of-the-art approach SPRM, HI-
ASA improves the performance by about 1.67%,
0.63%, and 0.91% on three datasets, respectively.
These observations indicate the carefully designed
HI-ASA is capable of achieving better perfor-
mances. The reason can be concluded two folds:
one is that we selectively combine the task-specific
features of each task to reasonably model two-way
interactions in the encoding layer; the second ben-
efit is that we model a balanced task-level inter-
actions. Under this framework, aspect and senti-
ment associations are captured appropriately in a
hierarical manner. (2) Besides, we investigate the
effectiveness of each single module, i.e., “- w/o SI”
and “- w/o DI”. We can see that when a certain
module is removed, the performance of our model
decreases, which indicates the indispensability of
each module.

3.3 Ablation Study
In this section, we go deeper into HI-ASA and anal-
yse the results on both tasks. The results are shown
in Table 3. Generally, we observe that HI-ASA
outperforms baseline competitors on both tasks,
which indicates the effectiveness of the two-way
interaction on both aspect extraction and sentiment
classification. For the AE task, HI-ASA can en-
hance the performance of most of the baselines.
On the SC task, HI-ASA outperforms SPRM by
3.98%, 2.83%, and 5.16% on three datasets, respec-
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Aspect Extraction Laptop Res Tweets
Hu (Hu et al., 2019) 83.35 82.38 75.28

SPRM (Lin and Yang, 2020) 84.72 86.71 69.85
S-AESC (Lv et al., 2021) 85.19 84.20 76.04

HI-ASA 86.30 86.93 76.36
- w/o SI 84.50 87.33 75.81
- w/o DI 85.10 87.09 75.99

Sentiment Classifiction Laptop Res Tweets
Hu (Hu et al., 2019) 81.39 89.95 75.16

SPRM (Lin and Yang, 2020) 81.50 90.35 78.34
HI-ASA 85.02 93.18 83.50

- w/o SI 84.07 92.53 82.90
- w/o DI 83.75 92.62 83.49

Table 3: The top part is the performance (F1-score)
comparisons with different methods on aspect extrac-
tion. And the bottom part is the performance (Accuracy)
comparisons with different methods on sentiment clas-
sifiction.

Dataset/α 0 0.1 0.2 0.3 0.4 0.5
Laptop 68.05 70.39 67.62 68.63 68.58 70.36

Restaurant 79.14 78.93 79.73 79.45 79.90 78.48
Tweets 60.04 60.36 59.70 59.89 58.79 58.19

Table 4: The performance (F1-score) of different shar-
ing ratios (α) on three datasets.

tively, which implies that it is more able to boost
the performance of SC compared to AE.

3.4 Parameter Analysis α
In HI-ASA, the parameter α controls informa-
tion transfer between two tasks. For a special
case, if α = 0, our approach will degenerate to
the parallel encoding. We tune α in the range
of [0.0,0.1,0.2,0.3,0.4,0.5] and the results are pre-
sented in Table 4. It is worth noting that we set the
value of α below 0.5. This setting is inspired by the
ituition that the features for each task should come
more from the task itself, rather than the other task.
We can notice the best results are achieved when α
is 0.1, 0.4, and 0.1 on three datasets, respectively,
rather than 0.0. This actually shows our interaction
is successful.

Furthermore, we find an interesting phenomenon
is that α is small (i.e., 0.1) on Laptop and Tweets,
and large on Restaurant when performing the best
performance. We conjecture the reason lies in that
Restaurant has more samples than the other two
datasets, requiring more knowledge interactions for
a better learning process.

4 Related Work

Aspect-sentiment Analysis (ASA) (Yan et al., 2021;
Birjali et al., 2021) is an essential task in senti-
ment analysis and can be separated into two tasks,

i.e., aspect extraction (AE) and sentiment clas-
sification (SC). Over the past years, some span-
based methods have achieved promising results
for ASA, which first extract aspects by detecting
aspect boundaries (AE) and then predict the span-
level sentiments (SC). AE has been widely studied
by traditional machine (Jakob and Gurevych, 2010)
and deep learning algorithms (Karimi et al., 2021).
However, the absence of sentiment information
may result in redundant and noisy detection. SC
is to predict the sentiment expressed on some spe-
cific aspects in a sentence, which has been studied
extensively in NLP community (Tang et al., 2015;
Chen et al., 2019, 2020; Karimi et al., 2021). How-
ever, these aspects must be annotated before the
AE task. (Hu et al., 2019) proposed an extract-
then-classify framework, which extracted aspects
with a heuristic decoding algorithm and then cor-
respondingly classified the span-level sentiments.
(Lin and Yang, 2020) designed share-private rep-
resentation for each task to capture the correla-
tions between two tasks in encoding layer. Besides,
(Zhou et al., 2019) introduced a joint model based
on span-aware attention mechanism to predict the
sentiment polarity. Although achieved improved
performances, these works fail to model two-way
interactions between AE and SC appropriately.

5 Conclusion

In this paper, we proposed a novel aspect-sentiment
analysis model named HI-ASA. The proposed
model is equipped with a hierarchical interactive
network to facilitate information sharing between
the aspect extraction task and the sentiment clas-
sification task. The experimental results on three
benchmark datasets demonstrated HI-ASA’s effec-
tiveness and generality.
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